
ar
X

iv
:1

80
3.

11
01

9v
2 

 [
m

at
h.

N
A

] 
 2

 A
pr

 2
01

9

OPTIMAL CONVERGENCE RATES FOR TIKHONOV

REGULARIZATION IN BESOV SPACES∗

FREDERIC WEIDLING† , BENJAMIN SPRUNG† , AND THORSTEN HOHAGE†

Abstract. This paper deals with Tikhonov regularization for linear and nonlinear ill-posed
operator equations with wavelet Besov norm penalties. We show order optimal rates of convergence
for finitely smoothing operators and for the backwards heat equation for a range of Besov spaces
using variational source conditions. We also derive order optimal rates for a white noise model with
the help of variational source conditions and concentration inequalities for sharp negative Besov
norms of the noise.
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1. Introduction. We consider ill-posed operator equations

F (f †) = g†

with noisy right hand side and a forward operator F : D ⊂ X → Y where X is some
Besov space Bsp,q, D ⊂ X a non-empty, closed, convex set and Y an L2 space. f † ∈ D
denotes the true solution. We treat two noise models, the standard deterministic error
model where the observed data gobs satisfy

(1.1) gobs = g† + ξ, ‖ξ | Y‖ ≤ δ

with a deterministic noise level δ > 0, and statistical models

(1.2) gobs = g† + εZ

with a statistical noise level ε > 0 and some noise process Z on Y with white noise
as most prominent example. (As we will have to deal with norms involving many,
sometimes nested indices, we use the notation ‖· | Y‖ instead of ‖·‖Y throughout the
paper.)

One of the most common approaches to compute a stable approximation of f †

given gobs is Tikhonov regularization of the form

(1.3) f̂α ∈ argmin
f∈D

[
1
t

∥∥F (f)− gobs
∣∣Y
∥∥t + αR(f)

]

with some t ≥ 1 and a regularization parameter α > 0. In this paper we study the
case that R(f) is given by a norm power of a Besov norm of f . Such penalties with
wavelet Besov norms with small index p are frequently used to enforce sparsity (see,
e.g. [11, 32]). As white noise on a Hilbert space Y does not belong to Y with probability

1, we use t = 2 in this case, expand the square, and omit the term 1
2‖gobs | Y‖

2
, which

has no influence on the minimizer. This yields

(1.4) f̂α ∈ argmin
f∈D

[
1
2‖F (f) | Y‖

2 −
〈
gobs, F (f)

〉
+ αR(f)

]
.
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2 F. WEIDLING, B. SPRUNG AND T. HOHAGE

A main goal of regularization theory are bounds on the distance of regularized esti-
mators of the true solution in terms of the noise level δ or ε, respectively. In the case
that X and Y are Hilbert spaces such error bounds can be obtained by spectral theory
(see e.g. [15] for the deterministic case and [3] for the stochastic case). Concerning
convergence results for deterministic regularization with Besov norms we refer to [11]
for convergence without rates, to [31] for situations in which the rate O(

√
δ) based

on the source condition ∂R(f †)∩ ran(T ∗) 6= ∅ can be achieved (possibly with respect
to negative Sobolev norms) and to [32] for situations in which the rate O(δ2/3) under
the source condition ∂R(f †) ∩ ran(T ∗T ) 6= ∅ occurs. For statistical inverse problems
minimax optimal rates under Besov smoothness assumptions have been shown for
methods based on wavelet shrinkage (see [9, 12, 29, 30]). Variational regularization
has the advantage that no assumptions on the operator are required, it even works
for nonlinear operators.

In the last decade it has become popular to formulate source conditions in the form
of variational inequalities and to derive convergence rates for Tikhonov regularization
under such variational source conditions [16, 20, 21, 33, 34]. Recently, the authors
have developed a method for the verification of variational source conditions in Hilbert
spaces under standard smoothness conditions. This method has been successfully
applied to a number of interesting inverse problems, both linear and nonlinear [25,
26, 35, 40].

In this paper we extend our technique for the verification of variational source
conditions to a Banach space setting. In particular, this allows derive variational
source conditions for a certain class of operators if the true solution belongs to some
Besov space Bsp,q. This leads to optimal convergence rates for p ∈ (1, 2] and q ≥ 2.
An important step is a new characterization of subgradient smoothness (see Theorem
3.6). As a second main novelty, we introduce a new technique to treat white noise
and other stochastic noise models in non-quadratic variational regularization in an
optimal way (Theorem 2.6). We obtain not only order optimal convergence rates of
the expected error, but also an estimate of the distribution of the error in terms of
the distribution of a negative Besov norm of the noise process. At least in the case of
white noise concentration inequalities for such negative Besov norms are known.

The remainder of this paper is organized as follows: In §2 we recall the defini-
tion of variational source conditions and the correspoding deterministic rates rates.
Moreover, we formulate our new technique to derive error bounds for statistical noise
model in an abstract functional analytic setting. Then we introduce a strategy for the
verification of variational source condition including a characterization of subgradient
smoothness in §3. In the following two sections 4 and 5 we present our results on
convergence rates for finitely smoothing operators and for the backwards heat equa-
tion, respectively. Moreover, we show some numerical results for finitely smoothing
operators confirming our theoretical error bounds. The paper has two appendices,
one collecting properties of Besov spaces used in this paper, and the other one giving
details on our numerical experiments.

2. Variational source conditions.

2.1. Basic definitions. Variational source conditions and the general error
bounds in this section will be formulated in terms of the Bregman distance ∆R(f, f †)
between f, f † ∈ X with respect to some convex functional R : X → (−∞,∞] defined
by

∆R(f, f †) := R(f)−R(f †)− 〈f∗, f − f †〉,
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where for the rest of this paper

f∗ ∈ ∂R(f †).

The use of Bregman distances in inverse problems was first proposed in [5, 13]. Here
∂R(f †) denotes the subdifferential of R at f † (see [14]). In general ∆R(f, f †) de-
pends on the choice of the subgradient f∗ ∈ ∂R(f †), but in this paper we will only
consider differentiable penalty functionals R such that ∂R(f †) is a singelton (see [14,
Prop. I.5.3]). In this case ∆R is the second order Taylor reminder which can often be
related to more familiar distance measures:

Example 2.1. i. Let X be a Hilbert space, then choosing R(f) = 1
2‖f −

f0 | X‖2 for some f0 ∈ X one obtains that ∆R(f, f †) = 1
2

∥∥f − f † ∣∣X
∥∥2.

ii. If X is an r-convex Banach space, then by [4, Lemma 2.7] there exists a
constant CX > 0 such that

(2.1)
CX
r

∥∥f − f † ∣∣X
∥∥r ≤ ∆ 1

r ‖· | X‖r(f, f
†), f, f † ∈ X .

A variational source condition as first proposed in [21] for ψ =
√· is an abstract

smoothness condition for f † of the form

(2.2) ∀f ∈ D :
〈
f∗, f † − f

〉
≤ 1

2
∆R(f, f †) + ψ

(
‖F (f †)− F (f) | Y‖t

)
.

Here ψ : [0,∞) → [0,∞) is a concave index function, i.e. ψ is concave, continuous,
increasing, and ψ(0) = 0. §3 is devoted to the interpretation of such conditions.

In [41, Ass. 1] the notion of an effective noise level err : Y → [0,∞) was intro-

duced. err(F (f̂α)) bounds the effect of data noise on f̂α, see Proposition 2.3 and § 2.3
below. It is defined for some fixed Cerr ≥ 1 by

err(g) : = S(g†)− S(g) + 1

Cerrt

∥∥g − g†
∣∣Y
∥∥t(2.3)

with the data fidelity term S(g) := 1
t

∥∥g − gobs
∣∣Y
∥∥t in case of (1.3) and S(g) :=

1
2‖g | Y‖

2 −
〈
gobs, g

〉
in case of (1.4) where we set t := 2. In the deterministic case we

choose Cerr = 2t−1 in (2.3), in which case one can show that err(g) ≤ err := 2
t δ
t, see

[41, Ex. 3.1]. For bounds of err in the case of Poisson and impulsive noise we refer
to [27, 41], and for bounds of err for the noise model (1.2) to §2.3.

2.2. Convergence rates for deterministic errors. For the convergence rate
theorem we will assume that ψ is concave and define for convenience ϕψ(τ) :=
(−ψ)∗

(
− 1
τ

)
which governs the bias. Here ψ∗ denotes the Fenchel conjugate for a

convex function ψ given by ψ∗(v) = supu[〈v, u〉 − ψ(u)]. Some corresponding calculus
rules can be found, e.g. in [14].

Example 2.2. The most common examples of index functions ψ appearing in vari-
ational source conditions are either of Hölder or logarithmic type. If one extends these
functions by ψ(τ) = −∞ for τ < 0 one can calculate ϕψ and obtains (see e.g. [16]):

Hölder-type: ψ(τ) = τµ =⇒ ϕψ(τ) = cµτ
µ

1−µ(2.4a)

logarithmic:
ψ(τ) = (− ln τ)−p(1 + o(1)) as τ → 0

=⇒ ϕψ(τ) = (− ln τ)−p(1 + o(1)) as τ → 0.
(2.4b)
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Under the assumption of a variational source condition one can prove the following
convergence rates in terms of the effective noise model:

Proposition 2.3 ([27, Thm. 2.3]). Assume the variational source condition

(2.2) holds true and let f̂α be a global minimizer of the Tikhonov functional in (1.3).

i. Then f̂α satisfies the following error bounds:

1

2
∆R(f̂α, f

†) ≤ err(F (f̂α))

2α
+ ϕψ(2Cerrα),(2.5a)

∥∥∥F (f̂α)− g†
∣∣∣Y
∥∥∥
2

≤ 2Cerr err(F (f̂α)) + 4Cerrαϕψ(4Cerrα).(2.5b)

ii. If there exists some constant err ≥ err(F (f)) for all f , the infimum of the

right hand side of (2.5a) with err(F (f̂α)) replaced by err is attained if and
only if α = ᾱ where ᾱ is a solution to

−1

2Cerrᾱ
∈ ∂(−ψ)(2Cerrerr).(2.6a)

In this case one obtains the convergence rate

1

2
∆R(f̂ᾱ, f

†) ≤ Cerrψ(err).(2.6b)

2.3. Convergence rates for random noise. From now on we assume that the
reader has some basic knowledge about Besov spaces which can be found in Appendix
A. In the following let Ω be either a bounded Lipschitz domain or the d-dimensional
torus Td := R

d/Zd and D
′(Ω) the space of distributions on Ω. In this subsection we

consider noise models (1.2) with a random variable Z in D ′(Ω). To prove convergence
rates we need a deviation inequality for Z which is given by the following assumption.

