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Abstract

The gradient method for minimize a differentiable convex function on Rieman-
nian manifolds with lower bounded sectional curvature is analyzed in this paper.
The analysis of the method is presented with three different finite procedures for
determining the stepsize, namely, Lipschitz stepsize, adaptive stepsize and Armijo’s
stepsize. The first procedure requires that the objective function has Lipschitz con-
tinuous gradient, which is not necessary for the other approaches. Convergence
of the whole sequence to a minimizer, without any level set boundedness assump-
tion, is proved. Iteration-complexity bound for functions with Lipschitz continuous
gradient is also presented. Numerical experiments are provided to illustrate the
effectiveness of the method in this new setting and certify the obtained theoretical
results. In particular, we consider the problem of finding the Riemannian center of
mass and the so-called Karcher’s mean. Our numerical experiences indicate that
the adaptive stepsize is a promising scheme that is worth considering.
Keywords: Gradient method, convex programming, Riemannian manifold, lower
bounded curvature, iteration-complexity bound.
AMS subject classification: 90C33 · 49K05 · 47J25

1 Introduction

We consider the gradient method to solve the optimization problem defined by:

min{f(p) : p ∈ M}, (1)

where the constraint set M is endowed with a structure of a complete Riemannian
manifold with lower bounded curvature and f :M→ R is a continuously differentiable
convex function. It is well known that, in several cases, by endowingM with a suitable
Riemannian metric, an Euclidean non-convex constrained problem can be seen as a Rie-
mannian convex unconstrained problem. In addition to this property, we will present
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some examples showing that endowing the set of constraints with a suitable Riemannian
metric the objective function can be also Riemannian Lipschitz gradient. Consequently,
the geometric and algebraic structure that comes from of the Riemannian metric makes
possible to greatly reduce the computational cost for solving such problems. Indeed,
it is also widely known that, in several contexts, the iteration complexity of the gra-
dient method for convex optimization problems with Lipschitz gradient is much lower
than for general nonconvex problems; see for example [6, 18, 28, 33, 38] and references
therein. Furthermore, many Euclidean optimization problems are naturally posed on
the Riemannian context; see [15,18,32,33]. Then, to take advantage of the Riemannian
geometric structure, it is preferable to treat these problems as the ones of finding sin-
gularities of gradient vector fields on Riemannian manifolds rather than using Lagrange
multipliers or projection methods; see [23, 32, 34]. Accordingly, constrained optimiza-
tion problems can be viewed as unconstrained ones from a Riemannian geometry point
of view. Moreover, Riemannian structures can also opens up new research directions
that aid in developing competitive algorithms; see [1, 15, 18, 27, 32, 33]. For this pur-
pose, extensions of concepts and techniques of optimization from Euclidean space to
Riemannian context have been quite frequently in recent years. Papers dealing with
this subject include, but are not limited to [21,22,24,35,36,38,39].

The gradient method is one of the oldest methods for the minimization of a differen-
tiable function in Euclidean space. Despite having slow convergence rate, the simplicity
of implementation, the low memory requirements and cost per iteration, make the gra-
dient method quite attractive to solve large-scale optimization problems. Indeed, the
computational cost per iteration is mildly dependent on the dimension of the prob-
lem, yielding computational efficiency for this method; see [18, 26, 29]. In addition,
the gradient method is the starting point for designing many more sophisticated and
efficient algorithms, including fast gradient method, accelerated gradient method and
Barzilai-Borwein method; see [25, 37] for a comprehensive study on this subject. To
the best of our knowledge the gradient method was the first optimization method to
be considered in a Riemannian setting. In order to deal with contained optimization
problems in the Euclidean space, Luenberger [23] proposed and established important
convergence properties of gradient method by using the Riemannian structure of the
constraint set induced by the Euclidean structure. Since then, the gradient method
has been studied in general Riemannian manifold. Some early works dealing with this
method include [17,28,32,34]. However, the obtained convergence results in these pre-
vious works demand that the initial points of the sequence belong to a bounded level set
of the objective function establishing only that all its cluster points are stationary. By
assuming convexity of the objective function and that the manifolds has non-negative
curvature, it has been proven in [11] that, for a suitable choice of the stepsize and with-
out any level set boundedness assumption, the whole sequence converges to a solution.
Recently new important properties of the gradient method in Riemannian settings have
been obtained. For instance, in [39] the authors provided iteration-complexity bounds
for convex optimization problems on Hadamard manifolds. In [8], the authors estab-
lished iteration-complexity bounds without any assumption on the convexity of the
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problem and curvature of the manifold. In [7] the gradient method is considered to
compute the Karcher mean, which is a strong convex function in the cone of symmetric
positive definite matrices endowed with a suitable Riemannian metric. In [2] is studied
properties of the gradient method for the problem of finding the global Riemannian
center of mass of a set of data points on a Riemannian manifold. In [5] is extended the
convergence analysis of the gradient method to the Hadamard setting for continuously
differentiable functions which satisfy the Kurdyka-Lojasiewicz inequality.

By the aforementioned we see that the gradient method remains a subject of consider-
able interest. In spite of its long history, the full convergence of the sequence generated
by the gradient method in a general Riemannian manifolds has not yet been estab-
lished. However, as far as we know, the full convergence of the sequence generated by
the gradient method under convexity of the objective function and lower boundedness
of the curvature of Riemannian manifolds is a new contribution of this paper, which
adds important results in the available convergence theory of this method. The analysis
of the method is presented with three different finite procedures for determining the
stepsize, namely, Lipschitz stepsize, adaptive stepsize and Armijo’s stepsize. It should
be noted that we use a recent inequality established in [35,36]. Numerical experiments
are provided to illustrate the effectiveness of the method in this new setting and certify
the obtained theoretical results. In particular, we consider the problem of finding the
Riemannian mass center and the so-called Karcher’s mean. Our experiments indicate
that adaptive size is a promising scheme that is worth considering.

This paper is organized as follows. Section 2 presents some definitions and preliminary
results related to the Riemannian geometry that are important throughout our study.
In Section 3, we state the gradient algorithm and the three different finite procedures for
determining the stepsize. Section 3.1 is devoted to the asymptotic convergence analysis
of the method, and in Section 3.2 the iteration-complexity bound is presented. Section 4
provides some examples of functions satisfying the assumptions of our results in the
previous sections. In Section 5, we present some numerical experiments to illustrate the
behavior of the method. The last section contains some conclusions.

2 Notations and basic concepts

In this section, we recall some concepts, notations, and basics results about Riemannian
manifolds. For more details we refer the reader to [13,28,31,34].

We denote by TpM the tangent space of a finite dimensional Riemannian manifold
M at p. The corresponding norm associated to the Riemannian metric 〈·, ·〉 is denoted
by ‖ · ‖. We use ℓ(α) to denote the length of a piecewise smooth curve α : [a, b] →M.
The Riemannian distance between p and q in M is denoted by d(p, q), which induces
the original topology on M, namely, (M, d), which is a complete metric space where
bounded and closed subsets are compact. The closed metric ball inM centered at the
point p ∈ M with radius r > 0 is denoted by B[p, r]. Denote by X (M), the space of
smooth vector fields onM. Let∇ be the Levi-Civita connection associated to (M, 〈·, ·〉).

3



For each t ∈ [a, b] and a piecewise smooth curve α : [a, b]→M, ∇ induces an isometry
relative to 〈·, ·〉, Pα,a,t : Tα(a)M → Tα(t)M defined by Pα,a,t v = V (t), where V is the
unique vector field on the curve α such that ∇α′(t)V (t) = 0 and V (a) = v. The isometry
Pα,a,t is called parallel transport along of α joining α(a) to α(t) and, when there is no
confusion, it will be denoted by Pα,p,q. A vector field V along a smooth curve γ is said
to be parallel iff ∇γ′V = 0. If γ′ itself is parallel, we say that γ is a geodesic. Given
that the geodesic equation ∇ γ′γ′ = 0 is a second order nonlinear ordinary differential
equation, then the geodesic γ = γv(·, p) is determined by its position p and velocity
v at p. It is easy to check that ‖γ′‖ is constant. The restriction of a geodesic to a
closed bounded interval is called a geodesic segment. A geodesic segment joining p to
q in M is said to be minimal if its length is equal to d(p, q). A Riemannian manifold
is complete if the geodesics are defined for any values of t ∈ R. Hopf-Rinow’s theorem
asserts that any pair of points in a complete Riemannian manifold M can be joined
by a (not necessarily unique) minimal geodesic segment. Owing to the completeness
of the Riemannian manifold M, the exponential map expp : TpM → M is given by
expp v = γv(1, p), for each p ∈ M. In this paper, all manifolds are assumed to be
connected, finite dimensional, and complete. For f : D → R a differentiable function
on the open set D ⊂ M, the Riemannian metric induces the mapping f 7→ gradf
associates its gradient via the following rule 〈gradf(p),X(p)〉 := df(p)X, for all p ∈ D.
For a twice-differentiable function, the mapping f 7→ hessf associates its hessian via
the rule 〈hessfX,X〉 := d2f(X,X), for all X ∈ X (D), where the last equalities imply
that hessfX = ∇Xgradf , for all X ∈ X (D). We proceeded to recall some concepts and
basic properties about convexity in the Riemannin context. For more details see, for
example, [28, 34, 35]. For any two points p, q ∈ M, Γpq denotes the set of all geodesic
segments γ : [0, 1] →M with γ(0) = p and γ(1) = q. We use ΓΩ

