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Abstract. We consider the discretization of time-space diffusion equations with fractional derivatives in
space and either one-dimensional (1D) or 2D spatial domains. The use of an implicit Euler scheme in time and
finite differences or finite elements in space leads to a sequence of dense large scale linear systems describing the
behavior of the solution over a time interval. We prove that the coefficient matrices arising in the 1D context are
rank structured and can be efficiently represented using hierarchical formats (H-matrices, HODLR). Quantitative
estimates for the rank of the off-diagonal blocks of these matrices are presented. We analyze the use of HODLR
arithmetic for solving the 1D case and we compare this strategy with existing methods that exploit the Toeplitz-
like structure to precondition the GMRES iteration. The numerical tests demonstrate the convenience of the
HODLR format when at least a reasonably low number of time steps is needed. Finally, we explain how these
properties can be leveraged to design fast solvers for problems with 2D spatial domains that can be reformulated
as matrix equations. The experiments show that the approach based on the use of rank-structured arithmetic is
particularly effective and outperforms current state of the art techniques.
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1. Introduction. Fractional Diffusion Equations (FDEs) are a generalization of the clas-
sical partial diffusion equations obtained by replacing a standard derivative with a fractional
one. In the last decade, FDEs have gained a lot of attention since they allow to model non-local
behavior, e.g., enhanced diffusivity, which can be regarded as a realistic representation of specific
physical phenomena appearing in several applications. In finance, this is used to take long time
correlations into consideration [40]; in image processing, the use of fractional anisotropic diffusion
allows to accurately recover images from their corrupted or noisy version — without incurring
the risks of over-regularizing the solution and thus losing significant part of the image such as
the edges [2]. The applications in fusion plasma physics concern Tokamak reactors (like ITER
currently under construction in the South of France [1]) which are magnetic toroidal confinement
devices aiming to harvest energy from the fusion of small atomic nuclei, typically Deuterium and
Tritium, heated to the plasma state. Recent experimental and theoretical evidence indicates
that transport in Tokamak reactors deviates from the standard diffusion paradigm. One of the
proposed models that incorporates in a natural, unified way, the unexpected anomalous diffusion
phenomena is based on the use of fractional derivative operators [10]. The development of fast
numerical tools for solving the resulting equations is then a key requirement for controlled ther-
monuclear fusion, which offers the possibility of clean, sustainable, and almost limitless energy.

Let us briefly recall how a standard diffusion equation can be “fractionalized”, by taking

as an example the parabolic diffusion equation ∂u(x,t)
∂t = d(x, t)∂

2u(x,t)
∂x2 , where d(x, t) is the

diffusion coefficient. Replacing the derivative in time with a fractional one leads to a time-
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fractional diffusion equation; in this case, the fractional derivative order is chosen between 0
and 1. On the other hand, we can consider a space-fractional diffusion equation by introducing
a fractional derivative in space, with order between 1 and 2. The two approaches (which can
also be combined), lead to similar computational issues. In this paper, we focus on the space
fractional initial-boundary value problem

∂u(x,t)
∂t = d+(x, t)∂

αu(x,t)
∂+xα

+ d−(x, t)∂
αu(x,t)
∂−xα

+ f(x, t), (x, t) ∈ (L,R)× (0, T ],

u(x, t) = u(x, t) = 0, (x, t) ∈ R\(L,R)× [0, T ],
u(x, 0) = u0(x), x ∈ [L,R],

(1.1)

where α ∈ (1, 2) is the fractional derivative order, f(x, t) is the source term, and the nonnegative
functions d±(x, t) are the diffusion coefficients. Three of the most famous definitions of the right-
handed (–) and the left-handed (+) fractional derivatives in (1.1) are due to Riemann–Liouville,
Caputo, and Grünwald-Letnikov. We refer the reader to Section 2 for a detailed discussion.

As suggested in [11], in order to guarantee the well-posedness of a space-FDE problem, the
value of the solution on R\(L,R) must be properly accounted for. In this view, in (1.1) we fix
the so-called absorbing boundary conditions, that is we assume that the particles are “killed”
whenever they leave the domain (L,R).

Analogously, one can generalize high dimensional differential operators by applying (possibly
different order) fractional derivatives in each coordinate direction. More explicitly, we consider
the 2D extension of (1.1)

∂u(x, y, , t)

∂t
= d1,+(x, t)

∂α1u(x, y, t)

∂+xα1
+ d1,−(x, t)

∂α1u(x, y, t)

∂−xα1

+ d2,+(y, t)
∂α2u(x, y, t)

∂+yα2
+ d2,−(y, t)

∂α2u(x, y, t)

∂−yα2
+ f(x, y, t).

(1.2)

with absorbing boundary conditions. Notice that the diffusion coefficients only depend on time
and on the variable of the corresponding differential operator. This choice makes it easier to
treat a 2D FDE problem as a matrix equation and to design fast numerical procedures for it (see
Section 4).

1.1. Existing numerical methods for FDE problems. The non-local nature of frac-
tional differential operators causes the absence of sparsity in the coefficient matrix of the corre-
sponding discretized problem. This makes FDEs computationally more demanding than PDEs.

Various numerical discretization methods for FDE problems, e.g., finite differences, finite
volumes, finite elements have been the subject of many studies [15,34,45]. In the case of regular
spatial domains, the discretization matrices often inherit a Toeplitz-like structure from the space-
invariant property of the underlying operators. Iterative schemes such as multigrid and precon-
ditioned Krylov methods — able to exploit this structure — can be found in [12,26,29,35–38,50].
For both one- and two-dimensional FDE problems, we mention the structure preserving precon-
ditioning and the algebraic multigrid methods presented in [12,35]. Both strategies are based on
the spectral analysis of the coefficient matrices via their spectral symbol. The latter is a function
which provides a compact spectral description of the discretization matrices whose computation
relies on the theory of Generalized Locally Toeplitz (GLT) matrix-sequences [18].

Only very recently, off-diagonal rank structures have been recognized in finite element dis-
cretizations [52]. Indeed, Zhao et al. proposed the use of hierarchical matrices for storing the
stiffness matrix combined with geometric multigrid (GMG) for solving the linear system.

It is often the case that 2D problems with piecewise smooth right-hand sides have piecewise
smooth solutions (see, e.g., [9]). A possible way to uncover and leverage this property is to
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rephrase the linear system in matrix equation form. This is done for instance in [8], where
the authors use the Toeplitz-like structure of the involved one-dimensional FDE matrices in
combination with the extended Krylov subspace method to deal with fine discretizations.

1.2. Motivation and contribution. In this paper, we aim to build a framework for an-
alyzing the low-rank properties of one-dimensional FDE discretizations and to design fast al-
gorithms for solving two-dimensional FDEs written in a matrix equation form. In detail, the
piecewise smooth property of the right-hand side implies the low-rank structure in the solution
of the matrix equation and enables the use of Krylov subspace methods [8]. This, combined with
the technology of hierarchically rank-structured matrices such as H-matrices and HODLR [24],
yields a linear-polylogarithmic computational complexity in the size of the edge of the mesh. For
instance, for a N ×N grid we get a linear polylogarithmic cost in N , in contrast to O(N2 logN)
needed by a multigrid approach or a preconditioned iterative method applied to linear systems
with dense Toeplitz coefficient matrices. Similarly, the storage consumption is reduced from
O(N2) to O(N logN). The numerical experiments demonstrate that our approach, based on the
HODLR format, outperforms the one proposed in [8], although the asymptotic cost is compa-
rable. From the theoretical side, we provide an analysis of the rank structure in the matrices
coming from the discretization of fractional differential operators. Our main results claim that
the off-diagonal blocks in these matrices have numerical rank O(log(ε−1) log(N)) where ε is
the truncation threshold. We highlight that some of these results do not rely on the Toeplitz
structure and apply to more general cases, e.g., stiffness matrices of finite element methods on
non-uniform meshes.

The use of hierarchical matrices for finite element discretization of FDEs has already been
explored in the literature. For instance, the point of view in [52] is similar to the one we
take in Section 3.3; however, we wish to highlight two main differences with our contribution.
First, Zhao et al. considered the adaptive geometrically balanced clustering [21], in place of the
HODLR partitioning. As mentioned in the Section 3.4.3, there is only little difference between the
off-diagonal ranks of the two partitionings, hence HODLR arithmetic turns out to be preferable
because it reduces the storage consumption. Second, they propose the use of geometric multigrid
(GMG) for solving linear systems with the stiffness matrix. In the case of multiple time steps
and for generating the extended Krylov subspace, precomputing the LU factorization is more
convenient, as we discuss in Section 5. To the best of our knowledge, the rank structure in finite
difference discretizations of fractional differential operators has not been previously noticed.

The paper is organized as follows; in Section 2 we recall different definitions of fractional
derivatives and the discretizations proposed in the literature. Section 3 is dedicated to the study
of the rank structure arising in the discretizations. More specifically, in Section 3.1 a preliminary
qualitative analysis is supported by the GLT theory, providing a decomposition of each off-
diagonal block as the sum of a low-rank plus a small-norm term. Then, a quantitative analysis
is performed in Sections 3.2 and 3.3, with different techniques stemming from the framework
of structured matrices. In Section 3.4 we introduce the HODLR format and we discuss how
to efficiently construct representations of the matrices of interest. Section 3.5 briefly explains
how to combine these ingredients to solve the 1D problem. In Section 4 we reformulate the
2D problem as a Sylvester matrix equation with structured coefficients and we illustrate a fast
solver. The performances of our approach are tested and compared in Section 5. Conclusion and
future outlook are given in Section 6.