Assumption 2.4. Assume that for all p̃ ∈ (1,∞) we have Z ∈ B
−d/2
p̃,∞ (Ω) almost

surely and that there exist constants CZ ,MZ , µ > 0, such that

∀t > 0: P

(∥∥∥Z
∣∣∣B−d/2

p̃,∞

∥∥∥ > MZ + t
)
≤ exp(−CZtµ).

If Z =W is a Gaussian white noise and Ω = T
d, then Assumption 2.4 holds true with

µ = 2, MZ being the median of ‖W |B−d/2
p̃′,∞ ‖ and CZ depending on p̃ and d (see [39,

Thm. 3.4, Cor. 3.7] or [18, remark after Thm. 4.4.3]). In the following let p′ denote
the Hölder conjugate for any number 1 ≤ p ≤ ∞.

For random noise we choose Cerr = 1 in (2.3) and obtain err(g) = ε〈Z, g − g†〉,
hence it is natural to estimate the error functional for p ∈ (1, 2] via

(2.7) err(g) = ε
〈
Z, g − g†

〉
≤ ε
∥∥∥Z
∣∣∣B−d/2

p′,∞

∥∥∥
∥∥∥g − g†

∣∣∣Bd/2p,1

∥∥∥

and the challenge is to find a good control of the second factor. We will show that
this can be done via an interpolation approach which for our two model problems
results again in optimal rates (for q ≥ 2). To formulate a general error bound, we will
assume for the moment that the second factor can be estimated as follows:

Assumption 2.5. There exist constants C, β, γ > 0 such that the inequality

(2.8)
∥∥∥F (f1)− F (f2)

∣∣∣Bd/2p,1

∥∥∥ ≤ C
∥∥F (f1)− F (f2)

∣∣L2
∥∥β∆R(f1, f2)

γ

holds true for all f1, f2 ∈ X .
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Often this assumption can be verified by Remark 3.2 below.

Theorem 2.6. Let a variational source condition (2.2) and Assumption 2.5 be

fulfilled, and let f̂α be a global minimizer of the Tikhonov functional in (1.4).

i. If 0 < β < 2, then the effective noise level at F (f̂α) is bounded by

err
(
F (f̂α)

)
≤ C

∥∥∥εZ
∣∣∣B−d/2

p′,∞

∥∥∥
2

2−β

∆R(f, f †)
2γ

2−β + 2αϕψ(4α).

ii. If in addition 0 < γ < 1
2 (2− β), this implies the error bound

1

2
∆R(f̂α, f

†) ≤ Cα− 2−β
2−β−2γ

∥∥∥εZ
∣∣∣B−d/2

p′,∞

∥∥∥
2

(2−β)−2γ

+ 4ϕψ(4α).

Proof. For (i) note that due to Assumption 2.5 we obtain

err
(
F (f̂α)

)
=
〈
εZ, F (f̂α)− g†

〉
≤
∥∥∥εZ

∣∣∣B−d/2
p′,∞

∥∥∥
∥∥∥F (f̂α)− g†

∣∣∣Bd/22,1

∥∥∥

≤ C
∥∥∥εZ

∣∣∣B−d/2
p′,∞

∥∥∥
∥∥∥F (f̂α)− g†

∣∣∣L2
∥∥∥
β

∆R(f̂α, f
†)γ .

By the image space convergence rate (2.5b) of Proposition 2.3 we can estimate

err
(
F (f̂α)

)
≤ C

∥∥∥εZ
∣∣∣B−d/2

p′,∞

∥∥∥
[
2 err

(
F (f̂α)

)
+ 4αϕψ(4α)

]β/2
∆R(f̂α, f

†)γ

≤ C
∥∥∥εZ

∣∣∣B−d/2
p′,∞

∥∥∥
2

2−β

∆R(f̂α, f
†)

2γ
2−β +

1

2

[
err
(
F (f̂α)

)
+ 2αϕψ(4α)

]

by Young’s inequality, with a generic constant C > 0. Rearranging terms yields the
bound on the effective noise level.

To prove (ii), note that due to eq. (2.5a) in Proposition 2.3 we have

∆R(f̂α, f
†) ≤ err(F (f̂α))

α
+ 2ϕψ(2α) ≤

err(F (f̂α))

α
+ 2ϕψ(4α).

Together with the first part we obtain

∆R(f̂α, f
†) ≤ Cα−1∆R(f̂α, f

†)
2γ

2−β

∥∥∥εZ
∣∣∣B−d/2

p′,∞

∥∥∥
2

2−β

+ 4ϕψ(4α)

≤ 1

2
∆R(f̂α, f

†) + Cα− 2−β
2−β−2γ

∥∥∥εZ
∣∣∣B−d/2

p′,∞

∥∥∥
2

2−β−2γ

+ 4ϕψ(4α)

which proves the claim.

3. Verification of variational source conditions. In [26, Thm. 2.1] two of the
authors formulated a strategy for the verification of variational source conditions in
terms of orthogonal projection operators. In this section we will extend this strategy
to Banach space settings. It turns out that the smoothness of subgradients of the
solution rather than the smoothness of the solution itself determines the convergence
rate. Therefore, a crucial step will be the analysis of the smoothness of subgradients
in Besov spaces.

3.1. Preliminaries. One of the main difficulties when trying to prove a varia-
tional source condition is the Bregman distance appearing on the right hand side of
(2.2) since its properties depend very much on the specific choice of the regularization
functional. Hence we are going to assume that it can be estimated from below by
some norm power.
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Assumption 3.1. There exist constants C∆ > 0 and r > 1 such that

C∆‖f1 − f2 | X‖r ≤ ∆R(f2, f1) for all f1, f2 ∈ X .

This assumption is satisfied in particular if X is convex of power type and R is
a norm power, see Example 2.1. However the case of R(·) = ‖· | ℓ1‖ shows that this
is not always the case, if e.g. f1, f2 > 0, then ∆R(f2, f1) = 0, but ‖f1 − f2 | ℓ1‖ might
be arbitrary large.

Remark 3.2. Under Assumption 3.1 eq. (2.8) in Assumption 2.5 is fulfilled if

(3.1)
∥∥∥F (f1)− F (f2)

∣∣∣Bd/2p,1

∥∥∥ ≤ C
∥∥F (f1)− F (f2)

∣∣L2
∥∥β‖f1 − f2 | X‖γr.

Note that for linear operators F one necessarily has β + γr = 1. For a nonlinear
operators F Assumption 2.5 can also be verified by standard interpolation inequalities
if F maps Lipschitz continuously into some space of higher regularity.

3.2. Basic strategy. Our main tool for the derivation of variational source
conditions will be the following generalization of Theorem 2.1 in [26]:

Theorem 3.3. Let X and Y be Banach spaces and R a penalty term such that
Assumption 3.1 is fulfilled. Let f † ∈ D and f∗ ∈ ∂R(f †). Suppose that there exists a
family of operators Pj : X ∗ → X ∗ for j ∈ J an index set such that for some functions
κ, σ : J → (0,∞) and a constant γ ≥ 0 the following holds true for all j ∈ J :

‖(I − Pj)f
∗ | X ∗‖ ≤ κ(j)(3.2a)

inf
j∈J

κ(j) = 0(3.2b)

〈
Pjf

∗, f † − f
〉
≤ σ(j)

∥∥F (f †)− F (f)
∣∣Y
∥∥+ γκ(j)

∥∥f † − f
∣∣X
∥∥

for all f ∈ D with
∥∥f † − f

∣∣X
∥∥ ≤

(
2
C∆

‖f∗ | X ∗‖
) r′

r

.
(3.2c)

Then f † fulfills a variational source condition (2.2) with the concave index function

(3.3) ψvsc(τ) = inf
j∈J

[
σ(j)τ1/t +

1

r′

(
2
C∆

)r′/r
(1 + γ)r

′

κ(j)r
′

]
.

Condition (3.2a) describes the smoothness of the solution (actually rather the
smoothness of the subdifferential, but in the examples considered later one of the two
uniquely determines the other, see Theorem 3.6), whereas (3.2c) describes the local
ill-posedness of the problem.

Example 3.4. In order to illustrate these interpretations, consider the case that
X ,Y are Hilbert spaces, F is an injective compact operator and let (fj , gj, σj)j∈N be
the corresponding singular system. Set Pjf =

∑
k≤j〈f, fj〉fj . Then we obtain that

f∗ = f † and (3.2a) reads

∥∥(I − Pj)f
† ∣∣X

∥∥ =
(∑

k>j
|〈f †, fj〉|2

)1/2
=: κ(j)

i.e. κ measures the decay rate of the coefficients of f † in the system (fj)j∈N. In
the case where fj are trigonometric polynomials this measures classical smoothness.
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Denoting by Qjg =
∑
k≤j〈g, gj〉gj we obtain an inequality of the form (3.2c) via

〈Pjf †, f † − f〉 ≤
∥∥Pjf † ∣∣X

∥∥∥∥Pj(f † − f)
∣∣X
∥∥ ≤

∥∥Pjf † ∣∣X
∥∥ 1

σj

∥∥QjT (f † − f)
∣∣Y
∥∥

=

(
∑

k≤j
|〈f †, fj〉|2

σ2
j

)1/2∥∥T (f † − f)
∣∣Y
∥∥ = σ(j)

∥∥T (f † − f)
∣∣Y
∥∥

with σ(j) := (
∑

k≤j |〈f †, fj〉|2)1/2/σj ≤ ‖f † | X‖/σj , i.e. σ measures the decay rate

of the singular values of F relative to the decay rate of the coefficients of f † in the
singular system.

Proof of Theorem 3.3:. First assume that f does not satisfy the condition in the
second line of (3.2c) or equivalently that ‖f∗ | X ∗‖ ≤ C∆

2 ‖f † − f | X‖r−1
. Then

〈
f∗, f † − f

〉
≤ ‖f∗ | X ∗‖‖f † − f | X‖ ≤ C∆

2 ‖f † − f | X‖r ≤ 1
2∆R(f, f †),

that is the variational source condition holds true even with ψ ≡ 0. Otherwise using
(3.2a), (3.2c) and Young’s inequality we get for each j ∈ J that

〈
f∗, f † − f

〉

=
〈
Pjf

∗, f † − f
〉
+
〈
(I − Pj)f

∗, f † − f
〉

≤σ(j)
∥∥F (f †)− F (f)

∣∣Y
∥∥+ (1 + γ)κ(j)

∥∥f † − f
∣∣X
∥∥

≤σ(j)
∥∥F (f †)− F (f)

∣∣Y
∥∥+ 1

r′

(
2
C∆

)r′/r
(1 + γ)

r′
κ(j)r

′

+ C∆

2r

∥∥f † − f
∣∣X
∥∥r

≤σ(j)
∥∥F (f †)− F (f)

∣∣Y
∥∥+ 1

r′

(
2
C∆

)r′/r
(1 + γ)

r′
κ(j)r

′

+ 1
2∆R(f, f †).

