
ar
X

iv
:1

80
4.

02
37

7v
1 

 [
m

at
h.

N
A

] 
 6

 A
pr

 2
01

8

ADAPTIVE FINITE ELEMENT METHOD FOR THE MAXWELL

EIGENVALUE PROBLEM

DANIELE BOFFI AND LUCIA GASTALDI

Abstract. In this paper we prove the optimal convergence of a standard
adaptive scheme based on edge finite elements for the approximation of the
solutions of the eigenvalue problem associated with Maxwell’s equations. The
proof uses the known equivalence of the problem of interest with a mixed
eigenvalue problem.

1. Introduction

In this paper we present an adaptive scheme, based on standard three dimen-
sional edge elements, for the approximation of the Maxwell eigenvalue problem and
analyze its convergence.

A posteriori error estimates for Maxwell’s equations have been studied by several
authors for the source problem (see, in particular [32, 3, 37, 19, 36, 20, 38, 22, 14,
23, 42, 15, 21, 18] and the references therein). The eigenvalue problem has been
studied only recently in [13, 12] where residual type error indicators are considered
and proved to be equivalent to the actual error in the standard framework of effi-
ciency and reliability. The analysis relies on the classical equivalence with a mixed
variational formulation [10]. The numerical results presented in [12] confirm that
the adaptive scheme driven by our error indicator converges in three dimensions
with optimal rate with respect to the number of degrees of freedom.

In [11] it was presented the first convergence analysis for an adaptive scheme
applied to the Laplace eigenvalue problem in mixed form. The main tools for
the analysis originate from various papers related to adaptive finite elements, in
particular from [17, 29]. Thanks to the well-known isomorphism between the spaces
H(curl; Ω) and H(div; Ω) in two space dimensions, the result for the Laplacian
implies the convergence of the 2D adaptive scheme for Maxwell’s eigenproblem:
actually, the isomorphism carries over to the corresponding mixed formulation as
well as to the error indicators. In this paper we extend the results of [11] to the
mixed formulation associated with Maxwell’s eigenproblem in three dimensions;
as we will notice, such extension is not trivial: several technical details have to
be checked and suitably designed interpolation operators are used to complete the
analysis. Useful results in this direction are reported in [38, 43].

It is well understood that the convergence analysis of the adaptive scheme for
eigenvalue problems has to consider multiple eigenvalues and clusters of eigenval-
ues in order to prevent subtoptimal convergence. In particular, degeneracy of the
convergence may be observed when the error indicator is computed by taking into
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account only a subset of the discrete eigenmodes approximating the eigensolutions
we are interested in (multiple or belonging to a cluster) [40, 28, 9].

Starting from this remark, the analysis performed in [11] has been carried on
for generic clusters of eigenvalues. This approach has the inconvenience of adding
a heavy notation dealing with deep technicalities. For this reason, we decided in
this paper to develop our theory in the case of simple eigenvalues. We believe that
the presentation in the case of a simple eigenvalue highlights better the novelties
with respect to the previous results for the mixed Laplacian, that would rather be
hidden by the technical machinery related to clusters of eigenvalues. Nevertheless,
the general case can be dealt with by using similar arguments as in [11].

In Section 2 we recall Maxwell’s eigenvalue problem, its standard variational for-
mulation, and the equivalent mixed formulation, together with their finite element
discretizations. Section 3 defines our error indicator and describes the adaptive
scheme. Reliability and efficiency from [12] are recalled and the theory concerning
the convergence of the adaptive method is described. The auxiliary results needed
for the convergence proof are collected in Section 4. These include in particular
discrete reliability, quasi-orthogonality, and contraction property.

2. Maxwell’s eigenvalue problem and its finite element

discretization

In this paper we deal with the well known eigenvalue problem associated with
the Maxwell equations (see, for instance, [30, 33, 7]).

Given a polyhedral domain Ω, after eliminating the magnetic field, the problem
reads: find ω ∈ R and u 6= 0 such that

(1)

curl(µ−1 curlu) = ω2εu in Ω

div(εu) = 0 in Ω

u× n = 0 on ∂Ω,

where u represents the electric field, µ and ε the magnetic permittivity and electric
permeability, respectively, and n is the outward unit normal vector to ∂Ω, the
boundary of Ω. For general inhomogeneous, anisotropic materials µ and ε are 3-by-
3 positive definite and bounded matrix functions. We are considering for simplicity
the case when Ω is simply connected: more general situations will be described in
Remark 3.

A standard variational formulation of our eigenvalue problem is obtained by
considering the functional space H0(curl; Ω) of vector fields in L2(Ω)3 with curl

in L2(Ω)3 and vanishing tangential component along ∂Ω. The formulation reads:
find ω ∈ R with ω > 0 and u ∈ H0(curl; Ω) with u 6= 0 such that

(2) (µ−1 curlu, curl v) = ω2(εu,v) ∀v ∈ H0(curl; Ω).

It is well known, in particular, that the condition ω2 6= 0 is equivalent to the
divergence condition div(εu) = 0 due to the Helmholtz decomposition (see also
Remark 1). We assume that the domain Ω and the coefficients ε, µ are such that
the problem is associated with a compact solution operator. The eigenvalues can
then be numbered in an increasing order as follows:

0 < ω1 ≤ ω2 ≤ · · · ≤ ωj ≤ . . . ,
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where the same eigenvalue is repeated as many times as its algebraic multiplicity.
The associated eigenfunctions are denoted by uj and normalized according to the

L2 norm, that is ‖ε1/2uj‖0 = 1.
A powerful tool for the analysis of this problem is a mixed formulation introduced

in [10]. With the notation σ = ωu, p = −µ−1/2 curlu/ω, and λ = ω2, the
variational formulation (2) is equivalent to the following mixed eigenproblem: find
λ ∈ R and (σ,p) ∈ H0(curl; Ω)×Q with p 6= 0 such that

(3)
(εσ, τ ) + (µ−1/2 curl τ ,p) = 0 ∀τ ∈ H0(curl; Ω)

(µ−1/2 curlσ, q) = −λ(p, q) ∀q ∈ Q,

where Q = µ−1/2 curl(H0(curl; Ω)).
The eigenvalues of (3) are denoted by

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . .

Given j, we use the notation pj = −µ−1/2 curluj/ωj and σj = ωjuj with λj = ω2
j ,

so that (λj ,σj ,pj) solves (3) and the following normalization holds true for the
eigenfunction: ‖pj‖0 = 1.

