

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTISCALE MODEL. SIMUL. c© 2019 Society for Industrial and Applied Mathematics
Vol. 17, No. 1, pp. 260–306

A FAST HIERARCHICALLY PRECONDITIONED EIGENSOLVER
BASED ON MULTIRESOLUTION MATRIX DECOMPOSITION∗

THOMAS Y. HOU† , DE HUANG‡ , KA CHUN LAM§ , AND ZIYUN ZHANG¶

Abstract. In this paper we propose a new iterative method to hierarchically compute a relatively
large number of leftmost eigenpairs of a sparse symmetric positive matrix under the multiresolution
operator compression framework. We exploit the well-conditioned property of every decomposi-
tion component by integrating the multiresolution framework into the implicitly restarted Lanczos
method. We achieve this combination by proposing an extension-refinement iterative scheme, in
which the intrinsic idea is to decompose the target spectrum into several segments such that the
corresponding eigenproblem in each segment is well-conditioned. Theoretical analysis and numerical
illustration are also reported to illustrate the efficiency and effectiveness of this algorithm.

Key words. leftmost eigenpairs, sparse symmetric positive definite, multiresolution matrix de-
composition, implicitly restarted Lanczos method, preconditioned conjugate gradient method, eigen-
pair refinement

AMS subject classifications. 15A18, 15A12, 65F08, 65F15

DOI. 10.1137/18M1180827

1. Introduction. The computation of eigenpairs for large and sparse matrices
is one of the most fundamental tasks in many scientific applications. For example, the
leftmost eigenpairs (i.e., the N smallest eigenpairs for some N ∈ N) of a graph Lapla-
cian L help in revealing the topological information of the corresponding network from
real data. One illustrative example is that the multiplicity of the smallest eigenvalue
λ1 of L coincides with the number of connected components of the corresponding
graph G. In particular, the second-smallest eigenvalue of L is well known as the al-
gebraic connectivity or the Fiedler value of the graph G, which is applied to develop
algorithms for graph partitioning [6, 18, 19]. Another important example regarding
the use of leftmost eigenpairs is the computation of betweenness centrality of graphs
as mentioned in [3, 4, 1]. Computing the leftmost eigenpairs of large and sparse sym-
metric positive definite (SPD) matrices also stemmed from the problem of predicting
electronic properties in complex structural systems [9]. Such a prediction is achieved
by solving the Schrödinger equation HΨ = EΨ, where H is the Hamiltonian operator
for the system, E corresponds to the total energy, and |Ψ(r)|2 represents the charge
density at location r. Solving this equation using the self-consistent field requires
computing the eigenpairs of H repeatedly, which dominates the overall computation
cost of the overall iterations. Thus, an efficient algorithm to solve the eigenproblem is
indispensable. Usage of leftmost eigenpairs can also be found in vibrational analysis
in mechanical engineering [17]. In [7], authors also suggest that the leftmost eigen-
pairs of the covariance matrix between residues are important to extract functional

∗Received by the editors April 16, 2018; accepted for publication (in revised form) December 3,
2018; published electronically January 30, 2019.

http://www.siam.org/journals/mms/17-1/M118082.html
Funding: This research was supported in part by the NSF grants DMS-1318377 and DMS-

1613861.
†Applied and Computational Mathematics, Caltech, Pasadena, CA, 91125 (hou@cms.caltech.

edu).
‡ACM, Caltech, Pasadena, CA 91125 (dhuang@caltech.edu).
§CMS, Caltech, Pasadena, CA 91125 (kclam@caltech.edu).
¶SMS, Peking University, Pasadena, CA 91125 (zhangziyun@pku.edu.cn).

260

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/mms/17-1/M118082.html
mailto:hou@cms.caltech.edu
mailto:hou@cms.caltech.edu
mailto:dhuang@caltech.edu
mailto:kclam@caltech.edu
mailto:zhangziyun@pku.edu.cn

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 261

and structural information about protein families. Efficient algorithms for computing
p smallest eigenpairs for relatively large p are therefore crucial in various applications.

As most of the linear systems from engineering problems or networks are typi-
cally large and sparse in nature, iterative methods are preferred. Recently, several
efficient algorithms have been developed to obtain leftmost eigenpairs of A. These
include the Jacobi–Davidson method [26], implicit restarted Arnoldi/Lanczos method
[5, 28, 13], and the deflation-accelerated conjugate gradient (DACG) method [2]. All
these methods give promising results [1, 16], especially for finding a small number of
leftmost eigenpairs. Other methods for computing accurate leftmost eigenpairs using
hierarchical refinement/correction techniques were proposed in [30, 14, 31]. How-
ever, as reported in [16], the implicit restarted Lanczos method (IRLM) is still the
best performing algorithm when a large number of smallest eigenpairs are required.
Therefore, it is highly desirable to develop a new algorithm, based on the architecture
of the IRLM, that can further optimize the performance.

The main purpose of this paper is to explore the possibility of exploiting the ad-
vantageous energy decomposition framework under the architecture of the IRLM. In
particular, we propose a new spectrum-preserving preconditioned hierarchical eigen-
solver for computing a large number of smallest eigenpairs. This eigensolver takes full
advantage of the intrinsic structure of the given matrix, the nice spectral property in
the Lanczos procedure, and also the preconditioning characteristics of the conjugate
gradient method. Given a sparse symmetric positive matrix A which is assumed to
be energy decomposable (see subsection 2.1 or section 2 for details), we integrate
the well-behaved matrix properties that are inherited from the multiresolution matrix
decomposition (MMD) with IRLM. The preconditioner we propose for the conjugate
gradient method can also preserve the narrowed residual spectrum of A during the
Lanzcos procedure. Throughout this paper, theoretical performance of our proposed
algorithm is analyzed rigorously and we conduct a number of numerical experiments
to verify the efficiency and effectiveness of the algorithm in practice. To summarize,
our contributions are threefold:

• We propose a hierarchical framework to compute a relatively large number
of leftmost eigenpairs of a sparse symmetric positive matrix. This framework
employs the MMD algorithm to further optimize the performance of IRLM.
In particular, a specially designed spectrum-preserving preconditioner is in-
troduced for the conjugate gradient method to compute x = A−1b for some
vector b.

• The proposed framework improves the running time of finding mtar smallest
eigenpairs of a matrix A ∈ Rn×n from O(mtar ·κ(A) ·nnz(A) log 1

ε) (which is
achieved by the classical IRLM) to O(mtar ·nnz(A) · (log 1

ε + log n)C), where
κ(A) is the condition number of A, nnz(·) is the number of nonzero entries,
and C is some small constant independent of mtar, nnz(A), and κ(A).