Taking the infimum over the right hand side with respect to j ∈ J yields (3.3) with
τ = ‖F (f †)− F (f) | Y‖t.

Note that ψ is defined as an infimum over concave and increasing functions and
hence is also increasing and concave. By (3.2b) we obtain that ψ(0) = 0, and hence
ψ is indeed an index function.

For linear operators and under the conditions below one can choose γ = 0, and the
additional restriction that one needs (3.2c) only for

∥∥f † − f
∣∣X
∥∥ small is not necessary

as already seen in the specific example. We have included both complications here
since they may be needed for some non-linear operators, see e.g. [25]. We will present
two differnt applications of the strategy in Sections 4 and 4 and discuss how they may
generalize to similar setting in Remark 4.8 and 5.2.

3.3. Besov spaces. Recall that we assume Ω to be either a bounded Lipschitz
domain or T

d. We now introduce two equivalent norms on Bsp,q, further details on
these spaces can be found in Appendix A.

3.3.1. Wavelet systems. For any j ∈ N0 let Ij be a countable index set, let
I := {(j, l) : j ∈ N0, l ∈ Ij}, and let (φj,l)(j,l)∈I ⊂ L2(Ω) be an orthonormal system.

Assume that for some σ ∈ N the system fulfills φj,l ∈ Cσ(Ω,R). For f ∈ (Cσ(Ω,R))′

define the linear mapping

(3.4a) Wf := λ := (λj,l)(j,l)∈I where λj,l :=

∫

Ω

f(x)φj,l(x) dx.
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We assume that this system also generates Besov spaces in the following way: For all
p, q ∈ [1,∞] and s ∈ R with |s| < σ we get that f ∈ D′(Ω) belongs to Bsp,q(Ω) if and
only if

∥∥f
∣∣Bsp,q

∥∥
W :=

[
∑

j∈N0

2jsq2jd(
1
2− 1

p )q

(∑
l∈Ij

|λj,l|p
) q

p

] 1
q

(3.4b)

(with the usual modifications if p = ∞ or q = ∞) is finite. In this case (3.4b) is an
equivalent norm on Bsp,q. Furthermore this usually implies that

the decomposition f := W∗λ =
∑

(j,l)∈I
λj,lφj,l is unique(3.4c)

with unconditional convergence in D′(Ω) and local convergence in Bup,q for all u < s
(even in Bsp,q if p 6= ∞ and q 6= ∞).

Example 3.5. The properties above are satisfied in particular in the following
cases:

i. Let Ω = T
d, and let (φ̃j,l)(j,l)∈Ĩ be either the d-dimensional Daubechies

wavelet system of order n ∈ N or Meyer wavelet system for R
d where

Ĩ = {(j, l) : j ∈ N0, l ∈ Ĩj} with I0 := Z
d and Ij = {1, . . . , 2d−1}×Z

d. Define

periodization φj,l(x) :=
∑

z∈Zd φ̃j,l(x − z) for x ∈ T
d of φ̃j,l for l ∈ Ij ⊂ Ĩj

with I0 := {0} and Ij := {1, . . . , 2d − 1} × {z ∈ Z
d : 0 ≤ zi < 2j}. Then

(φj,l)(j,l)∈I is an orthonormal system in L2(Td). Furthermore for fixed σ ∈ N

the system fulfills (3.4) where in case of the Daubechies wavelet system we
have to choose n large enough (one has φj,l ∈ C1 for n ≥ 3 and φj,l ∈ C2 for
n ≥ 7 while for large n the asymptotic formula φj,l ∈ Cσ for σ > 0.2n holds
true, see [10, Sec. 7]).

ii. If Ω ⊂ R
d is a bounded Lipschitz domain, there are different ways to define

Besov spaces that differ mainly in how to treat boundary values. Let

Bsp,q(Ω) :=

{
{f ∈ D′(Ω) : f = h|Ω, h ∈ Bsp,q(R

d)} if s ≤ 0

{f ∈ D′(Ω) : f = h|Ω, h ∈ Bsp,q(R
d), supph ⊂ Ω} if s > 0

and

∥∥f
∣∣Bsp,q(Ω)

∥∥ := inf
∥∥h
∣∣Bsp,q(Rd)

∥∥,

where the infimum is taken over all extensions h as above. For Bsp,q(Ω)
defined like this an explicit construction of an orthonormal system based on
the Daubechies orthonormal wavelet system and a Whitney decomposition
fulfilling (3.4) is carried out in [36, Thm. 2.33 and 3.23]. For computationally
more feasible constructions of orthogonal wavelets on the interval (or boxes
via tensor product constructions) we refer to [8] and with respect to boundary
conditions to [2].

Motivated by the above example we will call (φj,l)(j,l)∈I a wavelet system and W the
wavelet transform. In the following we will always assume that the wavelet system is
such that (3.4c) holds true and hence we have a norm on Bsp,q(Ω) given by (3.4b).

3.3.2. Fourier system. In case that Ω = T
d an equivalent norm on Bsp,q for

p ∈ (1,∞), q ∈ [1,∞] and s ∈ R is given by the following: Denote by χ0(x) the
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characteristic function of the unit square in R
d and by the system (χj)j∈N0

the cor-
responding dyadic resolution of unity, that is

(3.5a) χ0(x) =

{
1 |x|∞ ≤ 1

0 else
and χj(x) := χ0(2

−jx)− χ0(2
−j+1x)

for j ∈ N. Furthermore, we will denote by

Ff := f̂ :=
(
f̂(z)

)
z∈Zd

where f̂(z) :=

∫

Td

f(x)ez(x) dx with ez(x) := e2πix·z

the Fourier transform on T
d. For a function f defined on T

d set

(3.5b) Ij := {z ∈ Z
d : χj(2πz) = 1}.

A norm on Bsp,q is then defined by

(3.5c)
∥∥f
∣∣Bsp,q

∥∥ :=

[∑
j∈N0

2jsq
∥∥∥∥
∑

l∈Ij
f̂(l)el

∣∣∣∣L
p(Td)

∥∥∥∥
q] 1

q

(see [36, Sec. 1.3]) with the usual modification for q = ∞. Note that while it is
“standard” to introduce these spaces via a dyadic resolution of unity as we do above
it is usually assumed that this resolution is also smooth (see e.g. [37, Sec. 2.3]).
However, this is not required for the range of the parameter p ∈ (1,∞) which we are
considering here (see e.g. [37, Sec. 2.5.4]).

3.4. Subgradient smoothness. If X is not a Hilbert space, then the mapping
f 7→ f∗ is no longer the identity mapping. While the continuity properties of this
mapping have been studied for some time (see e.g. [6] and references therein), much
less is known on the question whether additional smoothness of f yields additional
smoothness of f∗. Although not stated explicitly in this form, the results in [31, 32]
essentially show that for Bs2p2,p2 ⊂ Bs1p1,p1 and f∗ ∈ ∂ 1

p1
‖f |Bs1p1,p1‖

p1
W for a smooth

enough wavelet system the relation

(3.6) f ∈ Bs2p2,p2 =⇒ f∗ ∈ B−s1
p′1,p

′
1
∩Bs3p3,p3

holds true where p3 = p2
p1−1 and s3 = −s1 + (s2 − s1)(p1 − 1). The proof of (3.6)

can be carried out along the lines of the proof of the next theorem, showing that it
is even an equivalence result. For our new result, we restrict to the case that p1 = p2
allowing for different fine indices qj :

Theorem 3.6. Let p, q1 ∈ (1,∞), q2 ∈ [1,∞], s1, s2 ∈ R and r > 0. Set s3 =
−s1+(s2−s1)(q1−1) and q3 = q2

q1−1 and assume that the chosen wavelet system fulfills

the assumptions in § 3.3 with σ > max{|s1|, |s2|, |s3|}. Let f∗ ∈ ∂ 1
r‖f |Bs1p,q1‖

r
W , then

f ∈ Bs1p,q1 ∩Bs2p,q2 if and only if f∗ ∈ B−s1
p′,q′1

∩Bs3p′,q3 . Furthermore

∥∥∥f∗
∣∣∣Bs3p′,q3

∥∥∥
W

=
∥∥f
∣∣Bs1p,q1

∥∥r−q1
W

∥∥f
∣∣Bs2p,q2

∥∥q1−1

W .

Proof. We obtain f∗ ∈ B−s1
p′,q′1

directly by the mapping properties of the subdif-

ferential.
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Denote by λ = Wf the wavelet decomposition of f . Then, as for the given range of
the parameters p, q1, r the norm is differentiable, one obtains that f∗ ∈ ∂ 1

r‖f |Bs1p,q1‖
r

if and only if f∗ = W∗µ =
∑

(j,l)∈I µj,lφj,l where

µj,l =
∥∥f
∣∣Bs1p,q1

∥∥r−q12js1q12jd( 1
2− 1

p )q1

[∑
m∈Ij

|λj,m|p
] 1

p (q1−p) λj,l

|λj,l|2−p
.

For q3 6= ∞ (the case q3 = ∞ follows along the same lines) we get

∥∥∥f∗
∣∣∣Bs3p′,q3

∥∥∥
q3
/
∥∥f
∣∣Bs1p,q1

∥∥q3(r−q1)

=
∑

j∈N0

2j(s3+s1q1)q32
jd( 1

2− 1
p′

+q1(
1
2− 1

p ))q3

[∑
l∈Ij

|λj,l|p
] q3

p (q1−p)+ q3
p′

=
∑

j∈N0

2js2q22jd(
1
2− 1

p )q2

[∑
l∈Ij

|λj,l|p
] q2

p

=
∥∥f
∣∣Bs2p,q2

∥∥q2 ,

hence taking the q3-root proves the claim.
For the “only if” part note that by duality f∗ ∈ ∂ 1

r‖f |Bsp,q‖
r
implies that f ∈

∂ 1
r′ ‖f∗ |B−s

p′,q′‖
r′
, hence we also have the implication f∗ ∈ B−s1

p′,q′1
∩ Bs3p′,q3 implies

f ∈ Bs1p,q1 ∩Bs2p,q2 .
The interesting case of the theorem above is if either s1 < s2 or if s1 = s2 and

q2 < q1 (and hence Bs1p,q1 ∩ Bs2p,q2 = Bs2p,q2 in both cases) since in these cases Bs3p′,q3
is a proper subspace of B−s1

p′,q′1
and not the other way around. Otherwise – i.e. if

Bs1p,q1 ∩ Bs2p,q2 = Bs1p,q1 – the explicit expression of the norm might still be useful. We
would like to highlight one special cases of the above theorem. If q2 = ∞, that is f is
in the largest space with smoothness s, then we also obtain q3 = ∞. This is interesting
because Besov spaces Bs2,∞ are known to be maximal sets for L2-regularization for
certain problems (see [26]).