The finite element approximation of (2) is usually performed with edge elements.
Given a tetrahedral decomposition of Ω, we consider Nédélec edge elements intro-
duced in [34, 35]. More general families of finite elements could be considered in
the spirit of [2]. More precisely, the general situation can be described by adopting
the following standard notation related to de Rham complex:
(4)

0 −−−→ H1
0(Ω)

∇−−−→ H0(curl; Ω)
curl−−−→ H0(div; Ω)

div−−−→ L2(Ω) −−−→ R
y

y
y

y

0 −−−→ Nh
∇−−−→ Σh

curl−−−→ F h
div−−−→ DGh −−−→ R.

In the case when Σh is a sequence of tetrahedral edge finite elements the re-
maining finite element spaces will be composed by nodal Lagrange elements Nh,
face elements F h, and discontinuous elements DGh, respectively. The correspond-
ing diagrams in the case of Nédélec elements of the first and second family can be
found in (2.5.58) and (2.5.59) of [8], respectively.

The discretization of (2) reads: find ωh ∈ R with ωh > 0 and uh ∈ Σh with
uh 6= 0 such that

(5) (µ−1 curluh, curl v) = ω2
h(εuh,v) ∀v ∈ Σh.

The corresponding mixed formulation is: find λh ∈ R and (σh,ph) ∈ Σh ×Qh

with ph 6= 0 such that

(6)
(εσh, τ ) + (µ−1/2 curl τ ,ph) = 0 ∀τ ∈ Σh

(µ−1/2 curlσh, q) = −λh(ph, q) ∀q ∈ Qh,

where Qh = µ−1/2 curl(Σh). In particular, we have that Qh is a subspace of
µ−1/2F h and it can be easily seen that µ−1/2 curlσh = −λhph.

Following [10, Th. 2.1], the equivalence between (5) and (6) can be proved using
the definition of Qh and the identities σh = ωhuh, ph = −µ−1/2 curluh/ωh, and
λh = ω2

h.
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With natural notation, we denote by 0 < ωh,1 ≤ ωh,2 ≤ · · · ≤ ωh,N(h) the eigen-
values of (5) and by 0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,N(h) those of (6). Analogously,
the corresponding eigenfunctions are denoted by uh,j and (σh,j ,ph,j), respectively

(j = 1, . . . , N(h)) with ‖ε1/2uh,j‖0 = ‖ph,j‖0 = 1. The number of discrete fre-
quencies, repeated according to their multiplicity, is given by N(h) = dimQh. We
discuss this fact in the next remark.

Remark 1. It is straightforward to check that the number of real eigenvalues of
problem (6) is equal to N(h) = dimQh. Indeed, the matrix form of (6) is, with
obvious notation, (

A B⊤

B 0

)(
σ

p

)
= λh

(
0 0
0 −M

)(
σ

p

)
.

The number of real eigenvalues of this problem is equal to the size N(h) of the
matrix M, as it is evident by looking at its equivalent formulation written in terms
of the Schur complement

BA−1B⊤p = λhMp

σ = −A−1B⊤p.

The size of the matrix problem corresponding to (5) is equal to the dimension of the
space Σh. The Helmholtz decomposition in the case of simply connected domains
implies that dim(Σh) = dim(∇(Nh)) +N(h). Since the space ∇(Nh) is the kernel
of the curl operator, it follows that the number of eigenvalues corresponding to
ωh > 0 is equal to N(h). For an additional discussion about this count when the
domain is multiply connected, the reader is referred to Remark 3.

Remark 2. It can be useful to recall that the mixed formulations (3) and (6) are not
used for the definition of the method (nor for its implementation), but are crucial
ingredients for its analysis.

Remark 3. It is well known that if the domain is not topologically trivial, then the
first row of the diagram presented in Equation (4) is not an exact sequence. More
precisely, the following space of harmonic forms plays an important role

H = {h ∈ H0(curl; Ω) : curlh = 0, div(εh) = 0 in Ω}
and corresponds to the one form cohomology of the de Rham complex. The
Helmholtz decomposition in this case has the following form:

L2(Ω)3 = ∇(H1
0(Ω)) ⊕H⊕ ε−1 curl(H(curl; Ω)),

where the three components of the decomposition are ε-orthogonal, that is they are
orthogonal with respect to the scalar product (ε ·, ·).

It turns out that in the general case the formulation (2) is not the variational
formulation of (1) any more. Indeed, functions in H are eigenfunctions of (1) with
vanishing frequency. In this case, if we are not interested in the approximation
of the space of harmonic functions H, we can disregard the zero frequency and
use formulations (2) and (3) for the analysis of the rest of the spectrum. The
approximation of harmonic functions is out of the aims of this paper. We point the
reader to possible approaches for the approximation of H: a direct discretization
of the space has been proposed in [1]; an adaptive algorithm has been presented
in [25]; another indirect approach may be the use of the following alternative mixed



AFEM FOR MAXWELL’S EIGENVALUES 5

formulation known as Kikuchi formulation (see [31, 6]): find λ ∈ R such that for
u ∈ H0(curl; Ω) and p ∈ H1

0(Ω), with u 6= 0, it holds

(µ−1 curlu, curl v) + (∇ p, εv) = λ(εu,v) ∀v ∈ H0(curl; Ω)

(∇ q, εu) = 0 ∀q ∈ H1
0(Ω).

It is not difficult to see that any solution of the Kikuchi formulation satisfies p = 0
(take v = ∇ p in the first equation). Hence, it is immediate to check that the
Kikuchi formulation is equivalent to the standard variational formulation (2) with
the additional solution λ = 0 corresponding to u ∈ H.

3. Error indicator and adaptive method

We are going to study and analyze an adaptive finite element scheme in the
framework of [26, 24, 17, 29, 11]. The scheme is based on the following local error
indicator (see [12])

η̃2K = h2K‖εuh − curl(µ−1 curluh)/ω
2
h‖20,K + h2K‖ div(εuh)‖20,K

+
1

2

∑

F∈FI(K)

[
hF
∥∥[[
(
µ−1 curluh/ω

2
h

)
× n]]

∥∥2
0,F

+ hF ‖[[εuh · n]]‖20,F
]
,(7)

where K is an element of our triangulation Th, FI(K) is the set of inner faces of
K, hK and hF the diameters of K, and F , respectively, and [[·]] the jump across an
inner face F .

Given a set of elements M, we use the notation

η̃(M)2 =
∑

K∈M

η̃2K

and we write η̃ = η̃(Th) for the global error indicator when no confusion arises.
Moreover, a subscript κ is used when η̃κ refers to the mesh Tκ.