2. Fractional derivatives and their discretizations.

2.1. Definitions of fractional derivatives. A common definition of fractional derivatives
is given by the Riemann–Liouville formula. For a given function with absolutely continuous first
derivative on [L,R], the right-handed and left-handed Riemann–Liouville fractional derivatives
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of order α are defined by

∂αu(x, t)

∂RL+ xα
=

1

Γ(n− α)

∂n

∂xn

∫ x

L

u(ξ, t)

(x− ξ)α+1−n dξ,

∂αu(x, t)

∂RL− xα
=

(−1)n

Γ(n− α)

∂n

∂xn

∫ R

x

u(ξ, t)

(ξ − x)α+1−n dξ,

(2.1)

where n is the integer such that n − 1 < α 6 n and Γ(·) is the Euler gamma function. Note
that the left–handed fractional derivative of the function u(x, t) computed at x depends on all
function values to the left of x, while the right–handed fractional derivative depends on the ones
to the right.

When α = m, with m ∈ N, then (2.1) reduces to the standard integer derivatives, i.e.,

∂mu(x, t)

∂RL+ xm
=
∂mu(x, t)

∂xm
,

∂mu(x, t)

∂RL− xm
= (−1)m

∂mu(x, t)

∂xm
.

An alternative definition is based on the Grünwald–Letnikov formulas:

∂αu(x, t)

∂GL+ xα
= lim

∆x→0+

1

∆xα

b(x−L)/∆xc∑
k=0

g
(α)
k u(x− k∆x, t),

∂αu(x, t)

∂GL− xα
= lim

∆x→0+

1

∆xα

b(R−x)/∆xc∑
k=0

g
(α)
k u(x+ k∆x, t),

(2.2)

where b·c is the floor function, g
(α)
k are the alternating fractional binomial coefficients

g
(α)
k = (−1)k

(
α

k

)
=

(−1)k

k!
α(α− 1) · · · (α− k + 1) k = 1, 2, . . .

and g
(α)
0 = 1. Formula (2.2) can be seen as an extension of the definition of ordinary derivatives

via limit of the difference quotient.
Finally, another common definition of fractional derivative was proposed by Caputo:

∂αu(x, t)

∂C+x
α

=
1

Γ(n− α)

∫ x

L

∂n

∂ξnu(ξ, t)

(x− ξ)α+1−n dξ,

∂αu(x, t)

∂C−x
α

=
(−1)n

Γ(n− α)

∫ R

x

∂n

∂ξnu(ξ, t)

(ξ − x)α+1−n dξ.

(2.3)

Note that (2.3) requires the nth derivative of u(x, t) to be absolutely integrable. Higher
regularity of the solution is typically imposed in time rather than in space; as a consequence, the
Caputo formulation is mainly used for fractional derivatives in time, while Riemann–Liouville’s
is preferred for fractional derivatives in space. The use of Caputo’s derivative provides some
advantages in the treatment of boundary conditions when applying the Laplace transform method
(see [39, Chapter 2.8]).

The various definitions are equivalent only if u(x, t) is sufficiently regular and/or vanishes
with all its derivatives on the boundary. In detail, it holds that:

• if the nth space derivative of u(x, t) is continuous on [L,R], then

∂αu(x, t)

∂RL+ xα
=
∂αu(x, t)

∂GL+ xα
,

∂αu(x, t)

∂RL− xα
=
∂αu(x, t)

∂GL− xα
.
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• if ∂`

∂x`
u(L, t) = ∂`

∂x`
u(R, t) = 0 for all ` = 0, 1, . . . , n− 1, then

∂αu(x, t)

∂RL+ xα
=
∂αu(x, t)

∂C+x
α

,
∂αu(x, t)

∂RL− xα
=
∂αu(x, t)

∂C−x
α

;

In this work we are concerned with space fractional derivatives so we focus on the Riemann–
Liouville and the Grünwald–Letnikov formulations. However, the analysis of the structure in the
discretizations can be generalized with minor adjustments to the Caputo case.

2.2. Discretizations of fractional derivatives. We consider two different discretization
schemes for the FDE problem (1.1): finite differences and finite elements. The first scheme
relies on the Grünwald–Letnikov formulation while the second is derived adopting the Riemann–
Liouville definition.

2.2.1. Finite difference scheme using Grünwald-Letnikov formulas. As suggested
in [34], in order to obtain a consistent and unconditionally stable finite difference scheme for (1.1),
we use a shifted version of the Grünwald–Letnikov fractional derivatives obtained replacing k∆x
with (k − 1)∆x in (2.2).

Let us fix two positive integers N,M , and define the following partition of [L,R]× [0, T ]:

xi = L+ i∆x, ∆x =
(R− L)

N + 1
, i = 0, . . . , N + 1,(2.4)

tm = m∆t, ∆t =
T

M + 1
, m = 0, . . . ,M + 1.

The idea in [34] is to combine a discretization in time of equation (1.1) by an implicit Eu-
ler method with a first order discretization in space of the fractional derivatives by a shifted
Grünwald-Letnikov estimate, i.e.,

u(xi, tm)− u(xi, tm−1)

∆t
= d

(m)
+,i

∂αu(xi, tm)

∂GL+ xα
+ d

(m)
−,i

∂αu(xi, tm)

∂GL− xα
+ f

(m)
i +O(∆t),

where d
(m)
±,i = d±(xi, tm), f

(m)
i := f(xi, tm) and

∂αu(xi, tm)

∂GL+ xα
=

1

∆xα

i+1∑
k=0

g
(α)
k u(xi−k+1, tm) +O(∆x),

∂αu(xi, tm)

∂GL− xα
=

1

∆xα

N−i+2∑
k=0

g
(α)
k u(xi+k−1, tm) +O(∆x).

The resulting finite difference approximation scheme is then

u
(m)
i − u(m−1)

i

∆t
=
d

(m)
+,i

∆xα

i+1∑
k=0

g
(α)
k u

(m)
i−k+1 +

d
(m)
−,i

∆xα

N−i+2∑
k=0

g
(α)
k u

(m)
i+k−1 + f

(m)
i ,

where by u
(m)
i we denote a numerical approximation of u(xi, tm). The previous approximation

scheme can be written in matrix form as (see [49])

(2.5) MFD,m
α,N u(m) =

(
I +

∆t

∆xα
(D

(m)
+ Tα,N +D

(m)
− TTα,N )

)
u(m) = u(m−1) + ∆tf (m),
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u(m) = [u
(m)
1 , . . . , u

(m)
N ]T , f (m) = [f

(m)
1 , . . . , f

(m)
N ]T , D

(m)
± = diag(d

(m)
±,1 , . . . , d

(m)
±,N ), I is the iden-

tity matrix of order N and

(2.6) Tα,N = −



g
(α)
1 g

(α)
0 0 · · · 0 0

g
(α)
2 g

(α)
1 g

(α)
0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g
(α)
N−1

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
N g

(α)
N−1 · · · · · · g

(α)
2 g

(α)
1


N×N

is a lower Hessenberg Toeplitz matrix. Note that MFD,m
α,N has a Toeplitz-like structure, in the

sense that it can be expressed as a sum of products between diagonal and dense Toeplitz matrices.
It can be shown thatMFD,m

α,N is strictly diagonally dominant and then non singular (see [34,49]),

for every choice of the parameters m > 0, N > 1, α ∈ (1, 2). Moreover, it holds g
(α)
1 = −α,

g
(α)
0 > g

(α)
2 > g

(α)
3 > · · · > 0 and g

(α)
k = O(k−α−1).

2.2.2. Finite element space discretization. We consider a finite element discretization
for (1.1), using the Riemann–Liouville formulation (2.1). Let B = {ϕ1, . . . , ϕN} be a finite
element basis, consisting of positive functions with compact support that vanish on the boundary.
At each time step t, we replace the true solution u by its finite element approximation u∆x

(2.7) u∆x =

N∑
j=1

uj(t)ϕj(x),

then we formulate a finite element scheme for (1.1). Assuming that the diffusion coefficients do
not depend on t, by means of this formulation we can find the steady-state solution solving the
linear system MFE

α,Nu = f , with

(MFE
α,N )ij = 〈ϕi(x), d+(x)

∂αϕj(x)

∂RL+ xα
+ d−(x)

∂αϕj(x)

∂RL− xα
〉, fi = 〈−v(x), ϕi(x)〉.

By linearity, we can decompose MFE
α,N =MFE,+

α,N +MFE,−
α,N where MFE,+

α,N includes the action of

the left-handed derivative, and MFE,−
α,N the effect of the right-handed one.

The original time-dependent equation (1.1) can be solved by means of a suitable time dis-
cretization (such as the implicit Euler method used in the previous section) combined with the
finite element scheme introduced here (see, e.g., [13,31]). In the time-dependent case, the matrix

associated with the instant tm will be denoted byMFE,m
α,N , and it has the same structure ofMFE

α,N

up to a shift by the mass matrix M :

MFE,m
α,N = M −∆tMFE

α,N , (M)ij = 〈ϕi(x), ϕj(x)〉.

The resulting time stepping scheme can be expressed as follows

MFE,m
α,N u(m) = Mu(m−1) + ∆tf (m).

We refer the reader to [15,41] for more details on the finite element discretization of fractional
problems, including a detailed analysis of the spaces used for the basis functions and convergence
properties.
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3. Rank structure in the 1D case. The aim of this section is to prove that different
formulations of 1D fractional derivatives generate discretizations with similar properties. In
particular, we are interested in showing that off-diagonal blocks in the matrix discretization of
such operators have a low numerical rank. When these “off-diagonal ranks” are exact (and not
just numerical ranks) this structure is sometimes called quasiseparability, or semiseparability
[14, 48], see also Figure 3.1. Here we recall the definition and some basic properties.

Definition 3.1. A matrix A ∈ CN×N is quasiseparable of order k (or quasiseparable of
rank k) if the maximum of the ranks of all its submatrices contained in the strictly upper or
lower part is exactly k.

Fig. 3.1. Pictorial description of the quasiseparable structure; the off-diagonal blocks can be represented as
low-rank outer products.

Lemma 3.2. Let A,B ∈ CN×N be quasiseparable of rank kA and kB, respectively.
1. The quasiseparable rank of both A+B and A ·B is at most kA + kB.
2. If A is invertible then A−1 has quasiseparable rank kA.