pq to denote the set of
all γ ∈ Γpq such that γ(t) ∈ Ω, for all t ∈ [0, 1]. A nonempty subset Ω ⊂ M is said to
be weakly convex if, for any p, q ∈ Ω, there is a minimal geodesic segment joining p to q
belonging Ω. A function f : D → R is said to be convex on the set Ω ⊂ D if Ω is weakly
convex and for any p, q ∈ Ω and γ ∈ ΓΩ

pq the composition f ◦ γ : [0, 1] → R is a convex
function on [0, 1], i.e., f ◦ γ(t) ≤ (1 − t)f(p) + tf(q), for all t ∈ [0, 1]; see [35]. For f
a differentiable function on D and a weakly convex set Ω ⊂ D, we have the following
characterization: f is convex on Ω iff there holds f(γ(t)) ≥ f(p)+ 〈grad f(p), γ′(0)〉, for
all p, q ∈ Ω and γ ∈ ΓΩ

pq.

The following lemma plays an important role in next sections and its proof, with
some minor technical adjustments, can be found in [35, Lemma 3.2]; see also [36]. For
simplifying the notations, let

κ < 0, κ̂ :=
√

|κ|. (2)

Lemma 1. Let M be a Riemannian manifolds with sectional curvature K ≥ κ, and κ̂
be defined in (2). Assume that f is differentiable and convex on the set Ω ⊂M, p ∈ Ω
and γ : [0,∞)→M is defined by γ(t) = expp (−t grad f(p)) . Then, for any t ∈ [0,∞)
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and q ∈ Ω there holds

cosh(κ̂d(γ(t), q)) ≤ cosh(κ̂d(p, q))+

κ̂ cosh(κ̂d(p, q)) sinh(tκ̂ ‖grad f(p)‖)
[

t ‖grad f(p)‖
2

− tanh(κ̂d(p, q))

κ̂d(p, q)

f(p)− f(q)

‖grad f(p)‖

]

and, consequently, the following inequality holds

d2(γ(t), q) ≤ d2(p, q)+

sinh (κ̂t‖ grad f(p)‖)
κ̂

[

t‖ grad f(p)‖ κ̂d(p, q)

tanh (κ̂d(p, q))
− 2

‖grad f(p)‖ (f(p)− f(q))

]

.

Next we present the definition of Lipschitz continuous gradient vector field; see [10].

Definition 1. Let f be a differentiable function on the set D. The gradient vector field
of f is said to be Lipschitz continuous on D with constant L ≥ 0 if, for any p, q ∈ D
and γ ∈ ΓD

pq, it holds that ‖Pγ,p,q grad f(p)− grad f(q)‖ ≤ Lℓ(γ).

The norm of the hessian hess f at p ∈M is given by

‖hess f(p)‖ := sup {‖hess f(p)v‖ : v ∈ TpM, ‖v‖ = 1} . (3)

In the following result we present a characterization for twice continuously differentiable
functions with Lipschitz continuous gradient vector field, which has similar proof of its
Euclidean counterpart and will be omitted here.

Lemma 2. Let f : D → R be a twice continuously differentiable function. The gradient
vector field of f is Lipschitz continuous with constant L ≥ 0 if, and only if, there exists
L ≥ 0 such that ‖hess f(p)‖ ≤ L, for all p ∈ D.

The next lemma can be found in [6, Corollary 2.1] with minor adjustment. Its proof
follows from the definition of convexity of functions and the fundamental theorem of
calculus.

Lemma 3. Let f be a differentiable function on the set D and a > 0. Assume that grad f
is Lipschitz continuous on D with constant L ≥ 0 and p ∈ Ω. If expp(−t grad f(p)) ∈ D,
for all t ∈ [0, a], then there holds

f(expp(−t grad f(p))) ≤ f(p)−
(

1− L

2
t

)

t ‖grad f(p)‖2 , ∀ t ∈ [0, a].

Note that if D = M, then condition expp(−t grad f(p)) ∈ D, for all t ∈ [0, a], in
Lemma 3 plays no role. In the following example we present a functions satisfying all
the assumptions of Lemma 3 for the case D 6=M.
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Example 1. Let M = {p ∈ R
n : ‖p‖ = 1} the Euclidean sphere and q ∈ M. Define

ϕq(p) := d2(p, q)/2, for all p ∈ M. The function ϕq is differentiable in D := {p ∈
M : d(p, q) < 5π/6} and convex in Ω := {p ∈ M : d(p, q) ≤ π/2}. Furthermore,
gradϕq is Lipschitz continuous on D, because D is compact and hess ϕq is continuous
inM\{−q} ⊃ D. Indeed, combining [16, Lemma 3] with Lemma 2 we conclude that

L = sup
p∈D

|〈p, q〉 arccos 〈p, q〉|
√

1− 〈p, q〉2
=

5π

6

√
3.

Since gradϕq(p) = − exp−1
p q for all p ∈ M\{−q}, after some calculations, we conclude

that d(expp(−t gradϕq(p)), p) ≤ td(p, q), for all p ∈ D. Hence, letting p ∈ Ω we have

d((expp(−t gradϕq(p)), q) ≤ d(expp(−t gradϕq(p)), p) + d(p, q) ≤ (t+ 1)
π

2
,

and then expp(−t gradϕq(p)) ∈ D, for all t ∈ [0, 1/L]. For more details about the
function ϕq; see [16].

The following concept will be useful in the analysis of the sequence generated by the
gradient method. In fact, as we shall prove, the sequence generated by this method
satisfies the following definition.

Definition 2. A sequence {yk} in the complete metric space (M, d) is quasi-Fejér
convergent to a set W ⊂M if, for every w ∈ W , there exist a sequence {ǫk} ⊂ R such
that ǫk ≥ 0,

∑∞
k=1 ǫk < +∞, and d2(yk+1, w) ≤ d2(yk, w) + ǫk, for all k = 0, 1, . . ..

The main property of a quasi-Fejér sequence is stated in the next result, and its
proof is similar to the one proved in [9], by replacing the Euclidean distance by the
Riemannian.

Theorem 1. Let {yk} be a sequence in the complete metric space (M, d). If {yk} is
quasi-Fejér convergent to a nonempty set W ⊂M, then {yk} is bounded. If furthermore,
a cluster point ȳ of {yk} belongs to W , then limk→∞ yk = ȳ.

The study of the gradient method for convex functions is well understood for Rie-
mannian manifold with nonnegative sectional curvature and Hadamard manifolds; see
[10,38,39]. In order to increase the domain of applications of the method, hereafter, we
assume that M is a complete Riemannian manifolds with sectional curvature K ≥ κ,
where κ < 0, unless the contrary is explicitly stated.

3 The Riemannian gradient method

In this section we state the Riemannian gradient method to solve (1) and the strategies
for choosing the stepsize that will be used in our analysis.
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Let f : D → R be differentiable, D ⊂M be an open set, Ω∗ be the solution set of the
problem (1), f∗ := infx∈D f(x) be the optimum value of f , and c ∈ R. From now on,
we assume that Ω∗ is non-empty and f is convex on the sub-level set Lcf , where

Lcf := {p ∈ M : f(p) ≤ c} ⊂ D.

The statement of Riemannian gradient algorithm to solve the problem (1) is as follows.

Algorithm 1. Gradient algorithm in a Riemanian manifold M

Step 0. Let p0 ∈ Lcf . Set k = 0.

Step 1. If gradf(pk) = 0, then stop; otherwise, choose a stepsize tk > 0 and compute

pk+1 := exppk (−tk gradf(pk)) . (4)

Step 2. Set k ← k + 1 and proceed to Step 1.

In the following we present three different strategies for choosing the stepsize tk > 0
in Algorithm 1. In the first strategy we assume that grad f is Lipschitz continuous.

Strategy 1 (Lipschitz stepsize). Assume that grad f is Lipschitz continuous on D with
constant L ≥ 0 and that expp(−t grad f(p)) ∈ D, for all p ∈ Lcf and t ∈ [0, 1/L]. Let
ε > 0 and take

ε < tk ≤
1

L
. (5)

Remark 1. If D = M, then condition expp(−t grad f(p)) ∈ D, for all t ∈ [0, a], in
Strategy 1 plays no role. Recall that the function in Example 1 satisfies this condition
for D 6=M.

