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Abstract

We start from a parametrized system of d generalized polynomial equa-
tions (with real exponents) for d positive variables, involving n general-
ized monomials with n positive parameters. Existence and uniqueness
of a solution for all parameters and for all right-hand sides is equivalent
to the bijectivity of (every element of) a family of generalized polyno-
mial/exponential maps. We characterize the bijectivity of the family of
exponential maps in terms of two linear subspaces arising from the coeffi-
cient and exponent matrices, respectively. In particular, we obtain condi-
tions in terms of sign vectors of the two subspaces and a nondegeneracy
condition involving the exponent subspace itself. Thereby, all criteria can
be checked effectively. Moreover, we characterize when the existence of a
unique solution is robust with respect to small perturbations of the expo-
nents or/and the coefficients. In particular, we obtain conditions in terms
of sign vectors of the linear subspaces or, alternatively, in terms of maxi-
mal minors of the coefficient and exponent matrices. Finally, we present
applications to chemical reaction networks with (generalized) mass-action
kinetics.

Keywords: global invertibility, Hadamard’s theorem, Descartes’ rule,
sign vectors, oriented matroids, perturbations, robustness, deficiency zero
theorem

AMS subject classification: 12D10, 26C10, 52B99, 52C40

1 Introduction

Given two matrices W = (w1, . . . , wn), W̃ = (w̃1, . . . , w̃n) ∈ R
d×n with d ≤ n

and full rank, consider the parametrized system of generalized polynomial equa-
tions

n
∑

j=1

wij cj x
w̃1j

1 · · ·x
w̃dj

d = yi, i = 1, . . . , d
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for d positive variables xi > 0 (and right-hand sides yi), involving the ‘mono-

mials’ cj x
w̃1j

1 · · ·x
w̃dj

d = cj x
w̃j

, j = 1, . . . , n, in particular, the n positive pa-
rameters cj > 0. In other words, x ∈ R

d
>0, y ∈ R

d, and c ∈ R
n
>0. As in the

theory of fewnomials [34, 46], the monomials are given, however, with a positive
parameter associated to every monomial.

Writing the vector of monomials as c◦xW̃ ∈ R
n
>0, thereby introducing xW̃ ∈ R

n
>0

as (xW̃ )j = xw̃j

and denoting componentwise multiplication by ◦, yields the
compact form

W (c ◦ xW̃ ) = y.

Note that, for the existence of a positive solution x, the right-hand side y must
lie in the interior of C = coneW , the polyhedral cone generated by the columns
of W . The question arises whether the above equation system has a unique
positive solution x ∈ R

d
>0, for all right-hand sides y ∈ C◦ ⊆ R

d and all positive
parameters c ∈ R

n
>0. This question is equivalent to whether the generalized

polynomial map fc : R
d
>0 → C◦ ⊆ R

d,

fc(x) = W (c ◦ xW̃ )

or, equivalently, the exponential map Fc : R
d → C◦ ⊆ R

d,

Fc(x) = W (c ◦ eW̃
Tx)

is bijective for all c ∈ R
n
>0.

In the context of chemical reaction networks (CRNs) with generalized mass-
action kinetics [38, 39], the question is equivalent to whether every set of
complex-balanced equilibria (an ‘exponential manifold’) intersects every stoi-
chiometric class (an affine subspace) in exactly one point. For a motivation
from CRNs, see Section 5 or [16]. The assumption of mass-action kinetics corre-
sponds toW = W̃ , and in this case there is indeed exactly one complex-balanced
equilibrium in every stoichiometric class.

In case W = W̃ , the map Fc also appears in toric geometry [20], where it is
related to moment maps, and in statistics [41], where it is related to log-linear
models. The following result (called Birch’s Theorem in [48, 41, 13, 15, 24, 16])
guarantees the bijectivity of Fc for all c > 0.

Theorem 1 ([20], Section 4.2). Let W = W̃ . Then the map Fc is a real analytic
isomorphism of Rd onto C◦ for all c > 0.

In this work, we characterize the simultaneous bijectivity of the maps Fc for all
c > 0 (for given coefficients W and exponents W̃ ) in terms of (sign vectors of)
the linear subspaces S = kerW ⊆ R

n and S̃ = ker W̃ ⊆ R
n, see Theorem 14.

Moreover, we characterize the robustness of bijectivity with respect to small
perturbations of the exponents W̃ or/and the coefficients W , corresponding
to small perturbations of the subspaces S̃ and S (in the Grassmannian), see
Theorems 31, 40, 42.

Sufficient conditions for bijectivity have been given in previous work [38], using
Brouwer degree, and parallel work [16], using differential topology. For a smaller
class of maps [22], bijectivity has been proved, using Brouwer’s fixed point
theorem.
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Our main technical tool is Hadamard’s global inversion theorem which essen-
tially states that a C1-map is a diffeomorphism if and only if it is locally invert-
ible and proper. By previous results [15, 38], the map Fc is locally invertible for
all c > 0 if and only if it is injective for all c > 0 which can be characterized in
terms of maximal minors of W and W̃ or, equivalently, in terms of sign vectors
of the subspaces S and S̃, see Subsection 2.1. Most importantly, we show that
Fc is proper if and only if it is ‘proper along rays’ and that properness for all
c > 0 can be characterized in terms of sign vectors of S and S̃, together with a
nondegeneracy condition depending on the subspace S̃ itself.

The crucial role of sign vectors in the characterization of existence and unique-
ness of positive solutions to parametrized polynomial equations suggests a com-
parison with Descartes’ rule of signs for univariate (generalized) polynomi-
als [47, 35, 29]. A sharp rule [1] states that a univariate polynomial with given
sign sequence has exactly one positive solution for all (positive) coefficients if
and only if there is exactly one sign change. Indeed, this statement follows from
our main result which can be seen as a multivariate generalization of the sharp
Descartes’ rule for exactly one positive solution.

Organization of the work and main results

In Section 2, we introduce the family of exponential maps Fc with c > 0 and
discuss previous results on injectivity.

In Section 3, we present our main result, Theorem 14, characterizing the simul-
taneous bijectivity of the maps Fc, and the crucial Lemmas 11 and 16, regarding
the properness of Fc. In Subsection 3.1, we discuss two extreme cases regarding
the geometry of the cone C, namely, C = R

d and C is pointed. In Subsec-
tion 3.2, we show that the simultaneous bijectivity of the maps Fc cannot be
characterized in terms of sign vectors only, cf. Example 20. Still, there are suf-
ficient conditions for bijectivity in terms of sign vectors or in terms of faces of
the Newton polytope, cf. Propositions 21 and 22.

In Section 4, we study the robustness of simultaneous bijectivity. In Subsec-
tion 4.1, we consider perturbations of the exponents W̃ and show that robustness
of bijectivity is equivalent to robustness of injectivity which can be character-
ized in terms of sign vectors, cf. Theorem 31. The criterion involves the closure
of a set of sign vectors and represents a simple sufficient condition for bijectiv-
ity, cf. Proposition 29. Equivalently, robustness can be characterized in terms
of maximal minors. In Subsection 4.2, we consider perturbations of the coeffi-
cients W and characterize robustness of bijectivity again in terms of sign vectors
(including another closure condition), cf. Theorem 40. In particular, robustness
of bijectivity implies that either C = R

d or C is pointed. Finally, in Subsec-
tion 4.3, we consider general perturbations (of both exponents and coefficients)
and characterize robustness of bijectivity in terms of sign vectors and maximal
minors, cf. Theorem 42.

In Section 5, we present a derivation of our main problem from chemical reac-
tion networks and applications of our main results. In particular, we formulate
a deficiency zero theorem for generalized mass-action kinetics and a robust defi-
ciency zero theorem for (generalized) mass-action kinetics, cf. Theorems 45 and
46.
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Finally, we provide appendices on (A) oriented matroids and (B) a theorem of
the alternative.

Notation

We denote the positive real numbers by R>0 and the nonnegative real numbers
by R≥0. We write x > 0 for x ∈ R

n
>0 and x ≥ 0 for x ∈ R

n
≥0. For vectors

x, y ∈ R
n, we denote their scalar product by x · y and their componentwise

(Hadamard) product by x ◦ y.

For a vector x ∈ R
n, we obtain the sign vector sign(x) ∈ {−, 0,+}n by applying

the sign function componentwise, and we write

sign(S) = {sign(x) | x ∈ S}

for a subset S ⊆ R
n.

For a vector x ∈ Fn with F = R or F = {−, 0,+}, we denote its support
by supp(x) = {i | xi 6= 0}. For a subset X ⊆ Fn, we say that a nonzero
vector x ∈ X has (inclusion-)minimal support, if supp(x′) ⊆ supp(x) implies
supp(x′) = supp(x) for all nonzero x′ ∈ X .

For a sign vector τ ∈ {−, 0,+}n, we introduce

τ− = {i | τi = −}, τ0 = {i | τi = 0}, and τ+ = {i | τi = +}.

In particular, supp(τ) = τ− ∪ τ+. For a subset T ⊆ {−, 0,+}n, we write

T⊕ = T ∩ {0,+}n.

The inequalities 0 < − and 0 < + induce a partial order on {−, 0,+}n: for sign
vectors τ, ρ ∈ {−, 0,+}n, we write τ ≤ ρ if the inequality holds componentwise.
The product on {−, 0,+} is defined in the obvious way. For τ, ρ ∈ {−, 0,+}n,
we write τ · ρ = 0 (τ and ρ are orthogonal) if either τiρi = 0 for all i or there
exist i, j with τiρi = − and τjρj = +. For T ⊆ {−, 0,+}n, we introduce the
orthogonal complement

T⊥ = {τ ∈ {−, 0,+}n | τ · ρ = 0 for all ρ ∈ T } .

Moreover, for τ, ρ ∈ {−, 0,+}n, we define the composition τ ◦ ρ ∈ {−, 0,+}n as
(τ ◦ ρ)i = τi if τi 6= 0 and (τ ◦ ρ)i = ρi otherwise.

For a matrix W ∈ R
d×n, we denote its column vectors by w1, . . . , wn ∈ R

d. For
any natural number n, we define [n] = {1, . . . , n}. For W ∈ R

d×n with d ≤ n
and I ⊆ [n] of cardinality d, we denote the square submatrix of W with column
indices in I by WI .