From now on we will always assume sufficient smoothness of the wavelet system
in the sense of the previous theorem without further mentioning.

3.5. Bernstein and Jackson-typeinequalities.

Assumption 3.7. Let (Pj)j∈N0 : D′(Ω) → D′(Ω) be a familiy of linear operators
such that for all p ∈ (1,∞), q, q̃ ∈ [1,∞] and s, t ∈ R with max{|s|, |t|} ≤ σ the norm
bounds

if t > s :
∥∥Pjf

∣∣Btp,q̃
∥∥ ≤ c12

j(t−s)∥∥f
∣∣Bsp,q

∥∥

if t < s :
∥∥(I − Pj)f

∣∣Btp,q̃
∥∥ ≤ c22

j(t−s)∥∥f
∣∣Bsp,q

∥∥

with constant c1 = c1(p, q, q̃, s, t) > 0 and c2 = c1(p, q, q̃, s, t) > 0 called Bernstein and
Jackson inequality, respectively, hold true.

Example 3.8. The following are possible choices of the operators (Pj)j∈N0 .
i. Let Ω be a Lipschitz domain or the torus as in Section 3.3 and W the wavelet

transform defined in (3.4a). Set for j ∈ N0

(3.7a)

Pjf := W∗QjWf

where (Qjλ)k′,l′ :=

{
λk′,l′ k′ ≤ j

0 else
for all (k′, l′) ∈ N0 × Ik.
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Due to (3.4b) this immediately implies a Bernstein and Jackson inequality of
the desired form:
(a) Bernstein inequality: For t > s, q̃ ∈ [1,∞] and f ∈ Bsp,q we get

∥∥Pjf
∣∣Btp,q̃

∥∥q̃ =
∑

k≤j
2k(t−s)q̃

(
2ks2kd(

1
2− 1

p )
(∑

l∈Ik
|λk,l|p

) 1
p

)q̃

≤
∑

k≤j
2k(t−s)q̃

∥∥f
∣∣Bsp,∞

∥∥q̃ ≤ c2j(t−s)q̃
∥∥f
∣∣Bsp,q

∥∥q̃

for some constant c depending on t, s and q̃ only.
(b) Jackson inequality: For t < s, q̃ ∈ [1,∞] and f ∈ Bsp,q we obtain

∥∥(I − Pj)f
∣∣Btp,q̃

∥∥q̃ =
∑

k>j
2k(t−s)q̃

(
2ks2kd(

1
2− 1

p )
(∑

l∈Ik
|λk,l|p

) 1
p

)q̃

≤
∑

k>j
2k(t−s)q̃

∥∥f
∣∣Bsp,∞

∥∥q̃ ≤ c2j(t−s)q̃
∥∥f
∣∣Bsp,q

∥∥q̃

where the constant c depends again on t, s and q̃ only.
ii. Let Ω = T

d and let the norm of Bsp,q be given by (3.5). Then set

(3.7b) Pj := F∗
(∑

k≤j
χk(2π·)

)
F

for j ∈ N0 to get the following:
(a) Bernstein inequality: For t > s, q̃ ∈ [1,∞] and f ∈ Bsp,q we get

∥∥Pjf
∣∣Btp,q̃

∥∥q̃ =
∑

k≤j
2k(t−s)q̃

(
2ksq̃

∥∥∥
∑

l∈Ik
f̂(l)el

∣∣∣Lp(Td)
∥∥∥
)q̃

≤
∑

k≤j
2k(t−s)q̃

∥∥f
∣∣Bsp,∞

∥∥q̃ ≤ c2j(t−s)q̃
∥∥f
∣∣Bsp,q

∥∥q̃

for some constant c depending on t, s and q̃ only.
(b) Jackson inequality: For t < s, q̃ ∈ [1,∞] and f ∈ Bsp,q we obtain

∥∥(I − Pj)f
∣∣Btp,q̃

∥∥q̃ =
∑

k>j
2k(t−s)q̃

(
2ksq̃

∥∥∥
∑

l∈Ik
f̂(l)el

∣∣∣Lp(Td)
∥∥∥
)q̃

≤
∑

k>j
2k(t−s)q̃

∥∥f
∣∣Bsp,∞

∥∥q̃ ≤ c2j(t−s)q̃
∥∥f
∣∣Bsp,q

∥∥q̃

where the constant c depends again on t, s and q̃ only.

Further possibilities include projections onto spline or finite element subspaces.

Corollary 3.9. Let 1 < p, q < ∞, r = max{2, p, q} and s > 0. Let f † ∈
Bsp,∞ with ‖f † |Bsp,∞‖W ≤ ̺ for some ̺ > 0 and f∗ ∈ ∂ 1

r‖f † |B0
p,q‖rW . Then

‖f∗ |Bs(q−1)
p′,∞ ‖ ≤ c̺r−1 and if (Pj)j∈N is choosen according to Assumption 3.7 and

a > s(q − 1) there exists some constant c > 0 such that

∥∥Pjf∗ ∣∣Bap′,q′
∥∥ ≤ c̺r−12j(a−s(q−1)) and

∥∥(I − Pj)f
∗ ∣∣B0

p′,q′

∥∥ ≤ c̺r−12−js(q−1).

Proof. By Theorem 3.6 we get f∗ ∈ B
s(q−1)
p′,∞ together with a norm bound. Insert-

ing this bound into Assumption 3.7 where Pj and I − Pj are applied to f∗ gives the
desired inequalities.

We will see in Section 4 that for a wide class of applications these inequalities are
enough in order to verify variational source conditions.
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3.6. Deterministic lower bounds. In order to see whether the convergence
rates implied by variational source conditions are of optimal order we need to find a
lower bound on these rates. Such a bound is provided by the modulus of continuity,
and this lower bound is known to be sharp in Hilbert spaces (see [38]):

Definition 3.10. Let F : X → Y be continuous and injective, and let K ⊂ X be
compact. Then the modulus of continuity ω(δ,K) of (F |K)−1 is defined by

ω(δ,K) := sup{‖f1 − f2 | X‖ : f1, f2 ∈ K, ‖F (f1)− F (f2) | Y‖ ≤ δ}.

Lemma 3.11 (cf. [15, Rem. 3.12]). The worst case error of any (linear or non-
linear) reconstruction method R : Y → X on K satisfies the lower bound

(3.8) sup
{∥∥f −R(gobs)

∣∣X
∥∥ : f ∈ K, gobs ∈ Y,

∥∥F (f)− gobs
∣∣Y
∥∥ ≤ δ

}
≥ 1

2
ω(2δ,K).

Proof. Consider f1, f2 ∈ K such that ‖F (f1)− F (f2) | Y‖ ≤ 2δ. Then gobs :=
1
2 (F (f1) +F (f2)) satisfies

∥∥F (fj)− gobs
∣∣Y
∥∥ ≤ δ. Hence, the left hand side ∆R(δ,K)

of (3.8) fulfills

∆R(δ,K) ≥ max
j∈{1,2}

∥∥fj−R(gobs)
∣∣X
∥∥ ≥ 1

2

∑2

j=1

∥∥fj−R(gobs)
∣∣X
∥∥ ≥ 1

2
‖f1 − f2 | X‖.

Taking the supremum over all f1, f2 with the given properties shows (3.8).

We will prove the following adaptation of [11, Prop. 4.6], which estimates the decay
of the modulus of continuity if the data has a structure that is compatible with the
structure of the Besov space. For this purpose let (φ̃j,l)(j,l)∈Ĩ ⊂ L2(Ω) for Ĩ = {(j, l) :
j ∈ N0, l ∈ Ĩj} with some countable index sets (Ĩj)j∈N0 be an orthonormal system,
which might be different from (φj,l)(j,l)∈I . Further assume that this system defines
an equivalent norm on Besov spaces by

(3.9)

∥∥f
∣∣Bsp,q

∥∥ :=

[∑
j∈N0

2jsq
∥∥∥∥
∑

l∈Ij
λ̃j,l(f)φ̃j,l

∣∣∣∣L
p(Ω)

∥∥∥∥
q] 1

q

with λ̃j,l(f) :=

∫

Ω

f(x)φ̃j,l(x) dx.

for all p ∈ (1,∞), q ∈ [1,∞] and all |s| ≤ σ̃.

Proposition 3.12. Let 1 < p < ∞, 1 ≤ q, q̃ ≤ ∞, s > 0. In the setting of
Lemma 3.11 set X := B0

p,q, K := {f ∈ Bsp,q̃ : ‖f |Bsp,q̃‖ ≤ ̺}, Y := L2. Assume that
the following holds true:

i. F (0) = 0.
ii. There exists (bj,l)(j,l)∈Ĩ ⊂ (0,∞) such that

‖F (f1)− F (f2) |L2‖2 ≤
∑

(j,l)∈Ĩ
bj,l

∣∣∣λ̃j,l(f1)− λ̃j,l(f2)
∣∣∣
2

.

iii. There exists (fj)j∈N0 ⊂ X such that λ̃k,l(fj) = 0 for all k 6= j and for two
constants c1, c2 > 0 the estimates

1

c1
≤
∥∥fj

∣∣L2
∥∥ ≤ c1 and

1

c2
≤ ‖fj |Lp‖ ≤ c2

hold true for all j ∈ N0.
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Then the modulus of continuity satisfies

ω(δ,K) ≥ 1

c2
supj∈N0

{
min

{
1

c1

(
maxl∈Ĩj bj,l

)− 1
2

δ,
1

c2
2−js̺

}}
.

Proof. For j ∈ N0 set

wj := min

{
1

c1

(
maxl∈Ĩj bj,l

)− 1
2

δ,
1

c2
2−js̺

}
.

Straightforward computations show that

∥∥F (wjfj)− F (0)
∣∣L2

∥∥ ≤ δ,
∥∥wjfj

∣∣Bsp,q̃
∥∥ ≤ ̺, and

∥∥wjfj
∣∣B0

p,q

∥∥ ≥ wj
c2
.