• We also provide a rigorous analysis on both the accuracy and the asymp-
totic computational complexity of our proposed algorithm. This ensures the
correctness and efficiency of the algorithm even in large-scale, ill-conditioned
scenarios.

Remark 1.1. In many real applications, the operator A may not be explicitly
stored entrywisely and only the evaluation of Ax is available. In this situation, our
proposed algorithm also works as it only requires the storage of the stiffness matrices
corresponding to some hierarchical basis Ψ according to the accuracy requirement.
To construct these stiffness matrices, we only need to evaluate Ax. Therefore, for the

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

262 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

ease of discussion, we simply assume that the given operator A is a finite-dimensional
accessible matrix.

1.1. Overview of the algorithm. In this paper, we propose and develop an
iterative scheme under the framework of energy decomposition introduced in [10].
Under this framework, we can decompose A−1 ∈ Rn×n into

A−1 = PAU A
−1 + PAΨA

−1 := PAU A
−1 + Θ,

where [U ,Ψ] corresponds to a basis of Rn; PAU and PAΨ are the corresponding subspace
projections. Recursively, we can also consider Θ as a “new” A−1 and decompose Θ
in the same manner. This will give an MMD of A−1 =

∑K
k=1 P

A
U(k)A

−1 + Θ(K). To
illustrate, we first consider a one-level decomposition, i.e., K = 1. One important
observation regarding this decomposition is that the spectrum of the original opera-
tor A−1 resembles that of the compressed operator Θ. In particular, if λi,Θ is the ith
smallest eigenvalue of Θ and ζi,Θ is the corresponding eigenvector, then (λ−1

i,Θ, ζi,Θ) is a

good approximation of (λ−1
i , qi) for small λi, where (λ−1

i , qi) denotes the ith eigenpair
of A−1. These approximate eigenpairs (λ−1

i,Θ, ζi,Θ) can then be used as the initial ap-
proximation of the required eigenpairs. Notice that compression errors are introduced
into these eigenpairs by the matrix decomposition. Therefore, a refinement procedure
should be carried out to diminish these errors up to the prescribed accuracy. Once
we obtain the refined eigenpairs, we may extend the spectrum in order to obtain the
required number of eigenpairs. As observed in [16], the IRLM is the best performing
algorithm when large eigenpairs are considered, so we therefore employ the Krylov
subspace extension technique to extend the spectrum up to some prescribed control
of the well-posedness. Intuitively, the MMD decomposes the spectrum of A−1 into
different segments of different scales. Using a subset of the decomposed components
to approximate A−1 yields a great reduction of the relative condition number. Thus,
we can further trim down the complexity of the IRLM by approximating A−1 during
the shifting process.

To generalize, we propose a hierarchical scheme to compute the leftmost eigenpairs
of an energy decomposable matrix. Given the K-level multiresolution decomposition
{Θ(k)}Kk=1 of an energy decomposable matrix A, we first compute the eigendecom-

position [V
(K)
ex , D

(K)
ex] of Θ(K) (with dimension N (K)) corresponding to the coarsest

level by using some standard direct method. Then we propose a compatible refine-

ment scheme for both V
(K)
ex and D

(K)
ex to obtain V

(K−1)
ini and D

(K−1)
ini , which will then

be the initial spectrum in the consecutive finer level. The efficiency of the cross-
level refinement is achieved by a modified version of the orthogonal iteration with
the Ritz acceleration, where we exploit the proximity of the eigenspace across levels
to accelerate the conjugate gradient (CG) method within the refinement step. Using
this refined initial spectrum, our second stage is to extend the spectrum up to some
prescribed control of the well-posedness using the implicit restarted Lanczos archi-
tecture. Recall that a shifting approach is introduced to reduce the iteration number
for the extension, which again requires solving A(K−1)x = w with the CG method in
each iteration. However, the preconditioner for CG when we are solving for A(K−1)w
must be chosen carefully. Otherwise the orthogonal property brought about by the
Krylov subspace methods may not be utilized and a large CG iteration number will
be observed (see section 8). In view of this, we propose a spectrum-preserving hierar-
chical preconditioner M (K−1) := (Ψ(K−1))TΨ(K−1) for accelerating the CG iteration
during the Lanczos iteration. In particular, we can show that using the preconditioner
M (K−1), the number of preconditioned CG (PCG) iterations to achieve a relative ε

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 263

in the A(K−1)-norm can be controlled in terms of the condition factor δ(P) (from the

energy decomposition of the matrix) and an extension threshold µ
(K−1)
ex .

This process then repeats hierarchically until we reach the finest level. Under this
framework, the condition number of every engaged operator is controlled. The overall
accuracy of our proposed algorithm is also determined by the prescribed compression
error at the highest level.

1.2. Previous works. Several important iterative methods have been proposed
to tackle the eigenproblems of SPD matrices. One of the well established algorithms
is the IRLM (or the implicitly restarted Arnoldi method for unsymmetric sparse ma-
trices), which has been implemented in various popular scientific computing packages
like MATLAB, R, and ARPACK. The IRLM combines both the techniques of the
implicitly shifted QR method and the shifting of the operators to avoid the diffi-
culties for obtaining the leftmost eigenpairs. Another popular algorithm for finding
leftmost eigenpairs is the Jacobi–Davidson method. The main idea is to minimize

the Rayleigh quotient q(x) = xTAx
xT x

using a Newton-type methodology. Efficacy and
stability of the algorithm are then achieved by using a projected simplification of the
Hessian of the Rayleigh quotient, namely, J̃(xk) := (I−xkxTk)(A− q(xk)I)(I−xkxTk)
with the update of xk to be

(1) xk+1 = xk − J̃(xk)−1(Axk − q(xk)xk).

Notice that the advantage of such an approach is the low accuracy requirement for
solving (1). A parallelization was also proposed in [23]. In [2], the authors proposed
the DACG method designed for solving the eigenproblem of SPD matrices. The main
idea is to replace Newton’s minimization procedure of the Rayleigh quotient r(x) by
the nonlinear CG method which avoids solving linear systems within the algorithm. A
comprehensive numerical comparison between the three algorithms was reported in [1].
Recently, Mart́ınez [16] studied a class of tuned preconditioners for accelerating both
the DACG and the IRLM for the computation of the smallest set of eigenpairs of large
and sparse SPD matrices. However, as reported in [16], the IRLM still outperforms
the others when a relatively large number of leftmost eigenpairs is desired. By virtue
of this, we are motivated to develop a more efficient algorithm particularly designed
for computing a considerable amount of leftmost eigenpairs.