Given an initial mesh T0 and a bulk parameter θ ∈ R, with 0 < θ ≤ 1, we compute
a sequence of meshes {Tℓ}, solutions {(ω2

ℓ ,uℓ)}, and indicators {η̃(Tℓ)} according
to the standard solve/estimate/mark/refine strategy (see [26]). In particular, at a
given level ℓ, the marking step consists in choosing a minimal subset Mℓ of Tℓ such
that

θη̃2ℓ (Tℓ) ≤ η̃2ℓ (Mℓ).

The new mesh Tℓ+1 is given by the smallest admissible refinement of Tℓ satisfying
Mℓ ∩ Tℓ+1 = ∅ according to the rules defined in [4, 41].

Considering the equivalence between the standard formulation (5) and the mixed
formulation (6), the local error indicator for the mixed problem takes the following
form:

η2K = h2K‖εσh + curl(µ−1/2ph)‖20,K + h2K‖ div(εσh)‖20,K

+
1

2

∑

F∈FI(K)

(
hF

∥∥∥[[(µ−1/2ph)× n]]
∥∥∥
2

0,F
+ hF ‖[[εσh · n]]‖20,F

)
(8)

It is easy to check that the following relation between the two indicators holds
true

η̃2K =
1

λh
η2K ∀K ∈ Th.

In particular, the comments stated in Remark 2 can be extended to the error
indicators: our analysis will be performed by using the mixed formulation (6) and
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the indicator (8) even if the scheme is originally defined in terms of the standard
formulation (5) and the indicator (7).

In the rest of this section we present our main result in the case of an eigenvalue
of multiplicity one, since we believe that in this case it is easier to describe the main
arguments leading to the optimal convergence of the adaptive scheme. Moreover,
for ease of notation, we assume from now on that ε and µ are scalar and ε = µ = 1.
This assumption does not reduce the relevance of our result: more general situations
can be dealt with by adopting similar arguments as in [10] or [16].

Let ω = ωj be a simple eigenvalue of (2) and W̃ = span{uj} the associated
one-dimensional eigenspace. Let ωℓ = ωℓ,j be the j-th discrete eigenvalue of (5)

computed with the adaptive scheme on the mesh Tℓ and W̃ℓ = span{uℓ,j} the

corresponding eigenspace. The gap between W̃ and W̃ℓ is measured by

δ(W̃ , W̃ℓ) = sup
u∈W̃

‖u‖curl=1

inf
uℓ∈W̃ℓ

‖u− uℓ‖curl.

For the reader’s convenience, we recall the reliability and efficiency properties
proved in [12]. As it is common for eigenvalue problems, the efficiency property is
not local in the sense that it relies on the difference between ω and ωh which is a
global quantity.

Proposition 1. Let (ω,u) and (ωh,uh) be solutions of Problems 2 and 5, respec-

tively, such that the latter approximates the former as h goes to zero. Then, there

exists C such that for h small enough

Reliability:

‖u− uh‖curl ≤ Cη̃ |ω2 − ω2
h| ≤ Cη̃2.

Efficiency:

η̃K ≤ C
(
‖u− uh‖0,K′ + ‖curl(u − uh)‖0,K′ + hK

∥∥ω2u− ω2
huh

∥∥
0,K′

)
,

where K ′ denotes the union of the elements sharing a face with K.

Proof. See Propositions 5 and 6 of [12]. �

The convergence of the adaptive scheme is usually described by making use of
the nonlinear approximation classes discussed in [4]. Denoting by T(m) the set
of admissible refinements of T0 whose cardinality differs from that of the initial
triangulation by less than m, the best algebraic convergence rate s ∈ (0,+∞) for
the approximation of functions belonging to a space W is characterized in terms
of the following seminorm

|W |As = sup
m∈N

ms inf
T ∈T(m)

δ(W ,ΣT ),

where ΣT is the edge finite element space on the mesh T .

The main result of our paper, stated in the next theorem, shows that if W̃ has
bounded As-seminorm for some s, then the optimal convergence order s is obtained
by the sequence of solutions constructed by the adaptive procedure described above.

Theorem 2. Provided the meshsize of the initial mesh T0 and the bulk parameter

θ are small enough, if the eigenspace satisfies |W̃ |As < ∞, then the sequence of
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discrete eigenspaces W̃ℓ computed on the mesh Tℓ fulfills the optimal estimate

δ(W̃ , W̃ℓ) ≤ C(card(Tℓ)− card(T0))−s|W̃ |As .

Moreover, the eigenvalue satisfies the optimal double order rate of convergence

|ω − ωℓ| ≤ Cδ(W̃ , W̃ℓ)
2.

The proof of Theorem 2 is based on the corresponding result written in terms of
the mixed formulations (3) and (6).

Let λ = λj be a simple eigenvalue of (3) and W = span{(σj ,pj)} the as-
sociated one-dimensional eigenspace. Let λℓ = λℓ,j be the j-th discrete eigen-
value corresponding to the ℓ-th level of refinement in the adaptive scheme and
Wℓ = span{(σℓ,j,pℓ,j)} the associated eigenspace. The gap between W and Wℓ is
measured by

δ(W,Wℓ) = sup
(σ,p)∈W
‖p‖0=1

inf
(σℓ,pℓ)∈Wℓ

(
‖σ − σℓ‖20 + ‖p− pℓ‖20

)1/2
.

We recall the reliability and efficiency properties proved in [12]. It turns out
that in the case of the mixed formulation it is possible to obtain a local efficiency
estimate.

Proposition 3. Let (λ,σ,p) and (λh,σh,ph) be solutions of Problems (3) and (6),
respectively, such that the latter approximates the former as h goes to zero.

Reliability: there exist ρrel1(h) and ρrel2(h) tending to zero as h → 0 and

positive constants C independent of the mesh size such that

‖σ − σh‖0 + ‖p− ph‖0 ≤ Cη + ρrel1(h)(‖σ − σh‖0 + ‖p− ph‖0)
|λ− λh| ≤ Cη2 + ρrel2(h)(‖σ − σh‖0 + ‖p− ph‖0)2.

Efficiency: for each K ∈ Th,
ηK ≤ C(‖σ − σh‖0,K′ + ‖p− ph‖0,K′),

where K ′ is the union of the tetrahedra sharing a face with K.

Proof. See Theorems 3 and 4 of [12]. The estimate for |λ − λh| is an immediate
consequence of (10) (see next section).

�

The counterpart of Theorem 2 in the framework of the mixed formulation is
stated as follows.

Theorem 4. Provided the meshsize of the initial mesh T0 and the bulk parameter

θ are small enough, if the eigenspace satisfies |W |As < ∞, then the sequence of

discrete eigenspaces Wℓ corresponding to the solution computed on the mesh Tℓ
fulfills the optimal estimate

δ(W,Wℓ) ≤ C(card(Tℓ)− card(T0))−s|W |As .