In particular, wjfj ∈ K for all j ∈ N0, and obviously also 0 ∈ K. This yields

ω(δ,K) ≥ sup
j∈N0

∥∥wjfj
∣∣B0

p,q

∥∥ ≥ 1

c2
sup
j∈N0

{
min

{
1

c1

(
maxl∈Ĩj bj,l

)− 1
2

δ,
1

c2
2−js̺

}}
.

Note that the norm defined by the Fourier expansion in (3.5) is of the form (3.9) while
setting (φ̃j,l)(j,l)∈Ĩ := (φj,l)(j,l)∈I with (φj,l)(j,l)∈I as in (3.4) leads to an equivalent
norm, since there exists a constant c > 0 independent of j such that

(3.10)
1

c
2jd(

1
2− 1

p )‖λj,· | ℓp(Ij)‖ ≤
∥∥∥∥
∑

l∈Ij
λj,lφj,l

∣∣∣∣L
p(Ω)

∥∥∥∥ ≤ c2jd(
1
2− 1

p )‖λj,· | ℓp(Ij)‖

see [7, Thm. 3.9.2].

Example 3.13. The assumption iii of Proposition 3.12 holds true for both types
of Besov norms considered in this paper:

i. Assume that there is a constant c > 0 such that

c2jd ≤ |Ij |

(which is fulfilled for the cases presented in Example 3.5). Then, choosing

Γj ⊂ Ij with |Γj | ∼ 2jd we get by (3.10) that for fj :=
∑
l∈Γj

2−j
d
2 φj,l iii

holds true for some constants c1, c2 > 0.
ii. In the Fourier setting (3.5) we get ‖ez |Lp‖ = 1 for all z ∈ Z

d and p ∈ [1,∞].
Hence we can set fj = el for some l ∈ Ij in order to get that iii is fulfilled
with c1 = c2 = 1.

4. Finitely smoothing operators. In this section we assume that the forward
operator Fa is a-times smoothing for some a > 0. More precisely, we assume that

p ∈ (1, 2], q ∈ (1,∞), a >
d

p
− d

2
(4.1a)

∥∥Fa(f1)− Fa(f2)
∣∣Bap,q

∥∥ ≤ L
∥∥f1 − f2

∣∣B0
p,q

∥∥(4.1b)
∥∥Fa(f1)− Fa(f2)

∣∣L2
∥∥ ≤ L

∥∥f1 − f2
∣∣B−a

2,2

∥∥(4.1c)
∥∥f1 − f2

∣∣B−a
2,2

∥∥ ≤ L
∥∥Fa(f1)− Fa(f2)

∣∣L2
∥∥(4.1d)

for some L > 0 and all f1, f2 ∈ D ⊂ B0
p,q.

Example 4.1. Eqs. (4.1) are e.g. satisfied for the following examples:
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• Set Fa = (I −∆)−a/2 (or more generally, let Fa be a injective elliptic pseu-
dodifferential operators of order −a), then Fa : Bsp,q → Bs+ap,q is bounded and
boundedly invertible for all s ∈ R.

• In [24, Lemma 2.9] it was shown that (4.1c) and (4.1d) follow from the same
equations with Fa replaced by F ′

a[f
†] under a suitable nonlinearity condition.

In particular, this covers the following example:
Let Ω be a bounded Lipschitz domain in R

d for d ∈ {1, 2, 3} and h1 ∈ C∞(Ω)
and h2 ∈ C∞(∂Ω) be strictly postive. For f ∈ {f ∈ L∞ : f(x) ≥ 0, ∀x ∈
Ω, supp(f) ⊂ Ω} define F (f) = u where u solves

(
−∆+ f

)
u = h1 in Ω,

u = h2 on ∂Ω

then (4.1c) and (4.1d) hold true for a = 2.

Due to the assumptions (4.1a), (4.1c) and the continuous embedding B0
p,q →֒ B−a

p,q

(see (A.2)), Fa : B
0
p,q(T

d) → L2(Td) is well-defined and continuous. This allows us to
choose

(4.2) X = B0
p,q(T

d), R(·) = 1

r
‖· |B0

p,q‖rW and Y = B0
2,2(T

d) = L2(Td)

with r = max{2, p, q} the modulus of convexity (see [28]) for arbitrary p ∈ (1, 2] and
q ∈ (1,∞). The penalty term in the Tikhonov functional given by the Besov norm
will be expressed via wavelet coefficients as defined in (3.4), hence most constants
will depend implicitly on the specific choice of the wavelet system which we will not
mention further.

4.1. Deterministic convergence rates. We will first derive convergence rates
for the deterministic error model (1.1). We use the strategy of Theorem 3.3 to obtain
a variational source condition first and then apply Proposition 2.3(ii).

Theorem 4.2. Assume (1.1), (4.1) and (4.2) and suppose that f † ∈ Bsp,∞ for

some s ∈ (0, a
q−1 ) with ‖f † |Bsp,∞‖ ≤ ̺. Then there exists a constant c > 0 such that

a variational source condition with

ψ(τ) = c̺ντµ where ν =

{
qa
a+s , q ≥ 2,

2a
a+s(q−1) , q ≤ 2,

and µ =

{
q
2

s
a+s , q ≥ 2,
s(q−1)

a+s(q−1) , q ≤ 2

holds true. Moreover, the Tikhonov functional in (1.4) with F = Fa has a minimizer

f̂α, and f̂α is unique if Fa is linear. If α is chosen by (2.6a), then every minimizer

f̂α satisfies the error bound

(4.3)
∥∥∥f̂α − f †

∣∣∣B0
p,q

∥∥∥ ≤
{
c̺

a
a+s δ

s
a+s , q ≥ 2,

c̺
a

a+s(q−1) δ
s(q−1)

a+s(q−1) , q ≤ 2

with a constant c independent of f †, f̂α, ̺, and δ.

Proof. We apply Theorem 3.3 with the choice Pj as in (3.7a). Then we see by
Corollary 3.9 and our assumptions that we can choose κ(j) = c̺r−12−js(q−1).

To verify (3.2c) denote by Sa the operator Sa := W∗S̃aWf where (S̃aλ)j,l =
2jaλj,l for all (j, l) ∈ I. Using the relation to Lebesgue spaces (A.3) and (4.1d), we
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obtain the estimate

(4.4)

〈
Pjf

∗, f † − f
〉
=
〈
SaPjf

∗, S−a(f
† − f)

〉

≤ c
∥∥∥SaPjf∗

∣∣∣Lp
′
∥∥∥
∥∥S−a(f

† − f)
∣∣L2

∥∥
∥∥∥1
∣∣∣L

2p
2−p (Td)

∥∥∥

≤ c
∥∥SaPjf∗ ∣∣B0

p′,2

∥∥∥∥f † − f
∣∣B−a

2,2

∥∥

≤ cL
∥∥Pjf∗ ∣∣Bap′,2

∥∥∥∥Fa(f †)− Fa(f)
∣∣L2

∥∥.

By Corollary 3.9 we can hence choose γ = 0 and

σ(j) = c̺r−12j(a−s(q−1))

in (3.2c) with c depending c > 0 depending on the wavelet system and the parameters
s, p, q, a.

Now Theorem 3.3 implies that a variational source condition holds true with

ψvsc(τ) = inf
j∈N0

c
[
̺r−12j(a−s(q−1))√τ + ̺r2−js(q−1)r′

]
.

Choosing j such that 2j ∼ (̺/
√
t)τ with τ = 1

s(q−1)(r′−1)+a and we can estimate

ψvsc(τ) ≤ c̺
r− s(q−1)r′

a+s(q−1)(r′−1) τ
1
2

s(q−1)r′

s(q−1)(r′−1)+a .

Now use that for q ≤ 2 we have r = r′ = 2 and for q ≥ 2 we have r = q and r′ = q′.
The existence of f̂α follows from standard results (see, e.g., [33, Thm. 3.22]) using

the compactness of the embedding B0
p,q →֒ B−a

2,2 (see (A.2)) and (4.1a)) and (4.1c).

Uniqueness of f̂α for linear operators is obvious by strict convexity. From Proposition
2.3 we obtain ∆R(f̂α, f

†) ≤ ψvsc(δ
2), and via Example 2.1(ii) (with r = max(2, q) as

discussed after (4.2)) this yields the convergence rate (4.3).

In practice the parameters s and ̺ describing the smoothness of f † are usually
unknown, of course, and hence the a-priori rule (2.6a) is not implementable. There-
fore, a-posteriori rules such as the discrepancy principle are used, under which the
same error bounds can be shown without prior knowledge of s and ̺ (see, e.g., [22]).

4.2. Extensions. In this subsection we discuss extensions of the results of the
previous subsection resulting from different penalty terms and data-fidelity terms
respectively.

Theorem 4.3. Let the Assumptions of Theorem 4.2 hold true, but in (4.2) set
X = Bs̃p,q and R(·) = 1

r‖· |Bs̃p,q‖
r
W for s̃ ∈ R. Further replace the last inequality

in (4.1a) by a∗ := a + s̃ > d
p − d

2 , and replace (4.1b) by
∥∥Fa(f1)− Fa(f2)

∣∣Ba∗p,q
∥∥ ≤

L
∥∥f1 − f2

∣∣Bs̃p,q
∥∥. Let f † ∈ Bsp,∞ for some s ∈ R such that s∗ := s − s̃ ∈ (0, a∗

q−1 ).

Then the Tikhonov minimizer f̂α in (1.4) exists, and for α chosen by (2.6a) and q ≥ 2
it satisfies

∥∥∥f̂α − f †
∣∣∣Bs̃p,q

∥∥∥ ≤ c̺
a∗

a∗+s∗ δ
s∗

a∗+s∗ .

Proof. The proof is analogous to the proof of Theorem 4.2. Here we obtain
κ(j) = c̺r−12−js

∗(q−1) and σ(j) = c̺r−12j(a
∗−s∗(q−1)).

Remark 4.4. Suppose the constraint f † ∈ D is incorporated in the penalty termR
by replacing it by R̃(f) := R(f)+χD(f) where χD(f) := 0 if f ∈ D and χD(f) := ∞
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else. Then ∂R̃(f †) = ∂R(f †) + ∂χ(f †) by the sum rule. ∂χ(f †) coincides with the
normal cone at f † and differs from {0} if f † belongs to the boundary of D. In this

case ∂R̃(f †) may contain elements of higher smoothness than ∂R(f †) leading to faster
rates of convergence (see [17] and [15, §5.4]).