Despite knowing that grad f is Lipschitz continuous, in general, the Lipschitz constant
is not computable. Next strategy can be used to compute the stepsize without any
Lipschitz condition. However, as we shall show, if grad f is Lipschitz with constant
L > 0 the stepsize computed is an approximation to the stepsize 1/L; see [4].

Strategy 2 (adaptive stepsize). Take β ∈ (0, 1), L0 > 0, and η > 1. Set tk := L−1
k ,

where Lk := ηikLk−1 and

ik := min
{

i : f(γk(τi)) ≤ f(pk)− βτi ‖grad f(pk)‖2 , i = 0, 1, . . .
}

, (6)

where τi := (ηiLk−1)
−1 and γk(τi) := exppk (−τi grad f(pk)).

Strategy 3 (Armijo’s stepsize). Choose β ∈ (0, 1) and take

tk := max
{

2−i : f
(

γk(2
−i)
)

≤ f(pk)− β2−i ‖grad f(pk)‖2 , i = 0, 1, . . .
}

, (7)

where γk(2
−i) := exppk

(

−2−i grad f(pk)
)

.
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Remark 2. Strategy 2 can be seen as an Armijo-type line search where the first trial
stepsize at iteration k is set to be equal to tk−1. Indeed, taking L0 = 1, and η = 2 the
inequality in (6) can be equivalently rewritten as

f(γk(2
−itk−1)) ≤ f(pk)− β2−itk−1 ‖grad f(pk)‖2 .

The proof of the well-definedness of Strategies 2 and 3 follows the usual arguments
and will be omitted. On the other hand, (5) and Lemma 3 imply that, for each p ∈ Lcf
there holds expp(−t grad f(p)) ∈ Lcf , for all t ∈ [0, 1/L]. Hence, the sequence {pk}
generated by Algorithm 1 with Strategies 1, 2 or 3 is well-defined. Finally we remark
that, due to f be convex, grad f(p) = 0 if only if p ∈ Ω∗. Therefore, from now on we
assume that grad f(pk) 6= 0, or equivalently, pk /∈ Ω∗, for all k = 0, 1, . . ..

3.1 Asymptotic convergence Analysis

In this section our goal is to prove that the sequence {pk}, generated by the gradient
method with Strategies 1, 2 or 3, converges to a solution of problem (1).

Lemma 4. Let {pk} be generated by Algorithm 1 with Strategies 1, 2 or 3. Then,

f(pk+1) ≤ f(pk)− νtk ‖grad f(pk)‖2 , k = 0, 1, . . . , (8)

where ν = 1/2 for Strategy 1, and ν = β for Strategies 2 and 3. Consequently, {f(pk)}
is non-increasing sequence and limk→+∞ tk‖ grad f(pk)‖2 = 0.

Proof. For Strategies 2 and 3, inequality (8) follows directly from (6) and (7), respec-
tively. Now, we assume that {pk} is generated by using Strategy 1. In this case,
Lemma 3 implies that

f(pk+1) = f(exppk (−tk gradf(pk))) ≤ f(pk)−
(

1− L

2
tk

)

tk ‖grad f(pk)‖2 ,

for all k = 0, 1, . . .. Hence, taking into account (5) we have 1/2 ≤ (1 − Ltk/2) and
then,(8) follows. Therefore, (8) holds for {pk} generated by using the three strategies.
It is immediate from (8) that {f(pk)} is non-increasing. Moreover, (8) implies that

ℓ
∑

k=0

tk ‖grad f(pk)‖2 ≤
1

ν

ℓ
∑

k=0

f(pk)− f(pk+1) ≤
1

ν
(f(p0)− f∗) ,

for each nonnegative integer ℓ, which implies that tk ‖grad f(pk)‖2 goes to zero, as k
goes to infinity, completing the proof.

Remark 3. Whenever grad f is Lipschitz continuous on D with constant L ≥ 0, the
stepsize in Strategy 2 can be seen as an approximation for the Lipschitz constant. Indeed,
since L0 > 0 and η > 1 in Strategy 2, we conclude that tk := L−1

k ≤ L−1
k−1 = tk−1, for all
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k = 0, 1, . . .. Thus tk ≤ 1/L0, for all k = 0, 1, . . .. If L0 ≥ L, then it follows from (8)
that tk ≤ 1/L0, for all k = 0, 1, . . .. Now assume that L0 ≤ L. In this case, (8) holds
for tk = 1/L and then (6) implies that 1/(ηL) ≤ tk. Therefore,

1

ηL
≤ tk ≤

1

L0
, k = 0, 1, . . . (9)

Let p0 ∈M. By Lemma 4, we define constant ρ > 0 as follows

∞
∑

k=0

t2k ‖grad f(pk)‖2 ≤ ρ :=











2[f(p0)− f∗]/L, for Strategy 1;

[f(p0)− f∗]/(βL0), for Strategy 2;

[f(p0)− f∗]/β, for Strategy 3.

(10)

In the following result, in particular, we bound the sequence {pk} generated by Algo-
rithm 1 with Strategies 1, 2 or 3.

Lemma 5. Let q ∈ Ω∗ and {pk} the sequence generated by Algorithm 1 with Strategies 1,
2 or 3. Then there holds

d(pk+1, q) ≤
1√
κ
cosh−1

(

cosh(
√
κd(p0, q))e

1

2
(
√
κρ) sinh(

√
κρ)
)

, k = 0, 1, . . . . (11)

Proof. Applying the first inequality of Lemma 1, with t = tk and p = pk , we have
pk+1 = γ(tk), and taking into account that q ∈ Ω∗, we conclude that

cosh(κ̂d(pk+1, q)) ≤ cosh(κ̂d(pk, q))

[

1 + (κ̂tk ‖grad f(pk)‖)2
sinh(κ̂tk ‖grad f(pk)‖)

2κ̂tk ‖grad f(pk)‖

]

,

for all k = 0, 1, . . ., where κ̂ is defined in (2). Since (10) implies tk ‖grad f(pk)‖ ≤
√
ρ,

for all k = 0, 1, . . ., and the map (0,+∞) ∋ t 7→ sinh(t)/t is increasing, we conclude that

cosh(κ̂d(pk+1, q)) ≤ cosh(κ̂d(pk, q))
[

1 + a (tk ‖grad f(pk)‖)2
]

, k = 0, 1, . . . ,

where a := κ̂(sinh(κ̂
√
ρ))/(2

√
ρ). Now note that the last inequality implies that

cosh(κ̂d(pk+1, q)) ≤ cosh(κ̂d(pk, q))e
a(tk‖grad f(pk)‖)2 , k = 0, 1, . . . ,

Therefore, by using (10), it follows that cosh(κ̂d(pk+1, q)) ≤ cosh(κ̂d(p0, q))e
aρ, which

is equivalent to (11) by considering the definition of κ̂ in (2).

Let us define the following auxiliary constant

Cqρ,κ :=
sinh

(√
κρ
)

√
κρ

[

1 + cosh−1
(

cosh(
√
κd(p0, q))e

1

2
(
√
κρ) sinh(

√
κρ)
)]

, (12)

where ρ in defined in (10).
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Lemma 6. Let {pk} be generated by by Algorithm 1 with Strategies 1, 2 or 3. Then,
for each q ∈ Ω∗, there holds

d2(pk+1, q) ≤ d2(pk, q) +
tk
ν
Cqρ,κ [f(pk)− f(pk+1)] + 2tk [f(q)− f(pk)] , (13)

for all k = 0, 1, . . ., where ν = 1/2 for Strategy 1 and ν = β for Strategies 2 and 3.

Proof. Define γk(t) = exppk (−t grad f(pk)), for all t ∈ [0,+∞). Then, γk(0) = pk and,
from (4), we obtain γk(tk) = pk+1. Applying second inequality of Lemma 1 with γ = γk,
after some manipulations, we conclude that

d2(pk+1, q) ≤ d2(pk, q)+

sinh (κ̂tk‖ grad f(pk)‖)
κ̂tk‖ grad f(pk)‖

[

t2k‖ grad f(pk)‖2
κ̂d(pk, q)

tanh (κ̂d(pk, q))
+ 2tk [f(q)− f(pk)]

]

, (14)

for all k = 0, 1, . . .. On the other hand, t/ tanh(t) ≤ 1 + t, for all t ≥ 0, and the
map (0,+∞) ∋ t 7→ sinh(t)/t is increasing and bounded below by 1. Thus, taking into
account that (10) implies tk ‖grad f(pk)‖ ≤

√
ρ for all k = 0, 1, . . ., and considering

f(q)− f(pk) ≤ 0 for all k = 0, 1, . . ., we conclude from (14) that

d2(pk+1, q) ≤ d2(pk, q) +
sinh

(

κ̂
√
ρ
)

κ̂
√
ρ

t2k‖ grad f(pk)‖2 [1 + κ̂d(pk, q)] + 2tk [f(q)− f(pk)],

for all k = 0, 1, . . ., where ρ is defined in (10). Thus, by Lemma 4, we obtain

d2(pk+1, q) ≤ d2(pk, q)+
tk
ν

sinh
(

κ̂
√
ρ
)

κ̂
√
ρ

[1 + κ̂d(pk, q)] [f(pk)−f(pk+1)]+2tk [f(q)−f(pk)],

for all k = 0, 1, . . .. Therefore, by Lemma 5 and (12), we have (13), which concludes the
proof.