Another class of methods related to the localized spectrum is the compression
of the eigenmodes. One of the representative pioneer works is proposed by Ozoliņš
et al. in [22]. The goal of this work is to obtain a spatially localized solution of a
class of problems in mathematical physics by constructing the compressed modes.
In particular, finding these localized modes can be formulated as an optimization
problem

ΨN = arg min
Ψ̂N

1

µ
‖ΨN‖1 + Tr(Ψ̂T

NHΨ̂N) such that Ψ̂T
N Ψ̂N = I.

The authors in [22] proposed an algorithm based on the split Bregman iteration to
solve the L1 minimization problem. By replacing the discrete operator H by the
graph Laplacian matrix A, one obtains the L1 regularized principal component anal-
ysis (PCA). In particular, if there is no L1 regularization term in the optimization
problem, the optimal ΨN will be the first mtar eigenvectors of A. In other words, this
procedure provides an effective way to obtain N (where N ≥ mtar) localized basis
functions that can approximately span the mtar leftmost eigenspace (i.e., eigenspace

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

264 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

spanned by the mtar eigenvectors corresponding to the leftmost eigenvalues). Sim-
ilarly, the MMD framework provides us with the hierarchical and sparse/localized
basis Ψ. These localized basis functions capture the compressed modes and eventu-
ally provide a convenient way to control the complexity of the eigensolver.

Stiffness matrices discretizing heterogeneous and rough elliptic operators, or graph
Laplacians representing general sparse networks, are commonly found in practice. Re-
cently, the problem of compressing these SPD matrices has been tackled in different
perspectives. Målqvist and Peterseim [15] proposed the use of a modified coarse space
in order to handle roughness of the coefficients when solving elliptic equations with
finite element methods. They construct localized multiscale basis functions from the
modified coarse space V msH = VH−FVH , where VH is the original coarse space spanned
by the nodal basis, and F is the energy projection onto the space (VH)⊥. The ex-
ponential decaying property of these modified basis functions has been shown both
theoretically and numerically. In [20], Owhadi reformulated the problem from the
decision theory perspective using the idea of gamblets as the modified basis. In par-
ticular, a coarse space Φ of measurement functions is constructed from the Bayesian
perspective, and the gamblet space is explicitly given as Ψ = A−1(Φ), which turns
out to be a counterpart of the modified coarse space in [15]. The exponential decaying
property of these localized basis functions is also proved independently using the idea
of gamblets. Hou and Zhang in [11] further extended these works and constructed
localized basis functions for higher order strongly elliptic operators. To further pro-
mote the operator compression for situations where the physical domain is unknown
or is embedded in some nontrivial high-dimensional manifolds, Hou et al. [10] pro-
pose to exploit the local spectrum information of a general class of SPD matrices
to bypass the needs of adopting knowledge of the computational domain during the
construction of a local basis. Recently, Schäfer, Sullivan, and Owhadi [24] proposed
a near-linear running time algorithm to compress a large class of dense kernel matri-
ces Θ ∈ Rn×n. The authors also provided rigorous complexity analyses and showed
that the complexity of the proposed algorithm is O(n log(n) logd(n/ε)) in space and
O(n log2(n) log2d(n/ε)) in time, where d is the intrinsic dimension of the problem.

1.3. Outline. The layout of the rest of this paper is as follows: In section 2 we
review the energy decomposition framework for SPD matrices proposed in [10] and, in
particular, a brief review of the operator compression and MMD is summarized. This
is then followed by the review of the implicitly restarted Arnoldi iteration procedure.
Some error analysis and perturbation theories subject to our operator compression
framework are discussed. Theoretical developments and algorithms of the hierarchical
spectrum extension/compression and the eigenpair refinement are then proposed in
sections 4 and 5, respectively. Combining these two methods, we propose our hierar-
chical eigensolver in section 6, where details of the choice of parameters are discussed.
Section 7 is devoted to experimental results to justify the effectiveness of our pro-
posed algorithm. In section 8, we provide a quantitative numerical comparison with
the IRLM. The numerical results show that our proposed algorithm gives promising
results in terms of runtime complexity. Discussion of future works and the conclusion
are given in section 9.

2. Preliminaries. The purpose of this section is to provide a general summary
of the energy decomposition framework for operator compression and MMD. One may
refer to [10] for a detailed numerical analysis and experimental results.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 265

2.1. Energy decomposition. Let A be an n × n SPD matrix. We call E =
{Ek}mk=1 an energy decomposition of A and Ek to be an energy element of A if we can
express A =

∑m
k=1Ek, where Ek � 0 ∀k = 1, . . . ,m. For the ease of discussion, we

always assume that the given E = {Ek}mk=1 is the finest underlying energy decompo-
sition of A, meaning that no Ek ∈ E can be further decomposed as Ek = Ek,1 +Ek,2.

Let V be a basis of Rn. For any subset S ⊂ V, we denote PS as the orthogonal
projection onto S. Following the notations in [10], we also denote AS , AS , and AS as
the restricted, interior and closed energy of S with respect to A and E .

2.2. Operator compression. The procedures for compressing the solver A−1

with a broad-banded spectrum are (i) constructing a partition of the computational
basis using local information of A; (ii) constructing the coarse space Φ that is locally
computable and has a good interpolation property; (iii) constructing the modified
coarse space Ψ = A−1(Φ) of Rn as proposed in [11, 15, 20]. If an appropriate parti-
tioning is given, we have the following error estimate for operator compression.

Theorem 2.1. Let Φ be an N -dimensional subspace of Rn such that for some
ε > 0,

(2) ‖x− PΦx‖2 ≤
√
ε‖x‖A ∀x ∈ Rn,

where PΦ is the orthogonal projection onto Φ. Let Ψ be a subspace of Rn given by
Ψ = A−1(Φ). Denote PAΨ as the orthogonal projection onto Ψ with respect to 〈·, ·〉A,
and Θ = PAΨA

−1 as the rank-N compressed approximation of A−1. Then for any
x ∈ Rn and b = Ax, we have

(3) ‖x− PAΨ x‖A ≤
√
ε‖b‖2 and ‖x− PAΨ x‖2 ≤ ε‖b‖2,

and thus

(4) ‖A−1 −Θ‖2 ≤ ε.