Moreover, the eigenvalue satisfies the optimal double order rate of convergence

|ω − ωℓ| ≤ Cδ(W,Wℓ)
2.
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The proof of our main result has the same structure as the one presented in [11],
based on [28] and [17]. For this reason, we do not repeat it here, but we conclude
this section by listing some keystone properties that are essential for the proof of
our main result. We refer the interested reader to [11] and to the references therein
for a rigorous proof of how to combine them in order to get the result of Theorem 4.

The following properties involve quantities related to meshes that will be denoted
by TH , Th, or Tℓ. In general, Th denotes an arbitrary refinement of a fixed mesh
TH , while Tℓ refers to the sequence of meshes designed by the adaptive procedure.
The eigenmode approximating {λ, (σ,p)} will be indicated by {λκ, (σκ,pκ)} where
κ may be H , h, or ℓ, respectively. We assume that the sign of (σκ,pκ) is chosen in
such a way that the scalar product between p and pκ is positive (so that the same
is true for the scalar product between σ and σκ).

Property 1 (Discrete reliability). There exists a constant Cdrel and a function
ρdrel(H) tending to zero as H goes to zero, such that, for a sufficiently fine mesh
TH and for all refinements Th of TH , it holds

‖σh − σH‖0 + ‖ph − pH‖0 ≤ CdrelηH(TH \ Th)
+ ρdrel(H)(‖σ − σh‖0 + ‖p− ph‖0 + ‖σ − σH‖0 + ‖p− pH‖0).

Property 2 (Quasi-orthogonality). There exists a function ρqo(h) tending to zero
as h goes to zero, such that

‖σh − σH‖20 + ‖ph − pH‖20 ≤ ‖σ − σH‖20 + ‖p− pH‖20 − ‖σ − σh‖20 − ‖p− ph‖20
+ ρqo(h)(‖σ − σh‖20 + ‖p− ph‖20 + ‖σ − σH‖20 + ‖p− pH‖20).

Property 3 (Contraction). If the initial mesh T0 is sufficiently fine, there exist
constants β ∈ (0,+∞) and γ ∈ (0, 1) such that the term

ξ2ℓ = η(Tℓ)2 + β(‖σℓ − σℓ+1‖20 + ‖pℓ − pℓ+1‖20)
satisfies for all integers ℓ

ξ2ℓ+1 ≤ γξ2ℓ .

In the next section we will show how to prove the above properties. While in
some cases these are natural extensions of the analogous results for the Laplace
eigenproblem in mixed form (see [11]), we will see that in particular the discrete

reliability property requires a more careful analysis.

4. Proof of the main results

We start this section recalling some known results for the approximation of
problem (3). The first one is a superconvergence estimate which has been proved
in [12, Lemma 9].

Lemma 5. Let (λ,σ,p) and (λh,σh,ph) be solutions of equations (3) and (6),
respectively, with ‖p‖0 = ‖ph‖0 = 1 and such that the latter approximates the

former as h goes to zero. Then, there exists a function ρsc(h) tending to zero as

h→ 0 such that

(9) ‖Php− ph‖0 ≤ ρsc(h)(‖σ − σh‖0 + ‖p− ph‖0),
where Ph denotes the L2-projection onto Qh.
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If (λ,σ,p) and (λh,σh,ph) are as in Lemma 5, thanks to the definition of Qh, it
is not difficult to verify that the following equations hold true (see [27, Lemma 4])

(10)
λ− λh = ‖σ − σh‖20 − λh‖p− ph‖20
λh − λH = ‖σh − σH‖20 − λH‖ph − pH‖20.

It is useful to recall the source problem associated with (3): given g ∈ L2(Ω)3,
find (σg,pg) ∈ H0(curl; Ω)×Q such that

(11)
(σg, τ ) + (curl τ ,pg) = 0 ∀τ ∈ H0(curl; Ω)

(curlσg, q) = −(g, q) ∀q ∈ Q,

Since we have taken µ = 1, it turns out that Q = curl(H0(curl; Ω)) = H0(div
0; Ω),

that is the space of vectorfields in L2(Ω)3 with zero divergence and vanishing normal
component along the boundary.

Standard regularity results for (11) imply that, if Ω is a Lipschitz polyhedron,
then both components of the solution of (11) are in Hs(Ω) for some s > 1/2 (see,
for instance, the discussion related to [13, Theorem 2.1]).

The discretization of (11) reads: find (σg,h,pg,h) ∈ Σh ×Qh such that

(12)
(σg,h, τ ) + (curl τ ,pg,h) = 0 ∀τ ∈ Σh

(curlσg,h, q) = −(g, q) ∀q ∈ Qh,

The following error estimate is well known (see [5])

(13) ‖σg − σg,h‖0 + ‖pg − pg,h‖0 ≤ Chs‖g‖0, s > 1/2.

4.1. Proof of Property 1. The proof of Property 1 (Discrete reliability) consti-
tutes the main novelty with respect to the results present in the literature. The
structure of the proof is a combination of the analogous proof in [11] and of some of
the results in [12]. However, some new estimates are needed that will be detailed in
this section. Since the proof is composed of several steps, we summarize in Table 1
the structure of the proof.

Let us start with the estimate of ‖σh−σH‖0. We split σh−σH using a discrete
Helmholtz decomposition as

(14) σh − σH = ∇αh + ζh,

where αh ∈ H1
0(Ω) is a Lagrange finite element in Nh and ζh is an edge element in

Σh satisfying

(15) (∇αh,∇ψh) = (σh − σH ,∇ψh) ∀ψh ∈ Nh

and, for some rh ∈ Qh,

(16)
(ζh, τ ) + (curl τ , rh) = 0 ∀τ ∈ Σh

(curl ζh, q) = (curl(σh − σH), q) ∀q ∈ Qh.

In particular, (ζh, rh) approximates the solution of the mixed problem (11) with
source term g = − curl(σh − σH).