2 Families of exponential maps

Let W ∈ R
d×n, W̃ ∈ R

d̃×n be matrices with d, d̃ ≤ n and full rank. Further, let

C = coneW ⊆ R
d

4



be the cone generated by the columns of W . Since W has full rank, the cone C
has nonempty interior C◦. Finally, let c > 0. We define the exponential map

Fc : R
d̃ → C◦ ⊆ R

d

x 7→ W (c ◦ eW̃
Tx) =

n
∑

i=1

ci e
w̃i·xwi

(1)

and the related subspaces

S = kerW ⊆ R
n and S̃ = ker W̃ ⊆ R

n. (2)

Note that injectivity and surjectivity of Fc only depend on S and S̃. In fact, let

V ∈ R
d×n, Ṽ ∈ R

d̃×n be such that kerV = S, ker Ṽ = S̃, and let

Gc(x) = V (c ◦ eṼ
Tx)

be the corresponding exponential map. Then V = UW , Ṽ = ŨW̃ for invertible

matrices U ∈ R
d×d, Ũ ∈ R

d̃×d̃, and

Gc(x) = UFc(Ũ
Tx).

2.1 Previous results on injectivity

In the context of multiple equilibria in mass-action systems [14] and geometric
modeling [15], where d = d̃, it was shown that the map Fc is injective for all
c > 0 if and only if Fc is a local diffeomorphism for all c > 0.

Theorem 2 (Theorem 7 and Corollary 8 in [15]). Let Fc be as in (1) with
d = d̃. Then the following statements are equivalent:

1. Fc is injective for all c > 0.

2. det(∂Fc

∂x
) 6= 0 for all x and all c > 0.

3. det(WI) det(W̃I) ≥ 0 for all subsets I ⊆ [n] of cardinality d (or ‘≤ 0’ for
all I) and det(WI) det(W̃I) 6= 0 for some I.

In [38], we gave an alternative proof of this result and extended it to the case
d 6= d̃, by using the sign vectors of the subspaces S and S̃.

Theorem 3 (Theorem 3.6 in [38]). Let Fc be as in (1) and S, S̃ be as in (2).
Then the following statements are equivalent:

1. Fc is injective for all c > 0.

2. Fc is an immersion for all c > 0.
(∂Fc

∂x
is injective for all x and all c > 0.)

3. sign(S) ∩ sign(S̃⊥) = {0}.

Theorems 2 and 3 characterize the simultaneous injectivity of Fc (with d = d̃)
for all c > 0 equivalently in terms of maximal minors and sign vectors.
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Corollary 4. Let S, S̃ be subspaces of Rn of dimension n−d (with d ≤ n). For
every W, W̃ ∈ R

d×n (with full rank d) such that S = kerW and S̃ = ker W̃ , the
following statements are equivalent.

1. sign(S) ∩ sign(S̃⊥) = {0}.

2. det(WI) det(W̃I) ≥ 0 for all subsets I ⊆ [n] of cardinality d (or ‘≤ 0’ for
all I) and det(WI) det(W̃I) 6= 0 for some I.

In the language of oriented matroids, Corollary 4 relates chirotopes (signs of
maximal minors of W and W̃ ) to vectors (sign vectors of S = kerW and S̃ =
ker W̃ ), see also Appendix A. Thereby, the sign vector condition is symmetric
with respect to S and S̃.

Corollary 5 (Corollary 3.8 in [38]). Let S, S̃ be subspaces of Rn of equal di-
mension. Then

sign(S) ∩ sign(S̃⊥) = {0} if and only if sign(S̃) ∩ sign(S⊥) = {0}.

For a direct proof of Corollaries 4 and 5, see also [12].

In further works on injectivity of families of exponential/generalized polyno-
mial maps, the coefficient and exponent matrices need not have full rank, and
injectivity is studied on affine subspaces, see [23, 19, 37, 6].

3 Bijectivity

A necessary condition for the bijectivity of the map Fc is d = d̃. In the rest of
the paper, we consider Fc as in (1) with d = d̃ and the related subspaces S, S̃
as in (2).

A first sufficient condition for the bijectivity of the map Fc for all c > 0 (in terms
of sign vectors of S and S̃) was given in [38], thereby extending Theorem 1.

Theorem 6 (Proposition 3.9 in [38]). If sign(S) = sign(S̃) and (+, . . . ,+)T ∈
sign(S⊥), then the map Fc is a real analytic isomorphism for all c > 0.

As it will turn out, sign(S) = sign(S̃) is sufficient for bijectivity, and the tech-
nical condition (+, . . . ,+)T ∈ sign(S⊥) in [38] is not needed, cf. Corollary 15.
We note that Theorems 2, 3, and 6 allowed a first multivariate generalization
of Descartes’ rule of signs for at most/exactly one positive solution, see [37].

In order to characterize the simultaneous bijectivity of the map Fc for all c > 0,
we start with the following observation.

Proposition 7. The following statements are equivalent.

1. Fc is bijective for all c > 0.

2. Fc is a diffeomorphism for all c > 0.

3. Fc is a real analytic isomorphism for all c > 0.

6



Proof. Let Fc be bijective for all c > 0. In particular, it is injective, and
det(∂Fc

∂x
) 6= 0 for all x and c > 0, by Theorems 2 or 3. Hence, Fc is a local

diffeomorphism for all c > 0. Further, Fc is real analytic and hence a local real
analytic isomorphism for all c > 0.

Most importantly, we will use Hadamard’s global inversion theorem.

Theorem 8 ([26], Theorem A in [25]). A C1-map F : Rd → R
d is a diffeomor-

phism if and only if the Jacobian det(∂F
∂x

) 6= 0 for all x ∈ R
d and |F (x)| → ∞

whenever |x| → ∞.

Obviously, we need a slightly more general version of this result which follows
from Satz II in [5] or Theorem B in [25].

Theorem 9. Let U ⊆ R
d be open and convex. A C1-map F : Rd → U is a

diffeomorphism if and only if the Jacobian det(∂F
∂x

) 6= 0 for all x ∈ R
d and F is

proper.

Recall that a map F between two topological spaces is proper, if F−1(K) is
compact for each compact subset K of the target space. This is obviously
necessary for the inverse F−1 to be continuous.

Lemma 10. Let U ⊆ R
d be open. A continuous map F : Rd → U is proper if

and only if, for sequences xn in R
d with |xn| = 1 and xn → x and tn in R>0

with tn → ∞, F (xntn) → y implies y ∈ ∂U .

Proof. Suppose F is proper and F (xntn) → y, but y ∈ U . Take a closed ball
K ⊆ U around y. Then F−1(K) contains the unbounded sequence (xntn)n≥N

for some positive N and hence is not compact, a contradiction.

Conversely, let K be a compact subset of U . We need to show that every
sequence Xn in F−1(K) has an accumulation point. Since F−1(K) is closed,
we only need to show that Xn has a bounded subsequence. Suppose not, then
|Xn| → ∞. Since F (Xn) ∈ K, there is a subsequence (call it Xn again) such
that F (Xn) → y ∈ K. Now there is a subsubsequence (call it Xn again) such
that xn = Xn/|Xn| → x, that is, the sequence xn on the unit sphere converges.
With tn = |Xn|, we have F (xntn) → y ∈ K ⊂ U , a contradiction.

In particular, if F is proper, then, for all nonzero x ∈ R
d, F (xt) → y as t → ∞

implies y ∈ ∂U . That is, if the function values converge along a ray, then the
limit lies on the boundary of the range.

By Lemma 11 below, the map Fc under consideration is proper, if it is ‘proper
along rays’. Before we prove this result, we discuss the behaviour of Fc along a
ray. For x ∈ R

d and λ ∈ R, we introduce

Ix,λ = {i | w̃i · x = λ}

and write
Fc(xt) =

∑

λ

∑

i∈Ix,λ

ci e
λt wi,

7



where a sum over the empty set is defined as zero. For x ∈ R
d and c > 0, let

λmax be the largest λ such that
∑

i∈Ix,λ
ciw

i 6= 0. If λmax > 0, then

Fc(xt) e
−λmaxt →

∑

i∈Ix,λmax

ciw
i 6= 0

as t → ∞ and hence |Fc(xt)| → ∞. If λmax ≤ 0, then

Fc(xt) →
∑

i∈Ix,0

ciw
i ∈ C

as t → ∞. In this case, any vector wi with i ∈ Ix,λ and λ > 0 (and hence
∑

i∈Ix,λ
ciw

i = 0) lies in the lineality space of C, see Appendix A. If λmax < 0,

then Fc(xt) → 0. As a result, we have the following fact:

For every x ∈ R
d, either |Fc(xt)| → ∞ as t → ∞ or Fc(xt) → y ∈ C.

Lemma 11. The map Fc is proper, if

Fc(xt) → y as t → ∞ implies y ∈ ∂C (∗)

for all nonzero x ∈ R
d.

Proof. We assume that the ray condition (∗) holds for all nonzero x ∈ R
d.

Let x ∈ R
d with |x| = 1. In order to apply Lemma 10, we consider sequences

xn in R
d with |xn| = 1 and xn → x and tn in R>0 with tn → ∞.

To begin with, we show that |Fc(xt)| → ∞ as t → ∞ implies |Fc(xntn)| → ∞ as
n → ∞. Suppose |Fc(xt)| → ∞, that is, there is λ > 0 such that Fc(xt) e

−λt →
∑

i∈Ix,λ
ciw

i 6= 0 as t → ∞. For x′ close to x, we have the partition

Ix,λ = Ix′,µ1
∪ · · · ∪ Ix′,µp

with µj close to λ and hence µj >
λ
2 . Hence, there exists a largest µj such that

∑

i∈Ix′,µj

ciw
i 6= 0. Otherwise,

∑

i∈Ix,λ

ciw
i =

∑

i∈Ix′,µ1

ciw
i + . . .+

∑

i∈Ix′,µp

ciw
i = 0.

Additionally, there may exist an even larger µ with
∑

i∈Ix′,µ
ciw

i 6= 0. In any

case, there is λ′ > λ
2 such that

Fc(x
′t) e−λ′t →

∑

i∈Ix′,λ′

ciw
i 6= 0

as t → ∞ and hence |Fc(x
′t)| e−

λ
2
t > γ with γ > 0 independent of x′; that is,

|Fc(x
′t)| > γ e

λ
2
t as t → ∞. Hence |Fc(xntn)| > γ e

λ
2
tn as n → ∞; that is,

|Fc(xntn)| → ∞, as claimed.