In order to perform the analysis of the off-diagonal blocks we need to formalize the concept of
numerical rank. In the rest of the paper, ‖·‖ will indicate the Euclidean norm.

Definition 3.3. We say that a matrix X has ε-rank k, and we write rankε(X) = k, if there
exists δX such that ‖δX‖ 6 ε‖X‖, rank(X + δX) = k and the rank of X + δX ′ is at least k for
any other ‖δX ′‖ 6 ε‖X‖. More formally:

rankε(X) = min
‖δX‖6ε‖X‖

rank(X + δX).

Often we are interested in measuring approximate quasiseparability. We can give a similar
“approximate” definition.

Definition 3.4. We say that a matrix X has ε-qsrank k if for any off-diagonal block Y of
X there exists a perturbation δY such that ‖δY ‖ 6 ε‖X‖ and Y + δY has rank (at most) k.
More formally:

qsrankε(X) = max
Y ∈Off(X)

min
‖δY ‖6ε‖X‖

rank(Y + δY ),

where Off(X) is the set of the off-diagonal blocks of X.

Remark 3.5. As shown in [32], qsrankε(X) = k implies the existence of a “global” per-
turbation δX such that X + δX is quasiseparable of rank k and ‖δX‖ 6 ε

√
N . In addition,

the presence of ‖X‖ in the above definition makes the ε-qsrank invariant under rescaling, i.e.,
qsrankε(A) = qsrankε(θA) for any θ ∈ C \ {0}.

The purpose of the following subsections is to show that the various discretizations of fractional
derivatives provide matrices with small ε-qsrank. The ε-qsrank turns out to grow asymptotically
as O(log(ε−1) log(N)), see Table 3.1 which summarizes our findings.
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Discretization ε-qsrank Reference

Finite differences 2 + 2
⌈

2
π2 log

(
4
πN
)

log
(

32
ε

)⌉
Lem. 3.15, Cor. 3.16

Finite elements k + 2
⌈
log2

(
R−L
δ

)⌉
·
(

1 +
⌈
log2

(
(α+1)·4α+1

ε

)⌉)
Thm. 3.21

Table 3.1
Bounds for the ε-qsrank of different discretizations. For finite elements methods with equispaced basis func-

tions the parameter (R− L)/δ ≈ N , and k is the number of overlapping basis functions (see Definition 3.17).

3.1. Qualitative analysis of the quasiseparable structure through GLT theory.
In the 1D setting the finite difference discretization matrices MFD,m

α,N present a diagonal-times-
Toeplitz structure — see (2.5) — where the diagonal matrices are the discrete counterpart of
the diffusion coefficients and the Toeplitz components come from the fractional derivatives. This
structure falls in the Generalized Locally Toeplitz (GLT) class, an algebra of matrix-sequences
obtained as a closure under some algebraic operations (linear combination, product, inversion,
conjugation) of Toeplitz, diagonal and low-rank plus small-norm matrix-sequences.

In the remaining part of this section we show that the off-diagonal blocks of MFD,m
α,N can

be decomposed as the sum of a low-rank plus a small-norm term. Such a result is obtained
exploiting the properties of some simple GLT sequences, i.e., Toeplitz and Hankel sequences
associated with a function f ∈ L1.

Definition 3.6. Let f ∈ L1([−π, π]) and let {fj}j∈Z be its Fourier coefficients. Then

the sequence of N × N matrices {TN}N∈N with TN = [fi−j ]
N
i,j=1 (resp. {HN}N with HN =

[fi+j−2]Ni,j=1) is called the sequence of Toeplitz (resp. Hankel) matrices generated by f .

The generating function f provides a description of the spectrum of TN , for N large enough in
the sense of the following definition.

Definition 3.7. Let f : [a, b]→ C be a measurable function and let {AN}N∈N be a sequence
of matrices of size N with singular values σj(AN ), j = 1, . . . , N . We say that {AN}N∈N is
distributed as f over [a, b] in the sense of the singular values, and we write {AN}N∈N ∼σ (f, [a, b]),
if

lim
N→∞

1

N

N∑
j=1

F (σj(AN )) =
1

b− a

∫ b

a

F (|f(t)|)dt,(3.1)

for every continuous function F with compact support. In this case, we say that f is the symbol
of {AN}N .

In the special case f ≡ 0, we say that {AN}N∈N is a zero distributed sequence. The above
relation tells us that in presence of a zero distributed sequence the singular values of the Nth
matrix (weakly) cluster around 0. This can be formalized by the following result [18].

Proposition 3.8. Let {AN}N be a matrix sequence. Then {AN}N ∼σ 0 if and only if there
exist two matrix sequences {RN}N and {EN}N such that AN = RN + EN , and

lim
N→∞

rank(RN )

N
= 0, lim

N→∞
‖EN‖ = 0.

For our off-diagonal analysis we need to characterize the symbol of Hankel matrices [16].

Proposition 3.9. If {HN}N is an Hankel sequence generated by f ∈ L1, then {HN}N ∼σ 0.
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Theorem 3.10. Let {TN}N be a sequence of Toeplitz matrices generated by f ∈ L1. Then,

for every off-diagonal block sequence {YN}N of {TN}N with YN ∈ RN̂×M̂ , N̂ , M̂ < N there exist
two sequences {R̂N}N and {ÊN}N such that YN = R̂N + ÊN and

lim
N→∞

rank(R̂N )

N
= 0, lim

N→∞
‖ÊN‖ = 0.

Proof. Consider the following partitioning of TN

TN =

[
T11 T12

T21 T22

]
,

where T11 and T22 are square. Without loss of generality, we assume that the off-diagonal block
YN is contained in T21. Denote by {HN}N the Hankel sequence generated by f , the same function
generating {TN}N , and let J be the counter-identity, with ones on the anti-diagonal and zero
elsewhere. Then, T21J is a submatrix of HN . Notice that HN does not depend on the specific
choice of partitioning. In view of Proposition 3.9 we can write HN = RN + EN , and therefore
T21 is a submatrix of RNJ + ENJ . We denote by R̂N and ÊN these two submatrices; since
rank(R̂N ) 6 rank(RN ) and ‖ÊN‖ 6 ‖EN‖, we have

lim
N→∞

rank(R̂N )

N
= 0, lim

N→∞
‖ÊN‖ = 0.

YN is a subblock of either T21 or T12, so the claim follows.

The above result has an immediate consequence concerning the ε-qsrank of a sequence of
Toeplitz matrices {TN}N , and of {TN+ZN}N , where ZN is any zero distributed matrix sequence.

Corollary 3.11. Let {TN + ZN}N be a sequence of matrices with TN Toeplitz generated
by f ∈ L1, and ZN zero distributed. Then, there exists a sequence of positive numbers εN → 0,
such that

lim
N→∞

qsrankεN (TN + ZN )

N
= 0.

Corollary 3.11 guarantees that the ε-qsrank will grow slower than N for an infinitesimal choice
of truncation εN .

In the finite differences case, the Toeplitz matrix Tα,N for the discretization of the Grünwald-
Letnikov formulas is generated by a function f , which is in L1 as a consequence of the decaying
property of fractional binomial coefficients. Therefore, we expect the matrix MFD,m

α,N in (2.5),
defined by diagonal scaling of Tα,N and its transpose, to have off-diagonal blocks with low
numerical rank.

In case of high-order finite elements with maximum regularity defined on uniform meshes, a
technique similar to the one used in [18, Chapter 10.6] can be employed to prove that the sequence
of the coefficient matrices is a low-rank perturbation of a diagonal-times-Toeplitz sequence — a
structure that falls again under the GLT theory. Corollary 3.11 can then be applied to obtain
that the quasiseparable rank of these discretizations grows slower than N .

3.2. Finite differences discretization. Matrices stemming from finite difference dis-

cretizations have the formMFD
α,N = −∆x−α(D

(m)
+ Tα,N +D

(m)
− TTα,N ) for the steady state scenario

orMFD,m
α,N = I −∆tMFD

α,N in the time dependent case, see (2.5). In order to bound the ε-qsrank

of MFD
α,N ,M

FD,m
α,N we need to look at the off-diagonal blocks of Tα,N . To this aim, we exploit

some recent results on the singular values decay of structured matrices.
Let us begin by recalling a known fact about Cauchy matrices.
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Lemma 3.12 (Theorem A in [17]). Let x,y two real vectors of length N , with ascending and
descending ordered entries, respectively. Moreover, we denote with C(x,y) the Cauchy matrix
defined by

Cij =
1

xi − yj
, i, j = 1, . . . , N.

If C(x,y) is symmetric and xi ∈ [a, b] and yj ∈ [c, d] with a > d, then C(x,y) is positive definite.

We combine the previous result with a technique inspired by [6], to prove that a Hankel ma-
trix built with the binomial coefficients arising in the Grünwald-Letnikov expansion is positive
semidefinite.

Lemma 3.13. Consider the Hankel matrix H defined as

H = (hij), hij = g
(α)
i+j ,

for 1 6 α 6 2. Then, H is positive semidefinite.

Proof. Observe that for k > 2 we can rewrite g
(α)
k as follows:

g
(α)
k =

(−1)k

k!
α(α− 1) . . . (α− k + 1)

=
α(α− 1)

k!
(k − α− 1)(k − α− 2) . . . (2− α)

= α(α− 1)
Γ(k − α)

Γ(k + 1)Γ(2− α)
.

By using the Gauss formula for the gamma function:

Γ(z) = lim
m→∞

m!mz

z(z + 1)(z + 2) . . . (z +m)
, z 6= {0,−1,−2, . . .},

we can rewrite the entries of the matrix H as

g
(α)
k = α(α− 1) lim

m→∞

1

m!m3

m∏
p=0

k + 1 + p

k − α+ p
(2− α+ p).