Finally we are ready to prove the full convergence of {pk} to a minimizer of f .

Theorem 2. Let {pk} be generated by by Algorithm 1 with Strategies 1, 2 or 3. Then
{pk} converges to a solution of the problem in (1).

Proof. First note that f(q)− f(pk) ≤ 0, for all k = 0, 1, . . . and q ∈ Ω∗. Hence, (5), (7)
and (9) imply 0 < tk ≤ 1/L or 0 < tk ≤ 1/L0 or 0 < tk ≤ 1, for all k = 0, 1, . . ., for
Strategies 1, 2 or 3, respectively. Let Γ := max{1, 1/L, 1/L0}. Thus, for Strategies 1, 2
or 3 we conclude from Lemma 6 that

d2(pk+1, q) ≤ d2(pk, q) +
1

ν
ΓCqρ,κ [f(pk)− f(pk+1)] , k = 0, 1, . . . ,

for all q ∈ Ω∗. Considering that
∑∞

i=0[f(pk)− f(pk+1)] ≤ [f(p0)− f∗], we conclude that
{pk} is quasi-Fejér convergent to Ω∗. Therefore, since Ω∗ is non-empty the sequence
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{pk} is bounded. Let p̄ be an cluster point of {pk} and
{

pkj
}

be a subsequence {pk}
such that limj→∞ pkj = p̄. It follows from Lemma 4 that limk→∞ tk ‖grad f(pk)‖2 = 0,
and due to {tk} has a cluster point t̄ ∈ [0,Γ], we analyze the following two possibilities

(a) t̄ > 0, (b) t̄ = 0.

Assume that (a) holds. In this case, considering that limk→∞ tk ‖grad f(pk)‖2 = 0 and
grad f is continuous, we conclude that

0 = lim
j→∞

tkj
∥

∥grad f(pkj)
∥

∥ = t̄ ‖grad f(p̄)‖ .

Hence, grad f(p̄) = 0 and then p̄ ∈ Ω∗. Note that if Strategy 1 is used, then t̄ satisfies
only (a). Now, we assume that (b) holds. In this case Strategies 2 or 3 is used. First
assume Algorithm 1 with Strategy 2. Since {tkj} converges to t̄ = 0 and {tk} is non-
increasing, it follows that {tk} converges to t̄ = 0. Hence, taking r ∈ N we can conclude
that tk < (ηrL0)

−1 for k sufficiently large. Considering k being the smallest natural
number that satisfies tk < (ηrL0)

−1, by (6), we have

f(exppk((η
r−1L0)

−1[− grad f(pkj)])) > f(pk)− (ηr−1L0)
−1β ‖grad f(pk)‖2 .

Letting k go to +∞ in the above inequality and taking into account that grad f and
the exponential mapping are continuous, we obtain

f(expp̄((η
r−1L0)

−1[− grad f(p̄)])) ≥ f(p̄)− (ηr−1L0)
−1β ‖grad f(p̄)‖2 .

The last inequality is equivalent to

−
f(expp̄((η

r−1L0)
−1[− grad f(p̄)])) − f(p̄)

(ηr−1L0)−1
≤ β ‖grad f(p̄)‖2 .

Thus, letting r goes to +∞ we obtain ‖grad f(p̄)‖2 ≤ β ‖grad f(p̄)‖2 which implies
grad f(p̄) = 0, i.e., p̄ ∈ Ω∗. Therefore, since {pk} is quasi-Fejér convergent to Ω∗, we
conclude from Theorem 1 that {pk} converges to p̄. Finally, assume that Strategy 3 is
used. Since {tkj} converges to t̄ = 0, taking r ∈ N, we conclude that tkj < 2−r for j
sufficiently large. Thus Armijo’s condition (7) is not satisfied for t = 2−r+1, i.e.,

f(exppkj
(2−r+1[− grad f(pkj)])) > f(pkj)− 2−r+1β

∥

∥grad f(pkj)
∥

∥

2
.

Letting j go to +∞ in the above inequality and taking into account that grad f and
the exponential mapping are continuous, we obtain

f(expp̄(2
−r+1[− grad f(p̄)])) ≥ f(p̄)− 2−r+1β ‖grad f(p̄)‖2 .

The last inequality is equivalent to

−
f(expp̄(2

−r+1[− grad f(p̄)])) − f(p̄)

2−r+1
≤ β ‖grad f(p̄)‖2 .

Thus, letting r goes to +∞ we obtain ‖grad f(p̄)‖2 ≤ β ‖grad f(p̄)‖2 which implies
grad f(p̄) = 0, i.e., p̄ ∈ Ω∗. Therefore, since {pk} is quasi-Fejér convergent to Ω∗, we
conclude from Theorem 1 that {pk} converges to p̄ and the proof is completed.
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3.2 Iteration-Complexity Analysis

In this section we present an iteration-complexity bound related to the gradient method
for minimizing a convex functions with Lipschitz continuous gradient with constant L >
0. In the following, as an application of Lemma 6, we obtain the iteration-complexity
bound for the gradient method with Strategy 2.

Theorem 3. Let {pk} be generated by by Algorithm 1 with Strategy 2. Then, for every
N ∈ N, there holds

f(pN)− f∗ ≤ ηL
L0 d2(p0, q) + 2 (Cqρ,κ − 1) [f(p0)− f∗]

2NL0
, (15)

for each q ∈ Ω∗. As a consequence, given a tolerance ǫ > 0, the number of iterations
required to obtain pN ∈ M such that f(pN )− f∗ < ǫ, is bounded by

ηL
[

L0 d2(p0, q) + 2
(

Cqρ,κ − 1
)

[f(p0)− f∗]
]

/(2L0ǫ) = O (1/ǫ) .

Proof. Take q ∈ Ω∗. After some simple algebraic manipulations and taking into account
that f∗ = f(q) for each q ∈ Ω∗, Lemma 6 becomes

2tk (f(pk+1)− f∗) ≤
[

d2(pk, q)− d2(pk+1, q)
]

+ 2tk
[

Cqρ,κ − 1
]

[f(pk)− f(pk+1)] ,

for all k = 0, 1, . . .. Using (9) and taking into account that Cqρ,κ ≥ 1, f(pk+1) − f∗ ≥ 0
and f(pk)− f(pk+1) ≥ 0, for all k = 0, 1, . . ., it follows that

2

ηL
[f(pk+1)− f∗] ≤

[

d2(pk, q)− d2(pk+1, q)
]

+
2

L0

[

Cqρ,κ − 1
]

[f(pk)− f(pk+1)] ,

Summing both sides of the above inequality for k = 0, 1, . . . , N − 1, we obtain

2

ηL

N−1
∑

i=0

[f(pi+1)− f∗] ≤
[

d2(p0, q)− d2(pN , q)
]

+
2

L0

[

Cqρ,κ − 1
]

[f(p0)− f(pN )] .

Since {f(xk)} is a decreasing sequence, we conclude that

2

ηL
N (f(pN )− f∗) ≤

[

d2(p0, q)− d2(pN , q)
]

+
2

L0

[

Cqρ,κ − 1
]

[f(p0)− f(pN )] ,

which is equivalent to (15). The second statement of the theorem follows as an imme-
diate consequence of the first part.

Whenever the Lipschitz constant L > 0 is computable, we can take a constant stepsize
and Theorem 3 trivially implies the following result.

Theorem 4. Let {pk} be generated by by Algorithm 1 with Strategy 1. Then, for every
N ∈ N, there holds

f(pN)− f∗ ≤ L d2(p0, q) + 2 (Cqρ,κ − 1) [f(p0)− f∗]
2N

, (16)
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for each q ∈ Ω∗. As a consequence, given a tolerance ǫ > 0, the number of iterations
required by the gradient method to obtain pN ∈ M such that f(pN)− f∗ < ǫ, is bounded
by

[

L d2(p0, q) + 2
(

Cqρ,κ − 1
)

[f(p0)− f∗]
]

/(2ǫ) = O (1/ǫ) .