In case C = R
d (∂C = ∅), the ray condition (∗) implies |Fc(xt)| → ∞ as t → ∞

and hence |Fc(xntn)| → ∞ as n → ∞. By Lemma 10, Fc is proper.

8



In case C 6= R
d, assume Fc(xntn) → y′ as n → ∞. Then, Fc(xt) → y as

t → ∞, by the first argument in the proof and the fact before the lemma. In
particular,

∑

i∈Ix,λ
ciw

i = 0 for λ > 0 and y =
∑

i∈Ix,0
ciw

i. Hence, vectors wi

with i ∈ Ix,λ and λ > 0 lie in the lineality space of C. By the ray condition (∗),
y ∈ ∂C, and hence

cone(wi | i ∈ Ix,0) ⊆ ∂C.

Finally, we write

Fc(xntn) =

n
∑

i=1

ci e
w̃i·xn tn wi =

∑

λ

∑

i∈Ix,λ

ci e
w̃i·xn tn wi.

For xn close to x, we have w̃i · xn close to λ for i ∈ Ix,λ, in particular,
∑

i∈Ix,λ
ci e

w̃i·xn tn wi → 0 for λ < 0. The limit Fc(xntn) → y′ as n → ∞
implies

∑

i∈Ix,0

ci e
w̃i·xn tn wi +

∑

λ>0

∑

i∈Ix,λ

ci e
w̃i·xn tn wi → y′,

and y′ ∈ ∂C since the sum of a vector in ∂C and a vector in the lineality space
of C lies in ∂C. By Lemma 10, Fc is proper.

Let Fc(xt) → y as t → ∞ along the ray given by x and Fc(xntn) → y′ as n → ∞
for a sequence xntn (with xn → x and tn → ∞), approaching the ray. In the
proof of Lemma 11, we have shown that, if y = 0, then y′ ∈ L, where L is the
lineality space of C. In general, if y ∈ Cx = cone(wi | i ∈ Ix,0), then y′ ∈ Cx+L.
Note that there are only finitely many index sets Ix,0 and hence finitely many
limit points y =

∑

i∈Ix,0
ciw

i (for fixed c > 0), whereas every y′ ∈ ∂C arises as

a limit point (if Fc is surjective).

Using Theorem 9 (Hadamard’s global inversion theorem) together with Theo-
rems 2 or 3 and Lemma 11, we summarize our findings.

Corollary 12. The map Fc is bijective for all c > 0 if and only if Fc is injective
for all c > 0 and the ray condition (∗) in Lemma 11 holds for all nonzero x ∈ R

d

and all c > 0.

By Theorems 2 or 3, the simultaneous injectivity of Fc for all c > 0 can be
characterized in terms of sign vectors of the subspaces S and S̃. By Lemma 16
below, the ray condition (∗) (for all nonzero x ∈ R

d and all c > 0) can be
characterized in terms of sign vectors of S and S̃ together with a nondegeneracy
condition depending on sign vectors of S and on the subspace S̃ itself.

Definition 13. Let S, S̃ be subspaces of Rn. The pair (S, S̃) is called non-
degenerate if, for every z ∈ S̃⊥ with a positive component,

• there is I = {i | zi = λ} with λ > 0, defining π ∈ {0,+}n with π+ = I,
such that π /∈ sign(S)⊕ or

• for τ̃ = sign(z) ∈ sign(S̃⊥), there is a nonzero τ ∈ sign(S⊥)⊕ such that
τ̃0 ⊆ τ0.

As our main result, we obtain a characterization of the simultaneous bijectivity
of Fc for all c > 0 in terms of the subspaces S and S̃.

9



Theorem 14. The map Fc is a diffeomorphism for all c > 0 if and only if

(i) sign(S) ∩ sign(S̃⊥) = {0},

(ii) for every nonzero τ̃ ∈ sign(S̃⊥)⊕, there is a nonzero τ ∈ sign(S⊥)⊕ such
that τ ≤ τ̃ , and

(iii) the pair (S, S̃) is nondegenerate.

Theorem 14 immediately implies Theorems 1 and 6 (‘Birch’s Theorem’ and its
first extension).

Corollary 15. The map Fc is a diffeomorphism for all c > 0 if sign(S) =
sign(S̃).

Proof. By Corollary 53 in Appendix B, sign(S⊥) = sign(S)⊥. Hence, sign(S) =
sign(S̃) implies conditions (i) and (ii) in Theorem 14. Now, for z ∈ S̃⊥ with a
positive component zi = λ > 0, consider π ∈ {0,+}n with π+ = {i | zi = λ}
and τ̃ = sign(z) ∈ sign(S̃⊥). Obviously, π · τ̃ 6= 0 and hence π 6∈ sign(S̃)⊕ =
sign(S)⊕. That is, (S, S̃) is nondegenerate, as required by condition (iii).

We note that condition (i) in Theorem 14 can also be characterized in terms of
maximal minors of the matrices W and W̃ , cf. Corollary 4.

Condition (ii) can be reformulated using faces of the cones C = coneW and
C̃ = cone W̃ :

(ii) for every proper face f̃ of C̃ with Ĩ = {i | w̃i ∈ f̃}, there is a proper face
f of C with I = {i | wi ∈ f} such that Ĩ ⊆ I.

Indeed, a face f of C with I = {i | wi ∈ f} corresponds to a supporting
hyperplane with normal vector x such that wi · x = 0 for i ∈ I and wi · x > 0
otherwise (for wi lying on the positive side of the hyperplane). Hence f is
characterized by the nonnegative sign vector τ = sign(WTx) ∈ sign(S⊥)⊕ with
τ0 = I. Analogously, a face f̃ of C̃ with Ĩ = {i | w̃i ∈ f̃} is characterized by a
nonnegative sign vector τ̃ ∈ sign(S̃⊥)⊕ with τ̃0 = Ĩ. Clearly, Ĩ ⊆ I is equivalent
to τ ≤ τ̃ . (For more details on sign vectors and face lattices, see Appendix A.)

Condition (iii) concerns nondegeneracy. The second condition in Definition 13,
on sign vectors τ̃ = sign(z) ∈ sign(S̃⊥), corresponds to condition (ii), on non-
negative sign vectors τ̃ ∈ sign(S̃⊥)⊕. The first condition on z ∈ S̃⊥ can also
be interpreted geometrically (in terms of the columns of W, W̃ ). Note that
S̃⊥ = (ker W̃ )⊥ = im W̃T and z = W̃Tx for some x ∈ R

d. Hence, the set

I = {i | zi = λ} = {i | w̃i · x = λ} = Ix,λ

with λ > 0 indicates equal positive components zi or, geometrically, equal posi-
tive projections of columns w̃i (on x). The corresponding columns wi must not
be positively dependent, as expressed by the condition π /∈ sign(S)⊕ for the
nonnegative sign vector π ∈ {0,+}n with π+ = I.

It remains to prove Lemma 16.
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Lemma 16. The ray condition (∗) in Lemma 11 holds for all nonzero x ∈ R
d

and for all c > 0 if and only if conditions (ii) and (iii) in Theorem 14 hold.

Proof. For nonzero x ∈ R
d, let λx = maxi w̃

i · x. We show the following two
statements. Condition (ii) is equivalent to: the ray condition (∗) holds for all
nonzero x with λx ≤ 0 and all c > 0. Condition (iii) is equivalent to: the ray
condition (∗) holds for all nonzero x with λx > 0 and all c > 0.

(ii): If λx ≤ 0, then τ̃ = sign(−W̃Tx) ∈ sign(S̃⊥)⊕ defines a proper face of C̃
and Fc(xt) →

∑

i∈τ̃0 ciw
i as t → ∞. The ray condition (∗) for all c > 0 is

equivalent to
∑

i∈τ̃0 ciw
i ∈ ∂C for all c > 0. That is, there is a proper face of C

characterized by a nonzero τ ∈ sign(S⊥)⊕ such that τ̃0 ⊆ τ0. Equivalently,
τ ≤ τ̃ , that is, (ii) for τ̃ .

By varying over all nonzero x ∈ R
d with λx ≤ 0, all nonzero τ̃ ∈ sign(S̃⊥)⊕ are

covered.

(iii): If λx > 0, then z = W̃Tx ∈ S̃⊥ has a positive component. Using the fact
before Lemma 11, the ray condition (∗) for all c > 0 is equivalent to

for all c > 0,

(α) either there is λ > 0 such that Fc(xt) e
−λt →

∑

i∈Ix,λ
ciw

i 6= 0 as t → ∞

(β) or Fc(xt) →
∑

i∈Ix,0
ciw

i ∈ ∂C.

This is further equivalent to

(a) there is λ > 0 such that, for all c > 0,
∑

i∈Ix,λ
ciw

i 6= 0 or

(b)
∑

i∈Ix,0
ciw

i ∈ ∂C for all c > 0.

To see this, note that the sets Ix,λ are disjoint and the sums
∑

i∈Ix,λ
ciw

i involve
different coefficients ci for different λ.
(⇒): Assume ¬(a), that is, for all λ > 0, there exists c > 0 such that

∑

i∈Ix,λ
ciw

i =

0. Then,
∑

i∈Ix,0
ciw

i ∈ ∂C for all c > 0, that is, (b).

(⇐): Clearly, (a) implies (α) for all c > 0. Finally, assume (b) and let c > 0.
Then, either (α) or, for all λ > 0,

∑

i∈Ix,λ
ciw

i = 0. In the latter case,

Fc(xt) →
∑

i∈Ix,0
ciw

i with
∑

i∈Ix,0
ciw

i ∈ ∂C, that is, (β).

Finally, (a) or (b) is equivalent to

• there is Ix,λ = {i | zi = λ} with λ > 0 such that c /∈ kerW = S for all
c ≥ 0 with supp(c) = Ix,λ, that is, there is π ∈ {0,+}n with π+ = Ix,λ
such that π /∈ sign(S)⊕, or

• for τ̃ = sign(z) ∈ sign(S̃⊥) and hence τ̃0 = Ix,0, there is a proper face of
C, characterized by a nonzero τ ∈ sign(S⊥)⊕, such that τ̃0 ⊆ τ0,

that is, (iii) for z.