This implies that the matrix H can be seen as the limit of Hadamard products of Hankel matrices.
Since positive semidefiniteness is preserved by the Hadamard product (Schur product theorem)
and by the limit operation [6], if the Hadamard products

H0 ◦ . . . ◦Hm, (Hp)ij =
i+ j + 1 + p

i+ j − α+ p

are positive semidefinite for every m then H is also positive semidefinite. Notice that we can
write

(Hp)ij =
i+ j + 1 + p

i+ j − α+ p
= 1 +

α+ 1

i+ j − α+ p

that can be rephrased in matrix form as follows:

Hp = eeT + (α+ 1) · C(x,−x), x =

 1
...
N

+
p− α

2
e, e =

1
...
1

 .
All the components of x are positive, since α < 2. This implies, thanks to Lemma 3.12,

that the Cauchy matrix C(x,−x) is positive definite. Summing it with the positive semidefinite
matrix on the left retains this property, so Hp is positive semidefinite as well.
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The next result ensures that positive semidefinite Hankel matrices are numerically low-rank.

Lemma 3.14 (Theorem 5.5 in [4]). Let H be a positive semidefinite Hankel matrix of size
N . Then, the ε-rank of H is bounded by

rankε(H) 6 2 + 2

⌈
2

π2
log

(
4

π
N

)
log

(
16

ε

)⌉
=: B(N, ε).

We are now ready to state a bound for the ε-qsrank of Tα,N .

Lemma 3.15. Let Tα,N be the lower Hessenberg Toeplitz matrix defined in (2.6). Then, for
every ε > 0, the ε-qsrank of Tα,N is bounded by

qsrankε(Tα,N ) 6 B
(
N,

ε

2

)
= 2 + 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ε

)⌉
.

Proof. We can verify the claim on the lower triangular part, since every off-diagonal block
in the upper one has rank at most 1. Let Y ∈ Cs×t be any lower off-diagonal block of Tα,N .
Without loss of generality we can assume that Y is maximal, i.e. s + t = N . In fact, if
rank(Y + δY ) = k and ‖δY ‖2 6 ε‖Tα,N‖2 then the submatrices of δY verify the analogous claim
for the corresponding submatrices of Y .

The entries of Y are given by Yij = −g(α)
1+i−j+t. Let h := max{s, t}, and the h × h matrix

A defined by Aij := −g(α)
1+i−j+h. It is immediate to verify that Y coincides with either the

last t columns or the first s rows of A. In fact, for every 1 6 i 6 s and 1 6 j 6 t we have

Yij = −g(α)
1+i−j+t = −g(α)

1+i−(j−t+h)+h = Ai,j−t+h. In particular, Y is a submatrix of A and

therefore ‖Y ‖2 6 ‖A‖2. Two possible arrangements of Y and A are pictorially described by the
following figures.

A = Y

A =

Y

In order to estimate ‖A‖2, we perform the following 2× 2 block partitioning:

A =

[
A(11) A(12)

A(21) A(22)

]
, A(ij) ∈ Cmij×nij ,

{
m1j = ni1 = dh2 e
m2j = ni2 = bh2 c

.

Recalling that h is the maximum dimension of the block Y , and therefore h 6 N − 1, this
choice yields mij + nij 6 N . In passing, we remark that this partitioning is not necessarily
conformal to Y , but is performed with the sole purpose of estimating ‖A‖2 by a constant times
the norm of Tα,N . Indeed, we now consider the subdiagonal block T (ij) of Tα,N defined by (using
MATLAB-style notation)

T (ij) := Tα,N (N −mij + 1 : N,N −mij − nij + 1 : N −mij), i, j = 1, 2
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which is of dimension mij × nij and well defined because mij + nij 6 N . These blocks verify

|T (ij)| > |A(ij)| for every i, j = 1, 2, which can be verified using the property g
(α)
j > g

(α)
j+1 > 0

for all j > 2 (see Section 2.2.1). Since both T (ij) and A(ij) are nonpositive, we have for the
monotonicity of the 2 norm that ‖A(ij)‖2 6 ‖T (ij)‖2. In addition, we exploit the relation

‖A‖2 6

∥∥∥∥[A(11)

A(22)

]∥∥∥∥
2

+

∥∥∥∥[ A(12)

A(21)

]∥∥∥∥
2

= max{‖A(11)‖2, ‖A(22)‖2}+ max{‖A(12)‖2, ‖A(21)‖2}

to get ‖A‖2 6 2‖Tα,N‖2.
Let J be the h× h counter-identity; in light of Lemma 3.13, the matrix −AJ is Hankel and

positive semidefinite. Applying Lemma 3.14 to −AJ with truncation ε
2 we obtain rank ε

2
(A) =

rank ε
2
(AJ) 6 B(N, ε2 ). Since Y is a submatrix of A there exists δY such that ‖δY ‖2 6 ε‖Tα,N‖2

and rank(Y + δY ) 6 B(N, ε2 ). So, we conclude that qsrankε(Tα,N ) 6 B(N, ε2 ).

Corollary 3.16. Let MFD,m
α,N = I + ∆t

∆xα (D
(m)
+ Tα,N + D

(m)
− TTα,N ) be defined as in (2.5),

where D
(m)
+ and D

(m)
− contain the samplings of d+(x, tm) and d−(x, tm). Then:

qsrankε(M
FD,m
α,N ) 6 3 + 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ε̂

)⌉
, ε̂ :=

‖MFD,m
α,N ‖

‖Tα,N‖ ·max{‖D(m)
+ ‖, ‖D(m)

− ‖}
ε.

Proof. Clearly, the result is invariant under scaling, so we assume that ∆t
∆xα = 1. Consider

a generic off-diagonal block Y of MFD,m
α,N , and assume without loss of generality that it is in

the lower triangular part. If Y does not intersect the first subdiagonal, then Y is a subblock

of D
(m)
+ Tα,N , and so we know by Lemma 3.15 that there exists a perturbation δY with norm

bounded by ‖δY ‖ 6 ‖D(m)
+ ‖‖Tα,N‖· ε̂ such that Y +δY has rank at most B(N, ε̂2 ). In particular,

δY satisfies ‖δY ‖ 6 ‖MFD,m
α,N ‖ · ε.

Since we have excluded one subdiagonal, for a generic off-diagonal block Y we can find a
perturbation with norm bounded by ‖MFD,m

α,N ‖ · ε such that Y + δY has rank 1 + B(N, ε̂2 ).

3.3. Finite element discretization. We consider the left and right-handed fractional
derivatives of order 1 < α < 2 in Riemann-Liouville form, defined as follows:

∂αu(x, t)

∂RL+ xα
=

1

Γ(2− α)

∂2

∂x2

∫ x

L

u(ξ, t)

(x− ξ)α−1
dξ,

∂αu(x, t)

∂RL− xα
=

1

Γ(2− α)

∂2

∂x2

∫ R

x

u(ξ, t)

(ξ − x)α−1
dξ,

where Γ(·) is the gamma function. From now on we focus on the discretization of the left-handed
derivative; the results for the right-handed one are completely analogous. In this section we
consider the case of constant diffusion coefficients, but as outlined in Remark 3.22 this is not
restrictive.

Let us discretize the operator ∂α

∂RL+
by using a finite element method. More precisely, we

choose a set of basis functions B := {ϕ1, . . . , ϕN}, normalized so that
∫ R
L
ϕi(x) dx = 1. This

leads to the stiffness matrix MFE,+
α,N defined by

(3.2) (MFE,+
α,N )ij = 〈ϕi,

∂αϕj
∂RL+ xα

〉 =
1

Γ(2− α)

∫ R

L

ϕi(x)
∂2

∂x2

∫ x

L

ϕj(y)(x− y)−α+1dy dx.
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−1 10

x0

Fig. 3.2. A pictorial representation of a basis with δ-overlapping 2 for any small enough δ.

A key ingredient in our analysis is requiring a separation property for the elements of the
basis. This is formalized in the following definition.

Definition 3.17. We say that the basis B has δ-overlapping k, with δ > 0, if ∀j1, j2 ∈
{1, . . . , N} such that j2 − j1 > k, there exists x0 ∈ [L,R] such that

supp(ϕj) ⊂ [L, x0 − δ] ; j < j1, supp(ϕj) ⊂ [x0 + δ,R] ; j > j2.

When δ = 0 we simply say that B has overlapping k.

The property of being a basis with δ-overlapping k is described pictorially in Figure 3.2.
Our strategy for proving the presence of the (approximate) quasiseparable structure in

MFE,+
α,N , is to show that any off-diagonal block can be approximated summing a few integrals of

separable functions. In view of the following result, this implies the low-rank structure.

Lemma 3.18. Let (gi)
m
i=1, (hj)

n
j=1 be families of functions on [a, b] and [c, d] and define

Γij(x, y) = gi(x)hj(y) for i = 1, . . . ,m and j = 1, . . . , n. Consider the functional

I(Γij) =

∫ b

a

∫ d

c

Γij(x, y) dx dy

Then, the matrix X = (xij) with xij := I(Γij) ∈ Cm×n has rank 1.

Proof. For a fixed i, j, we can write

xij = I(Γij) =

∫ b

a

∫ d

c

Γij(x, y) dx dy =

∫ b

a

gi(x) dx

∫ d

c

hj(y) dy.

Then X = GHT where the column vectors G,H have entries Gi =
∫ b
a
gi(x) dx for i = 1, . . . ,m

and Hj =
∫ d
c
hj(y) dy for j = 1, . . . , n, respectively.

The only non separable part of (3.2) is the function g(x, y) = (x − y)−α. A separable
approximation of g(x, y) on [a, b]×[c, d] with a > d can be obtained by providing an approximation
for (x′ + y′)−α on [a′, b′]2, where a′ = a−d

2 and b′ = max{b − a, d − c} + a′, by means of the
change of variables x′ = x− (a+ d)/2 and y′ = (a+ d)/2− y. Therefore, we state the following
result, whose proof follows the line of a similar statement for α = 1 in [20]. Analogous estimates,
for other kind of kernel functions can be found in [24, Chapter 4].