As discussed in [10], to satisfy (2), Φ can be constructed by choosing some optimal
local basis Φj on each patch Pj , where P = {Pj}Mj=1 is a partition of V. To minimize
dim Φ, the local basis Φj is chosen to be the eigenvectors corresponding to the small-
est interior eigenvalues (i.e., eigenvalues of APj

) λ1(Pj) ≤ λ2(Pj) ≤ · · · ≤ λqj(ε)(Pj),

where qj(ε) is the smallest integer such that 1
ε ≤ λqj(ε)(Pj). By reversing the state-

ment, we introduce the error factor ε(P) = maxj(λq+1(Pj))
−1 of partition P, where

q is some prescribed uniform integer for all patches. Then locally on each patch we
have ‖x − PΦj

x‖2 ≤
√
ε(P)‖x‖APj

∀x ∈ span{Pj}, and by collecting Φ =
⊕

j Φj we

have globally ‖x − PΦx‖2 ≤
√
ε(P)‖x‖A ∀x ∈ Rn. In the following, we assume that

q = 1 in all cases. Under this setting, the problem of minimizing dim Φ subject to (2)
is transformed into finding a partition P = {Pj}Nj=1 with minimal patch number and
which satisfies ε(P) ≤ ε.

Following the notations in [10], we also use Φ,Ψ to denote the matrices whose
columns are the basis vectors of the subspaces Φ,Ψ, respectively. We remark that
using the matrix form, the A-orthogonal projection PAΨ can be written as

(5) PAΨ = Ψ(ΨTAΨ)−1ΨTA = A−1Φ(ΦTA−1Φ)−1ΦT ,

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

266 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

and the rank-N compressed approximation is explicitly Θ = PAΨA
−1 = ΨA−1

st ΨT ,
where

(6) Ast = ΨTAΨ

is the stiffness matrix in the basis Ψ. Once the coarse space/basis Φ is constructed,
the next step is to find Ψ = [ψ1, ψ2, . . . , ψN] = A−1(Φ) such that (i) the stiffness
matrix Ast has a relatively small condition number, or the condition number can be
bounded by some local information; (ii) each ψi is locally computable, or can be

approximated by some ψ̃i that is locally computable. To achieve these two require-
ments, we impose the correlation condition ΦTΨ = IN , which is equivalent to choosing
Ψ = [ψ1, ψ2, . . . , ψN] to be

(7) Ψ = A−1Φ(ΦA−1Φ)−1

and we have the following theorem for the well-posedness of Ast.

Theorem 2.2. Let Ast be the stiffness matrix given by (6). Let λmin(Ast) and
λmax(Ast) denote the smallest and largest eigenvalues of Ast, respectively, then we
have

(8) λmin(Ast) ≥ λmin(A), λmax(Ast) ≤ δ(P)

with

δ(P) = δ(P,Φ) = max
Pj∈P

δ(Pj ,Φj) and δ(Pj ,Φj) = max
x∈Φj

xTx

xTA
−1

Pj
x
,

where δ(P) is called the condition factor of the partition P.

In other words, by defining Ψ as in (7), the first requirement can be satisfied.
Moreover, such a choice of Ψ also satisfies the second requirement. In fact, we can
prove the spatial exponential decaying property of every basis function ψi (see [10, 20]
for details). This fast decay feature makes it possible to approximate Ψ by some

localized basis Ψ̃ that preserves the good properties of Ψ. In particular, we can
construct a basis Ψ̃ = [ψ̃1, ψ̃2, . . . , ψ̃N] such that each ψ̃i satisfies ‖ψi − ψ̃i‖A ≤
C
√

ε
N for some constant C, and has support size O((log 1

ε + logN)d), where d is
the intrinsic dimension of the problem that characterizes its connectivity. For this
localized Ψ̃, we have an analogy of Theorem 2.1 stating that the operator compression
error can be bounded by ‖A−1 − Θ̃‖2 ≤ (1 + C‖A−1‖2)2ε(P) (where Θ̃ := PA

Ψ̃
A−1 =

Ψ̃(Ψ̃TAΨ̃)−1Ψ̃T), and the condition bound of the localized stiffness matrix can be
estimated by

(9) κ(Ãst) =
λmax(Ãst)

λmin(Ãst)
≤
(

1 + C

√
ε

δ(P)

)2

δ(P)‖A−1‖2,

where κ(Ãst) is the condition number of Ãst := Ψ̃TAΨ̃. Therefore the burden of
controlling the accuracy, sparsity, and well-posedness of the compressed operator Ast

falls into the procedure of partitioning. We then propose a nearly linear time algo-
rithm using the indicators error factor and condition factor to obtain an appropriate
partition P subject to ε(P)δ(P) ≤ c for some prescribed upper bound c. For details
of the notations and the algorithm, please refer to [10].

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 267

2.3. Multiresolution matrix decomposition. Recall that the main purpose
of decomposing A−1 into hierarchical resolutions is to resolve the difficulty of a
large condition number κ(A) when solving the linear system Ax = b. Through de-
composition, the relative condition number in each scale/level can be bounded by
some prescribed value. Using the notation as in the previous subsections, we de-
note U = [U1, U2, . . . , UM] and therefore [U,Ψ] forms a basis of Rn. We also have
UTAΨ = UTΦ(ΦTA−1Φ)−1 = 0. Thus the inverse of A can be written as

A−1 =

([
UT

ΨT

]−1 [
UT

ΨT

]
A
[
U Ψ

] [
U Ψ

]−1

)−1

= U(UTAU︸ ︷︷ ︸
Bst

)−1UT + Ψ(ΨTAΨ︸ ︷︷ ︸
Ast

)−1ΨT .

(10)

Therefore, solving A−1b is equivalent to solving A−1
st (ΨT b) and B−1

st (UT b) separately.
For Bst, since the sparsity of U will be inherited by Bst, it will be efficient to solve
B−1

st b if κ(Bst) is bounded. The following lemma estimates such an upper bound.

Lemma 2.3. If Φ satisfies the condition as in Theorem 2.1 with ε(P) and Bst =
UTAU , then

(11) λmax(Bst) ≤ λmax(A) · λmax(UTU), λmin(Bst) ≥
1

ε(P)
· λmin(UTU),

and thus

(12) κ(Bst) ≤ ε(P) · λmax(A) · κ(UTU).

Notice that UTU is block diagonal with blocks UTj Uj , therefore,

(13) κ(UTU) =
λmax(UTU)

λmin(UTU)
=

max1≤j≤M λmax(UTj Uj)

min1≤j≤M λmin(UTj Uj)
.