By varying over all nonzero x ∈ R
d with λx > 0, all z ∈ S̃⊥ with a positive

component are covered.
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3.1 Special cases: C = R
d or C is pointed

We discuss the conditions for bijectivity in Theorem 14 for two extreme cases,
regarding the geometry of the cones C = coneW and C̃ = cone W̃ .

If C = R
d (that is, sign(S⊥)⊕ = {0}), then condition (ii) is equivalent to

C̃ = R
d. Hence, if C = R

d and Fc is bijective for all c > 0, then C̃ = R
d.

However, the converse does not hold.

Example 17. Let Fc be given by the matrices

W̃ =

(

1 0 −1
0 1 −1

)

and W =

(

1 0 −1
0 1 0

)

.

Then C̃ = R
2 and Fc is bijective for all c > 0. However, C 6= R

2.

If (+, . . . ,+)T ∈ sign(S⊥) (that is, C is pointed and no column of W is zero),
then condition (iii) holds (since sign(S)⊕ = {0}), and conditions (i) and (ii) im-
ply (+, . . . ,+)T ∈ sign(S̃⊥) (by Proposition 19 below). Hence, if (+, . . . ,+)T ∈
sign(S⊥) and Fc is bijective for all c > 0, then (+, . . . ,+)T ∈ sign(S̃⊥). How-
ever, the converse does not hold.

Example 18. Let Fc be given by the matrices

W̃ =

(

1 1 0
0 1 1

)

and W =

(

1 0 −1
0 1 0

)

.

Then, C̃ = R
2
≥0, (+,+,+)T ∈ sign(S̃⊥), and Fc is bijective for all c > 0.

However, C = R× R≥0 and (+,+,+)T 6∈ sign(S⊥).

If (+, . . . ,+)T ∈ sign(S⊥) (that is, C is pointed and no column of W is zero),
then conditions (i) and (ii) imply the surjectivity of Fc for all c > 0 and, by the
following result, (+, . . . ,+)T ∈ sign(S̃⊥).

Proposition 19. Let (+, . . . ,+)T ∈ sign(S⊥). If Fc is surjective, then (+, . . . ,+)T ∈
sign(S̃⊥).

Proof. By surjectivity, the image of Fc contains points arbitrarily close to zero.
Hence, there is a sequence Xk in R

d such that Fc(Xk) → 0 as k → ∞. Since
(+, . . . ,+)T ∈ sign(S⊥) = sign(imWT), there is y ∈ R

d such that y · wi > 0 for
all i ∈ [n]. Now,

y · Fc(Xk) =

n
∑

i=1

ci (y · w
i) ew̃

i·Xk

is a sum of positive terms converging to zero, and hence each term goes to zero.
This implies w̃i ·Xk < 0 for large k, for all i ∈ [n]. Hence,

(+, . . . ,+)T = sign(−W̃TXk) ∈ sign(im W̃T)⊕ = sign(S̃⊥)⊕.
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3.2 Sign-vector conditions

In general, the simultaneous bijectivity of Fc for all c > 0, in particular, condi-
tion (iii) in Theorem 14, cannot be characterized in terms of sign vectors of S
and S̃.

Example 20. Let Fc be given by the matrices

W̃ =





1 1 0 0 −1 w̃
1 −1 0 0 0 0
0 0 1 −1 0 0



 and W =





0 0 1 1 −1 0
1 −1 0 0 0 −1
0 0 1 −1 0 0



 ,

involving the parameter w̃ > 0. Obviously, C̃ = C = R
3. For w̃ = 1 or

w̃ ∈ [2,∞), the map Fc is injective for all c > 0, but not bijective, whereas
for w̃ ∈ (0, 1) or w̃ ∈ (1, 2), the map Fc is bijective for all c > 0. Clearly,
the sign vectors sign(S̃) = sign(ker W̃ ) do not depend on w̃ and hence cannot
characterize bijectivity.

In general, condition (iii) depends on the subspace S̃ itself. Still,

• condition (iii) holds trivially if (+, . . . ,+)T ∈ sign(S⊥), see Section 3.1,

• there is a (weakest) condition (iv) in terms of sign vectors of S and S̃
sufficient for nondegeneracy, see Proposition 21, and

• there is a sufficient condition for nondegeneracy using faces of the New-
ton polytope P̃ , see Proposition 22. (Thereby, faces of P̃ correspond to
nonnegative sign vectors of an affine subspace related to S̃.)

Proposition 21. Let S, S̃ be subspaces of Rn. If

(iv) for all τ̃ ∈ sign(S̃⊥) with τ̃+ 6= ∅,

• there is no π ∈ sign(S)⊕ with π+ = τ̃+

• or there is no ρ ∈ sign(S) with τ̃+ ∪ τ̃− ⊆ ρ+

then the pair (S, S̃) is nondegenerate. That is, (iv) ⇒ (iii).

Proof. Assume that (S, S̃) is degenerate, in particular, that z ∈ S̃⊥ with a
positive component violates nondegeneracy, and let τ̃ = sign(z) ∈ sign(S̃⊥),
where τ̃+ 6= ∅.

For every index set I = {i | zi = λ} with λ > 0, the sign vector π ∈ {0,+}n with
π+ = I satisfies π ∈ sign(S)⊕. Clearly, the index sets I cover τ̃+ = {i | zi > 0}
and, by composition, there is π ∈ sign(S)⊕ with π+ = τ̃+.

Further, there is no nonzero τ ∈ sign(S⊥)⊕ such that τ̃0 ⊆ τ0, that is, τ ≤ |τ̃ |.
Thereby, |τ̃ | ∈ {0,+}n with |τ̃ |0 = τ̃0 and |τ̃ |+ = τ̃+ ∪ τ̃−. By Corollary 52 in
Appendix B, there is ρ ∈ sign(S) such that ρ ≥ |τ̃ |, that is, |τ̃ |+ ⊆ ρ+.

Finally, we formulate a sufficient condition for nondegeneracy using faces of the
Newton polytope P̃ = conv W̃ , the convex hull of the columns of W̃ . A face f̃
of P̃ with Ĩ = {i | w̃i ∈ f̃} corresponds to a supporting affine hyperplane with
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normal vector x ∈ R
d and λ ∈ R such that w̃i · x = λ for i ∈ Ĩ and w̃i · x < λ

otherwise; that is, Ĩ = Ix,λ. It further corresponds to z = W̃Tx ∈ S̃⊥, where

Ĩ = {i | zi = λ}. If λ > 0, we call the face f̃ of P̃ positive, and z ∈ S̃⊥ has a
positive component.

Proposition 22. Let S, S̃ be subspaces of Rn, W̃ ∈ R
d×n be a matrix with full

rank such that ker W̃ = S̃, and P̃ = conv W̃ be the Newton polytope. The pair
(S, S̃) is nondegenerate, if, for every positive face f̃ of P̃ with Ĩ = {i | w̃i ∈ f̃},
the sign vector π ∈ {0,+}n with π+ = Ĩ satisfies π 6∈ sign(S)⊕.

Proof. Let z ∈ S̃⊥ have a positive component, λ = maxi zi > 0, and Ĩ = {i |
zi = λ}. Then z corresponds to a positive face f̃ of P̃ with Ĩ = {i | w̃i ∈ f̃}.
If the sign vector π ∈ {0,+}n with π+ = Ĩ satisfies π 6∈ sign(S)⊕, then z is
nondegenerate, by definition.

4 Robustness of bijectivity

We study the robustness of the simultaneous bijectivity of Fc for all c > 0 with
respect to small perturbations of the exponents W̃ or/and the coefficients W ,
corresponding to small perturbations of the subspaces S̃ and S (in the Grass-
mannian).

The set of all n−d dimensional subspaces S of Rn is the Grassmann manifold of
rank n− d. It is a compact, connected smooth manifold of dimension d(n− d),
see e.g. [21, Chapter IV.7]. There are many metrics on the Grassmannian that
generate the same topology, for example, two subspaces S and S̃ are close if and
only if, for all x ∈ S with |x| = 1, there exists x̃ ∈ S̃ close to x, and the other
way round.

4.1 Perturbations of the exponents

First, we consider small perturbations of the subspace S̃, corresponding to the
exponents W̃ in Fc. As it turns out, the closure of sign(S̃) plays an important
role.

Definition 23. Let T ⊆ {−, 0,+}n. We define its closure

T = {τ ∈ {−, 0,+}n | τ ≤ ρ for some ρ ∈ T }.

Clearly, T1 ⊆ T2 implies T1 ⊆ T2.

Lemma 24. Let S be a subspace of Rn and Sε be a small perturbation. Then
sign(S) ⊆ sign(Sε).

Proof. Let π ∈ sign(S) and a corresponding x ∈ S with π = sign(x). Then
there is xε ∈ Sε close to x. For a small enough perturbation Sε, nonzero
components keep their signs (but zero components can become nonzero), that
is, sign(x) ≤ sign(xε). Hence, π ∈ sign(Sε).

We start by studying injectivity.
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Lemma 25. Let S, S̃ be subspaces of Rn. If sign(S) ∩ sign(S̃⊥
ε ) = {0} for all

small perturbations S̃ε, then sign(S) ⊆ sign(S̃).

Proof. Suppose sign(S) ⊆ sign(S̃) does not hold. Then there is a nonzero sign

vector π ∈ sign(S) with π /∈ sign(S̃). We will find a small perturbation S̃ε such
that π ∈ sign(S̃⊥

ε ) and hence sign(S) ∩ sign(S̃⊥
ε ) = {0} is violated.

By Corollary 52 in Appendix B, the nonexistence of ρ ∈ sign(S̃) with ρ ≥ π
implies the existence of a nonzero τ̃ ∈ sign(S̃⊥) with τ̃ ≤ π. If τ̃ = π, then
π ∈ sign(S̃⊥), as desired. Otherwise, let τ̃ = sign(x) for x ∈ S̃⊥. We find a
perturbation xε = x+εe with ε > 0 small and e ∈ R

n such that sign(xε) = π. In
particular, we choose ei = 1 if xi = 0 and i ∈ π+, ei = −1 if xi = 0 and i ∈ π−,
and ei = 0 otherwise. Then, we rescale xε such that |xε| = |x|. Finally, we
find an orthogonal matrix U ∈ R

n×n (close to the identity) such that Ux = xε.
Then xε = Ux ⊥ US̃ = S̃ε, that is, xε ∈ S̃⊥

ε and π ∈ sign(S̃⊥
ε ), as desired.