Theorem 4.5. The error bound (4.3) in Theorem 4.2 remains true if we replace
Y = L2 by Y = X = B0

p,q for p ∈ (1, 2] and q ∈ (1,∞), if we replace the Tikhonov
function (1.4) by (1.3) with arbitrary t ≥ 1 and if we replace Assumption (4.1) by

1
L

∥∥f1 − f2
∣∣B−a

p,q

∥∥ ≤
∥∥Fa(f1)− Fa(f2)

∣∣B0
p,q

∥∥ ≤ L
∥∥f1 − f2

∣∣B−a
p,q

∥∥.

Proof. In the proof of Theorem 4.2 we have to adapt the estimate (4.4) in the
following way:

〈
Pjf

∗, f † − f
〉
≤ c
∥∥Pjf∗ ∣∣Bap′,q′

∥∥∥∥f † − f
∣∣B−a

p,q

∥∥.

The norm ‖Pjf∗ |Bap′,q′‖ can be estimated as before. The exponents µ in the source

condition are µ = q
t

s
a+s for q ≥ 2 and µ = 2

t
s(q−1)

a+s(q−1) for q ∈ (1, 2] in this case.

Corollary 4.6. Under the assumptions of Theorem 4.2 with q = 2 choose j :=
⌊− 1

2a ln2 α⌋. Then

∥∥∥Pj f̂α − f †
∣∣∣Lp

∥∥∥ ≤ c
∥∥∥Pj f̂α − f †

∣∣∣B0
p,p

∥∥∥ ≤ c̺
a

s+a δ
s

s+a
(
ln δ−1

) 1
p− 1

2 .(4.5)

Proof. Setting h = f̂α − f † we get from Hölder’s inequality that

∥∥Pjh
∣∣B0

p,p

∥∥ =

(∑j∗

j=0
1 · ‖hj |Lp‖p

)1/p

≤ j1/p−1/2
∥∥Pjh

∣∣B0
p,2

∥∥.

As α ∼ (δ/̺)2a/(s+a) by (2.6a) we have
∥∥(I − Pj)f

† ∣∣B0
p,p

∥∥ ≤ c2−js
∥∥f † ∣∣Bsp,∞

∥∥ ≤
c̺
√
α
s/a

= c̺a/(s+a)δs/(s+a). Combining both inequalities yields the assertion.

Remark 4.7. In the setting of Theorem 4.5 the projection Pj in (4.5) can be
omitted. This follows after some computations comparing the value of the Tikhonov
functional for f̂α and f∗

α := Pj f̂α + (I − Pj)f
†.

Remark 4.8. The basic idea of Theorem 4.2 can be generalized as follows: Assume
that there exist Banach spaces XLip and Xs such that the embeddings X →֒ Xs →֒ XLip

are continuous. Let (X ′
j)j∈N be a sequence of finite dimensional subspaces such that

⋃

j∈N

X ′
j

‖· | Z‖
= Z for Z ∈ {X ′,X ′

s ,X ′
Lip},

and let Pj be a projection onto X ′
j . Assume that f † is such that f∗ ∈ X ′

s and that for
all elements h ∈ X ′

s the generalized Bernstein and Jackson inequalities
∥∥Pjh

∣∣X ′
Lip

∥∥ ≤ σ̃(j)‖h | X ′
s‖

and ‖(I − Pj)h | X ′‖ ≤ κ̃(j)‖h | X ′
s‖

hold true. If the operator F fulfills the Lipschitz estimate

‖f1 − f2 | XLip‖ ≤ L‖F (f1)− F (f2) | Y‖ for all f1, f2 ∈ X

then (3.2) is fulfilled with κ(j) = κ̃(j)‖f∗ | X ′
s‖, σ(j) = Lσ̃(j)‖f∗ | X ′

s‖ and γ = 0.
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4.3. Statistical convergence rates. As a variational source condition is ful-
filled and the regularization functional fulfills Assumption 3.1 we only need to show
that the operator also fulfills Assumption 2.5. We then obtain convergence rates via
Theorems 2.6 and 4.2.

Lemma 4.9. Suppose that a > d/2 and (4.1b) hold true. Then the operator Fa
fulfills Assumption 2.5 and (3.1) with β = 1− d

2a and γ = d
2ar . Moreover, there exists

c > 0 such that
∥∥∥g
∣∣∣Bd/2p,1

∥∥∥ ≤ c
∥∥g
∣∣L2

∥∥1− d
2a
∥∥g
∣∣Bap,q

∥∥ d
2a for all g ∈ Bap,q.(4.6)

Proof. By K-interpolation theory (see [37, Sec. 2.4.2]) there exists a constant
c > 0 such that

∥∥∥g
∣∣∣Bd/2p,1

∥∥∥ ≤ c
∥∥g
∣∣B0

p,2

∥∥1− d
2a
∥∥g
∣∣Bap,q

∥∥ d
2a ,

and since ‖· |B0
p,2(T

d)‖ ≤ ‖· |L2(Td)‖ for p ≤ 2, this implies (4.6). Using (4.1b) and
Assumption 3.1 we obtain

∥∥Fa(f1)− Fa(f2)
∣∣Bap,q

∥∥ ≤ L
∥∥f1 − f2

∣∣B0
p,q

∥∥ ≤ L
(
C−1

∆ ∆R(f1, f2)
) 1

r .

This together with (4.6) for g = Fa(f1)− Fa(f2) yields Assumption 2.5 and (3.1).

Lemma 4.9 can not only be used to derive convergence rates, but also existence of a
minimizer:

Proposition 4.10. Suppose that a > d/2 and Fa satisfies (4.1a)–(4.1c). Then
for the noise model (1.2) with Z satisfying Assumption 2.4, the Tikhonov functional

in (1.4) with F = Fa has a global minimizer f̂α almost surely.

Proof. Note that the data fidelity term in (1.4) is not bounded from below in
general, and therefore standard results in the literature such as [33, Thm. 3.22] do
not apply. However, with the help of Lemma 4.9 we can show coercivity of the

entire Tikhonov functional in B0
p,q if N := ‖gobs |B−d/2

p′,∞ ‖ < ∞ (which is true with
probability 1 by Assumption 2.4). To this end we bound the mixed term as follows
using (4.6) and Hölder’s inequality xy ≤ cx4a/(2a+d) + 1

2y
4a/(2a−d):

〈
gobs, F (f)

〉
≤ N

∥∥∥F (f)
∣∣∣Bd/2p,1

∥∥∥ ≤ CN
∥∥F (f)

∣∣Bap,q
∥∥d/2a∥∥F (f)

∣∣L2
∥∥1−d/2a

≤ cN
4a

2a+d
(∥∥F (f)− F (0)

∣∣Bap,q
∥∥+

∥∥F (0)
∣∣Bap,q

∥∥)2 d
2a+d + 1

2

∥∥F (f)
∣∣L2

∥∥2

≤ cN
4a

2a+d

∥∥f
∣∣B0

p,q

∥∥2 d
2a+d +A+ 1

2

∥∥F (f)
∣∣L2

∥∥2

with A := cN4a/(2a+d)‖F (0) |Bd/2p,1 ‖2d/(2a+d) and a generic constant c. Plugging this
into the Tikhonov functional yields

1
2

∥∥F (f)
∣∣L2

∥∥2 −
〈
gobs, F (f)

〉
+ α

∥∥f
∣∣B0

p,q

∥∥r

≥− cN
4a

2a+d

∥∥f
∣∣B0

p,q

∥∥2 d
2a+d + α

∥∥f
∣∣B0

p,q

∥∥r +A,

and as r ≥ 2 the right hand side tends to ∞ as ‖f |B0
p,q‖ → ∞. This shows that a

minimizing sequence (fn) of the Tikhonov functional must be bounded in B0
p,q. As

B0
p,q is reflexive, by the Banach-Alaoglu theorem there exists a subsequence fnk

and
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f ∈ B0
p,q such that fnk

⇀ f for k → ∞. Since the embedding B0
p,q →֒ B−a

2,2 is compact,

we have limk→∞‖fnk
−f |B−a

2,2‖ = 0, and by (4.1c) also limk→∞‖F (fnk
)−F (f) |L2‖ =

0. Now it follows from (3.1) and the boundedness of ‖fnk
|B0

p,q‖ that ‖F (fn) −
F (f) |Bd/2p,1 ‖ tends to 0 as k → ∞. Together with the weak lower semicontinuity of

‖· |B0
p,q‖r it follows that f minimizes the Tikhonov functional.

Together with Theorem 4.2 we find the following:

Theorem 4.11. Assume (1.2) with Z satisfying Assumption 2.4, (4.1), (4.2) with
a > d/2 and q ≥ 2. Moreover, suppose that f † ∈ Bsp,∞ for some s ∈ (0, a

q−1 ) with

‖f † |Bsp,∞‖ ≤ ̺. Then f̂α (as in Proposition 4.10) for an optimal choice of α as
specified in the proof satisfies the error bound

P

[∥∥∥f̂α − f †
∣∣∣B0

p,q

∥∥∥ > (c+ t) ̺
a+d/2

a+s+d/2 ε
s

a+s+d/2

]
≤ exp

(
−CZtµ(

q
2+

(q−2)d
4a )

)

for all t > 0. In particular, for any σ ≥ 1 we have

E

(∥∥∥f̂α − f †
∣∣∣B0

p,q

∥∥∥
σ)1/σ

≤ C̺
a+d/2

a+s+d/2 ε
s

a+s+d/2 .

Here c and C are positive constants independent of f †, f̂α, ε, and ̺.

Proof. As q ≥ 2, by Theorem 4.2 a variational source condition with ψ(τ) =

c̺
2a

a+s τ
s

a+s holds true and hence we can use Example 2.2, (2.4a) with the calculus
rules for Fenchel duals to obtain that

ϕψ(τ) = C̺
2qa

2(a+s)−qs τ
qs

2(a+s)−qs .

Thus Theorem 2.6(ii) together with Lemma 4.9 gives

∆R(f̂α, f
†) ≤ Cα− q+qd/(2a)

q+d(q−2)/(2a)

∥∥∥εZ
∣∣∣B−d/2

p′,∞

∥∥∥
2q

q+d(q−2)/(2a)

+ C̺
2qa

2(a+s)−qs α
qs

2(a+s)−qs .

By the choice α ∼ ̺
qa+d

q
2
(1− 2

q
))

a+s+d/2 ε
2(a+s)−qs
a+s+d/2 and using (2.1) we find

∥∥∥f̂α − f †
∣∣∣B0

p,q

∥∥∥ ≤ C̺
a+d/2

a+s+d/2 ε
s

a+s+d/2

(
1 +

∥∥∥Z
∣∣∣B−d/2

p′,∞

∥∥∥
2

q+d(q−2)/(2a)

)
,

so the deviation inequality given by Assumption 2.4 completes the proof.