In particular, if we extend Φj to an orthonormal basis of span{Pj} to get Uj using
the QR factorization, we have κ(UTU) = 1. So if the condition number of A is huge,
we can first set a small enough ε to sufficiently bound κ(Bst); if κ(Ast) is still large,
we apply the decomposition to A−1

st again to further decompose κ(Ast). In order to
further decompose the stiffness matrix Ast, we need to construct the corresponding
energy decomposition of Ast.

Definition 2.4 (inherited energy decomposition). Let E = {Ek}mk=1 be the en-
ergy decomposition of A, then the inherited energy decomposition of Ast = ΨTAΨ
with respect to E is simply given by EΨ = {EΨ

k }mk=1, where EΨ
k = ΨTEkΨ, k =

1, 2, . . . ,m.

Once we have the underlying energy decomposition of Ast, we can repeat the pro-
cedure to decompose A−1

st in RN as what we have done to A−1 in Rn and, furthermore,
to obtain a multilevel decomposition of A−1. In particular, at level k, we construct
the partition P(k) and the basis Φ(k), U (k),Ψ(k) accordingly, and decompose (A(k))−1

as

(A(k))−1 = U (k+1)
(
(U (k+1))TA(k)U (k+1)

)−1
(U (k+1))T

+ Ψ(k+1)
(
(Ψ(k+1))TA(k)Ψ(k+1)

)−1
(Ψ(k+1))T ,

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

268 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

and then define A(k+1) = (Ψ(k+1))TA(k)Ψ(k+1) and B(k+1) = (U (k+1))TA(k)U (k+1).
We also recall the following notations:

Φ(k) = Φ(1) · · ·Φ(k−1)Φ(k), k ≥ 1,(14a)

U (k) = Ψ(1) · · ·Ψ(k−1)U (k), k ≥ 1,(14b)

Ψ(k) = Ψ(1) · · ·Ψ(k−1)Ψ(k), k ≥ 1.(14c)

Using these notations and noticing that (Φ(k))TΦ(k) = (Φ(k))TΨ(k) = IN(k) , we have

A(k) = (Ψ(k))TAΨ(k) =
(
(Φ(k))TA−1Φ(k)

)−1
, B(k) = (U (k))TAU (k),

(Φ(k))TΦ(k) = (Φ(k))TΨ(k) = IN(k) , Ψ(k) = A−1Φ(k)
(
(Φ(k))TA−1Φ(k)

)−1
,

and for any integer K,

A−1 = (A(0))−1 =

K∑
k=1

U (k)
(
(U (k))TAU (k)

)−1
(U (k))T

+ Ψ(K)
(
(Ψ(K))TAΨ(K)

)−1
(Ψ(K))T .

(15)

We call (15) the MMD of A−1. We remark that as k increases, the compressed
dimension N (k) decreases, and the scale of the subspace spanned by Ψ(k) becomes
coarser. In the subspace spanned by Ψ(k−1), the basis U (k) represents the features that
are finer than Ψ(k). This decomposition helps separate A that has a large condition
number into a sequence of matrices with more controllable conditioned numbers. This
is stated in the following corollary.

Corollary 2.5. We have

κ(A(k)) ≤ δ(P(k))‖A−1‖2,
κ(B(k)) ≤ ε(P(k))δ(P(k−1))κ

(
(U (k))TU (k)

)
.

For consistency, we write δ(P(0)) = λmax(A(0)) = λmax(A).

The following theorem provides an estimation of the total compression error under
K levels of matrix decomposition.

Theorem 2.6. Assume we have constructed Φ(k), k = 1, 2, . . . ,K on each level
accordingly, then we have

(16) ‖x− PΦ(k)x‖22 ≤ εk‖x‖2A ∀x ∈ Rn, where εk =

k∑
k′=1

ε(P(k′)),

and thus for any x ∈ Rn and b = Ax, we have

‖x−PAΨ(k)x‖2A ≤ εk‖b‖22, ‖x−PAΨ(k)x‖2 ≤ εk‖b‖2, and ‖A−1−PAΨ(k)A
−1‖2 ≤ εk.

Notice that the compression error εk is in a cumulative form. However, we can

restrict ε(P(k)) to increase with k at a certain rate, i.e., ε(P(k+1))
ε(P(k))

= 1
η for some

η ∈ (0, 1), which gives

(17) εk ≤
1

1− η
ε(P(k)).

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 269

With the above framework for the MMD, the original matrixA can be decomposed
into bounded pieces, such that the condition number κ(B(k)) is controlled by choosing
an appropriating partition P with ε(P(k))δ(P(k)) ≤ c for some constant c. Therefore,
we can apply the MMD to solve a linear system. Notice that the difference between
εk and ε(P(k)) is very small and can be neglected; in this manuscript, we will treat
ε(P(k)) as εk and denote them simply by εk. To be coherent, we also replace the
notation of δ(P(k)) by δk to avoid confusion that may arise due to various notations.

In practice, we also introduce a local approximator Ψ̃(k), with which the sparsity
of Ã(k) and B̃(k) can be preserved. In particular, we require nnz(Ã(k)) = O(nnz(A)),

where nnz denotes the number of nonzero entries. We remark that, since B̃(k) =
(U (k))T Ã(k−1)U (k), any multiplication operation concerning B̃(k) only requires the

applying of (U (k))T , U (k), and Ã(k−1) separately. The applying of (U (k))T , U (k) can
be done implicitly by performing a local Householder transform with cost linear in n.
So only the sparsity of Ã(k) matters. From the estimates for the MMD in [10], we can

preserve the sparsity of Ã(k) by choosing the scale ratio η−1 to be

(18) η−1 =

(
log

1

ε
+ log n

)p
,

where we remark that p = 1 for graph Laplacian cases. Such a choice of η also gives
us the estimate of the total level number as

(19) K = O

(
log n

log(log 1
ε + log n)

)
.

Moreover, the uniform condition bound κ(P(k), q(k)) ≤ c can be imposed directly
through the MMD algorithm. For more details, please refer to [10, section 6]. For
the ease of discussion in this paper, we presume using the localized decomposition to
control the sparsity throughout levels and simply write ψ̃(k), Ã(k), and B̃(k) as Ψ(k),
A(k), and B(k).