Lemma 26. Let S, S̃ be subspaces of Rn. If sign(S) ⊆ sign(S̃), then sign(S) ∩
sign(S̃⊥) = {0}.

Proof. Assume there exists a nonzero τ̃ ∈ sign(S) ∩ sign(S̃⊥). If sign(S) ⊆

sign(S̃), then there exists ρ ∈ sign(S̃) with ρ ≥ τ̃ . In particular, τ̃ ·ρ 6= 0, thereby
contradicting τ̃ ∈ sign(S̃)⊥ = sign(S̃)⊥ and ρ ∈ sign(S̃). Cf. Corollary 53 in
Appendix B.

Proposition 27. Let S, S̃ be subspaces of Rn. Then sign(S) ∩ sign(S̃⊥
ε ) = {0}

for all small perturbations S̃ε if and only if sign(S) ⊆ sign(S̃).

Proof. (⇒): By Lemma 25.

(⇐): Assume sign(S) ⊆ sign(S̃). By Lemma 24, sign(S̃) ⊆ sign(S̃ε) for all small

perturbations S̃ε which implies sign(S̃) ⊆ sign(S̃ε). Hence, sign(S) ⊆ sign(S̃ε).
By Lemma 26, sign(S) ∩ sign(S̃⊥

ε ) = {0}.

Corollary 28. Let S, S̃ be subspaces of Rn. Then

sign(S) ⊆ sign(S̃) if and only if sign(S⊥) ⊆ sign(S̃⊥).

Proof. By Corollary 5, sign(S) ∩ sign(S̃⊥
ε ) = {0} is equivalent to sign(S⊥) ∩

sign(S̃ε) = {0}. By Proposition 27 twice, the former statement (for all small

perturbations S̃ε) is equivalent to sign(S) ⊆ sign(S̃) and the latter to sign(S⊥) ⊆

sign(S̃⊥).

In terms of the map Fc (and the associated subspaces S and S̃), Proposition 27
states that

Fc is injective for all c > 0
and all small perturbations S̃ε

⇔ sign(S) ⊆ sign(S̃).

In Proposition 29 and Theorem 31 below, we will show that

sign(S) ⊆ sign(S̃) ⇒ Fc is bijective for all c > 0

15



and
Fc is bijective for all c > 0
and all small perturbations S̃ε

⇔ sign(S) ⊆ sign(S̃).

First, we prove that the closure condition

sign(S) ⊆ sign(S̃) (cc)

implies the bijectivity of Fc for all c > 0, that is, conditions (i), (ii), and (iii) in
Theorem 14. For an alternative proof, using differential topology, see [16].

Proposition 29. If sign(S) ⊆ sign(S̃), then the map Fc is a diffeomorphism
for all c > 0.

Proof. (cc) ⇒ (i): By Lemma 26.

(cc) ⇒ (ii):

Assume ¬(ii), that is, the existence of a nonzero τ̃ ∈ sign(S̃⊥)⊕ with τ 6≤ τ̃ for
all nonzero τ ∈ sign(S⊥)⊕, in fact, for all nonzero τ ∈ sign(S⊥). By Corollary 52
in Appendix B, the nonexistence of a nonzero τ ∈ sign(S⊥) with τ ≤ τ̃ implies
the existence of π ∈ sign(S) with π ≥ τ̃ .

Now, if sign(S) ⊆ sign(S̃), then there exists ρ ∈ sign(S̃) with ρ ≥ π and hence
ρ ≥ τ̃ . In particular, τ̃ · ρ 6= 0, thereby contradicting τ̃ ∈ sign(S̃⊥) = sign(S̃)⊥

and ρ ∈ sign(S̃).

(cc) ⇒ (iv) in Proposition 21:

Assume ¬(iv), that is, the existence of τ̃ ∈ sign(S̃⊥) with τ̃+ 6= ∅, π ∈ sign(S)⊕
with π+ = τ̃+, and ρ ∈ sign(S) with τ̃+ ∪ τ̃− ⊆ ρ+. By composition, π′ =
π ◦ (−ρ) ∈ sign(S), where π′

i = + for i ∈ τ̃+ and π′
i = − for i ∈ τ̃−, that is,

π′ ≥ τ̃ .

Now, if sign(S) ⊆ sign(S̃), then there exists ρ′ ∈ sign(S̃) with ρ′ ≥ π′ and hence
ρ′ ≥ τ̃ . In particular, τ̃ · ρ′ 6= 0, thereby contradicting τ̃ ∈ sign(S̃⊥) = sign(S̃)⊥

and ρ′ ∈ sign(S̃).

However, the closure condition (cc) is not necessary for bijectivity. Recall that
there is a (weakest) sign-vector condition sufficient for bijectivity, involving con-
ditions (i), (ii), and (iv) in Proposition 21.

Example 30. Let Fc be given by the matrices

W̃ =
(

1 0 −1
)

and W =
(

1 1 −1
)

.

Obviously, C̃ = C = R. Now, for τ = (+,+,−)T ∈ sign(imWT) = sign(S⊥),
there is no τ̃ ∈ sign(im W̃T) = sign(S̃⊥) with τ̃ ≥ τ . Hence, sign(S⊥) 6⊆

sign(S̃⊥), that is, the closure condition (cc) does not hold. Still, there is no
nonzero π ∈ sign(kerW )⊕ = sign(S)⊕, and hence condition (iv) holds. Further,
conditions (i) and (ii) hold, and Fc is bijective for all c > 0.

In fact, the closure condition (cc) is equivalent to bijectivity for all small per-
turbations S̃ε.
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Theorem 31. The map Fc is a diffeomorphism for all c > 0 and all small

perturbations S̃ε if and only if sign(S) ⊆ sign(S̃).

Proof. By Lemma 24, sign(S) ⊆ sign(S̃) implies sign(S) ⊆ sign(S̃ε) for all small
perturbations S̃ε. By Proposition 29, the latter implies the bijectivity of Fc for
all c > 0 and all small perturbations S̃ε.

Bijectivity implies injectivity, that is, sign(S) ∩ sign(S̃⊥
ε ) = {0}, for all small

perturbations S̃ε. By Lemma 25, the latter implies sign(S) ⊆ sign(S̃).

Corollary 4 relates chirotopes (signs of maximal minors of W and W̃ ) to vec-
tors (sign vectors of S = kerW and S̃ = ker W̃ ). By varying over all small
perturbations S̃ε, we obtain the following result.

Proposition 32. Let S, S̃ be subspaces of Rn of dimension n− d (with d ≤ n).
For every W, W̃ ∈ R

d×n (with full rank d) such that S = kerW and S̃ = ker W̃ ,
the following statements are equivalent.

1. sign(S) ⊆ sign(S̃).

2. det(WI) 6= 0 implies det(WI) det(W̃I) > 0 for all subsets I ⊆ [n] of
cardinality d (or ‘< 0’ for all I).

Proof. By Proposition 27, statement 1 is equivalent to sign(S)∩sign(S̃⊥
ε ) = {0}

for all small perturbations S̃ε. By Corollary 4, this is equivalent to

det(WI) det(W̃ε,I) ≥ 0 for all I ⊆ [n] of cardinality d (or ‘≤ 0’ for all I)

and det(WI) det(W̃ε,I) 6= 0 for some I,

for all small perturbations W̃ε of W̃ .

This is equivalent to statement 2, thereby using that det(W̃I) = 0 implies
det(W̃ε1,I) < 0 and det(W̃ε2,I) > 0 for some small perturbations W̃ε1 and W̃ε2 .

Now we can extend Theorem 31. In particular, we can characterize the bijec-
tivity of Fc for all c > 0 and all small perturbations S̃ε not only in terms of sign
vectors, but also in terms of maximal minors.

Corollary 33. The following statements are equivalent:

1. Fc is a diffeomorphism for all c > 0 and all small perturbations S̃ε.

2. sign(S) ⊆ sign(S̃).

3. det(WI) 6= 0 implies det(WI) det(W̃I) > 0 for all subsets I ⊆ [n] of
cardinality d (or ‘< 0’ for all I).

Proof. (1 ⇔ 2): By Theorem 31. (2 ⇔ 3): By Proposition 32.
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4.2 Perturbations of the coefficients

Next, we consider small perturbations of the subspace S, corresponding to
the coefficients W in Fc. We start by studying injectivity. By Corollary 5,
the perturbed injectivity condition sign(Sε) ∩ sign(S̃⊥) = {0} is equivalent to
sign(S̃)∩sign(S⊥

ε ) = {0}. By exchanging the roles of S and S̃ in Proposition 27,
we immediately obtain the desired result.

Corollary 34. Let S, S̃ be subspaces of Rn. Then sign(Sε) ∩ sign(S̃⊥) = {0}
for all small perturbations Sε if and only if sign(S̃) ⊆ sign(S).

The closure condition
sign(S̃) ⊆ sign(S) (cc’)

is equivalent to sign(S̃⊥) ⊆ sign(S⊥), by Corollary 28. As opposed to (cc), it
does not imply bijectivity, in fact, it implies conditions (i) and (iii) in Theo-
rem 14, but not condition (ii).

Proposition 35. If sign(S̃) ⊆ sign(S), then conditions (i) and (iii) in Theo-
rem 14 hold.

Proof. (cc’) ⇒ (i): By Corollary 34.

(cc’) ⇒ (iv) in Proposition 21:

Assume ¬(iv) and hence the existence of τ̃ ∈ sign(S̃⊥) and π ∈ sign(S)⊕ with
τ̃+ = π+ 6= ∅, in particular, τ̃ ≥ π. Now, if sign(S̃) ⊆ sign(S), then there exists
ρ ∈ sign(S⊥) with ρ ≥ τ̃ and hence ρ ≥ π. In particular, π · ρ 6= 0, thereby
contradicting π ∈ sign(S) and ρ ∈ sign(S⊥) = sign(S)⊥.

Example 36. Let Fc be given by the matrices

W̃ =

(

1 0 −1
0 1 0

)

and W =

(

1 1 0
0 1 1

)

.