Lemma 3.19. Let g(x, y) = (x+y)−α, with α > 0, and consider the square I2, with I = [a, b]
and a > 0. Then, for any ε > 0, there exists a function gε(x, y) satisfying

(3.3) |g(x, y)− gε(x, y)| 6 |g(x, y)|ε, x, y ∈ I,

and gε(x, y) is the sum of at most kε separable functions where

(3.4) kε = 2

⌈
log2

(
b

a

)⌉
·
(

1 +

⌈
log2

(
α · 4α

ε

)⌉)
.
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Proof. Consider the partitioning of the interval I given by I = I0 ∪ . . . ∪ IK where

Ij =

{
[a+ 2−j−1∆, a+ 2−j∆] 0 6 j < K

[a, a+ 2−K∆] j = K
, ∆ := b− a, K =

⌈
log2

(
b

a

)⌉
,

and denote by cj the midpoint of Ij . The partitioning can be pictorially described as follows for
K = 4.

a b

I0I1I2I3I4

Notice that the choice of K implies that diam(IK) 6 a. In general, the left endpoint of each sub-
interval is greater than the diameter, i.e., diam(Ij) 6 a+ 2−j−1∆. This provides the inequality
cj > 3

2diam(Ij) for every Ij .
Starting from the subdivision of I we get the following partitioning of I2:

I0 × I0

I0 × Î0

Î0 × I0

I1 × I1

I1 × Î1

Î1 × I1

,

where Îi =
⋃K
j=i+1 Ij . For any of the domains, we can consider the Taylor expansions of g(x, y)

either in the variable x or in the variable y, expanded at the point ci.

gx,i(x, y) :=
∑
j>0

1

j!

∂j

∂xj
g(ci, y)(x− ci)j , gy,i(x, y) :=

∑
j>0

1

j!

∂j

∂yj
g(x, ci)(y − ci)j .

Using the fact that ∂j

∂xj g(ci, y) = Γ(α+j)
Γ(α) (ci + y)−α−j (and similarly in the y variable) we can

rephrase the above expansion as follows:

gx,i(x, y) =
∑
j>0

Γ(α+ j)

Γ(j + 1)Γ(α)

(
x− ci
ci + y

)j
(ci + y)−α︸ ︷︷ ︸
g(ci,y)

and similarly for gy,i(x, y). We now approximate g(x, y) using truncations of the above expansions
on each of the sets in the partitioning of the square. Consider the sets of the form Ii × Ii or
Ii × Îi. We define

gN,x,i(x, y) =

N∑
j=0

Γ(α+ j)

Γ(j + 1)Γ(α)

(
x− ci
ci + y

)j
(ci + y)−α.

Observe that since ci is the midpoint of Ii, |x − ci| 6 1
2diam(Ii). In addition, since both ci

and y are positive we have

|ci + y| = ci + y > ci >
3

2
diam(Ii).
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Therefore, we have |x− ci| 6 1
3 (ci + y), so we can bound

|g(x, y)− gN,x,i(x, y)| 6 |g(ci, y)|
Γ(α)

∑
j>N+1

Γ(α+ j)

Γ(j + 1)

(
1

3

)j
.

One can easily check that Γ(α+j)
Γ(j+1) 6 (bαc+j)!

j! , hence we can write

∞∑
j=N+1

Γ(α+ j)

Γ(j + 1)

(
1

3

)j
6

∞∑
j=N+1

(bαc+ j)!

j!

1

3j
=

 ∞∑
j=N+1

(bαc+ j)!

j!
xj

∣∣∣∣∣
x= 1

3

=

 dbαc

dxbαc

∞∑
j=N+1

xbαc+j

∣∣∣∣∣
x= 1

3

=

(
dbαc

dxbαc
xN+1+bαc

1− x

) ∣∣∣∣∣
x= 1

3

.

The last quantity can be bounded using the relation |f (k)(w)| 6 k! max|z−w|=r |f(z)| · r−k,
with r being a positive number such that f(w) is analytic for |z − w| 6 r. Note that |f(z)|
assumes the maximum at the rightmost point of the circle |z −w| = r, since there we have both
the maximum of the numerator and the minimum of the denominator. Choosing r = 1

6 provides(
dbαc

dxbαc
xN+1+bαc

1− x

) ∣∣∣∣∣
x= 1

3

6 3bαc · bαc! · 2−N .

Plugging this back into our bound yields

|g(x, y)− gN,x,i(x, y)| 6 3bαc · bαc! · 2−N

Γ(α)
· |g(ci, y)|.

Moreover, using |x− ci| 6 1
3 (ci + y), we have that

g(x, y) = (x− ci + ci + y)−α >

(
ci + y

3
+ ci + y

)−α
=

(
3

4

)α
(ci + y)−α =

(
3

4

)α
g(ci, y)

for any x ∈ Ii. Therefore,

(3.5) |g(x, y)− gN,x,i(x, y)| 6
(

4

3

)α
3bαc · bαc! · 2−N

Γ(α)
· |g(x, y)|, (x, y) ∈ (Ii × Ii) ∪ (Ii × Îi).

We can obtain an analogous result for the sets of the form Îi × Ii by considering the expan-
sion gN,y,i(x, y). We define an approximant to g(x, y) on I2 by combining all the ones on the
partitioning:

gN (x, y) :=

{
gN,x,i(x, y) on Ii × Ii and Ii × Îi
gN,y,j(x, y) on Îi × Ii

.

The function gN (x, y) is obtained summing 2K+1 separable functions of order N +1, which
in turn implies that gN (x, y) can be written as a separable function of order (2K + 1) · (N + 1).
Using that 2K + 1 6 2dlog2( ba )e, we have that gN (x, y) is a 2dlog2( ba )e · (N + 1)-separable

approximant of g(x, y) on I2. We determine N such that
(

4
3

)α 3bαc·bαc!·2−N
Γ(α) 6 ε. Noting that

3bαc−α 6 1, bαc!/Γ(α) 6 α, and setting kε = 2dlog2

(
b
a

)
e · (N + 1) we retrieve (3.3).
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Remark 3.20. We note that the result of the previous lemma is slightly suboptimal, since we
have chosen the fixed value of r = 1

6 — whereas the optimal one would be r = arg minρ ρ
−bαc ·

max|z− 1
3 |=ρ
|f(z)|. The latter leads to bounding the tail of the Taylor expansion with a quantity

decaying as O(Nbαc3−N ). The advantage of our formulation is that allows to explicitly bound
kε with a multiple of log2(ε−1).

Lemma 3.19 enables to study the rank of the off-diagonal blocks in MFE,+
α,N . Here we consider

the constant coefficient case; the generalization to variable coefficients requires little changes as
outlined in Remark 3.22.

Theorem 3.21. LetMFE,+
α,N ∈ CN×N be the matrix defined in (3.2) with d+(x) ≡ 1. Assume

that B has δ-overlapping k with δ > 0, and that the basis functions ϕi(x) > 0 are normalized to

have
∫ R
L
ϕi(x) dx = 1. Then

qsrankε(M
FE,+
α,N ) 6 k + kε = k + 2

⌈
log2

(
R− L
δ

)⌉
·
(

1 +

⌈
log2

(
(α+ 1) · 4α+1

ε

)⌉)
.

Proof. Let Y be any off-diagonal block of MFE,+
α,N which does not involve any entry of the

central 2k + 1 diagonals. Without loss of generality we can assume Y to be in the lower left
corner of MFE,+

α,N . In particular, there exist h, ` such that `− h > k and

(3.6) Yij = 〈ϕi+`,
∂α

∂RL+

ϕj〉, i = 1, . . . , N − `, j = 1, . . . h.

Since we are considering a basis with δ-overlapping k, we can identify x0 such that the support
of ϕi+` is always contained in [x0 + δ,R] and the one of ϕj in [L, x0 − δ]. Therefore, expanding
the scalar product we obtain

Yij =
1

Γ(2− α)

∫ R

L

ϕi+`(x)
∂2

∂x2

∫ x

L

ϕj(y)

(x− y)α−1
dy dx

=
1

Γ(2− α)

∫ R

x0+δ

ϕi+`(x)
∂2

∂x2

∫ x0−δ

L

ϕj(y)

(x− y)α−1
dy dx

=
1

Γ(2− α)

∫ R

x0+δ

ϕi+`(x)

∫ x0−δ

L

∂2

∂x2

ϕj(y)

(x− y)α−1
dy dx

=
1

Γ(2− α)

∫ R

x0+δ

ϕi+`(x)

∫ x0−δ

L

α(α− 1)ϕj(y)

(x− y)α+1
dy dx

=

∫ R

x0+δ

∫ x0−δ

L

α(α− 1)

Γ(2− α)

ϕi+`(x)ϕj(y)

(x− y)α+1
dy dx.

By the change of variable x̂ = x− x0, and ŷ = x0 − y, we can write

1

(x− y)α+1
=

1

(x̂+ ŷ)α+1
,

{
x̂ ∈ [δ,R− x0] ⊆ [δ,R− L]

ŷ ∈ [δ, x0 − L] ⊆ [δ,R− L]

Applying Lemma 3.19 to the right-hand side, on the larger interval [δ,R − L] we recover a
separable approximation of (x̂+ ŷ)−α−1. Since the change of variable does not mix x and y, this
also gives the relatively accurate separable approximation:

fij(x, y) :=
α(α− 1)

Γ(2− α)

ϕi+`(x)ϕj(y)

(x− y)α+1
= skε(x, y) + rkε(x, y),
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with skε(x, y) sum of kε separable functions, with kε as in (3.4), and |rkε(x, y)| 6 |fij(x, y)| · ε.
Therefore, we can decompose Y as Y = S + E, with

Sij =

∫ R

x0+δ

∫ x0−δ

L

skε(x, y)dx dy

and E defined analogously using rkε(x, y) in place of skε(x, y). Lemma 3.18 tells us that the rank
of S is bounded by kε. On the other hand, using that fij(x, y) > 0, we obtain

|Eij | =

∣∣∣∣∣
∫ R

x0+δ

∫ x0−δ

L

rkε(x, y)dx dy

∣∣∣∣∣ 6
∣∣∣∣∣
∫ R

x0+δ

∫ x0−δ

L

fij(x, y) dx dy

∣∣∣∣∣ · ε 6 |Yij | · ε.
This implies that ‖E‖ 6 ‖Y ‖ · ε, so rankε(Y ) 6 kε. Since we have excluded the central 2k+1

diagonals from our analysis, and ‖Y ‖ 6 ‖MFE,+
α,N ‖, we conclude that qsrankε(M

FE,+
α,N ) 6 kε + k.