Clearly, we have

‖∇αh‖0 ≤ C‖σh − σH‖0, ‖ζh‖curl + ‖rh‖0 ≤ C‖ curl(σh − σH)‖0.
Let us estimate the first term of (14). By standard procedure, defining αH as

the Scott–Zhang interpolant of αh on TH (see [39]), we have

‖∇αh‖20 = (∇αh,σh − σH) = −(∇αh,σH) = −(∇(αh − αH),σH),
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E :=‖σh − σH‖0 + ‖ph − pH‖0
≤‖σ − σh‖0 + ‖p− ph‖0 + ‖σ − σH‖0 + ‖p− pH‖0

Property 1: E ≤ CηH(TH \ Th) + ρ(H)E

• σh − σH = ∇αh + ζh (14)
⋄ ‖∇αh‖0 ≤ CηH(TH \ Th) (17)
⋄ ‖ζh‖20 = I + II + III (18)

∗ I ≤ ρ(H)E ‖ζh‖0 (19)
∗ II ≤ CH1/2

E ‖ph − pH‖0 (20)
∗ III ≤ C‖pH − PHph‖0‖ζh‖0 (21)

‖ζh‖20 ≤ ρ1(H)E 2 + Cλ2H‖pH − PHph‖20 + ‖ph − pH‖20 (22)
∗ ‖pH −PHph‖0 ≤ ‖pH − p̂H‖0+‖p̂H −PHph‖0 = IV+V
∗ IV ≤ ρ(H)E + CV (24)
∗ V2 ≤ A1A2 +B1B2 (26)

· A1 ≤ ρ(H)E + CV (27)
· A2 ≤ C(hs +Hs)V (28)
· B1 ≤ C(‖ph − pH‖0 + E

2 +V) (29)
· B2 ≤ C(hs +Hs)V (30)

V ≤ CHs
E (32)

‖σh − σH‖0 ≤ CηH(TH \ Th) + ρ(H)E + C‖ph − pH‖0
• ‖ph − pH‖20 = I + II + III (36)

⋄ I ≤ ρ(H)E ‖ph − pH‖0
⋄ |II + III| ≤ CηH(TH \ Th)‖ph − pH‖0

‖ph − pH‖0 ≤ CηH(TH \ Th) + ρ(H)E (37)

Table 1. Structure of the proof of Property 1

since (∇αh,σh) = (∇αH ,σH) = 0 from the first equation of (6). Integrating by
parts element by element, we get

(17)

‖∇αh‖20 =
∑

K∈TH\Th

(
(αh − αH , divσH)− 1

2

∑

F∈K

∫

F

(αh − αH)[[σH · n]]
)

≤ C
∑

K∈TH\Th

(
‖ divσH‖0,KHK‖∇α‖0,K

+
1

2

∑

F∈FI(K)

‖[[σH · n]]‖0,FH1/2
F ‖αh‖1,K

)

≤ C‖∇αh‖0
(( ∑

K∈TH\Th

H2
K‖ divσH‖20,K

)1/2

+
( ∑

K∈TH\Th

∑

F∈FI(K)

HF ‖[[σH · n]]‖20,F
)1/2

)

≤ C‖∇αh‖0ηH(TH \ Th).
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The estimate of the second term in (14) requires a more careful analysis.

(18)

‖ζh‖20 = (ζh, ζh) = −(curl ζh, rh) = −(curl(σh − σH), rh)

= (λhph − λHpH , rh)

= (λh − λH)(ph, rh) + λH(ph − PHph, rh) + λH(PHph − pH , rh).

We bound the three terms in the last line separately.
From classical inf-sup condition involving edge and face elements (see, for in-

stance, [10]), we have

(ph, rh) ≤ ‖ph‖0‖rh‖0 = ‖rh‖0

≤ C sup
τh∈Σh

(curl τh, rh)

‖τh‖curl
= C sup

τh∈Σh

(ζh, τh)

‖τh‖curl
≤ C‖ζh‖0.

Hence, using the second of (10) we conclude the estimate of the first term in (18)
as follows

(19) (λh − λH)(ph, rh) ≤ C
(
‖σh − σH‖20 + λH‖ph − pH‖20

)
‖ζh‖0.

We now estimate the second term in (18). Recalling the mixed problem (16)
defining ζh and rh, we denote by ζH ∈ ΣH and rH ∈ QH the corresponding
solution on the mesh TH with g = −(curl(σh − σH). Moreover, we denote by
ζ ∈ H0(curl; Ω) and r ∈ Q the solution of the continuous problem satisfying

(ζ, τ ) + (curl τ , r) = 0 ∀τ ∈ H0(curl; Ω)

(curl ζ, q) = (curl(σh − σH), q) ∀q ∈ Q.

It is clear that we have

λH(ph − PHph, rh) = λH(ph − PHph, rh − PHrh)

≤ λH‖ph − PHph‖0‖rh − PHrh‖0
≤ λH‖ph − pH‖0‖rh − rH‖0.

The term ‖ph − pH‖0 will be estimated later. The other term can be bounded
as follows using known results for mixed problems, together with regularity results
(see the discussion after (11))

(20)

‖rh − rH‖0 ≤ ‖rh − r‖0 + ‖r − rH‖0
≤ CH1/2‖r‖H1/2(Ω) ≤ CH1/2‖ curl(σh − σH)‖0
= CH1/2‖λhph − λHpH‖0
≤ CH1/2

(
|λh − λH |+ λH‖ph − pH‖0

)

≤ CH1/2
(
‖σh − σH‖20 + λH‖ph − pH‖20 + λH‖ph − pH‖0

)

≤ CH1/2
(
(λh + λH)‖σh − σH‖0 + 3λH‖ph − pH‖0

)
.

The last term in (18) can be estimated using again the inf-sup condition related to
edge and face elements

(21) λH(PHph−pH , rh) ≤ λH‖pH −PHph‖0‖rh‖0 ≤ CλH‖pH −PHph‖0‖ζh‖0.
Putting together the estimates of the three terms in (18), and using the a priori
error estimate for the eigenvalue problem (see, for instance [10] or [7]), we obtain
by a suitable definition of ρ1(H)
(22)
‖ζh‖20 ≤ ρ1(H)

(
‖σh − σH‖20 + ‖ph − pH‖20

)
+ Cλ2H‖pH − PHph‖20 + ‖ph − pH‖20.
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The estimate of ‖pH − PHph‖0 can be obtained in several steps. We consider the
auxiliary problem: find (σ̂H , p̂H) ∈ ΣH ×QH such that

(23)
(σ̂H , τ ) + (curl τ , p̂H) = 0 ∀τ ∈ ΣH

(curl σ̂H , q) = −λh(ph, q) ∀q ∈ QH .

By triangular inequality we have

‖pH − PHph‖0 ≤ ‖pH − p̂H‖0 + ‖p̂H − PHph‖0.
We first show that ‖pH − p̂H‖0 is bounded by ‖p̂H − PHph‖0 plus a term which
asymptotically behaves like the above estimate of ‖rh−rH‖0. Let {λH,i, (σH,i,pH,i)}
(i = 1, . . . , N(H)) be the family of eigensolutions of problem (6) related to the mesh
TH (recall that λH = λH,j). We have

‖pH − p̂H‖20 =

N(H)∑

i=1

a2i , ai = (pH − p̂H ,pH,i).