We remark that, if κ = 0 then Cqρ,κ = 1. As a consequence, Theorem 4 merges
into [6, Theorem 3.2].

Corollary 1. Let {pk} be generated by by Algorithm 1 with Strategy 1. Then, for every
N ∈ N, there holds

min {‖ grad f(pk)‖ : k = 0, 1, . . . , N} ≤ 2
√

L [L d2(p0, q) + 2 (Cqρ,κ − 1) [f(p0)− f∗]]

N
,

(17)
for each q ∈ Ω∗. As a consequence, given a tolerance ǫ > 0, the number of iterations
required by the gradient method to obtain pN ∈ M such that ‖ grad f(pN )‖ < ǫ, is
bounded by O(

√

L [L d2(p0, q) + 2 (Cqρ,κ − 1) [f(p0)− f∗]]/ǫ).

Proof. Let N ∈ N. Using the notation ⌈N/2⌉ for the least integer that is greater than
or equal to N/2, we have

f(pN+1)− f∗ +
N
∑

j=⌈N/2⌉
[f(pj)− f(pj+1)] = f(p⌈N/2⌉)− f∗. (18)

Thus, combining the last inequality with Theorem 4, we conclude that

f(pN+1)− f∗+
N
∑

j=⌈N/2⌉
[f(pj)− f(pj+1)] ≤

L d2(p0, q) + 2 (Cqρ,κ − 1) [f(p0)− f∗]
2⌈N/2⌉ . (19)

On the other hand, using Lemma 4 and considering that tk = 1/L, we obtain

1

2L

N
∑

j=⌈N/2⌉
‖grad f(pj)‖2 ≤

N
∑

j=⌈N/2⌉
[f(pj)− f(pj+1)] ≤ f(p⌈N/2⌉)− f∗.

In view of N/2 ≤ ⌈N/2⌉, the above inequality together with (18) and (19) yield

1

2L

N
∑

j=⌈N/2⌉
‖grad f(pj)‖2 ≤

L d2(p0, q) + 2 (Cqρ,κ − 1) [f(p0)− f∗]
N

.

Therefore,

min{‖ grad f(pk)‖2 ; k = ⌈N/2⌉, . . . , N} ≤ 4L
[

L d2(p0, q) + 2 (Cqρ,κ − 1) [f(p0)− f∗]
]

N2
,

which implies the desired inequality. The second statement of the corollary follows as
an immediate consequence of the first one.
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We end this section by recalling an iteration-complexity bound for non-convex func-
tions defined in a general Riemannian manifolds, which appeared in [8].

Theorem 5. Let {pk} be generated by by Algorithm 1 with Strategy 1. Then, for every
N ∈ N, there holds

min {‖ grad f(pk)‖ : k = 0, 1, . . . , N} ≤
√

2L(f(p0)− f∗)√
N + 1

.

As a consequence, given a tolerance ǫ > 0, the number of iterations required to obtain
pN ∈ M such that ‖ grad f(pN )‖ < ǫ is bounded by O(L(f(p0)− f∗)/ǫ2).

Under the assumption of convexity and lower boundedness of curvature, we conclude
that Corollary 1 improves Theorem 5. It is worth to point out that results on iteration-
complexity bound to the gradient method on Riemannian manifold with non-negative
curvature and in Hadamard manifolds with lower bound curvature has already appeared
[6, 38, 39]. The result of this section present a contribution to the systematic study of
the iteration-complexity of the gradient methods in the Riemannian setting.

4 Examples

In the following sections, we present some examples of functions satisfying the assump-
tions of our results in the previous sections. In particular we show that, by endowing the
constrained set with a suitable Riemannian metric, a constrained Euclidean optimiza-
tion problem with non-convex objective function having non-Lipschitz gradient can be
seen as unconstrained Riemanian optimization problem with convex objective function
having Lipschitz gradient. Throughout the next sections we denote

R
n
++ :=

{

x := (x1, . . . , xn)
T ∈ R

n×1 : xi > 0, i = 1, . . . , n
}

,

the positive orthant, Pn the set of symmetric matrices of order n×n and P
n
++ the cone

of symmetric positive definite matrices.

4.1 Examples in the positive orthant

In this section, we present examples in the positive orthant endowed with a new Rie-
mannian metric. To present this examples we need some definitions and results of
Riemannian geometry. Endowing R

n
++ with the Riemannian metric 〈·, ·〉 defined by

〈u, v〉 := uTG(x)v, for all x ∈ R
n
++ and u, v ∈ TxR

n
++ ≡ R

n, where G : Rn
++ → P

n
++ is

given by
G(x) := diag(x−2

1 , . . . , x−2
n ) ∈ R

n×n, (20)

we obtain a complete Riemannian manifold with zero curvature, which will be denoted
by M := (Rn

++, G). Let f :M → R be a twice differentiable function. We denote by

14



f ′(x) and f ′′(x) the Euclidean gradient and hessian of f at x, respectively. Thus, (20)
implies that the Riemannian gradient and hessian of f are given, respectively, by

gradf(x) = diag(x)2f ′(x), x ∈ M, (21)

hess f(x)v =
[

diag(x)2f ′′(x) + diag(x)diag
(

f ′(x)
)]

v, x ∈ M, (22)

where diag(x) := diag(x1, . . . , xn) ∈ R
n×n. Next we present two examples of convex

functions with Lipschitz gradient inM := (Rn
++, G).

Example 2. Consider the function f : Rn
++ → R defined by

f(x) :=
n
∑

i=1

fi(xi), fi(xi) := −aie−bixi + ci ln (xi)
2 + di ln (xi) , i = 1, . . . n, (23)

where ai, bi, di ∈ R+ and ci ∈ R++ satisfy ci > ai. Since f is coercive, it has a
minimum. By using (23) the first and second derivative of f at x ∈ R

n
++ are given by

f ′(x) := (f ′
1(x1), . . . , f

′
n(xn)) and f ′′(x) := diag (f ′′

1 (x1), . . . , f
′′
n(xn)), where

f ′
i(xi) = aibie

−bixi+2ci
ln(xi)

xi
+
di
xi
, f ′′

i (xi) = −aib2i e−bixi+2ci

[

1− ln(xi)

x2i

]

− di
x2i

, (24)

for all i = 1, . . . , n. Note that f ′′
i (1) < 0, for all i = 1, . . . , n, and then f is not Euclidean

convex. Using (22) and (24) the hessian of f inM := (Rn
++, G) is given by

Hess f(x)v :=
(

a1b1e
−b1x1

(

x1 − b1x
2
1

)

+ 2c1, . . . , anbne
−bnxn

(

xn − bnx
2
n

)

+ 2cn

)

v.

Since ci > ai, we have aibie
−bixi

(

xi − bix
2
i

)

+ 2ci ≥ 0, for all i = 1, . . . , n. Hence, by
using the definition of the metric, for v = (v1, . . . , vn)

T ∈ R
n and x ∈ R++, we have

〈Hess f(x)v, v〉 =
n
∑

i=1

[

aibie
−bixi

(

xi − bix
2
i

)

+ 2ci

] v2i
x2i
≥ 0,

concluding that f is convex in M. Since ‖v‖ = vTG(x)v = 1, we have v2i ≤ x2i and
owing that

(

aibie
−bixi

(

xi − bix
2
i

)

+ 2ci
)

< ai + 2ci, for all i = 1, . . . , n , we obtain

‖Hess f(x)v‖2 =
n
∑

i=1

[

aibie
−bixi

(

xi − bix
2
i

)

+ 2ci

]2 v2i
x2i

<

n
∑

i=1

(ai + 2ci)
2, x ∈ R++.

Therefore, (3) and Lemma 2 imply that grad f is Lipschitz with L <
∑n

i=1(ai + 2ci)
2.

Example 3. Consider the function f : Rn
++ → R defined by

f(x) :=
n
∑

i=1

hi(xi), fi(xi) := ai ln
(

xdii + bi

)

− ci ln (xi) , i = 1, . . . n, (25)

where ai, bi, ci, di ∈ R++ satisfy ci < aidi and di ≥ 2, for all i = 1, . . . n. The minimizer
of f is x∗ = (x∗1, . . . , x

∗
n), where x∗i =

di
√

bici/(aidi − ci), for i = 1, . . . , n. Function f in
(25) is not Euclidean convex. However, by following the same steps as in the Example 2,
we can show that f is convex and has gradient Lipschitz with constant L <

∑n
i=1 a

2
i d

4
i

inM = (Rn
++, G).
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We end this section by presenting, without giving the details, two more examples of
convex functions with Lipschitz gradients inM := (Rn

++, G).