2.4. Implicitly restarted Lanczos method. The Arnoldi iteration is a widely
used method to find eigenvalues of unsymmetric sparse matrices. It belongs to the
family of Krylov subspace methods. For the symmetric case, we can further simplify
it as the Lanczos iteration. A direct application of the Lanczos iteration gives the
largest eigenvalues of an operator by calculating the eigenvalues of its projection on a
Krylov subspace. In each step the algorithm expands the Krylov subspace and finds
an orthogonal basis of the space. Namely, after k steps, the factorization is

(20) AVk = VkTk + fke
T
k ,

where we recall that Tk is a tridiagonal matrix when A is symmetric. Denote (θ, y)
as an eigenpair of Tk. Let x = Vky. Then we have

‖Ax− xθ‖2 = ‖AVky − Vkyθ‖2= ‖fk‖2|eTk y|.(21)

Therefore θ is a good approximation of the eigenvalue of A if and only if ‖fk‖2|eTk y|
is small. The latter is called the Ritz residual. An analogy to the power method
shows that, to compute the largest m eigenvalues, the convergence rate of the largest
m eigenvalues of A is (λm+1/λm)k, where λi is the ith largest eigenvalue of A.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

270 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

The direct Lanczos method is not practical due to the fact that ‖fk‖2 rarely
becomes small enough until the size of Tk approaches that of A. An improvement is
the IRLM [27, 12]. The IRLM employs the idea analogously to the implicitly shifted
QR-iteration [8]. With this approach, the “unwanted” eigenvalues (in this case the
leftmost ones) are shifted away implicitly in each round of implicit restart, and Tk is
kept with a small size equal to the number of desired eigenvalues. This is one of the
state-of-the-art algorithms for large-scale partial eigenproblems.

Yet, it is still complicated if we want to find the leftmost eigenvalues. One possible
approach is to use a shifted IRLM. Namely, to find eigenvalues nearest to σ, we can
replace A with (A − σI)−1 as the target operator. By taking σ = 0 we get the
eigenvalues with the smallest magnitude. Such an approach usually converges within
a few iterations, but it requires solving A−1 in every iteration. For large sparse
problems, A−1 is usually solved by the CG method. The complexity of CG is the
complexity of the matrix-vector product times the number of CG iterations. The
former is equal to the number of nonzero entries of A (denoted as nnz(A)), while the
latter is controlled by the condition number κ(A). Therefore, the total complexity of
the shifted IRLM for solving mtar smallest eigenvalues is

(22) O(RIRLM ·mtar · nnz(A) · κ(A)),

where RIRLM is the number of IRLM rounds. In the following, we will develop the
extension-refinement algorithm to integrate the MMD framework with the shifted
IRLM which gives considerable improvement in terms of the iteration numbers of CG
and PCG throughout the algorithm.

Algorithm 1 Lanczos iteration (p-step extension).

Input: V , T , f , target operator op(·), p.
Output: V , T , f .

1: k = column number of V ;
2: for i = 1 : p do
3: β = ‖f‖2;
4: if β < ε then
5: generate a new random f , β = ‖f‖2;
6: end if
7: T ←

(
T

βeTk+i−1

)
, v = f/β, V ← [V, v];

8: w = op(v);
9: h = V Tw, T ← [T, h];

10: f = w − V h;
11: Reorthogonalize to adjust f ;
12: end for

3. The compressed eigenproblem. In the previous section, we introduced an
effective compression technique for an SPD matrix A subject to a prescribed compres-
sion error ε. The compressed operator is also being SPD. Therefore, by the well-known
eigenvalue perturbation theory, we know that the eigenpairs of the compressed oper-
ator can be used as good approximations for the eigenpairs of the original matrix. In
particular, we have the following estimate.

Lemma 3.1. Let Θ = Ψ(ΨTAΨ)−1ΨT be the rank-N compressed approximation of
A−1 introduced in Theorem 2.1 such that ‖A−1−Θ‖2 ≤ ε. Let µ1 ≥ µ2 ≥ · · · ≥ µn > 0

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 271

Algorithm 2 Inner iteration of the IRLM.

Input: V , T , f , p.
Output: V , T , f .

1: k = column number of V ;
2: Perform Algorithm 1 on V , T , and f for p steps;
3: Set Q = Ik+p and {σj} to be the p smallest eigenvalues of T ;
4: for j = 1 : p do
5: T − σjI = QjRj ;
6: T = QTj TQj , Q← QQj ;
7: end for
8: f ← V ·Q(:, k + 1) · T (k + 1, k) + f ·Q(k + p, k);
9: V ← V ·Q(:, 1 : k), T ← T (1 : k, 1 : k);

be the eigenvalues of A−1 in descending order, and µ̃1 ≥ µ̃2 ≥ · · · ≥ µ̃N > 0 be the
nonzero eigenvalues of Θ in descending order. Then we have

|µi − µ̃i| ≤ ε, 1 ≤ i ≤ N, µi ≤ ε, N < i ≤ n.

Moreover, let ṽi, i = 1, . . . , N , be the corresponding normalized eigenvectors of Θ such
that Θṽi = µ̃iṽi, then we have

‖A−1ṽi − µiṽi‖2 ≤ 2ε, 1 ≤ i ≤ N.

Since the nonzero eigenvalues of Θ and the corresponding eigenvectors actually
result from the nonsingular stiffness matrix Ast = ΨTAΨ, we will call these eigenpairs
the essential eigenpairs of Θ in what follows. We will also need the following lemma
for developing our algorithms.

Lemma 3.2. Let (µ̃i, ṽi), i = 1, . . . , N , be the N essential eigenpairs of Θ given
in Lemma 3.1.

(i) Let wi = ΨT ṽi, then

ΨTΨA−1
st wi = µ̃iwi, 1 ≤ i ≤ N.

(ii) Let zi = Ψ†ṽi = (ΨTΨ)−1ΨT ṽi, then

A−1
st ΨTΨzi = µ̃izi, 1 ≤ i ≤ N,

where Ast = ΨTAΨ is the stiffness matrix. Conversely, if either (i) or (ii) is true,
then (µ̃i, ṽi), i = 1, . . . , N , are eigenpairs of Θ.

Similarly to Lemma 3.1, we have the following estimates for multiresolution de-
composition.

Lemma 3.3. Given an integer K, let Θ(k) = Ψ(k)((Ψ(k))TAΨ(k))−1(Ψ(k))T , k =

1, 2, . . . ,K, with Ψ(k) given in (14). Write A−1 = Θ(0). Let (µ
(k)
i , v

(k)
i), i =

1, 2, . . . , N (k), be the essential eigenpairs of Θ(k), where µ
(k)
1 ≥ µ(k)

2 ≥ · · · ≥ µ(k)

N(k) > 0.
Then for any 0 ≤ k′ < k ≤ K, we have

|µ(k′)
i − µ(k)

i | ≤ εk, 1 ≤ i ≤ N (k), |µ(k′)
i | ≤ εk, N (k) < i ≤ N (k′),

and
‖Θ(k′)v

(k)
i − µ

(k′)
i v

(k)
i ‖2 ≤ 2εk, 1 ≤ i ≤ N (k).