Obviously, C̃ = R × R≥0 and C = R
2
≥0. Now, S̃ = ker W̃ = im(1, 0, 1)T, S =

kerW = im(1,−1, 1)T, and hence sign(S̃) ⊆ sign(S). However, sign(S̃⊥)⊕ =
{(0, 0, 0)T, (0,+, 0)T}, sign(S⊥)⊕ = {(0, 0, 0)T, (0,+,+)T, (+,+, 0)T}, and
hence condition (ii) does not hold.

Interestingly, conditions (cc’) and (ii) imply the equality of the face lattices of
C and C̃.

Proposition 37. If sign(S̃) ⊆ sign(S) and condition (ii) in Theorem 14 holds,
then sign(S⊥)⊕ = sign(S̃⊥)⊕.

Proof. Recall that, by the proof of Proposition 29, (cc) implies (ii); analogously,
(cc’) implies

(ii’) for every nonzero τ ∈ sign(S⊥)⊕, there is a nonzero τ̃ ∈ sign(S̃⊥)⊕ such
that τ̃ ≤ τ .
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On the one hand, let τ ∈ sign(S⊥)⊕ have minimal support. By (ii’), there
is a nonzero τ̃ ∈ sign(S̃⊥)⊕ such that τ̃ ≤ τ . By (ii), there is a nonzero
τ ′ ∈ sign(S⊥)⊕ such that τ ′ ≤ τ̃ . Altogether, τ ′ ≤ τ̃ ≤ τ . Now, τ ′ = τ , since
τ has minimal support, and hence τ̃ = τ . That is, there is a unique nonzero
τ̃ ∈ sign(S̃⊥)⊕ (namely τ̃ = τ) such that τ̃ ≤ τ . In particular, τ̃ has minimal
support.

On the other hand, let τ̃ ∈ sign(S̃⊥)⊕ have minimal support. By an analogous
argument, there is a unique nonzero τ ∈ sign(S⊥)⊕ (namely τ = τ̃ ) such that
τ ≤ τ̃ . In particular, τ̃ has minimal support. Hence, elements of sign(S⊥)⊕ and
sign(S̃⊥)⊕ with minimal support are in one-to-one correspondence. Finally,
every nonzero, nonnegative sign vector of a subspace is the composition of non-
negative sign vectors with minimal support, cf. Theorem 49 in Appendix A.
Hence, sign(S⊥)⊕ = sign(S̃⊥)⊕.

It remains to study the robustness of condition (ii).

Lemma 38. If, for all small perturbations Sε, the map Fc is surjective and
condition (ii) in Theorem 14 holds, then either C = C̃ = R

d or (+, . . . ,+)T ∈
sign(S⊥) ∩ sign(S̃⊥).

Proof. If neither C = R
d nor (+, . . . ,+)T ∈ sign(S⊥), then C has a nontrivial

lineality space. On the one hand, there is a small perturbation Sε1 such that1

Cε1 = R
d; hence C̃ = R

d, by (ii). On the other hand, there is a small perturba-
tion Sε2 such that (+, . . . ,+)T ∈ sign(S⊥

ε2
); hence (+, . . . ,+)T ∈ sign(S̃⊥), by

Proposition 19. A contradiction.

If C = R
d, then C̃ = R

d, by (ii). If (+, . . . ,+)T ∈ sign(S⊥), then (+, . . . ,+)T ∈
sign(S̃⊥), by Proposition 19.

That is, condition (ii) is robust only in two extreme cases regarding the geometry
of C = cone(W ). We consider the case (+, . . . ,+)T ∈ sign(S⊥) separately.

We call C robustly generated if either d = 1 or, on every extreme ray of C, there
lies a unique vector wi, and all other vectors lie in the interior. In terms of sign
vectors, C is robustly generated if

a nonzero τ ∈ sign(S⊥)⊕ has minimal support if and only if, for every
i ∈ τ0, there exists τ̂ ∈ sign(S⊥)⊕ with τ̂0 = {i}.

In this case, sign(S⊥
ε )⊕ = sign(S⊥)⊕ for all small perturbations Sε, and condi-

tion (ii) is robust. In fact, (ii) being robust implies C being robustly generated.

Lemma 39. Let (+, . . . ,+)T ∈ sign(S⊥) and sign(S⊥)⊕ = sign(S̃⊥)⊕. If con-
dition (ii) in Theorem 14 holds for all small perturbations Sε, then C and C̃
are robustly generated.

1 Let L ⊂ [n] be the indices of the vectors wi in the lineality space and I = [n] \ L.
Hence, there are ci > 0 for i ∈ L such that

∑
i∈L ciw

i = 0 and
∑

i∈L ci = 1. Consider small

perturbations Sε as follows: wi
ε = wi for i ∈ I and wi

ε = wi − ε
∑

j∈I w
j for i ∈ L, where

ε > 0. Then,
∑

i∈L ciw
i
ε +

∑
i∈I εw

i
ε = 0, and hence (+, . . . ,+)T ∈ sign(kerWε) = sign(Sε),

that is, Cε = R
d.

19



Proof. Let d > 1. Assume that C is not robustly generated, and let f be a
maximal proper face, characterized by τ ∈ sign(S⊥)⊕ with minimal support,
such that wj ∈ f for some j ∈ [n], but wj is not needed to generate f . Further
let f̃ be the corresponding maximal proper face of C̃, characterized by τ̃ = τ ∈
sign(S̃⊥)⊕ with minimal support. In particular, τj = τ̃j = 0.

Now, consider a small perturbation Sε such that wj
ε ∈ C◦ and wi

ε = wi for i 6= j
(and hence Cε = C). Then, τ ′j = + for all τ ′ ∈ sign(S⊥

ε )⊕, and there is no

τ ′ ∈ sign(S⊥
ε )⊕ with τ ′ ≤ τ̃ , contradicting (ii) for τ̃ .

Finally, the closure condition (cc’) together with sign-vector conditions regard-
ing the geometry of the cones C and C̃ is equivalent to bijectivity for all small
perturbations Sε.

Theorem 40. The map Fc is a diffeomorphism for all c > 0 and all small
perturbations Sε if and only if sign(S̃) ⊆ sign(S) and

either C = C̃ = R
d

or (+, . . . ,+)T ∈ sign(S⊥) ∩ sign(S̃⊥), sign(S⊥)⊕ = sign(S̃⊥)⊕, and C
and C̃ are robustly generated.

Proof. By Theorem 14, the simultaneous bijectivity of Fc for all c > 0 is equiv-
alent to conditions (i), (ii), and (iii) in Theorem 14.

By Corollary 34, condition (i), that is, sign(Sε) ∩ sign(S̃⊥) = {0}, for all small
perturbations Sε, is equivalent to sign(S̃) ⊆ sign(S).

Now assume conditions (i), (ii), and (iii), for all small perturbations Sε. By
Proposition 37, sign(S⊥)⊕ = sign(S̃⊥)⊕. By Lemma 38, either C = C̃ = R

d or
(+, . . . ,+)T ∈ sign(S⊥) ∩ sign(S̃⊥). In the latter case, by Lemma 39, C and C̃
are robustly generated.

Conversely, C̃ = R
d (that is, sign(S̃⊥)⊕ = {0}) trivially implies condition (ii) for

all small perturbations Sε. By Lemma 24, sign(S̃) ⊆ sign(S) implies sign(S̃) ⊆
sign(Sε) for all small perturbations Sε, and by Proposition 35 (for S̃ and Sε),
this implies condition (iii) for all small perturbations Sε.

Finally, (+, . . . ,+)T ∈ sign(S⊥), sign(S⊥)⊕ = sign(S̃⊥)⊕, and C being robustly
generated imply (+, . . . ,+)T ∈ sign(S⊥

ε ) and hence condition (iii), for all small
perturbations Sε. Further, they imply sign(S⊥

ε )⊕ = sign(S̃⊥)⊕ and hence con-
dition (ii), for all small perturbations Sε.

4.3 General perturbations

Finally, we consider small perturbations of both subspaces, S and S̃, corre-
sponding to the coefficients W and the exponents W̃ in Fc.

The next result relates chirotopes to cocircuits (sign vectors of S⊥ = imWT and
S̃⊥ = im W̃T with minimal support).

Lemma 41. Let S, S̃ be subspaces of Rn of dimension n− d (with d ≤ n). For
every W, W̃ ∈ R

d×n (with full rank d) such that S = kerW and S̃ = ker W̃ , the
following statements are equivalent.
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1. sign(S) = sign(S̃), and a nonzero τ ∈ sign(S⊥) has minimal support if
and only if |τ0| = d− 1.

2. det(WI) det(W̃I) > 0 for all subsets I ⊆ [n] of cardinality d (or ‘< 0’ for
all I).

Proof. By using the standard chirotope/cocircuit translation for subspaces of Rn,
see Theorem 48 in Appendix A.

As it turns out, all maximal minors of W and W̃ being nonzero and having
matching signs is equivalent to bijectivity for all small perturbations Sε and S̃ε̃.

Theorem 42. The following statements are equivalent:

1. Fc is a diffeomorphism for all c > 0 and all small perturbations Sε and S̃ε̃.

2. sign(S) = sign(S̃), and a nonzero τ ∈ sign(S⊥) has minimal support if
and only if |τ0| = d− 1.

3. det(WI) det(W̃I) > 0 for all subsets I ⊆ [n] of cardinality d (or ‘< 0’ for
all I).

Proof. (1 ⇒ 3): Statement 1 implies the injectivity of Fc for all c > 0, that is,
sign(Sε) ∩ sign(S̃⊥

ε̃ ) = {0}, for all small perturbations Sε, S̃ε̃. By Corollary 4,
this is equivalent to

det(Wε,I) det(W̃ε̃,I) ≥ 0 for all I ⊆ [n] of cardinality d (or ‘≤ 0’ for all I)

and det(Wε,I) det(W̃ε̃,I) 6= 0 for some I,

for all small perturbations Wε of W and W̃ε̃ of W̃ .

This is equivalent to statement 3.

(3 ⇒ 1): Statement 3 implies

det(Wε,I) det(W̃ε̃,I) > 0 for all I ⊆ [n] of cardinality d (or ‘< 0’ for all I),

for all small perturbations Wε, W̃ε̃.

By Lemma 41, this implies sign(Sε) = sign(S̃ε̃) and hence sign(Sε) ⊆ sign(S̃ε̃),
for all small perturbations Wε, W̃ε̃. By Proposition 29, this implies statement 1.

(2 ⇔ 3): By Lemma 41.