Remark 4. Let a, b, c ∈ R++. Define h1 : Rn
++ → R by h1(x) := a ln

(

xTx+ b
)

−
c ln (x1 . . . xn) , where nc < 2a, and h2 : Rn

++ → R by h2(x) = a ln
(

(x1 . . . xn)
2 + b

)

−
c ln (x1 . . . xn). By using similar arguments of Examples 2, we can prove that h1 and h2
are also convex with Lipschitz gradient in the Riemannian manifold M = (Rn

++, G).

4.2 Examples in the SPD matrices cone

In this section, we present examples in the cone of symmetric positive definite matrices
with new Riemannian metric. Following Rothaus [30], let M := (Pn

++, 〈·, ·〉) be the
Riemannian manifold endowed with the Riemannian metric given by

〈U, V 〉 := tr(V X−1UX−1), X ∈ M, U, V ∈ TXM, (26)

where tr(X) denotes the trace of X ∈ P
n and TXM ≈ P

n. In fact, M is a Hadamard
manifold, see for example [19, Theorem 1.2. p. 325] and its curvature is bound below;
see [20]. The gradient and hessian of f : Pn

++ −→ R are given by

gradf(X) = Xf ′(X)X, (27)

hess f(X)V = Xf ′′(X)V X +
1

2

[

V f ′(X)X +Xf ′(X)V
]

, (28)

where V ∈ TXM, f ′(X) and f ′′(X) are the Euclidean gradient and hessian of f at
X, respectively. In the following, we present two examples of convex functions with
Lipschitz gradient inM := (Pn

++, 〈·, ·〉).

Example 4. Consider the function f : Pn
++ −→ R defined by

f(X) = a ln(det(X))2 − b ln (det(X)) . (29)

where a, b ∈ R++. The Euclidean gradient and hessian of f are given, respectively, by

f ′(X) = [2a ln(det(X)) − b]X−1, (30)

f ′′(X)V = 2a tr(X−1V )X−1 − [2a ln(det(X)) − b]X−1V X−1, (31)

for all X ∈ P
n
++ and V ∈ P

n. It follows from (30) that each X ∈ M satisfying
detX = eb/(2a) is a critical point of f . Thus, letting V = In and X = tIn with t ∈ R++

in (31) we obtain that f ′′(tIn)In = [2ant−2−2an ln t+b]In. Thus f
′′(tIn) is not positive

definite for t sufficiently large. Hence, f is not Euclidean convex. Moreover, f ′′ is not
bounded and consequently f ′ is not Lipschitz. On the other hand, combining (28), (30)
and (31), after some calculation we obtain

Hess f(X)V = 2a tr(X−1V )X, 〈Hess f(X)V, V 〉 = 2atr(X−1V )2 ≥ 0, (32)
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for all X ∈ M and V ∈ TXM. Thus, f is convex in M. Moreover, (26) with (32)
yield ‖Hess f(X)V ‖ = 2atr(X−1V ), for all X ∈ M and V ∈ TXM. If we assume that
‖V ‖2 = tr(V X−1V X−1) = 1 then tr(X−1V ) ≤ √n. Hence,

‖Hess f(X)V ‖ ≤ 2a
√
n, X ∈ M, V ∈ TXM, ‖V ‖ = 1.

Therefore, (3) and Lemma 2 imply that grad f is Lipschitz with constant L ≤ 2a
√
n.

Example 5. Consider the function f : Pn
++ −→ R defined by

f(X) = a ln
(

det(X)b1 + b2

)

− c ln (detX) , (33)

where a, b1, b2, c ∈ R++ with c < ab1. Function f in (33) is not Euclidean convex. On
the other hand, by using similar arguments as in the Example 4, we can see that f is
convex and has Lipschitz gradient with constant L < ab21n in M = (Pn

++, 〈·, ·〉).

5 Numerical Experiments

In this section, we present some numerical experiments to illustrate the behavior of the
Riemannian gradient method for minimizing convex functions onto the positive orthant
and the cone of symmetric positive definite matrices. We implemented Algorithm 1
with Strategies 1, 2 and 3, and tested it on the examples of Section 4. Additionally,
we consider the application of the method to compute the Riemannian center of mass,
which is a specific instance of a geometric mean for points in a Riemannian manifold.
In due course, we will describe this problem in more detail.

For the positive orthant, the exponential mapping expx : TxM→M in the Rieman-
nian manifoldM := (Rn

++, G) is assigned by

expx(v) =
(

x1e
v1
x1 , . . . , xne

vn
xn

)

, (34)

for each v := (v1, . . . , vn)
T ∈ R

n×1 and x := (x1, . . . , xn)
T ∈ R

n
++, see [27]. By using

the gradient in (21) and the definition of metric we obtain

‖gradf(x)‖2 = gradf(x)TG(x)gradf(x) =
n
∑

i=1

[

xi
∂f

∂xi
(x)

]2

,

for each x := (x1, . . . , xn) ∈ M. Considering the cone of symmetric positive definite
matrices, the exponential mapping expX : TXM → M in the Riemannian manifold
M := (Pn

++, 〈·, ·〉), is given by

expX(V ) = X1/2e(X
−1/2V X−1/2)X1/2, (35)

for each V ∈ P
n and X ∈ P

n
++. By using (27), we have ‖gradf(X)‖2 = tr

(

[Xf ′(X)]2
)

,

for each X ∈ M. In both cases, although (1) is a constrained optimization problem,
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by (34) and (35), Algorithm 1 generates only feasible points without using projections
or any other procedure to remain the feasibility. Hence, problem (1) can be seen as
unconstrained Riemannian optimization problem.

Our numerical experience indicates that it is advantageous to perform a reasonably
stringent line search. Therefore, we used β = 1/2 for Strategies 2 and 3. Additionally,
we set L0 = 1 and η = 2 for Strategy 2. We stopped the execution of Algorithm 1 at
pk declaring convergence if

‖f ′(pk)‖∞ ≤ 10−5.

Since, by (21) and (27), gradf(pk) = 0 if only if f ′(pk) = 0, this is a reasonable stopping
criterion. The maximum number of allowed iterations was set to 1000. Codes are written
in Matlab and are freely available at https://orizon.mat.ufg.br/.

5.1 Academic problems

We begin the numerical experiments by testing the Riemannian gradient method on
the problems of minimizing the functions of the examples in Sections 4. We call these
problems by Problem 1, 2, 3 and 4, respectively.

5.1.1 Academic problems in the positive orthant

In this section, we compare the performance of the Riemannian with the Euclidian
gradient methods on Problems 1 and 2. We considered Algorithm 1 with Strategy 3
and implemented the Euclidian gradient method also using the Armijo rule with the
same algorithmic parameters. It is worth mentioning that, in principle, the Euclidian
method can generate iterates out of the positive orthant. Thus, in order to keep the
feasibility, in each iteration we simply determine the maximum step size to remain
within the feasible set and perform a convenient linear search by shrinking the step size
until the Armijo condition is satisfied.

We generated several instances of Problems 1 and 2 by considering functions (23)
and (25), respectively, with n = 100 and different parameters. In all cases, for each
i = 1, . . . , n, we set parameters ai with the same value. Equivalently for parameters bi,
ci, and di.

Problem 1. First, parameters ai, bi, and di were randomly generated between 0 and
10. Then, in order to guarantee that ci > ai, we randomly generated parameters ci
between 1.1ai and 5.0ai. All problems were solved 100 times using starting points from
a uniform random distribution inside the box [0, 20]n. For each method, Table 1 informs
the percentage of runs that has reached a critical point (%), the average numbers of
iterations (it) and functions evaluations (nfev) of the successful runs.

As can be seen, the Riemannian gradient method is clearly more efficient than the Eu-
clidian gradient method in this set of problems. In all 18 problem instances considered,
the Riemannian version required fewer iterations and function evaluations. Overall, on
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Riemannian Euclidian
Gradient method Gradient method

# ai bi ci di % it nfev % it nfev

1 3.77 8.17 11.10 5.92 100.0 14.1 85.5 100.0 72.3 255.4

2 7.88 5.49 17.95 3.01 100.0 21.1 148.5 100.0 56.9 208.2

3 8.96 1.72 42.11 7.18 100.0 17.0 137.1 100.0 56.0 203.3

4 3.14 1.30 13.77 9.32 100.0 9.0 55.0 100.0 76.3 232.6

5 5.49 1.72 6.82 0.83 100.0 10.0 51.0 100.0 65.1 227.3

6 4.59 4.25 13.31 8.11 100.0 11.0 67.0 100.0 71.2 228.5

7 2.10 3.80 4.31 0.10 100.0 21.2 107.0 100.0 54.1 184.7

8 8.69 7.47 28.54 4.77 100.0 8.0 57.1 100.0 61.1 255.3

9 9.85 2.24 44.60 0.57 100.0 16.0 129.0 100.0 52.0 201.9

10 2.60 1.71 9.65 2.07 100.0 18.0 109.2 100.0 57.1 185.6

11 6.03 1.40 13.57 8.94 100.0 9.0 55.0 100.0 79.2 238.1

12 5.71 4.99 9.37 3.22 100.0 20.1 121.7 100.0 59.2 191.2

13 1.38 6.07 6.78 4.86 100.0 9.0 46.1 100.0 73.5 219.6

14 2.22 0.24 5.58 9.04 100.0 14.0 71.0 100.0 141.8 408.6

15 4.19 6.24 7.73 9.48 100.0 7.0 36.0 100.0 105.8 315.4

16 8.27 2.42 10.96 3.02 100.0 17.0 103.0 100.0 66.3 237.4

17 4.72 0.64 19.35 0.62 100.0 18.0 127.0 100.0 55.6 204.1

18 2.99 1.63 11.15 6.44 100.0 14.0 85.1 100.0 75.8 250.8

Table 1: Parameters of function (23) as well as the performance of the Riemannian and
Euclidian gradient methods.

average, the Riemannian gradient method performed 19.8% of iterations and 37.5% of
function evaluations required by the Euclidian method.