Remark 3.22. We notice that the proof of Theorem 3.21 remains unchanged if in place of

(3.6) one considers 〈ϕi, d+(x, t)
∂αϕj
∂RL+ xα

〉, with a positive diffusion coefficient d+(x, t). This means

that the rank structure inMFE,+
α,N is present also in the non-constant diffusion case. The analogous

statement is true for MFE,−
α,N .

3.4. Approximating the 1D fractional discretizations in practice. We have shown
in the previous sections that several discretizations of fractional derivative operators are well-
approximated by quasiseparable matrices of low-rank. However, we have not yet shown how
to efficiently represent and compute such matrices. In fact, to make large scale computations
feasible, we need to reduce both the storage and computational complexity to at most linear
polylogarithmic cost. To this aim, we introduce HODLR matrices.

3.4.1. Hierachically off-diagonal low-rank matrices. Off-diagonal rank structures are
often present in the discretization of PDEs and integral equations; this can be exploited using
Hierarchical matrices (H-matrices) [7,23,24] and their variants HSS, H2-matrices. The choice of
the representation is usually tailored to the rank structure of the operator. In this work we focus
on hierarchically off-diagonal low-rank matrices (HODLR), which allow to store a N ×N matrix
of quasiseparable rank k with O(kN logN) parameters, and to perform arithmetic operations
(sum, multiplication, inversion) in linear-polylogarithmic time.

A representation of a HODLR matrix A is obtained by block partitioning it in 2× 2 blocks
as follows:

(3.7) A =

[
A11 A12

A21 A22

]
, A11 ∈ CN1×N1 , A22 ∈ CN2×N2

where N1 := bN2 c and N2 := dN2 e. The antidiagonal blocks A12 and A21 have rank at most
k, and so can be efficiently stored as outer products, whereas the diagonal blocks A11 and
A22 can be recursively represented as HODLR matrices, until we reach a minimal dimension.
This recursive representation is shown in Figure 3.3. In the case of numerically quasiseparable
matrices, the off-diagonal blocks are compressed according to the norm of the matrix, i.e., we
drop the components of their SVDs, whose magnitude is less than ε‖A‖2. We will call truncation
tolerance the parameter ε.

In order to efficiently construct the HODLR representation of a matrix, the crucial step
is to compute a factorized approximation of the off-diagonal blocks. We look for procedures
whose complexity does not exceed the cost of some arithmetic operations in the HODLR format,
i.e., matrix-vector multiplication (which requires O(kN logN) flops) and solving linear systems
(requiring O(k2N log2N) flops).
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Fig. 3.3. Pictorial representation of the HODLR structure.

3.4.2. HODLR representation for finite differences method. Our task is to retrieve

a HODLR representation of MFD,m
α,N = I + ∆t

∆xα (D
(m)
+ Tα,N + D

(m)
− TTα,N ) defined in (2.5). It is

easy to see that the tricky part is to compress Tα,N ; in fact, performing a diagonal scaling is
equivalent to scale the left or right factor in the outer products, as well as the full diagonal
blocks. Finally, the shift with the identity only affects the dense diagonal blocks.

Assume we have partitioned Tα,N as in (3.7); observe that the block A21 contains all the
subdiagonal blocks at the lower levels, thanks to the Toeplitz structure. A similar statement
holds for A12. Therefore, once we compress A21 and A12 at the top-level, we can obtain all the
needed representations just by restriction. Moreover, the compression of A12 is particularly easy,
since it has only one nonzero element.

Thus, we have reduced the problem to finding a low-rank representation for a Toeplitz matrix
(which we know to be numerically low-rank). We deal with this issue with the two-sided Lanczos
method [19,42]. This requires to perform a few matrix vector products, which can be performed,
exploiting FFT, in O(kN logN +Nk2) time.

We remark that the computation of the coefficients g
(α)
k can be carried out efficiently by

recursion using the following formulas:

g
(α)
0 = 1, g

(α)
1 = −α, g

(α)
k+1 = g

(α)
k ·

(
k − α
k + 1

)
.

3.4.3. HODLR representation for finite elements discretizations. The proof of The-
orem 3.21 combined with Lemma 3.19 directly provides a construction for the low-rank repre-
sentations of the off-diagonal blocks inMFE

α,N defined in (3.2). At the heart of this machinery, it

is required to sample the truncated Taylor expansions of (x+ y)−(α+1). Alternatively, separable
approximations of this function on the domains corresponding to the off-diagonal blocks can be
retrieved using chebfun2 [47].

However, often the choice of the basis consists of shifted copies of the same function on an
equispaced grid of points. When this is the case, the discretization matrix turns out to have
Toeplitz plus low-rank structure in the constant coefficient case. In this situation, the same
approximation strategy used for finite differences can be applied. This happens in the problem
presented in Section 5.2 and considered originally in [52]. The authors of the latter proposed
to represent the stiffness matrix with a different Hierarchical format. In Figure 3.4 we compare
the distribution of the off-diagonal ranks obtained with the two partitioning. Since there is not
a dramatic difference between the ranks obtained with the two choices, our approach turns out
to be preferable because it provides a lower storage consumption and a better complexity for
computing the LU decomposition and solving the linear system [24].

3.5. Solving the problem in the 1D case. As we have shown in the previous section,
the 1D discretization of the differential equation

∂u(x, t)

∂t
= d+(x, t)

∂αu(x, t)

∂+xα
+ d−(x, t)

∂αu(x, t)

∂−xα
+ f(x, t),
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Fig. 3.4. Rank distribution in the HODLR partitioning (left) and in the geometrical clustering (right) for
the stiffness matrix of Section 5.2. The size of the matrix is N = 4096 and the truncation tolerance is ε = 10−8.

using either finite differences or finite elements, yields a coefficient matrix with HODLR structure,
and we have described efficient procedures to compute its representation. As analyzed in [34],
discretizing the above equation in time, using implicit Euler, yields

u(x, tm+1)− u(x, tm)

∆t
= d+(x, tm+1)

∂αu(x, tm+1)

∂+xα
+d−(x, tm+1)

∂αu(x, tm+1)

∂−xα
+f(x, tm)+O(∆t).

This leads to a sequence of linear systems Au(m) = b(m), where u(m) contains either the samplings
on the grid (for finite differences) or the coordinates in the chosen basis (for finite elements) of

u(x, tm) and b(m) depends on f(x, tm) and u(x, tm−1). The matrix A is eitherMFD,m
α,N orMFE,m

α,N .
To solve the resulting linear system, we rely on fast solvers for matrices in the HODLR

format, as described in [24]. In more detail, we first compute a structured LU factorization of
the coefficient matrix and then perform back substitution. The quasiseparable property ensures
that the off-diagonal rank of the factors of the LU factorization does not differ from the one of the
coefficient matrix A. Computation of LU is the bottleneck and provides an overall complexity
of O(k2N log2N). Our implementation is based on the hm-toolbox [33].

3.6. Numerical results for 1D finite differences. In this section we compare the use
of HODLR arithmetic with a preconditioning technique, recently introduced in [12], for the
treatment of certain 1D problems with non constant diffusion coefficients.

We consider the sequence of linear systems Au(m) = b(m) arising from the discretization of
(1.1) with finite differences. In particular, A and b(m) are defined as in (2.5), where we have
chosen α ∈ {1.2, 1.8}, d+(x, t) = Γ(3−α)xα and d−(x, t) = Γ(3−α)(2−x)α. The spatial domain
is [L,R] = [0, 2] and we set ∆x = ∆t = 1

N+2 for increasing values of N . The right-hand side

b(m) ∈ RN is chosen as in [12].
In [12, Example 1], the authors propose two tridiagonal structure preserving preconditioners,

defined depending on the value of α and used for speeding up the convergence of GMRES. In
particular, such preconditioners (P1 and P2 in the notation of [12]) are obtained replacing the
Toeplitz matrix Tα,N in (2.5) with the central difference approximation of the first and the second
derivative.

The truncation tolerance has been set to 10−8 and the dimension of the minimal blocks in the
HODLR format is 256. The thresholds for the stopping criterion of the GMRES have been set to
10−7 and 10−6 in the cases with α = 1.2 and α = 1.8, respectively, as this provided comparable
accuracies with the HODLR solver. We compare the time consumption of this method with
the one proposed in Section 3.5, for solving one linear system. The time for computing the LU



20 STEFANO MASSEI, MARIAROSA MAZZA, LEONARDO ROBOL

PGMRES HODLR
N Time its Res Time Res Time (LU) qsrankε

8,192 4.59 · 10−2 9 1.45 · 10−8 1.22 · 10−2 1.26 · 10−9 0.24 11
16,384 7.85 · 10−2 9 1.30 · 10−8 2.64 · 10−2 1.34 · 10−8 0.58 11
32,768 0.14 9 1.11 · 10−8 5.51 · 10−2 7.83 · 10−9 1.49 11
65,536 0.31 10 2.67 · 10−9 0.11 7.77 · 10−9 3.63 12

131,072 0.58 10 2.23 · 10−9 0.23 7.99 · 10−9 9.06 12

Table 3.2
Performances of the preconditioned GMRES and of the HODLR solver in the case α = 1.8

PGMRES HODLR
N Time its Res Time Res Time (LU) qsrankε

8,192 4.70 · 10−2 9 1.08 · 10−8 1.27 · 10−2 2.87 · 10−9 0.23 11
16,384 7.03 · 10−2 9 1.08 · 10−8 3.27 · 10−2 3.78 · 10−9 0.74 11
32,768 0.14 9 1.11 · 10−8 6.54 · 10−2 5.29 · 10−9 1.83 11
65,536 0.26 9 1.20 · 10−8 0.11 6.89 · 10−9 3.53 12

131,072 1.01 9 1.30 · 10−8 0.23 7.92 · 10−9 10.47 12

Table 3.3
Performances of the preconditioned GMRES and of the HODLR solver in the case α = 1.2

factorization and for performing the back substitution are kept separate. In fact, for this example
the diffusion coefficients do not depend on time, so in case of multiple time steps the LU can be
computed only once at the beginning saving computing resources.