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

272 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Proof. By Theorem 2.6 we have that ‖Θ(0) − Θ(k)‖2 = ‖A−1 − Θ(k)‖2 ≤ εk,
k = 1, 2, . . . ,K. From the definition of Θ(k) and the decomposition (15), one can
easily check that

A−1 = Θ(0) � Θ(1) � · · · � Θ(K−1) � Θ(K).

Then the results follow immediately.

On compressed eigenproblems. We should remark that the efficiency of con-
structing the compressed operator we propose relies on the exponential decay prop-
erty of the basis Ψ. This spatial exponential decay feature allows us to localize Ψ
and to construct sparse stiffness matrix Ast = ΨTAΨ without compromising com-
pression accuracy ε in O(nnz(A) · (log(1

ε) + log n)c) time. In fact, the problem of
using a spatially localized/compact basis to compress a high-dimensional operator
and to approximate the eigenspace of the smallest eigenvalues has long been stud-
ied in different ways. A representative pioneer work is the method of compressed
modes proposed by Ozoliņš et al. [22], intended originally for Schrödinger’s equation
in quantum physics. By adding an L1 regularization to the variational form of an
eigenproblem, they obtained spatially compressed basis modes that span the desired
eigenspace well. Though the way they obtain sparsity is quite different from what we
do, both methods obtain interestingly similar results for some model problems. It can
be inspiring to make a comparison between their method and ours, so that readers
can have a better understanding of our approach. We leave the detailed comparison
to the appendix.

4. Hierarchical spectrum completion. Now that we have a sequence of com-
pressed approximations, we next seek to use this decomposition to compute the dom-
inant spectrum of A−1 down to a prescribed value in a hierarchical manner. In
particular, we propose to decompose the target spectrum into several segments of
different scales, and then allocate the computation of each segment to a certain level
of the compressing sequence so that the problem on each level is well-conditioned.

To implement this idea, we first go back to the 1-level compression settings.
Suppose that we have accurately obtained the first m essential eigenpairs (µi, vi),
i = 1, . . . ,m, of Θ = Ψ(ΨTAΨ)−1ΨT = ΨA−1

st ΨT , and our aim is to compute the
following mtar −m eigenpairs (namely, extend to the first mtar eigenpairs) using the
Lanczos method. Define Vm = span{vi : 1 ≤ i ≤ m} and Vm+ = span{vi : m < i ≤
N} = V ⊥m ∩ span{Ψ}. Then to perform the Lanczos method to compute the next
segment of eigenpairs of Θ, we need to repeatedly apply the operator ΨA−1

st ΨT to
vectors in Vm+ , which requires us to compute A−1

st w for w ∈Wm+ = ΨT (Vm+).
Ideally we want the computation of the following mtar −m eigenpairs to be re-

stricted to a problem with bounded spectrum width that is proportional to µm/µmtar .
This is possible since we assume that we have accurately obtained the span space Vm
of the first m eigenvectors, and thus we can consider our problem in the reduced space
orthogonal to Vm. In this case, the CG method will be efficient for computing inverse
matrix operations.

Definition 4.1. Let A be an SPD matrix, and V be an invariant subspace of A.
We define the condition number of A with respect to V as

κ(A, V) =
λmax(A, V)

λmin(A, V)
,

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 273

where

λmax(A, V) = max
v∈V,v 6=0

vTAv

vT v
, λmin(A, V) = min

v∈V,v 6=0

vTAv

vT v
.

Theorem 4.2. Let A be an SPD matrix, and V be an invariant subspace of A.
When using the CG method to solve Ax = b with initial guess x0 such that r0 =
b−Ax0 ∈ V , we have the following estimate:

‖xk − x∗‖A ≤ 2

(√
κ(A, V)− 1√
κ(A, V) + 1

)k
‖x0 − x∗‖A

and

‖xk − x∗‖2 ≤ 2
√
κ(A, V)

(√
κ(A, V)− 1√
κ(A, V) + 1

)k
‖x0 − x∗‖2,

where x∗ is the exact solution, and xk ∈ x∗+V is the solution at the kth step of the CG
iteration. Thus it takes k = O(κ(A, V) · log 1

ε) steps (or k = O(κ(A, V) ·(log κ(A, V)+
log 1

ε)) steps) to obtain a solution subject to relative error ε in the energy norm (or l2
norm).

Proof. We only need to notice that the k-order Krylov subspace K(A, r0, k) gen-
erated by A and r0 satisfies

K(A, r0, k) ⊂ V ∀k ∈ Z.

Notice that, for any i = m+ 1, . . . , N , though vi ∈ Vm+ is an eigenvector of Θ =
ΨA−1

st ΨT , wi = ΨT vi is not an eigenvector of A−1
st (but an eigenvector of ΨTΨA−1

st)
since we do not require Ψ to be orthonormal. Therefore the space Wm+ is not an
invariant space of Ast, and if we directly use the CG method to solve Astx = w,
the convergence rate will depend on κ(Ast) = λmax(Ast)λmin(Ast)

−1 , instead of
λmax(Ast)µm as intended. Though we bound λmax(Ast) from above by δ(P) and
λmin(Ast) from below by λmin(A) (see Theorem 2.2), κ(Ast) can be still large since
we prescribe a bounded compression rate in practice to ensure the efficiency of the
compression algorithm.

Therefore, we need to find a proper invariant space, so that we can make use of
the knowledge of the space Vm and restrict the computation of A−1

st w to a problem of
narrower spectrum.

Lemma 4.3. Let (µi, vi), i = 1, . . . , N , be the essential eigenpairs of Θ =

Ψ(ΨTAΨ)−1ΨT = ΨA−1
st ΨT , such that µ1 ≥ µ2 ≥ · · · ≥ µN > 0. Let (ΨTΨ)

1
2 be the

square root of the SPD matrix ΨTΨ. Then (µi, zi), i = 1, . . . , N , are all eigenpairs of

(ΨTΨ)
1
2A−1

st (ΨTΨ)
1
2 , where

zi = (ΨTΨ)−
1
2 ΨT vi, 1 ≤ i ≤ N.

Moreover, for any subset S ⊂ {1, 2, . . . , N}, and ZS = span{zi : i ∈ S}, we have

K(AΨ, z, k) ⊂ ZS ∀z ∈ ZS ∀k ∈ Z,

where AΨ = (ΨTΨ)−
1
2Ast(Ψ

TΨ)−
1
2 .