Figure 1 (a) shows a typical behavior of the methods on Problem 1. This case
corresponds to n = 2, ai = 1, bi = ci = di = 2 for i = 1, 2, and the initial point
p0 = [5, 1]T . The stopping criterion was satisfied with 4 and 14 iterations for the
Riemannian and Euclidian gradient methods, respectively. The zig-zag path of the
Euclidian gradient method can be seen clearly. In contrast, the Riemannian method
rapidly approaches the minimizer. In Figure 1 (b), the sup-norm of the euclidean
gradient is displayed as a function of the iteration number, which clearly shows the
distinction between the methods. While the Euclidian method required 10 iterations for
‖f ′(pk)‖∞ to reach order of 10−2, the Riemannian algorihtm required only 2 iterations.

Problem 2. We tested the algorithms on a set of 100 instances of Problem 2. We
randomly generated parameters ai and bi between 0 and 10, parameters di between 2
and 10, and a constant µi belonging to the interval (0, 1). Then, we set ci = µiaidi,
fulfilling the conditions ci < aidi and di ≥ 2, for all i = 1, . . . , n. As for Problem 1, each
instance was solved 100 times using starting points from a uniform random distribution
inside the box [0, 20]n. The results are given in the following form: for each problem
instance, Figure 2 (a) informs the average number of iterations, and Figure 2 (b) informs
the average number of functions evaluations. As a matter of aesthetics, the graphs are
independent and were organized in an increasing way.
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Figure 1: (a) A typical behavior of the Riemannian and the Euclidian gradient methods
for which the zigzag pattern appears for the Euclidian algorihtm. (b) Sup-norm of the
euclidean gradients per iteration.
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Figure 2: (a) Average number of iterations and (b) average number of functions eval-
uations required for each of 100 instances of Problem 2 for the Riemannian and the
Euclidian gradient methods.

Figure 2 shows that the Riemannian gradient method required fewer iterations and
function evaluations than the Euclidian gradient method in all problem instances. In
terms of percentages, on average, the Riemannian algorihtm performed 9.7% and 5.6% of
the number of iterations and functions evaluations required by the Euclidian algorithm,
respectively.

The results of this section allow us to conclude that there are problems for which the
introduction of a suitable metric makes it possible to explore its geometric and alge-
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braic structures, resulting in a large reduction in the computational cost of obtaining
its solution. In fact, by introducing a suitable Riemannian metric, a constrained opti-
mization problem with non-convex objective function and non-Lipschitz gradient can be
transformed into an optimization problem with convex objective function and Lipschitz
gradient.

5.1.2 Academic problems in the SPD matrices cone

In this section we illustrate the practical applicability of the Riemannian gradient
method for minimizing convex functions onto the cone of symmetric positive definite
matrices. We used Problem 3 to test the Riemannian gradient method varying the
dimension and the domain of the starting points, while Problem 4 was used to compare
the different linear search strategies. For Problem 3, we adopted Strategy 3.

Problem 3. We set a = b = 1 in function (29). In the first set of tests, we assigned
the following values to the dimension: n = 10, 20, 50, 100, and 150. For each specific
value of n, we run the Riemannian gradient method 100 times using random starting
points with eigenvalues belonging to the interval (0, 20). In the second set of tests, we
set n = 50 and varied the interval that contains the eigenvalues of the starting points.
Again, for each combination, the method was run 100 times using random starting
points. The results for the first and second set of tests are in Table 2 (a) and (b),
respectively. First column of Table 2 (a) informs the considered dimension, while the
first column of Table 2 (b) contains the interval for the eigenvalues of the starting points.
Columns “%”, “it”, and “nfev” are as in Table 1.

n % it nfev

10 100.0 18.2 110.2

20 100.0 19.9 140.4

50 100.0 14.2 114.9

100 100.0 15.2 138.2

150 100.0 27.1 271.5

(a)

λi(X0) % it nfev

(0 10) 98.0 14.2 114.6

(0 100) 99.0 14.6 117.6

(0 500) 99.0 15.0 121.0

(0 1000) 100.0 15.1 121.6

(0 2000) 100.0 15.2 122.4

(b)

Table 2: Performance of the Riemannian gradient method in Problem 3 varying: (a)
the dimension; (b) the domain of the starting points.

The highlight of Table 2 is that the Riemannian gradient method was robust with
respect to the dimension and to the choice of the starting points. Furthermore, except
for the case where n = 150, it was not very sensitive to the variation of the dimension
or to the domain of the starting points.

For comparative purposes, we implemented and tested the Euclidean method in Prob-
lem 3. For n = 5 (respectively, n = 10), 15 (respectively, 96) out of the 100 considered
starting points resulted in an iteration history that reached the maximum number of
iterations allowed. Finally, we observe that, by using (35) and the function (29), the
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Riemannian and the Euclidian gradient iteration becomes, respectively,

Xk+1 =
[

det(Xk)
2aeb

]−tk
Xk k = 0, 1, . . . ,

and
Xk+1 = Xk − tk [2a ln(det(Xk))− b]X−1

k , k = 0, 1, . . . ,

where the steep-size tk > 0 is computed according to the adopted line search strategy.
Thus, we can see that the Riemannian gradient iterations are simpler and have a lower
computational cost to be performed.

Problem 4. We set n = 100, a = b1 = b2 = 1 and c = 0.5 in function (33), fulfilling
c < ab1. We tested the Riemannian gradient method with each of the three strategies
by running each combination 100 times using random starting points with eigenvalues
belonging to the interval (0, 20). The results in Table 3 are given as in the previous
tables.

Strategy 1 Strategy 2 Strategy 3

% it nfev % it nfev % it nfev

100.0 452.5 453.5 99.0 15.3 21.3 100.0 15.3 70.9

Table 3: Performance of the Riemannian gradient method with the different line search
strategies.

For Strategy 1, since the Lipschitz gradient constant satisfies L < ab21n, we used the
Lipschitz stepsize tk = 1/(ab21n) < 1/L, for all k = 1, 2, . . .. Overall, as can be seen in
Table 3, the Riemannian method with Lipschitz stepsizes is clearly the least efficient,
requiring an exceedingly large number of iterations. In this case the method performs
one function evaluation per iteration. The poor performance is due to the short stepsizes
in all iterations. On the other hand, we point out that the efficiency of the Riemannian
gradient method with Lipschitz stepsize is closely related to an accurate estimate of the
Lipschitz gradient constant.

Remark 2 helps to explain the results of Table 3 for Strategies 2 and 3. Regardless
of the starting point, Algorithm 1 with both strategies performed exactly the same
number of iterations. Additionally, in a typical run, the stepsizes were non-increasing.
Therefore, overall, by Remark 2, the adaptive scheme in Strategy 2 required fewer
function evaluations per iteration then the Armijo line search of Strategy 3.

Despite the simple linesearch mechanisms employed here, the numerical results indi-
cate that, as it has to be expected, the efficient implementation of linear search algo-
rithms can significantly improve the Riemannian gradient method.

5.2 The Riemannian center of mass

The Riemannian center of mass and so called Karcher mean is a specific instance of a
geometric mean for points in Riemannian manifolds. It has several practical applications
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and has appeared in many papers, we refer the reader to [7, 18, 33] and the references
therein.