For i = j

aj = (pH − p̂H ,pH) = 1− (p̂H ,pH) = 1 +
1

λH
(p̂H , curlσH) = 1− 1

λH
(σ̂H ,σH)

= 1 +
1

λH
(pH , curl σ̂H) = 1− λh

λH
(ph,pH) = 1− λh

λH
+
λh
λH

(
1− (ph,pH)

)

=
λH − λh
λH

+
λh
2λH

‖ph − pH‖20 =

(
1 +

λh
2λH

)
‖ph − pH‖20 −

1

λH
‖σh − σH‖20.

For i 6= j, since ai = −(p̂H ,pH,i), we can proceed with the following estimate

λH,i(p̂H ,pH,i) = −(curlσH,i, p̂H) = (σ̂H ,σH,i) = −(curl σ̂H ,pH,i)

= λh(ph,pH,i) = λh(PHph,pH,i),

which gives

(λH,i − λh)(p̂H ,pH,i) = −λh(pH,i, p̂H − PHph).

Hence,

∑

i6=j

a2i =
∑

i6=j

ai
λh

λH,i − λh
(pH,i, p̂H − PHph)

≤ max
i6=j

∣∣∣∣
λh

λH,i − λh

∣∣∣∣

(
∑

i6=j

a2i

)1/2(∑

i6=j

(pH,i, p̂H − PHph)
2

)1/2

≤ max
i6=j

∣∣∣∣
λh

λH,i − λh

∣∣∣∣

(
∑

i6=j

a2i

)1/2

‖p̂H − PHph‖0.

Putting things together, we get

(24)

‖pH − p̂H‖20 =

N(H)∑

i=1

a2i

≤ C(‖σh − σH‖20 + ‖ph − pH‖20)2 +max
i6=j

∣∣∣∣
λh

λH,i − λh

∣∣∣∣
2

‖p̂H − PHph‖20.
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If H is small enough (remember that we have assumed in Theorem 2 that the initial
mesh is fine enough), then the denominator λH,i − λh is bounded away from zero
for all i 6= j and for all h.

From the a priori error estimate for the eigenvalue problem and a suitable defi-
nition of ρ2(H) we get the estimate

(‖σh − σH‖20 + ‖ph − pH‖20)2 ≤ ρ2(H)(‖σh − σH‖20 + ‖ph − pH‖20).
Now we use a duality argument in order to get a bound for ‖p̂H − PHph‖0. Let
ξ ∈ H0(curl; Ω) and w ∈ Q be the solution of

(ξ, τ ) + (curl τ ,w) = 0 ∀τ ∈ H0(curl; Ω)

(curl ξ, q) = (p̂H − PHph, q) ∀q ∈ Q

and ξh ∈ Σh and wh ∈ Qh the corresponding discrete solution on the mesh Th. We
observe that (ξ,w) is the solution of (11) when g = −(p̂H − PHph), hence both

the components of the solution belong to Hs(Ω) for some s > 1/2. Let ΠF
H be the

Fortin operator introduced in [5] associated with problem (11), with the following
properties:

(25)

ΠF
H : Hs(Ω) → ΣH

(curl(ξ −ΠF
Hξ), q) = 0 ∀q ∈ QH , ∀ξ ∈ Hs(Ω)

‖ΠF
Hξ‖curl ≤ C‖ξ‖sH(Ω)

‖ξ −ΠF
Hξ‖0 ≤ C‖ξ‖sH(Ω).

We have

‖p̂H − PHph‖20 = (curl ξh, p̂H − PHph)

= (curlΠF
Hξh, p̂H − PHph) def. of ΠF

H

= (curlΠF
Hξh, p̂H − ph)

= −(σ̂H − σh,Π
F
Hξh) err. eq. (23)-(6)

= −(σ̂H − σh,Π
F
Hξh − ξh)− (σ̂H − σh, ξh)

= −(σ̂H − σh,Π
F
Hξh − ξh) + (curl(σ̂H − σh),wh) duality arg.

= −(σ̂H − σh,Π
F
Hξh − ξh) + (curl(σ̂H − σh),wh − PHwh). err. eq. (23)-(6)

By Cauchy–Schwarz inequality, we obtain

(26)
‖p̂H − PHph‖20 ≤ ‖σ̂H − σh‖0‖ΠF

Hξh − ξh‖0
+ ‖ curl(σ̂H − σh)‖‖wh − PHwh‖0,

and we estimate separately the four norms on the right hand side. The triangular
inequality gives

‖σ̂H − σh‖0 ≤ ‖σ̂H − σH‖0 + ‖σH − σh‖0.
We only need to estimate the first term, for which we proceed as before by expanding
it in terms of the eigensolutions on the mesh TH . Since ‖σH,i‖20 = λH,i, we set

σ̃H,i = σH,i/
√
λH,i. We have

‖σ̂H − σH‖20 =

N(H)∑

i=1

b2i , bi = (σ̂H − σH , σ̃H,i).
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For i = j

bj = (σ̂H − σH , σ̃H) = (σ̂H , σ̃H)−
√
λH = −(curl σ̃H , p̂H)−

√
λH

= λH

(
pH√
λH

, p̂H

)
−
√
λH =

√
λH
(
(pH , p̂H)− 1

)

= −
√
λH

(
λH − λh
λH

+
λh
2λH

‖ph − pH‖20

)
.

Using (10) we get

bj ≤ C
(
‖σh − σH‖20 + ‖ph − pH‖20

)
.

For i 6= j

bi = (σ̂H , σ̃H,i) = −(curl σ̃H,i, p̂H) =
√
λH,i(pH,i, p̂H)

=
√
λH,i

λh
λh − λH,i

(pH,i, p̂H − PHph),

where in the last two estimates we took advantage of the already computed bounds
for
(
(pH , p̂H)− 1

)
and (pH,i, p̂H). Hence

∑

i6=j

b2i =
∑

i6=j

bi

√
λH,iλh

λh − λH,i
(pH,i, p̂H − PHph)

= max
i6=j

√
λH,iλh

|λh − λH,i|
(∑

i6=j

b2i

)1/2
‖p̂H − PHph‖0.

As we have already observed, the denominator of the last expression is always
bounded away from zero for H small enough. It follows that

(∑

i6=j

b2i

)1/2
≤ max

i6=j

√
λH,iλh

|λh − λH,i|
‖p̂H − PHph‖0

≤ max
i6=j

(
λh/

√
λH,i

) λH,i/λh
|1− λH,i/λh|

‖p̂H − PHph‖0

≤ C‖p̂H − PHph‖0.
Hence,

(27)
‖σ̂H − σH‖20 ≤ C

(
‖σh − σH‖40 + ‖ph − pH‖40 + ‖p̂H − PHph‖20

)

≤ ρ3(H)
(
‖σh − σH‖20 + ‖ph − pH‖20

)
+ C‖p̂H − PHph‖20.