The results reported in Table 3.2-3.3 refer to the performances of the two approaches for a
fixed time step (the first one). With Res we indicate the relative residue ‖Ax − b(m)‖2/‖x‖2,
where x is the computed solution, while its denotes the number of iterations needed by the
preconditioned GMRES to converge. We note that both strategies scale nicely with respect
to the dimension. Once the LU is available, HODLR back substitution provides a significant
saving of execution time with respect to preconditioned GMRES. In particular, at dimension
N = 131,072 our approach is faster whenever we need to compute more than about 13 time
steps (α = 1.2), or 25 time steps (α = 1.8). The column denoted by qsrankε indicates the
quasiseparable rank of the discretization matrices.

This example highlights the convenience of the HODLR strategy when used for solving
several linear systems endowed with the same coefficient matrix. As shown in the next section,
such a benefit is particularly advantageous in the 2D setting when the HODLR format is used
in combination with Krylov projection schemes for solving FDE problems rephrased as matrix
equations.

4. Spatial 2D problems with piece-wise smooth right-hand side. We now describe
how to efficiently solve 2D fractional differential equations leveraging the rank properties that
we have identified in the 1D discretizations.

More precisely, we are interested in solving the equation

∂u

∂t
= d1,+(x, t)

∂α1u

∂+xα1
+ d1,−(x, t)

∂α1u

∂−xα1
+ d2,+(y, t)

∂α2u

∂+yα2
+ d2,−(y, t)

∂α2u

∂−yα2
+ f,(4.1)

where (x, y) ∈ [a, b]× [c, d], t > 0 and imposing absorbing boundary conditions.
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We discretize (4.1) in the time variable using implicit Euler, and we obtain

u(x, y, tm+1)− u(x, y, tm)

∆t
= d1,+(x, tm+1)

∂α1u(x, y, tm+1)

∂+xα1
+ d1,−(x, tm+1)

∂α1u(x, y, tm+1)

∂−xα1

+ d2,+(y, tm+1)
∂α2u(x, y, tm+1)

∂+yα2
+ d2,−(y,m+1 )

∂α2u(x, y, tm+1)

∂−yα2

+ f(x, y, tm+1) +O(∆t).

(4.2)

Then, we discretize the space derivative by considering a tensorized form of a 1D discretization.
In the finite differences case, we consider a grid of nodes obtained as the product of equispaced
points on [a, b] and [c, d], respectively. In the finite elements case, we assume that the basis is
formed using products of basis elements in the coordinates x and y. This leads to linear systems
of the form

A vec(U (m+1)) = vec(U (m)) + vec(F (m+1)),

where we used the operator vec(·) because, as we will discuss later, it is useful to reshape these
objects into matrices conformally to the discretization grid.

Remark 4.1. In the formulation of (4.1), the diffusion coefficients multiplying the differential
operator only depend on time and on the variable involved in the differentiation. This is not
by accident, since it makes it faster to rephrase the problem in matrix equation form as we will
do in Section 4.2. Indeed, these assumptions are also present in [8], where the connection with
matrix equations has been introduced for fractional differential equations.

4.1. Regularity and rank structure in the right-hand side. When the source term
f(x, y, t) is smooth in the spatial variables at every time step, the matrix F (m+1) turns out to
be numerically low-rank. This can be justified in several ways. For instance, one can consider
the truncated expansion of f(x, y, tm+1) in any of the spatial variables, similarly to what is done
in the proof of Lemma 3.19. This provides a separable approximation of the function, which
corresponds to a low-rank approximation of F (m+1). Another interesting point of view relies on
introducing SVD for bivariate functions [46].

In practice, one can recover a low-rank approximation of F (m+1) by performing a bivariate
polynomial expansion, for instance using chebfun2 [47]. For elliptic differential equations, the
solution often inherits the same regularity of the right-hand side, and therefore the same low-rank
properties are found in U (m) at every timestep. Once low-rank representations of F (m+1) and
U (m) are available, it is advisable to recompress their sum. If the latter has rank k � N , this
can be performed in O(Nk2) flops, relying on reduced QR factorizations of the outer factors,
followed by an SVD of a k× k matrix (see the recompression procedure in [24, Algorithm 2.17]).

The same machinery applies when f is piecewise smooth, by decomposing it into a short
sum f1 + · · ·+ fs, where each fj is smooth in a box that contains its support.

4.2. Linear systems as matrix equations. We consider equations as in (4.1). Note that
the two differential operators in x and y act independently on the two variables. Because of this
and exploiting the assumption on the diffusion coefficients highlighted in Remark 4.1, the matrix
A can be written either as

I ⊗
(

1

2
I −∆tMFD

α1,N

)
+

(
1

2
I −∆tMFD

α2,N

)
⊗ I,

in the finite difference case, or as

M ⊗
(

1

2
M −∆tMFE

α1,N

)
+

(
1

2
M −∆tMFE

α2,N

)
⊗M,
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in the finite element case, where M is the 1D mass matrix. Using the well-known relation
vec(AXB) = (BT ⊗A)vec(X) we get the Sylvester equation

(4.3)

(
1

2
I −∆tMFD

α1,N

)
U (m+1) + U (m+1)

(
1

2
I −∆tMFD

α2,N

)T
= F (m+1) + U (m),

for the finite difference case, where U (m) is the solution approximated at the time step m, and
F (m) contains the sampling of the function f(x, y, tm+1) on the grid. In the case of finite elements,
instead, one obtains the generalized Sylvester equation
(4.4)(

1

2
M −∆tMFE

α1,N

)
U (m+1)M +MU (m+1)

(
1

2
M −∆tMFE

α2,N

)T
= MF (m+1)M +MU (m)M.

We can obtain the same structure of (4.3) by inverting M , if it is well-conditioned, or treat the
problem directly considering the pencils 1

2M −∆tMFE
α1,N

−λM and 1
2M −∆tMFE

α2,N
−λM [44].

In the experiment of Section 5.2, we rely on the first approach.
In light of the properties of F (m+1) and U (m), we have reformulated a space discretization

of (4.2) as a matrix equation of the form

AX +XB = UV T , U, V ∈ CN×k,

where A and B are square and k � N . From now on, we assume the spectra of A and −B to
be separated by a line. This ensures that the sought solution has numerical low-rank [4].

4.3. Fast methods for linear matrix equations. Linear matrix equations are well-
studied since they arise in several areas, from control theory to PDEs. In our case the right-hand
side is low-rank, and the structure in the matrices A and B allows to perform fast matrix vector
multiplications and system solutions. For this reason, we choose to apply the extended Krylov
subspace method introduced in [43].

This procedure constructs orthonormal bases Us and Vs for the subspaces

EKs(A,U) = span{U,A−1U,AU, . . . , As−1U,A1−sU}
EKs(BT , V ) = span{V,B−TV,BTV, . . . , (BT )s−1V, (BT )1−sV },

by means of two extended block Arnoldi processes [25]. Then, the compressed equation ÃsXs +

XsB̃s = Ũ Ṽ T is solved, where Ãs = U∗sAUs, B̃s = V ∗s BVs, Ũ = U∗sU , and Ṽ = V ∗s V . The latter
equation is small scale (s × s, with s � n), and can be solved using dense linear algebra. An
approximation of the solution is finally provided by UsXsV

∗
s .

The complexity of the procedure depends on the convergence of the extended Krylov sub-
space method, which is related to the spectral properties of A and B [3,27]. Under the simplified
assumption that the Krylov method converges in a constant number of iterations, the over-
all complexity is determined by the precomputation of the LU factorization of A and B, i.e.
O(N log2N).

A robust and efficient implementation of this technique requires some care, especially in the
case where the rank in the right-hand side is larger than 1. We refer to [22, 43] for an overview
of the numerical issues.

5. Numerical results and comparisons. All the results in this section have been run
on MATLAB R2017a, using a laptop with multithreaded Intel MKL BLAS and a i7-920 CPU
with 18GB of RAM. The implementation of the fast HODLR arithmetic and the extended Krylov
method can be found in hm-toolbox [33]. The block Arnoldi process is taken from rktoolbox [5].



FAST SOLVERS FOR 2D FDES USING RANK STRUCTURES 23

The codes used for the tests are available at https://github.com/numpi/fme. They are
organized as MATLAB m-files to allow replicating the results in this sections. We thank the
authors of [8] who made their code public, allowing us to easily reproduce their results.

5.1. 2D time-dependent equation with finite difference scheme. In this section we
compare the use of rank-structured arithmetic embedded in the extended Krylov solver with the
use of an appropriately preconditioned GMRES as proposed in [8] by Breiten, Simoncini, and
Stoll. For the sake of simplicity, from now on we refer to the former method with the shorthand
HODLR, and to the latter as BSS. This notation is also used in figures and tables where the
performances are compared.

The test problem is taken directly from [8]. The equation under consideration is (4.1) with
absorbing boundary conditions. The spatial domain is the square [0, 1]2, and the source term f
is chosen as follows:

f(x, y, t) = 100 · (sin(10πx) cos(πy) + sin(10t) sin(πx) · y(1− y)) .