By Theorem 40, bijectivity for all c > 0 and all small perturbations Sε already
implies that either C = C̃ = R

d or (+, . . . ,+)T ∈ sign(S⊥) ∩ sign(S̃⊥). In
Theorem 42, this follows from the second part of condition 2. Assume that
C has a nontrivial lineality space of dimension ℓ, generated by at least ℓ + 1
vectors wi. Then, a maximal proper face, having dimension d − 1 = ℓ + d′, is
generated by at least (ℓ + 1) + d′ = d vectors and corresponds to a sign vector
τ ∈ sign(S⊥) with minimal support, but |τ0| ≥ d.
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5 Applications to Chemical Reaction Networks

As mentioned in the introduction, our work is motivated by the study of chemical
reaction networks with generalized mass-action kinetics. We present a derivation
of our main problem (the characterization of bijectivity of families of exponential
maps) and applications of our main results, in particular, Theorems 14 and 31.

We start with an introduction to chemical reaction networks (with mass-action
kinetics). Thereby, we follow the graph-based approach introduced in [39]; see
also [16, 33].

Consider the chemical reaction 1A + 1B → C (with stoichiometric coefficients
equal to 1). Under the assumption of mass-action kinetics (MAK), the reaction
rate is given by v = k x1

A
x1
B
(with kinetic orders equal to 1), where k > 0 is the

rate constant and xA, xB ≥ 0 are the concentrations of the chemical species A,B.
Most importantly, the stoichiometric coefficients determine the kinetic orders.
Given n species, a general reaction is written as y → y′, where y, y′ ∈ R

n
≥0 are

called (educt and product) complexes, and its rate is given by v = k xy, where
xy =

∏n
i=1 xi

yi is a monomial in the species concentrations x ∈ R
n
≥0. In a

network, an individual reaction y → y′ contributes to the ODE for the species
concentrations as dx

dt = k xy(y′ − y) + . . . . Let x = (xA, xB, xC, xD, . . .)
T. For

the reaction A+ B → C above, one has y = (1, 1, 0, 0, . . .)T, y′ = (0, 0, 1, 0, . . .)T

and hence xy = xAxB, y
′ − y = (−1,−1, 1, 0, . . .)T.

A chemical reaction network (CRN) is based on a directed graph G = (V,E).
Every vertex i ∈ V = {1, . . . ,m} is labeled with a complex y(i) ∈ R

n
≥0, and

every edge i → i′ ∈ E (representing a reaction) is labeled with a rate constant
ki→i′ > 0. From the labeled digraph, one obtains the ODE for the species
concentrations,

dx

dt
=

∑

i→i′∈E

ki→i′ x
y(i)

(

y(i′)− y(i)
)

.

The sum ranges over all reactions, and every summand is a product of the
reaction rate and the difference of product and educt complexes. The right-
hand-side can be decomposed into stoichiometric and graphical contributions,

dx

dt
= Y IE vk(x) = Y Ak x

Y ,

where Y ∈ R
n×V
≥0 is the matrix of complexes, IE ∈ R

V×E is the incidence

matrix, and Ak ∈ R
V ×V is the Laplacian matrix of the digraph G, labeled with

the rate constants k ∈ R
E
>0. The vector of reaction rates vk(x) ∈ R

E
≥ is defined

via (vk(x))i→i′ = ki→i′ x
y(i), and the vector of monomials xY ∈ R

V
≥0 is defined

via (xY )i = xy(i), where y(i) is the i-th column of Y .

A positive steady state x ∈ R
n
>0 of the ODE that fulfills

Ak x
Y = 0

is called a complex-balanced equilibrium. Another important object is the stoi-
chiometric subspace

S = im(Y IE).
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Clearly, dx
dt ∈ S, and hence x(t) ∈ x(0)+S. For x′ ∈ R

n
≥0, the set (x

′+S)∩R
n
≥0

is called a stoichiometric class. The deficiency of a CRN is given by

δ = dim(kerY ∩ im IE) = m− ℓ− dim(S),

where m is the number of vertices, and ℓ is the number of connected components
of the digraph. Finally, a CRN is called weakly reversible if all components of
the digraph are strongly connected.

Now, we can state the celebrated deficiency zero theorem for MAK, formulated
by Horn, Jackson, and Feinberg in 1972.

Theorem 43 (δ = 0 theorem; cf. [28], [27], and [18]). For a CRN with MAK,
there exists a unique (complex-balanced, asymptotically stable) equilibrium in
every stoichiometric class and for all rate constants if and only if δ = 0 and the
network is weakly reversible.

The δ = 0 theorem is a strong result. It characterizes CRNs with MAK that are
dynamically as simple and stable as possible. However, MAK is an assumption
that holds for elementary reactions in homogeneous and dilute solutions. In
intracellular environments, which are highly structured and crowded, and for
reaction mechanisms, more general kinetics are needed. As a prominent ap-
proach, biochemical systems theory [45, 51] proposes power laws in the species
concentrations, where the kinetic orders may differ from the stoichiometric co-
efficients. In chemical reaction network theory, power-law kinetics has been
termed general(ized) mass-action kinetics (GMAK) [28, 38, 39]. As already
noted by Horn and Jackson [28], every CRN with GMAK can be written as
another CRN with MAK, where the stoichiometric coefficients need not be in-
tegers. However, the resulting network typically loses desired properties such
as weak reversibility and zero deficiency. In our more recent definition of CRNs
with GMAK [38, 39], we allow for power-law kinetics, without having to rewrite
the network.

In fact, a CRN with MAK may not have zero deficiency and may not be weakly
reversible, but there may be a dynamically equivalent CRN with GMAK that
has the desired properties. In particular, dynamical equivalence to a network
having zero ‘effective’ and ‘kinetic’ deficiencies allows a parametrization of all
positive equilibria [33]. Such a parametrization can be computed by linear
algebra techniques and does not require tools from algebraic geometry such
as Gröbner bases, as demonstrated for the EnvZ-OmpR and shuttled WNT
signaling pathways. For algorithmic methods to identify dynamically equivalent
CRNs and further applications to biochemical networks, see [30, 31, 50, 32].

Relations between biochemical systems theory and chemical reaction network
theory are discussed in [3, 2, 49]. Power-law systems from biochemical systems
theory can be realized as CRNs with GMAK having desired properties, and
results e.g. from [38, 39] are applied to models of yeast fermentation, purine
metabolism [3], and further paradigmatic models from systems biology [2].

We continue our introduction to chemical reaction networks (with generalized
mass-action kinetics). For the reaction above, 1A + 1B → C, now under the
assumption of GMAK, the reaction rate is given by v = k xa

Ax
b
B , where the

kinetic orders a, b ∈ R need not coincide with the stoichiometric coefficients.
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One writes ✎

✍

☞

✌
1A+ 1B
(aA+ bB)

→

✎

✍

☞

✌
C

(. . .)

with the kinetic-order information in brackets. For a general reaction

☛

✡

✟

✠
y
(ỹ)

→

✎

✍

☞

✌
y′

(. . .)
,

one has
v = k xỹ,

where ỹ ∈ R
n is called a kinetic(-order) complex.

As above, a CRN is based on a digraph G = (V,E), but now every vertex
i ∈ V is labeled with stoichiometric and kinetic-order complexes, y(i) and ỹ(i),
respectively. (And every edge is labeled with a rate constant.) From the labeled
digraph, one obtains the ODE

dx

dt
=

∑

i→i′∈E

ki→i′ x
ỹ(i)

(

y(j)− y(i)
)

.

Again the right-hand-side of the ODE can be decomposed, now into stoichio-
metric, graphical, and kinetic-order contributions,

dx

dt
= Y Ak x

Ỹ ,

where Ỹ ∈ R
n×V
≥0 is the matrix of kinetic-order complexes. Accordingly, a steady

state x ∈ R
n
>0 that fulfills

Ak x
Ỹ = 0

is called a complex-balanced equilibrium. Finally, like the corresponding stoi-
chiometric objects, one introduces the kinetic-order subspace

S̃ = im(Ỹ IE)

and the kinetic(-order) deficiency

δ̃ = dim(ker Ỹ ∩ im IE) = m− ℓ− dim(S̃).

The classical δ = 0 theorem holds for MAK. In previous work, we formulated a
first analogue for GMAK.

Theorem 44 (δ̃ = 0 theorem; cf. [39]). For a CRN with GMAK, there exists a
complex-balanced equilibrium for all rate constants if and only if δ̃ = 0 and the
network is weakly reversible.

However, this theorem does not fully correspond to the classical one which
guarantees the unique existence of a complex-balanced equilibrium in every
stoichiometric class. For GMAK, complex-balanced equilibria are determined
by kinetic orders, whereas classes are determined by stoichiometry. In fact, a
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true analogue requires extra conditions on the stoichiometric and kinetic-order
subspaces, S and S̃.

For given k ∈ R
E
>0, let Zk be the set of complex-balanced equilibria, and for

given x′ ∈ R
n
>0, let (x

′+S)∩R
n
≥0 be the corresponding stoichiometric class. We

aim to characterize existence and uniqueness of an element in the intersection

Zk ∩ (x′ + S)

for all x′ ∈ R
n
>0, for all k ∈ R

E
>0. By Theorem 44, Zk 6= ∅ for all k ∈ R

E
>0 if

and only if δ̃ = 0 and the network is weakly reversible, which we assume in the
following.

By Theorem 1 in [39], x∗
k ∈ Zk implies the exponential parametrization

Zk = x∗
k ◦ eS̃

⊥

.

Moreover, for a weakly reversible CRN, every x∗ ∈ R
n
>0 is a complex-balanced

equilibrium for some rate constant k ∈ R
E
>0, see e.g. the proof of Lemma 1

in [39]. Hence, we aim to characterize existence and uniqueness of an element
in the intersection

x∗ ◦ eS̃
⊥

∩ (x′ + S)

for all x′, x∗ ∈ R
n
>0.

For fixed x′, x∗, we are interested in existence and uniqueness of u ∈ S, v ∈ S̃⊥

such that
x∗ ◦ ev = x′ + u

and introduce W ∈ R
d×n, W̃ ∈ R

d̃×n with full ranks d, d̃ ≤ n such that

S = kerW, S̃ = ker W̃ .