To bound the second term in (26), we use the triangle inequality, the error estimates
for the mixed source problem (13), the properties of the Fortin operator (25)

(28)

‖ΠF
Hξh − ξh‖0 ≤ ‖ΠF

H(ξh − ξ)‖0 + ‖ΠF
Hξ − ξ‖0 + ‖ξ − ξh‖0

≤ C‖ξ − ξh‖0 + ‖ΠF
Hξ − ξ‖0

≤ C(hs +Hs)‖p̂H − PHph‖0.
From the definition of the discrete spaces, since Qh = curl(Σh) for any choice of
the mesh, it is clear that

curl(σ̂H) = −λhPHph, curl(σh) = −λhph.
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Therefore, from (24) we obtain
(29)

‖ curl(σh − σ̂H)‖0 ≤ λh‖ph − PHph‖0 ≤ λh(‖ph − pH‖0 + ‖pH − PHph‖0)
≤ λh

(
‖ph − pH‖0 + C(‖σh − σH‖20 + ‖ph − pH‖20)

+ C‖p̂H − PHph‖0
)
.

Considering again the definition of the solution of the dual problem, the last term
in (26) can be bounded by using (13) and the properties of the projection operator
PH :

(30)

‖wh − PHwh‖0 ≤ ‖wh −w‖0 + ‖w − PHw‖0 + ‖PH(w −wh)‖0
≤ C‖w −wh‖0 + ‖w − PHw‖0
≤ C(hs +Hs)‖p̂H − PHph‖0.

Putting together the estimates of the four norms in (26), we arrive at

‖p̂H − PHph‖20 ≤ CHs‖p̂H − PHph‖0
(
‖σh − σH‖0 + ‖ph − pH‖0

)

+ C(hs +Hs)‖p̂H − PHph‖20,
which implies that, for H sufficiently small, we have

(31) ‖p̂H − PHph‖0 ≤ CHs
(
‖σh − σH‖0 + ‖ph − pH‖0

)
.

It turns out that the final estimate for (18) is obtained from (19), (20), and (31) as
follows:

(32) ‖ζh‖0 ≤ ρ4(H)(‖σh − σH‖0 + ‖ph − pH‖0) + C‖ph − pH‖0
with an appropriate definition of ρ4(H).

Finally, from (14), (17), and (32), we have

(33) ‖σh−σH‖0 ≤ CηH(TH\Th)+ρ4(H)(‖σh−σH‖0+‖ph−pH‖0)+C‖ph−pH‖0.
We now move to the term ‖ph − pH‖0. We consider the following auxiliary

problem: find χh ∈ Σh and zh ∈ Qh such that

(34)
(χh, τ ) + (curl τ , zh) = 0 ∀τ ∈ Σh

(curlχh, q) = (ph − pH , q) ∀q ∈ Qh.

Therefore, we have curlχh = ph − pH and ‖χh‖curl ≤ C‖ph − pH‖0.
We are going to use a technical tool introduced in [43, Theorem 4.1]. More

precisely, if Th is a refinement of TH , there exists an operator PH : Σh → ΣH

such that for all τ ∈ Σh it holds PHτ = τ on the elements of TH that have
not been refined (more precisely, on the elements of TH whose closures have no
intersection with the closures of any refined elements). Such operator is stable in
the H(curl)-norm, i.e., ‖PHτ‖curl ≤ C‖τ‖curl for all τ ∈ Σh.

We get
(35)
‖ph − pH‖20 = (ph − pH , curlχh) = −(σh,χh)− (pH , curlχh)

= −(σh,χh)− (pH , curl(χh −PHχh)− (pH , curlPHχh)

= −(σh,χh)− (pH , curl(χh −PHχh) + (σH ,PHχh)

= −(σh − σH ,χh)− (pH , curl(χh −PHχh)− (σH ,χh −PHχh)
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Let us set ϑh = χh −PHχh and denote by SH the operator introduced in [38,
Theorem 1] mapping H0(curl; Ω) into the space of lowest order Nédélec elements
so that there exist ϕ ∈ H1

0(Ω) and s ∈ H1
0(Ω) satisfying

ϑh − SHϑh = ∇ϕ+ s

h−1
K ‖ϕ‖0,K + ‖∇ϕ‖0,K ≤ C‖ϑh‖0,K′

h−1
K ‖s‖0,K + ‖∇s‖0,K ≤ C‖ curlϑh‖0,K′

for all K ∈ Th and with K ′ denoting the union of elements in Th sharing at least a
vertex with K.

From the first equation in (6) is follows that (σH ,SHϑh)+(curlSHϑh,pH) = 0.
This implies that (35) gives

(36) ‖ph−pH‖20 = −(σh−σH ,χh)−(pH , curl(ϑh−SHϑh))−(σH ,ϑh−SHϑh).

The first term can be estimated as follows.

−(σh − σH ,χh) = −(σh − σ̂H ,χh)− (σ̂H − σH ,χh)

= (curl(σh − σ̂H), zh)− (σ̂H − σH ,χh) Eq. (34)

= −(σ̂H − σH ,χh) def. of σ̂H

≤ ‖σ̂H − σH‖0‖χh‖0
≤ ‖σ̂H − σH‖0‖ph − pH‖0.

The estimate for ‖σ̂H − σH‖0 follows from (27) and (31) and is given by

‖σ̂H − σH‖0 ≤ ρ5(H)(‖σh − σH‖0 + ‖ph − pH‖0).

The remaining two terms in (36) can be bounded together.