4.4. Lower bounds.

Theorem 4.12. Suppose that Fa satisfies (4.1c). Then there cannot exist a re-
construction method R : L2 → B0

p,q for the operators Fa satisfying the worst case error
bound

sup
{∥∥f −R(gobs)

∣∣B0
p,q

∥∥ : ‖f |Bsp,∞‖ ≤ ̺,
∥∥Fa(f)− gobs

∣∣L2
∥∥ ≤ δ

}
= o
(
̺

a
s+a δ

s
s+a

)

Hence for q ≥ 2 the rate in Theorem 4.2 is optimal up to the value of the constant.

Proof. The assumptions of Proposition 3.12 are fulfilled with bj,l = c2−2ja for
some c > 0 by (4.1c). Hence we obtain

ω(δ,K) ≥ cmax
k∈N0

{
min

{
2−ks̺, 2kaδ

}}
≥ c̺

a
s+a δ

s
s+a
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where we have chosen k ∈ N0 such that the terms are balanced, i.e. 2k ∼ (̺δ )
1/(s+a).

Now the claim follows by Lemma 3.11.

Remark 4.13. The statement of Theorem 4.12 remains valid in the setting of
Theorem 4.3 if one replaces a and s by a∗ and s∗ respectively.

Lower bounds for the statistical convergence rates can be concluded from results
in [12]. Instead of the continuous Gaussian white noise model they consider an n-
dimensional normal means model. However as their results in [12, Thms. 7 and 9]
do not depend on the dimension n one can send n to infinity, so that the Le Cam
distance of the two models goes to zero (compare [18, §1]) and thus conclude for
general estimators S = S(g† + εW ) ∈ Bs

∗

p,q:

Corollary 4.14. We have

infS sup‖g† |Bs∗∗
p,∞‖≤̺ E

(∥∥∥g† − S(g† + εW )
∣∣∣Bs

∗

p,q

∥∥∥
)
≥ c̺

s∗+d/2
s∗∗+d/2 ε

s∗∗−s∗

s+d/2 ,

with c depending on s∗, s∗∗, p, q.

Assume additionally on Fa that Fa : Bsp,q → Bs+ap,q is surjective and ‖f |Bsp,∞‖ ≤
L‖Faf |Bs+ap,∞‖ for all f ∈ Bsp,∞. By setting s∗ = a and s∗∗ = s+a we find for Fa that

infS sup‖Fa(f†) |Bs+a
p,∞‖≤̺ E

(∥∥Fa(f †)− S(Fa(f
†) + εW )

∣∣Bap,q
∥∥) ≥ C̺

a+d/2
s+a+d/2 ε

s
s+a+d/2 .

Now by (4.1c) we have for reconstruction methods R that

∥∥f † −R(Fa(f
†) + εW )

∣∣B0
p,q

∥∥ ≥ 1

L

∥∥Fa(f †)− FaR(Fa(f
†) + εW )

∣∣Bap,q
∥∥.

Thus we get a lower bound coinciding with the upper bound in Theorem 4.11 for
q ≥ 2:

infR sup‖f† |Bs
p,∞‖≤L̺ E

(∥∥f † −R(Fa(f
†) + εW )

∣∣B0
p,q

∥∥) ≥ C̺
a+d/2

s+a+d/2 ε
s

s+a+d/2 .

4.5. Numerical validation. We are considering a problem of the type (4.1)
where Fa : B0

p,q(T) → L2(T) is given by Fa := (I−∂2x)−1, that is we have a = 2, with

a deterministic error model. The true solution f † is given by a continuous, piecewise
linear function, therefore f † ∈ Bsp,∞ for s ≤ 1 + 1/p. As for q = 2 the obtained
convergence rates are of optimal order, we test for different values of p if they are also
achieved numerically using the sequential discrepancy principle on the grid αj = 2−j

with parameter τ = 2, see [1] for details.
Numerical computations are carried out in matlab. To obtain an efficient im-

plementation of the operator Fa we use the FFT on a grid with 210 nodes. For the
Besov norm we use the wavelet decomposition of the Wavelet toolbox with periodic
db7-wavelets. An inverse crime is avoided via generating data on a finer grid and un-
dersampling. In order to obtain the minimizer of the Tikhonov functional we use the
extension of the Chambolle-Pock algorithm to Banach spaces with a constant param-
eter choice rule, see [23, Thm. 6], where the iterations are stopped when the current
step gets small compared to the first. Note that the steps of this algorithm become
especially simple since the considered spaces are 2-convex. The duality mappings are
evaluated with the help of Theorem 3.6. For further details see Appendix B.

We tested which convergence rate we observe if we chooseR(f) = 1
2‖f |B0

p,2‖2 for
different values of p. The results of this test are shown in Figure 4.1. It can be seen
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Fig. 4.1. Convergence rates in B0

p,2
for different values of p. The crosses indicate reconstruction

errors and the lines convergence rates predicted by Theorem 4.2.

that for the tested values of p the observed rates coincide quite well with the predicted
optimal rates. The staircase behavior of the reconstruction error plots – best visible
for p = 2 – is due to the sequential discrepancy principle; if for different noise levels
the relative error is almost constant, then the same regularization parameter α was
chosen. For p = 1.25 the last three points are omitted in the plot since our code did
not produce solutions satisfying the discrepancy principle.

5. Backwards heat equation. As a second problem we consider the backwards
heat equation on T

d, that is (TBHf)(x) = u(x, t̄) for some fixed t̄ > 0 where u solves

∂tu = ∆u in T
d × (0, t)

u(·, 0) = f on T
d.

Note that TBH can be conveniently expressed via the Fourier series transform F as

TBHf = F∗ exp
(
−t̄|·|2

)
Ff.

5.1. Deterministic convergence rates.

Theorem 5.1. Let p ∈ (1, 2], q ∈ (1,∞) and s > 0, and suppose that (1.1) and
(4.2) hold true for f † ∈ Bsp,∞ with ‖f † |Bsp,∞‖ ≤ ̺. Then f † satisfies a variational
source condition with

ψ(τ) = c̺r



√
τ

̺

(
3 +

̺√
τ

)1/2

+

(
ln

((
3 +

̺√
τ

)1/2
))−s(q−1)r′/2


.

Moreover, f̂α in (1.4) with F = TBH exists and is unique for any α > 0. For the
parameter choice rule (2.6a) and q ≥ 2 it satisfies the error bound

(5.1)
∥∥∥f̂α − f †

∣∣∣B0
p,q

∥∥∥ ≤ c̺
(
ln
(̺
δ

))−s/2
as δ → 0

with a constant c > 0 independent of f †, δ, and ̺.

Proof. As in the proof of Theorem 4.2, we apply Theorem 3.3 but this time with
the choice Pj as in (3.7b). Again we obtain by Corollary 3.9 and our assumptions
that we can choose κ(j) = c̺r−12−js(q−1).
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In order to verify (3.2c) note that

∥∥P ∗
j (f

† − f)
∣∣L2

∥∥2 =

j∑

k=0

∑

l∈Ik

∣∣∣ ̂(f † − f)(l)
∣∣∣
2

≤
(
e2

2j t̄
)2 j∑

k=0

∑

l∈Ik

∣∣∣e−|l|2 t̄ ̂(f † − f)(l)
∣∣∣
2

≤
(
e2

2j t̄
)2∥∥T (f † − f)

∣∣L2
∥∥2.

Therefore, we can estimate

〈
Pjf

∗, f † − f
〉
≤
∥∥∥f∗

∣∣∣Lp
′
∥∥∥
∥∥∥1
∣∣∣L

2p
2−p

∥∥∥
∥∥P ∗

j (f
† − f)

∣∣L2
∥∥

≤ c
∥∥∥f∗

∣∣∣Bs(q−1)
p′,∞

∥∥∥e2
2j t̄
∥∥T (f † − f)

∣∣L2
∥∥

≤ c̺r−1e2
2j t̄
∥∥T (f † − f)

∣∣L2
∥∥

and hence choose σ(j) = c̺r−1e2
2j t̄ and γ = 0.

This implies by Theorem 3.3 that a variational source condition with

ψvsc(τ) = inf
j∈N0

c
[
̺r−1e2

2j t̄
√
τ + ̺r2−js(q−1)r′

]

holds true. Now choosing j such that 22j ∼ 1
t̄ ln

√
3 + √̺

τ
we obtain that

ψvsc(τ) ≤ c̺r



√
τ

̺

(
3 +

̺√
τ

)1/2

+

(
ln

((
3 +

̺√
τ

)1/2
))−s(q−1)r′/2




≤ c̺r
(
ln
(̺
δ

))−s(q−1)r′/2

[1 + o(1)] as δ → 0.

Existence of f̂α and (5.1) follows along the lines of the proof of Theorem 4.2.

Remark 5.2. Note that the verification of (3.2c) is very different from Theorem
4.2. For the latter the choice of Pj is not important as long as the Bernstein and
Jackson inequalities of Assumption 3.7 hold. Here, however, the forward operator
F is too smoothing in order to get Lipschitz stability estimates in the scale of Besov
spaces. Therefore, we use an inequality of the form ‖Pj(f1−f2)‖ ≤ σj‖F (f1)−F (f2)‖
for some sequence σj > 0 quite similar to Example 3.4. Such an inequality can in
general only be verified for appropriately chosen Pj . We refer to [25] for another
example with γ 6= 0.

Theorem 5.3. Let 1 ≤ p ≤ 2, 1 ≤ q ≤ ∞, s, ̺ > 0. Then there cannot exist a
reconstruction method R : L2 → B0

p,q for the backward heat equation such that

sup
{∥∥f −R(gobs)

∣∣B0
p,q

∥∥ : ‖f |Bsp,∞‖ ≤ ̺,
∥∥TBHf − gobs

∣∣L2
∥∥ ≤ δ

}
= o

(
̺
(
ln
̺

δ

)− s
2

)

as δ → 0. Hence the convergence rate of Theorem 5.1 is optimal for q ≥ 2 as δ → 0
up to the value of the constant.

Proof. Choosing bj,l = exp(−2t̄|l|2) the assumptions of Proposition 3.12 are ful-
filled as shown in Example 3.13ii. Hence we obtain

ω(δ,K) ≥ max
k∈N0

{
min

{
2−ks̺, et̄2

2k

δ
}}

≥ min

{
̺

(
1

t̄
ln
̺

δ

)− s
2

, ̺

}



22 F. WEIDLING, B. SPRUNG AND T. HOHAGE

where we have chosen k ∈ N0 such that 22k ∼ 1
t̄ ln

̺
δ . Hence the claim follows from

Lemma 3.11.