We multiply with W , write v = W̃Tξ with ξ ∈ R
d̃, and obtain

W (x∗ ◦ eW̃
Tξ) = Wx′.

Hence, we are interested in existence and uniqueness of ξ ∈ R
d̃ such that the

last equation holds.

Finally, we note that Wx′ ∈ C◦, the interior of C = coneW , and vary over
all x′ ∈ R

n
>0 or, equivalently, over all elements of C◦. As a result, we aim to

characterize bijectivity of the map

Fx∗ : Rd̃ → C◦ ⊆ R
d,

ξ 7→ W (x∗ ◦ eW̃
Tξ) =

n
∑

i=1

x∗
i e

w̃i·ξ wi

for all x∗ ∈ R
n
>0, that is, the simultaneous bijectivity of the map Fx∗ for all

x∗ > 0. Indeed, this is the content of Theorem 14, and the deficiency zero
theorem can be fully extended to GMAK (except for stability).

Theorem 45 (δ = δ̃ = 0 theorem). For a CRN with GMAK, there exists a
unique complex-balanced equilibrium in every stoichiometric class and for all
rate constants if and only if δ = δ̃ = 0, the network is weakly reversible, and
conditions (i), (ii), (iii) in Theorem 14 hold.
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In contrast to MAK, where complex-balanced equilibria are asymptotically sta-
ble, already two-species CRNs with GMAK lead to planar systems which have
a unique (complex-balanced) equilibrium, but show rich dynamical behavior,
including super/sub-critical or degenerate Hopf bifurcations, centers, and up to
three limit cycles, see [9, 10, 11, 8].

By Theorem 31 (and the problem derivation given above), Theorem 45 is robust
with respect to small perturbations of the kinetic orders if and only if the closure

condition sign(S) ⊆ sign(S̃) holds.

Theorem 46 (robust δ = δ̃ = 0 theorem). For a CRN with GMAK, there
exists a unique complex-balanced equilibrium in every stoichiometric class, for
all rate constants, and for all small perturbations of the kinetic orders if and

only if δ = δ̃ = 0, the network is weakly reversible, and sign(S) ⊆ sign(S̃).

For a CRN with MAK, the stoichiometric and kinetic-order subspaces agree,

that is, S = S̃, and obviously sign(S) ⊆ sign(S̃). Hence, the classical deficiency
zero theorem for MAK is robust with respect to small perturbations of the
kinetic orders (from the stoichiometric coefficients).

Corollary 47 (robust δ = 0 theorem). For a CRN with MAK, there exists a
unique (complex-balanced, asymptotically stable) equilibrium in every stoichio-
metric class, for all rate constants, and for all small perturbations of the kinetic
orders (from the stoichiometric coefficients) if and only if δ = 0 and the network
is weakly reversible.
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Appendices

A Sign vectors and face lattices

In the context of (realizable) oriented matroids, we discuss the relation between
sign vectors of linear subspaces and face lattices of polyhedral cones. For fur-
ther details, we refer to [4, Chapter 7], [52, Chapters 2 and 6], [42], and the
encyclopedic study [7].

Let W = (w1, . . . , wn) ∈ R
d×n with d ≤ n have full rank. Then W is called a

vector configuration (of n vectors in R
d), and imWT ⊆ R

n is a corresponding
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linear subspace. Now let v = WTx ∈ imWT with x ∈ R
d. Then vi = wi·x, and

the sign vector τ = sign(v) ∈ sign(imWT) ⊆ {−, 0,+}n describes the positions
of the vectors w1, . . . , wn relative to the hyperplane with normal vector x.

Elements of sign(imWT) are called covectors, and elements of sign(imWT) with
minimal support are called cocircuits. Analogously, elements of sign(kerW ) are
called vectors, and elements of sign(kerW ) with minimal support are called
circuits.

The chirotope of the vector configuration W is the map

χ : {1, . . . , n}d → {−, 0,+} ,

(i1, . . . , id) 7→ sign(det(wi1 , . . . , wid))

which records for each d-tuple of vectorswi if it forms a positively (or negatively)
oriented basis of Rd or it is not a basis.

The oriented matroid ofW is a combinatorial structure that can be given by any
of the above data (co/vectors, co/circuits, or chirotopes) and defined/characterized
in terms of any of the corresponding axiom systems. As an example, we state
the chirotope/cocircuit translation, see Theorems 6.2.3 in [42] or 8.1.6 in [17].

Theorem 48. Let W ∈ R
d×n be a vector configuration with chirotope χ. Then

the set of cocircuits is given by

C∗(χ) =
{

(

χ(I, 1), χ(I, 2), . . . , χ(I, n)
)

| I ∈ {1, . . . , n}d−1
}

.

Conversely, let W ∈ R
d×n be a vector configuration with cocircuits C∗. Then

there exists a unique pair of chirotopes (χ,−χ) such that C∗(χ) = C∗(−χ) = C∗.

The face lattice of C = coneW ⊆ R
d, the polyhedral cone generated by the

vectors w1, . . . , wn, can be obtained from the sign vectors of the linear subspace
imWT. In fact, it is the set sign(imWT)⊕ = sign(imWT) ∩ {0,+}n with the
partial order induced by the relation + > 0. A face f of C corresponds to
a supporting hyperplane with normal vector x such that wi · x = 0 for wi ∈
f and wi · x > 0 for wi 6∈ f , lying on the positive side of the hyperplane.
(The vector x lies on the corresponding face of the dual cone C∗.) Hence
the face f with I = {i | wi ∈ f} is characterized by the sign vector τ =
sign(WTx) ∈ sign(imWT)⊕ with I = τ0. Moreover, for two faces f and f ′ of
C with corresponding nonnegative sign vectors τ and τ ′, the order is reversed:
f ⊆ f ′ if and only if τ ′ ≤ τ .

The lineality space of a cone C is given by the set C ∩ (−C). It is the minimal
face of C, in the sense that it is contained in all faces. The lineality space
of C = coneW is characterized by the maximal element of sign(imWT)⊕ or,
equivalently, by the maximal element of sign(kerW )⊕. Thereby, nonzero ele-
ments of sign(kerW )⊕ correspond to positive dependencies of vectors wi (in the
lineality space).

A cone C is called pointed if its lineality space is {0}, that is, if it has vertex 0.
Note that, if (+, . . . ,+)T ∈ sign(imWT)⊕ (that is, sign(kerW )⊕ = {0}), then
C = coneW is pointed.

Finally, we note that sign vectors of a linear subspace are closed under com-
position: Let S be a subspace of Rn and τ, ρ ∈ sign(S). Then, also τ ◦ ρ ∈
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sign(S). To see this, let u, v ∈ R
n with τ = sign(u), ρ = sign(v). Then,

τ ◦ ρ = sign(u + εv) ∈ sign(S) for small ε > 0. Moreover, every nonzero sign
vector of a linear subspace can be written as a conformal composition of sign
vectors with minimal support, see Theorem 1 in [43], Proposition 5.35 in [4], or
Theorem 3 in [40].

Theorem 49. Let S be a subspace of Rn and τ ∈ sign(S) be nonzero. Then
there are ρi ∈ sign(S) with minimal support and ρi ≤ τ such that

τ = ρ1 ◦ · · · ◦ ρN .

The ρi can be chosen such that N ≤ min(dim(S), |supp(τ)|).

B A general theorem of the alternative

We recall a general theorem of the alternative for subspaces of Rn that allows
to easily derive theorems of the alternative for sign vectors of a linear subspace
and its orthogonal complement. For the relation to standard theorems of the
alternative, see [36]; for the corresponding statements for arbitrary oriented
matroids, see [7, Section 3.4] or [4, Chapter 5].

Definition 50. Let x ∈ R
n, and let I1, . . . , In be intervals of R. We define the

interval

I(x) ≡ x1I1 + . . .+ xnIn

= {x1y1 + . . .+ xnyn ∈ R | y1 ∈ I1, . . . , yn ∈ In}

and write I(x) > 0 if y > 0 for all y ∈ I(x).

Theorem 51 (Theorem 22.6 in [44]). Let S be a subspace of R
n, and let

I1, . . . , In be intervals of R. Then one and only one of the following alternatives
holds:

(a) There exists a vector x = (x1, . . . , xn)
T ∈ S such that

x1 ∈ I1, . . . , xn ∈ In.

(b) There exists a vector x∗ = (x∗
1, . . . , x

∗
n)

T ∈ S⊥ such that

x∗
1I1 + . . .+ x∗

nIn > 0.

Corollary 52. Let S be a subspace of Rn and σ ∈ {−, 0,+}n be a nonzero sign
vector. Then either (a) there exists a vector x ∈ S with xi > 0 for i ∈ σ+ and
xi < 0 for i ∈ σ− or (b) there exists a nonzero vector x∗ ∈ S⊥ with x∗

i ≥ 0 for
i ∈ σ+, x∗

i ≤ 0 for i ∈ σ−, and x∗
i = 0 otherwise. In terms of sign vectors, either

there exists ξ ∈ sign(S) with ξ ≥ σ or there exists a nonzero ξ∗ ∈ sign(S⊥) with
ξ∗ ≤ σ.

Proof. By Theorem 51 with Ii = (0,+∞) for i ∈ σ+, Ii = (−∞, 0) for i ∈ σ−,
and Ii = (−∞,+∞) otherwise.
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Corollary 53. Let S be a subspace of Rn. Then,

sign(S⊥) = sign(S)⊥.

Proof. (⊆): Let τ ∈ sign(S⊥) and ρ ∈ sign(S). Now, let u ∈ S⊥ and v ∈ S such
that τ = sign(u) and ρ = sign(v). Then, u · v = 0 implies τ · ρ = 0, and hence
τ ∈ sign(S)⊥.

(⊇): Let τ /∈ sign(S⊥), that is, there exists no x ∈ S⊥ such that sign(x) = τ .
By Theorem 51 with Ii = (0,+∞) for i ∈ τ+, Ii = (−∞, 0) for i ∈ τ−, and
Ii = {0} otherwise, there exists a nonzero x∗ ∈ S such that x∗

i ≥ 0 for i ∈ τ+

and x∗
i ≤ 0 for i ∈ τ−. Let ρ = sign(x∗) ∈ sign(S). Then, τ · ρ 6= 0, and hence

τ /∈ sign(S)⊥.

For an alternative proof, using Farkas Lemma, see Proposition 6.8 in [52].
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