We consider two instances of this problem. The first one is a constant coefficient case, i.e., the
diffusion coefficients (d1,± and d2,±) are all equal to the constant 1. In the second, instead, we
choose them as follows:

d1,+(x) = Γ(1.2)(1 + x)α1 , d1,−(x) = Γ(1.2)(2− x)α1 ,

d2,+(y) = Γ(1.2)(1 + y)α2 , d2,−(y) = Γ(1.2)(2− y)α2 .
(5.1)

According to our discussion in Section 4, we know how to recast the space-time discretization
in matrix equation form. More precisely, we consider the implicit Euler scheme in time with
∆t = 1, and the Grünwald-Letnikov shifted finite difference scheme for the space discretization,
with a space step ∆x = ∆y = 1

N+2 . This yields a time stepping scheme that requires the solution
of a Sylvester equation in the form (4.3) at each step. In particular, we note that the sampling
of f(x, y, t) on the discretization grid is of rank (at most) 2 independently of the time. We
performed 8 time steps, coherently with the setup for the experiments used in [8].

The timings of the two approaches for the constant coefficient case are reported in Table 5.1
for α1 = 1.3, α2 = 1.7, and in Table 5.2 for α1 = 1.7, α2 = 1.9. The same tests in the non-
constant coefficients setting have been performed, and the results are reported in Table 5.3 and
Table 5.4.

The stopping criterion for the extended Krylov method has been set to ε := 10−6; this
guarantees that the residual of the linear system will be smaller than ε. The stopping criterion
with the relative residual for GMRES has been chosen as 10−7 and the truncation tolerance for
the operation in HODLR arithmetic (only used when assembling the matrices) to 10−8.

In Figure 5.1 we report a plot of the final solution of the constant coefficient problem at
time 7; the parameters in the figure are α1 = 1.3 and α2 = 1.7. The field rankε indicates the
numerical rank of the solution, whereas qsrankε denotes the numerical quasiseparable rank of the
discretization matrices. The latter increase proportionally to log(N), in this and in the following
examples, as predicted by the theory.

We note that the HODLR solver outperforms the BSS approach in all our tests, although
the advantage is slightly reduced when N increases. For solving Toeplitz linear systems, we
have used the preconditioner in [12], which turned out to perform better than the circulant one.
However, when considering the the nonconstant coefficients case, a small growth in the number
of iterations can be seen as N increases. In particular, the preconditioner based on the first
derivative P1 seems to be less robust, while P2 is less sensitive to changes in the coefficients,
the time-step, and other parameters. In this example, it turned out that P2 is always the most
efficient choice, even when α1 is as low as 1.3, and therefore it is the one employed in the tests
of the BSS method.

https://github.com/numpi/fme
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N tHODLR tBSS rankε qsrankε

512 0.45 3.43 15 11
1,024 0.77 5.81 15 11
2,048 1.34 10.38 15 12
4,096 2.44 28.18 16 12
8,192 4.28 45.73 16 13
16,384 8.53 89.8 16 13
32,768 19.32 196.72 16 14
65,536 44.3 434.82 16 14 103 104 105

100

101

102

N

T
im

e
(s

)

HODLR
BSS

Table 5.1
Timings for the solution of the problem (4.1) in the constant coefficient case using the HODLR solver and

the approach presented in [8]. The exponents are set to α1 = 1.3 and α2 = 1.7. The times reported are expressed
in seconds.

Fig. 5.1. Solutions of the problem (4.1) in the constant coefficient case. On the left, the problem with
α1 = 1.7, α2 = 1.9. On the right, the one with α1 = 1.3, α2 = 1.7. The solutions are plotted at the final time
step t = 7.

Note that in the case with α1 = 1.3 the preconditioner P2 works well (the number of iterations
does not increase with N), but the number of iterations is not particularly low (typical figures
are in the range of 15 to 20, sometimes more); therefore, this case is particularly favorable to the
HODLR approach, which indeed outperforms BSS by a factor of about 6 in time at the larger
tested size, N = 65,536. The results are reported in Table 5.1 and Table 5.3.

5.2. A 2D finite element discretization. The example considered in this section is given
by problem (4.1) on the domain [0, 1]2 in the constant coefficients case and with source term,
and solution at time 0 defined as follows:

f(x, y, t) =

{
1 (x, y) ∈ H
0 otherwise

, u(x, y, 0) = f(x, y, 0), H =

{
3

8
6 x, y 6

5

8

}
,

similarly to what is done in [13]. The fractional exponents are chosen as α1 = 1.3 and α2 =
1.7. We used the piecewise linear functions described in [13] as basis for the finite element
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N tHODLR tBSS rankε qsrankε

512 0.63 2.53 18 10
1,024 1.05 4.21 19 10
2,048 1.97 7.5 20 11
4,096 4.19 18.34 21 11
8,192 7.24 31.9 21 11
16,384 17.05 55.86 21 11
32,768 32.48 107.85 22 11
65,536 79.25 221.83 23 11 103 104 105

100

101

102

N

T
im

e
(s

)

HODLR
BSS

Table 5.2
Timings for the solution of the problem (4.1) with constant coefficients as in (5.1) using the HODLR solver

and the approach presented in [8]. The exponents are set to α1 = 1.7 and α2 = 1.9.

N tHODLR tBSS rankε qsrankε

512 0.34 3.84 14 10
1,024 0.61 6.43 14 11
2,048 1.14 11.68 16 12
4,096 2.59 30.15 16 12
8,192 4.86 51.19 16 13
16,384 8.79 84.68 17 13
32,768 19.24 153.98 15 14
65,536 46.13 282.35 15 14 103 104 105

100

101

102

N

T
im

e
(s

)

HODLR
BSS

Table 5.3
Timings for the solution of the problem (4.1) with variable coefficients as in (5.1) using the HODLR solver

and the approach presented in [8]. The exponents are set to α1 = 1.3 and α2 = 1.7. The times reported are
expressed in seconds.

N tHODLR tBSS rankε qsrankε

512 0.6 2.68 18 10
1,024 1.01 4.36 19 10
2,048 2.03 7.69 21 11
4,096 4.06 16.85 22 11
8,192 8.52 28.27 22 11
16,384 17.73 48.64 22 11
32,768 36.82 88.81 24 12
65,536 95.43 170.94 25 12 103 104 105

100

101

102

N

T
im

e
(s

)

HODLR
BSS

Table 5.4
Timings for the solution of the problem (4.1) with variable coefficients as in (5.1) using the HODLR solver

and the approach presented in [8]. The exponents are set to α1 = 1.7 and α2 = 1.9.
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N tHODLR tBSS rankε qsrankε

512 0.22 1.45 10 13
1,024 0.42 2.01 11 14
2,048 0.8 5.52 12 13
4,096 1.8 7.91 13 13
8,192 3.05 22.53 13 14
16,384 7.18 42.35 14 14
32,768 12.88 84.94 15 15
65,536 31.66 122.62 14 15 103 104 105

100

101

102

N

T
im

e
(s

)

HODLR
BSS

Table 5.5
Timings for the solution of the problem (4.1) using a finite element discretization. The exponents are set to

α1 = 1.3 and α2 = 1.7.

discretization. For simplicity, we consider a uniform grid for the nodes defining the hat functions,
which yields a Toeplitz matrix whose symbol is explicitly1 given in [30]. Therefore, the same
strategy used in the previous section can be used to recover a rank structured representation of
the matrix, which is guaranteed to exist thanks to Theorem 3.21.

We consider the time step of ∆t = 0.1, and the discretization in time is done by the backward
Euler method. The truncation thresholds are set exactly as in the previous example. We have
performed tests changing the number of grid points used in each direction, and the timings are
reported in Table 5.5.

We notice that the timings behave linearly, and the rank of the solution stabilizes around 14.
Since the matrix equation has Toeplitz coefficients, we can directly compare with the approach
by Breiten, Simoncini, and Stoll in [8]. A spectral reasoning similar to the one in [12] justifies
the use of preconditioner P2 for solving Toeplitz linear systems also in the finite elements setting.
As for the finite differences, the use of rank structures turns out to be more efficient. However,
we stress that our method remains applicable without modifications even if one considers non-
uniform grids, in contrast to the BSS approach. The only difference is in the construction of the
rank structured representation, which needs to be performed relying on Theorem 3.21.

6. Conclusions and outlook. In this paper we have presented a rigorous theoretical anal-
ysis of the rank of the off-diagonal blocks in 1D discretizations of fractional differential opera-
tors. We have analyzed different formulations, namely the Grünwald-Letnikov (shifted and non-
shifted) finite difference schemes, as well as finite element approaches. In the latter class, we
have shown that the stiffness matrix of the finite element discretization is rank structured under
mild hypotheses on the finite element basis.

We have then shown that it is possible to obtain parametrizations of such rank structures
very efficiently in the HODLR format, and this can be used to solve 1D fractional differential
equations (possibly with time dependence), as well as to analyze a broad range of 2D problems
where the differential operator is separable, and thus the equation can be recast in matrix form [8].
This includes, but is not limited to, fractional diffusion equations.

1 The formula given in [30] is not numerically stable, and gives rise to severe cancellation errors if used to
compute element far from the diagonal. However, it can be easily stabilized performing a series expansion of the
terms involved, and removing the terms that are known to cancel out; this yields an expression as a convergent
series; the latter can be efficiently evaluated by truncation, and this is what we have done in our implementation.
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In our numerical experiments we have shown that HODLR-based solvers often outperform
previous approaches relying on Toeplitz-structured preconditioners. This is particularly advan-
tageous in the 2D setting, where in the projection scheme used to deal with the matrix equation
one needs to solve several linear systems, and the computation of the LU factorization in HODLR
format can be amortized among more operations.

The machinery extends to 2D equations whose associated matrix equation has a right-hand
side in the HODLR format. In this case, it is necessary to replace the extended Krylov method
with the divide and conquer technique presented in [28].

Further improvements can be achieved replacing the HODLR format with more sophisticated
structures that rely on nested bases for the representation of the off-diagonal blocks, as HSS and
H2 matrices [24, 51]. This would remove some log factors from the asymptotic complexity of
time and memory consumption, and might be subject of future work.

Acknowledgment. The authors wish to thank the CIRM (Centre International de Ren-
contres Mathématiques) in Luminy, France, which supported a “Research in Pairs” on the topic
of fast methods for fractional differential equations. Part of the work presented in this paper is
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