5.2. Statistical convergence rates. For exponentially ill-posed problems a
rather coarse interpolation bound is sufficient:

Lemma 5.4. The operator TBH fulfills Assumption 2.5 with β = 1
2 , γ = 1

2r .

Proof. By K-interpolation there exists a constant c > 0 such that

∥∥∥TBH(f1 − f2)
∣∣∣Bd/2p,1

∥∥∥ ≤ c
∥∥TBH(f1 − f2)

∣∣B0
p,2

∥∥ 1
2
∥∥TBH(f1 − f2)

∣∣Bdp,q
∥∥ 1

2 .

As p ≤ 2, the first factor can be bounded by
∥∥TBH(f1 − f2)

∣∣L2
∥∥ 1

2 . To control the
second factor we again use p ≤ 2 to obtain

∥∥TBH(f1 − f2)
∣∣Bdp,q

∥∥q ≤
∑

j∈N0

2jdq
[∑

l∈Ij
exp(−2t̄|l|2)

∣∣∣ ̂(f1 − f2)(l)
∣∣∣
2
] q

2

≤
∑

j∈N0

2jdq exp

(
− t̄q

16π2
22j
)[∑

l∈Ij

∣∣∣ ̂(f1 − f2)(l)
∣∣∣
2
] q

2

.

As there exists a constant c > 0 such that

2jdq2−jd(
1
2− 1

p ) exp
(
− t̄q

16π2 2
2j
)
≤ c for all j ∈ N

one obtains that

∥∥TBH(f1 − f2)
∣∣Bdp,q

∥∥ ≤ c
∥∥f1 − f2

∣∣B
d
2−d

p

2,q

∥∥ ≤ c
∥∥f1 − f2

∣∣B0
p,q

∥∥ ≤ c
(
C−1

∆ ∆R(f1, f2)
) 1

r

by the embedding properties of Besov spaces (A.2) and Assumption 3.1. This com-
pletes the proof.

Theorem 5.5. Assume that (1.2) holds true with F = TBH and Z satisfying As-
sumption 2.4, and consider the setting (4.2) with p ∈ (1, 2] and q ∈ [2,∞). Moreover,

suppose that f † ∈ Bsp,∞ for some s > 0 with ‖f † |Bsp,∞‖ ≤ ̺. Then f̂α in (1.4) is
well-defined almost surely, and for α = ε/4 it satisfies the following error bounds

∀t > 0: P

[∥∥∥f̂α − f †
∣∣∣B0

p,q

∥∥∥ ≥ c

(
̺
(
ln
(̺
ε

))−s/2
+ t

)]
≤ exp

(
−CZε−

µ
4 t

3q−2
4 µ

)

with a constant c > 0 independent of f †, ̺, and ε.

Proof. Existence of f̂α follows from Proposition 4.10. By Theorem 5.1 a logarith-
mic variational source condition of the form of Example 2.2 holds true. Hence from
(2.4b) one obtain that

ϕψ(τ) = C̺r
(
ln
(̺
τ

))− s(q−1)r′

2

(1 + o(1)) as t→ 0.

Thus Theorem 2.6(ii) together with Lemma 5.4 gives

∆R(f̂α, f
†) ≤ Cα− 3r

3r−2

∥∥∥εZ
∣∣∣B−d/2

p′,∞

∥∥∥
4r

3r−2

+ Cϕψ(4α).
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Choosing α = ε
4 and using (2.1) we get

∥∥∥f̂α − f †
∣∣∣B0

p,q

∥∥∥ ≤ Cε
1

3r−2

∥∥∥Z
∣∣∣B−d/2

p′,∞

∥∥∥
4

3r−2

+ Cϕψ(ε)
1
r .

Finally by the deviation inequality given by Assumption 2.4 we find that

P

[∥∥∥f̂α − f †
∣∣∣B0

p,q

∥∥∥ ≥ C

(
̺
(
ln
(̺
ε

))− s(q−1)r′

2r

+ ε
1

3r−2 t′
4

3r−2

)]
≤ exp(−CZt′µ)

for all t′ > 0. Substituting t = ε
1

3r−2 t′
4

3r−2 shows the claim.

For the optimality of this risk bound in the case p = q = 2 we refer to [19].

6. Discussion. We have shown optimal rates of convergence for finitely smooth-
ing operators for Tikhonov regularization with Besov norm penalties B0

p,q with p ∈
(1, 2] and q ≥ 2 if the true solution belongs to Bsp,∞. By Proposition 3.12 these rates
cannot be improved in the deterministic case if we restrict to smaller spaces Bsp̃,q̃
with p̃ ≥ p and q̃ ∈ [1,∞]. For p = q = 2 we have shown in [26] that Bs2,∞ is the

largest space in which Tikhonov regularization achieves the rate O(δs/(s+a), and we
conjecture that this is also the case for p < 2. Note that the smaller p is chosen, the
larger becomes the smoothness class on which optimal rates are achieved.

For q < 2 our approach in its present form yields error bounds which are most
likely suboptimal. This case requires further investigations. It would be desirable to
get rid of the logarithmic factor in Corollary 4.6 and the following remark for Lp loss
functions. Moreover, the case p = q is more commonly used and a bit more convenient
algorithmically.

Appendix A. Properties of Besov spaces. In this appendix we collect some
properties of the Besov scale Bsp,q.

Besov spaces are a quite general class of spaces, in order to provide some intuition
on these spaces we will list some properties and special cases here which can e.g. be
found in [37]. First of all for 1 < p, q < ∞ and s ∈ R the dual space is given
via (Bsp,q)

′ = B−s
p′,q′ . The spaces form scales with respect to the smoothness and

summation index, for any ε > 0, s ∈ R, p ∈ [1,∞] and 1 ≤ q1 ≤ q2 ≤ ∞ the
embeddings

(A.1) Bs+εp,∞ ⊂ Bsp,1 ⊂ Bsp,q1 ⊂ Bsp,q2 ⊂ Bsp,∞ ⊂ Bs−εp,1

are continuous. Furthermore one can give up smoothness to gain integrability, to be
more precise for p1 ≤ p2 and s1 ≥ s2 the embedding

(A.2) Bs1p1,q ⊂ Bs2p2,q

is continuous if s1 − d
p1

≥ s2 − d
p2

and compact if s1 > s2 (see [37, §4.3.3 Rem. 1]).
The classical Lebesgue spaces Lp for p 6= 2 are not Besov spaces, but for 1 < p <

∞ the following inclusions hold true with continuous embeddings:

(A.3) B0
p,min{2,p} ⊂ Lp ⊂ B0

p,max{2,p}

However, if s is not an integer, then Bsp,p = W s,p the Sobolev spaces with the norm
given by (assume for simplicity that 0 < s < 1):

‖f |W s,p‖ = ‖f |Lp‖+
(∫ ∫ |f(x)− f(y)|p

|x− y|d+sp
dy dx

) 1
p

.
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An important class of solutions to inverse problems are functions f which are
smooth up to jumps (or jumps in the kth-derivative). It is well known that such
functions are in W d/p−ε,p (or in W k+d/p−ε,p respectively) for all ε > 0, however in
this scale of spaces such functions do not have a maximal smoothness index. Using the
Nikol’skij representation of the Besov norm Bsp,∞ (see [37, Sec. 2.5.12]) one can easily

calculate that such functions belong to Bsp,∞ (or to Bk+sp,∞ respectively) for s = d/p.
For p, q ∈ (1,∞) Assumption 3.1 is fulfilled via Example 2.1(ii), as Besov spaces

Bsp,q equipped with the wavelet norm are max{2, p, q}-convex, see [28].

Appendix B. Details on numerical simulation. The true solution is given
by the linear spline interpolating the points
{
(0, 0),

(
1
8 , 0
)
,
(

3
16 ,

1
16

)
,
(
1
4 , 0
)
,
(

5
16 , 0

)
,
(

7
16 ,

1
8

)
,
(
1
2 ,

1
16

)
,
(
5
8 ,

3
16

)
,
(
11
16 ,

1
16

)
,
(
3
4 ,

1
8

)
,
(
7
8 , 0
)}

with periodic boundary condition on T
1.

In order to find a noise vector ξ in (1.1) which (at least approximately) maximizes
the left hand side of (4.3) we proceeded as follows: Let F be a compact operator
with singular system (fj , gj , σj)j∈N and denote by fα the minimizer of the Tikhonov
functional (1.3) for noise free data gobs = F (f †). One can expect that there exists
c1 > 0 such that

supξ

∥∥∥f † − f̂α

∣∣∣L2
∥∥∥ ≥ c1

∥∥∥fα − f̂α

∣∣∣L2
∥∥∥.

By first order optimality conditions f̂α − fα = (F ∗F + αI)−1F ∗ξ, therefore the right
hand side is of the form

∥∥∥fα − f̂α

∣∣∣L2
∥∥∥
2

=
∥∥(F ∗F + αI)−1F ∗ξ

∣∣L2
∥∥2 =

∑

j∈N

∣∣∣∣∣
σj 〈ξ, gj〉
σ2
j + α

∣∣∣∣∣

2

.

Since the function λ/(λ2 + α) is maximized by λ =
√
α the right hand side will be

close to its maximum if for 0 < c2 < c3 we choose ξ =
∑

j∈J δjgj with
∑
j∈J δ

2
j ≤ δ2

where J is such that c2
√
α ≤ σj ≤ c3

√
α for all j ∈ J . This leads to the lower bound

∥∥∥f † − f̂α

∣∣∣L2
∥∥∥
2

≥ c21
c22

1 + c23

δ2

α

on the reconstruction error. Recall that δ2

α also appears in the upper bound on the
reconstruction error in Proposition 2.3, hence for any parameter choice of α for which
the upper bound is of optimal order the lower bound will be of the same order, i.e.
up to constants we will observe the worst case error rate. Although for p 6= 2 the
estimator f̂α depends in a non-affine way on ξ we will assume that the same choice of
the noise vector will lead to the worst case error.

The operator of the tested example F = (I − 1
4π2 ∂

2
x)

−1 on T
1 is compact with

singular system

fj(x) = gj(x) =

{
exp
(
2πi j−1

2 x
)

j odd

exp
(
−2πi j2x

)
j even

and σj =





(
1 +

(
j−1
2

)2)−1

j odd
(
1 +

(
j
2

)2)−1

j even

with j ∈ N. Therefore we use the approximation σj ≈ ( j2 )
−2 and apply the above

error model with c1 = 1/2 and c2 = 2. The values for δj are drawn from a normal
distribution and normalized in order to fulfill

∑
j∈J δ

2
j = δ2.
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