(pH , curl(ϑh − SHϑh)) + (σH ,ϑh − SHϑh)

=
∑

K∈TH\Th

( ∫

K

curlpH · s+ 1

2

∑

F∈FI(K)

∫

F

[[pH × n]] · s
)
+ (σH , s) + (σH ,∇ϕ)

=
∑

K∈TH\Th

( ∫

K

(σH + curlpH) · s+ 1

2

∑

F∈FI(K)

∫

F

[[pH × n]] · s
)

+
∑

K∈TH\Th

(
−
∫

K

divσHϕ+
1

2

∑

F∈FI(K)

∫

F

[[σH · n]]ϕ
)
.
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Therefore,
∣∣(pH , curl(ϑh − SHϑh)) + (σH ,ϑh − SHϑh)

∣∣

≤
∑

K∈TH\Th

(
‖σH + curlpH‖0,K‖s‖0,K +

1

2

∑

F∈FI(K)

‖[[pH × n]]‖0,F ‖s‖0,F
)

+
∑

K∈TH\Th

(
‖ divσH‖0,K‖ϕ‖0,K +

1

2

∑

F∈FI(K)

‖[[σH · n]]‖0,F ‖ϕ‖0,F
)

≤ C
∑

K∈TH\Th

(
HK‖σH + curl pH‖0,K‖ curlϑh‖0,K′

+
1

2

∑

F∈FI(K)

H
1/2
F ‖[[pH × n]]‖0,F ‖ curlϑh‖0,K′

)

+ C
∑

K∈TH\Th

(
HK‖ divσH‖0,K‖ϑh‖0,K′

+
1

2

∑

F∈FI(K)

H
1/2
F ‖[[σH · n]]‖0,F ‖ϑh‖0,K′

)

≤ CηH(TH \ Th)‖ϑh‖curl ≤ CηH(TH \ Th)‖ph − pH‖0.

Finally, Equation (36) becomes

(37) ‖ph − pH‖0 ≤ CηH(TH \ Th) + ρ5(H)(‖σh − σH‖0 + ‖ph − pH‖0).

Putting things together, estimates (33) and (37) give the final result.

4.2. Proof of Property 2. The proof of Property 2 (Quasi-orthogonality) can be
obtained after appropriate modification of the analogous result in [11].

By direct computation we have

‖σh − σH‖20 = ‖σ − σH‖20 − ‖σ − σh‖20 − 2(σ − σh,σh − σH)

‖ph − pH‖20 = ‖p− pH‖20 − ‖p− ph‖20 − 2(Php− ph,ph − pH).

Since Th is a refinement of TH , we have that σH ∈ Σh, hence the error equations
relative to (3) and (6) give

(σ − σh,σh − σH) = −(curl(σh − σH),p− ph)

= (λhph − λHpH ,p− ph)

= (λhph − λHpH ,Php− ph).

Using Lemma 5 and the equalities in (10), we obtain

(σ − σh,σh − σH) + (Php− ph,ph − pH)

= (λhph − λHpH ,Php− ph) + (ph − pH ,Php− ph)

≤
(
|λh − λH |+ (1 + λH)‖ph − pH‖0

)
‖Php− ph‖0

≤
(
‖σh − σH‖20 + λH‖ph − pH‖20 + (1 + λH)‖ph − pH‖0

)

ρsc(h)
(
‖σ − σh‖0 + ‖p− ph‖0

)

which, using Young inequality, gives the desired result.
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4.3. Proof of Property 3. The contraction property is quite standard in the
framework of adaptive schemes, see [17]. It is a consequence of the following error
estimator reduction property: there exist constants β1 ∈ (0,+∞) and γ1 ∈ (0, 1)
such that, if Tℓ+1 is the refinement of Tℓ generated by the adaptive scheme, it holds

η(Tℓ+1)
2 ≤ γ1η(Tℓ)2 + β1

(
‖σℓ − σℓ+1‖20 + ‖pℓ − pℓ+1‖20

)
.

In our case, the proof can be obtained with natural modifications from the one
outlined in [11] and using the following notation:

e2ℓ = ‖σ − σℓ‖20 + ‖p− pℓ‖20, µ2
ℓ = η(Tℓ)2.

5. Conclusions

In this paper we have proved the optimal convergence of an adaptive finite el-
ement scheme for the approximation of the eigensolutions of the Maxwell system.
The scheme makes use of Nédélec edge finite element in three space dimensions
and a standard residual-based error indicator. The proof is based on an equivalent
mixed formulation. The most challenging part of the proof consists in showing a
suitable discrete reliability property.
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[1] A. Alonso Rodŕıguez, E. Bertolazzi, R. Ghiloni, and A. Valli. Construction of a finite element
basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic
problems. SIAM J. Numer. Anal., 51(4):2380–2402, 2013.

[2] D.N. Arnold and A. Logg. Periodic table of the finite elements. SIAM News, 47(9), 2014.
[3] R. Beck, R. Hiptmair, R. H. W. Hoppe, and B. Wohlmuth. Residual based a posteriori error

estimators for eddy current computation. M2AN Math. Model. Numer. Anal., 34(1):159–182,
2000.

[4] P. Binev, W. Dahmen, and R. DeVore. Adaptive finite element methods with convergence
rates. Numer. Math., 97(2):219–268, 2004.

[5] D. Boffi. Fortin operator and discrete compactness for edge elements. Numer. Math.,
87(2):229–246, 2000.

[6] D. Boffi. Approximation of eigenvalues in mixed form, discrete compactness property, and ap-
plication to hpmixed finite elements. Comput. Methods Appl. Mech. Engrg., 196(37-40):3672–
3681, 2007.

[7] D. Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1–120, 2010.
[8] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications, volume 44

of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.
[9] D. Boffi, R.G. Durán, F. Gardini, and L. Gastaldi. A posteriori error analysis for noncon-

forming approximation of multiple eigenvalues. Math. Methods Appl. Sci., 40(2):350–369,
2017.

[10] D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia. Computational models of electromagnetic
resonators: analysis of edge element approximation. SIAM J. Numer. Anal., 36(4):1264–1290,
1999.

[11] D. Boffi, D. Gallistl, F. Gardini, and L. Gastaldi. Optimal convergence of adaptive FEM for
eigenvalue clusters in mixed form, 2017.
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mation for the Maxwell’s eigenvalue problem. IMA J. Numer. Anal., 37(4):1710–1732, 2017.



AFEM FOR MAXWELL’S EIGENVALUES 19

[14] M. Bürg. A residual-based a posteriori error estimator for the hp-finite element method for
Maxwell’s equations. Appl. Numer. Math., 62(8):922–940, 2012.

[15] M. Bürg. Convergence of an automatic hp-adaptive finite element strategy for Maxwell’s
equations. Appl. Numer. Math., 72:188–204, 2013.

[16] S. Caorsi, P. Fernandes, and M. Raffetto. On the convergence of Galerkin finite element
approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal., 38(2):580–607,
2000.

[17] J.M. Cascon, C. Kreuzer, R.H. Nochetto, and K.G. Siebert. Quasi-optimal convergence rate
for an adaptive finite element method. SIAM J. Numer. Anal., 46(5):2524–2550, 2008.
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[37] S. Nicaise and E. Creusé. A posteriori error estimation for the heterogeneous Maxwell equa-

tions on isotropic and anisotropic meshes. Calcolo, 40(4):249–271, 2003.
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