5.2.1 The center of mass on the SPD matrices cone

Denotes by ‖·‖F the Frobenius norm associated to the inner product 〈U, V 〉F := tr(V U),
for all U, V ∈ P

n
++. Let d be the Riemannian distance defined inM := (Pn

++, 〈·, ·〉), i.e.,

d(A,X) =
∥

∥

∥ln
(

X−1/2AX−1/2
)∥

∥

∥

F
, A,X ∈ P

n
++, (36)

see [27]. The Karcher mean of m positive definite matrices A1, . . . , Am ∈ P
n
++ is the

unique solution of the optimization problem

min







f(x) :=
1

2

m
∑

j=1

∥

∥

∥ln
(

X−1/2AiX
−1/2

)∥

∥

∥

2

F
: X ∈ P

n
++







. (37)

Indeed, f is a strong convex function in M due to the square of the distance (36) be
strongly convex inM, see for example [12]. Since f is a strong convex function, all sub-
level sets of f are bounded. As a consequence, f has Riemannian Lipschitz gradient on
each sublevel set of f . Finally, we remark that (36) is not an Euclidean convex function.
By [18] and using (27), we conclude that

grad f(X) =

m
∑

i=1

X1/2 ln
(

X1/2A−1
i X1/2

)

X1/2. (38)

Thus, by using (35) and (38), the Riemannian gradient iteration for solving (37) is

Xk+1 = X
1/2
k e

−tk
∑n

i=1
ln
(

X
1/2
k A−1

i X
1/2
k

)

X
1/2
k , k = 0, 1, . . . .

see, for example, [39].

In [2], Afsari et al. studied the convergence of the Riemannian gradient method with
a Lipschitz stepsize for the center of mass problem in a manifold with curvature bounded
from above and below. The stepsize is defined from a local estimate for the Lipschitz
gradient constant. Consider problem (37), and let r > 0 be such that A1, . . . , Am ⊂
B(X0, r), where B(X0, r) is the open ball with center X0 and radius r. They showed
that it is possible to achieve convergence with tk = t for all k = 0, 1, . . ., where t ∈ (0, 2t̄)
and

t̄ =
1

4r coth(4r)
. (39)

Recently, Bento et al. [5] extended the convergence of the gradient method to the
Hadamard setting for continuously differentiable functions which satisfy the Kurdyka-
Lojasiewicz inequality. In particular, they proposed a Riemannian gradient method
with Armijo line search for problem (37). Basically, their proposal coincides with Algo-
rithm 1 with Strategy 3.
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We tested Algorithm 1 with each strategy on a set of 200 randomly generated prob-
lems (37) with n = 200 and m = 5, 10, 20 or 50. For each value of m we considered
50 problem instances. Let us clarify how a matrix A was defined. First, we randomly
generated an orthonormal matrix U and a diagonal matrix D with elements belonging
to (0, 100). Then, we set A = UDUT ensuring that A ∈ P

n
++. Given a problem instance

with data A1, . . . , Am ∈ P
n
++, we defined the starting point X0 as the explog geometric

mean given by

X0 := exp

(

1

m

m
∑

i=1

ln(Ai)

)

,

see, for example, [3]. For Strategy 1 the Lipschitz stepsize t was defined according to [2].
We set t = 1.99t̄, where t̄ is given by (39). Radius r can be calculated by computing
the maximum distance of X0 to each matrix Ai, i = 1, . . . ,m. Numerical comparisons
are reported in Figure 3 using performance profiles [14]. We adopted the number of
functions evaluations and CPU time as performance measurements.
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Figure 3: Performance profile comparing the Riemannian gradient method with differ-
ent line search strategies using as performance measurement: (a) number of function
evaluations; (b) CPU time.

As can be seen, Algorithm 1 with Strategy 2 is the most efficient on the chosen set of
test problems. Efficiencies of the methods are 25.0% (respectively, 24.0%), 75.0% (re-
spectively, 76.0%), and 0.0% (respectively, 0.0%) respectively, considering the number of
function evaluations (respectively, CPU time) as performance measurement. Efficiency
of Algorithm 1 with Strategy 3 is 0.0% because Strategy 2 outperformed Strategy 3 in
all considered instances. Curiously, m = 20 in all problems for which Strategy 1 was the
most efficient. Robustness are 99.5%, 100.0%, and 100.0% respectively, see Table 5.2.1.
Only in a problem instance Algorithm 1 with Strategy 1 reached the maximum number
of iterations allowed.

The similarity of the Figures 3 (a) and (b) suggests that the number of function
evaluations is a good indicator of performance. Indeed, evaluating function f is compu-
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Efficiency (nfev – CPU time) (%) Robustness (%)

Strategy 1 25.0 – 24.0 99.5

Strategy 2 75.0 – 76.0 100.0

Strategy 3 0.0 – 0.0 100.0

Table 4:

tationally expensive, since it involves inverting X and computing m matrix logarithms.
This implies that linear search schemes must be carefully formulated for the center of
mass problem. Overall, the naive implementation of the Armijo line search in Strategy 3
was overcome by the method with Lipschitz stepsize. On the other hand, the results
indicate that the adaptive search proposed in Strategy 2 is a promising scheme worth
to consider.

5.2.2 The center of mass on the positive orthant

Let M := (Rn
++, G) be the Riemannian manifolds defined in Section 4.1 and d the

Riemannian distance associated. Hence, we have

d2(y, x) =
n
∑

i=1

ln2
(

yi
xi

)

, y = (y1, . . . , yn), x = (x1, . . . , xn) ∈ R
n
++. (40)

The center of mass of m points w1, . . . , wm ∈ R
n
++ is the unique solution of the opti-

mization problem

min







f(x) :=
1

2

m
∑

j=1

d2(wj , x) : x ∈ R
n
++







. (41)

Since the square of the distance (40) is strongly convex inM, then f is a strong convex
function inM, see for example [12]. By using (21), we conclude that

grad f(x) =



x1

m
∑

j=1

ln

(

x1

wj
1

)

, . . . , xn

m
∑

j=1

ln

(

xn

wj
n

)



 ,

where x = (x1, . . . , xn) ∈ R
n
++. Problem (41) has closed solution x∗ = (x∗1, . . . , x

∗
n) ∈

R
n
++ given by

x∗i =





m
∏

j=1

wj
i





1

m

,

for all i = 1, . . . ,m. Indeed, direct calculations show that grad f(x∗) = 0.

Due to the closed-form solution, we use problem (41) to illustrate the results on
iteration-complexity bound of Section 3.2. We consider the Riemannian gradient algo-
rithm with Lipschitz stepsize. Note that the set of positive definite diagonal matrices
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can be identified with R
n
++. Thus, problem (41) can be seen as a particular case of prob-

lem (37) for positive definite diagonal matrices. Given w1, . . . , wm ∈ R
n
++ and defining

Ai = diag(wi) for all i = 1, . . . ,m, we defined the Lipschitz stepsize as in Section 5.2.2.

We set n = 100, m = 5 and randomly generated the elements of w1, . . . , wm and initial
point x0 from a uniform distribution on (0, 100). The computed Lipschitz stepsize was
set to t ≈ 0.06. The Riemannian gradient algorithm stopped declaring “solution was
found” with 30 iterations. Figures 4 (a) and (b) report the function values of the left
and right hand sides of inequalities (16) and (17), respectively.
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Figure 4: Iteration-complexity bound for the Riemannian gradient method with Lip-
schitz stepsize related to: (a) objective function value – Theorem 4 ; (b) norm of the
Riemannian gradient – Corollary 1.

As can be seen in Figure 4, the iteration-complexity bounds related to the objective
function value and the norm of the Riemannian gradient are always respected, see
Theorem 4 and Corollary 1. This illustrate the practical reliability of our iteration-
complexity results.

6 Conclusions

In this paper, the behavior of the gradient method for convex optimization problems
on Riemannian manifolds with lower bounded sectional curvature were analyzed. We
considered three different finite procedures for determining the stepsize, namely, con-
stant stepsize, adaptive procedure and Armijo’s procedure. As far as we know, the
full convergence of the sequence generated by this method with these three strate-
gies is a new contribution of this paper, which adds important results in the available
convergence theory. Besides, under mild assumptions, we showed that the iteration-
complexity bound related to the method is O (1/ǫ) for finding a point pN ∈ M such
that f(pN )− f∗ < ǫ. The numerical experiments provided illustrate the effectiveness of
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the method in this new setting and certify the conclusions suggested by the theoretical
results. Despite the simple linesearch mechanisms employed here, the numerical results
indicate that, as it has to be expected, the efficient implementation of linear search
algorithms can significantly improve the Riemannian gradient method. In particular,
the effectiveness of the method to find the Riemannian mass center and the so-called
Karcher’s mean is presented, indicating that the adaptive procedure is a promising
scheme that is worth considering. We expect that this paper will contribute to the
development of studies of optimization methods in the Riemannian setting. Finally, it
would be interesting to analyze stochastic versions of the the gradient method by using
adaptive procedures.
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the study of monotone vector fields. Acta Math. Hungar., 94(4):307–320, 2002.

[13] M. P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications.
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