Lemma 4.4. Let Ψ be given in (7), then we have

λmin(ΨTΨ) ≥ 1, λmax(ΨTΨ) ≤ 1 + ε(P)δ(P),

and thus
κ(ΨTΨ) ≤ 1 + ε(P)δ(P).

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

274 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Proof. Let U be the orthogonal complement basis of Φ given in (10), so [Φ, U]
is an orthonormal basis of Rn, and we have ΦΦT + UUT = In. Since ΦTΨ =
ΦTA−1Φ(ΦTA−1Φ)−1 = IN , we have

ΨTΨ = ΨTΦΦTΨ + ΨTUUTΨ = IN + ΨTUUTΨ.

We then immediately obtain ΨTΨ � IN and, thus, λmin(ΨTΨ) ≥ 1. To obtain an
upper bound of λmax(ΨTΨ), we notice that from the construction of Φ we have

‖x− PΦx‖22 ≤ ε(P)xTAx ∀x ∈ Rn =⇒ (In − PΦ)2 � ε(P)A,

where PΦ = ΦΦT denotes the orthogonal projection into span{Φ}. Since ΦΦT +
UUT = In, we have

UUT = In − ΦΦT = (In − ΦΦT)2 � ε(P)A.

Therefore we have

ΨTΨ = IN + ΨTUUTΨ � IN + ε(P)ΨTAΨ = IN + ε(P)Ast,

and by Theorem 2.2 we obtain

λmax(ΨTΨ) ≤ 1 + ε(P)λmax(Ast) ≤ 1 + ε(P)δ(P).

Theorem 4.5. Let AΨ and (µi, zi) be defined as in Lemma 4.3. Let Zm+ =
span{zi : m < i ≤ N}, then Zm+ is an invariant space of AΨ, and we have

κ(AΨ, Zm+) ≤ µm+1δ(P).

Proof. By Lemmas 4.3 and 4.4, we have

λmax(AΨ, Zm+) ≤ λmax(AΨ) = ‖(ΨTΨ)−
1
2Ast(Ψ

TΨ)−
1
2 ‖2

≤ ‖Ast‖2‖(ΨTΨ)−1‖2 ≤ δ(P).

And by the definition of Zm+ , we have

λmin(AΨ, Zm+) =
1

λmax(A−1
Ψ , Zm+)

=
1

λmax((ΨTΨ)
1
2A−1

st (ΨTΨ)
1
2 , Zm+)

=
1

µm+1
.

Inspired by Lemma 4.4 and Theorem 4.5, we now consider solving Astx = w
efficiently for w ∈Wm+ = ΨT (Vm+) = (ΨTΨ)

1
2 (Zm+) by making use of the controlled

condition number κ(AΨ, Zm+) and κ(ΨTΨ). Theoretically, we can compute x = A−1
st w

by the following steps:
(i) Compute b = (ΨTΨ)−

1
2w ∈ Zm+ ;

(ii) Use the CG method to compute y = A−1
Ψ b with initial guess y0 such that

b−AΨy0 ∈ Zm+ ;
(iii) Compute x = (ΨTΨ)−

1
2 y.

Notice that this procedure is exactly solving Astx = w using the preconditioned CG
method with preconditioner ΨTΨ, which only involves applying Ast and (ΨTΨ)−1

to vectors, but still enjoys the good conditioning property of AΨ restricted to Zm+ .
Therefore we have the following estimate.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 275

Corollary 4.6. Consider using the PCG method to solve Astx = w for w ∈
Wm+ with preconditioner ΨTΨ and initial guess x0 such that r0 = w−Astx0 ∈Wm+ .
Let x∗ be the exact solution, and xk be the solution at the kth step of the PCG iteration.
Then we have

‖xk − x∗‖Ast ≤ 2

(√
κ(AΨ, Zm+)− 1√
κ(AΨ, Zm+) + 1

)k
‖x0 − x∗‖Ast

and

‖xk − x∗‖2 ≤ 2
√
κ(ΨTΨ)κ(AΨ, Zm+)

(√
κ(AΨ, Zm+)− 1√
κ(AΨ, Zm+) + 1

)k
‖x0 − x∗‖2.

Proof. Let yk = (ΨTΨ)
1
2xk and y∗ = (ΨTΨ)

1
2x∗, then we have

‖yk − y∗‖22 = (xk − x∗)TΨTΨ(xk − x∗)

and
‖yk − y∗‖2AΨ

= (yk − y∗)TAΨ(yk − y∗) = ‖xk − x∗‖2Ast
.

Noticing that (ΨTΨ)−
1
2 r0 ∈ Zm+ and K(AΨ, (Ψ

TΨ)−
1
2 r0, k) ⊂ Zm+ ∀k, the results

follow from Theorem 4.2.

By Corollary 4.6, to compute a solution of Astx = w subject to a relative error ε
in the Ast-norm, the number of needed PCG iterations is

O

(
κ(AΨ, Zm+) · log

1

ε

)
= O

(
µm+1δ(P) · log

1

ε

)
.

This is also an estimate of the number of needed PCG iterations for a relative error
ε in the l2-norm, if we assume that κ(ΨTΨ), κ(AΨ, Zm+) ≤ 1

ε .
In what follows we will denote M = ΨTΨ. Notice that the nonzero entries of M

are due to the overlapping support of column basis vectors of Ψ, while the nonzero
entries of Ast = ΨTAΨ are results of interactions between column basis vectors of Ψ
with respect to A. Thus we can reasonably assume that nnz(M) ≤ nnz(Ast). Suppose
that in each iteration of the whole PCG procedure, we also use the CG method to
compute M−1b for some b subject to a relatively higher precision ε̂, which requires
a cost of O(nnz(M) · κ(M) · log 1

ε̂). In practice it is sufficient to take ε̂ smaller than
but comparable to ε (e.g., ε̂ = 0.1ε), so log(1

ε̂) = O(log 1
ε). By Lemma 4.4 we have

κ(M) = O(ε(P)δ(P)). Then the computational complexity of each single iteration
can be bounded by

O
(
nnz(Ast)

)
+O

(
nnz(M) · κ(M) · log

1

ε

)
= O

(
nnz(Ast) · ε(P)δ(P) · log

1

ε

)
,

and the total cost of computing a solution of Astx = w subject to a relative error ε is

(23) O

(
µm+1δ(P) · nnz(Ast) · ε(P)δ(P) ·

(
log

1

ε

)2
)
.

We remark that when the original size of A ∈ Rn×n is large, the eigenvectors
V are long and dense. It would be expensive to compute inner products with these

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

276 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

long vectors over and over again. In fact, in the previous discussions the operator
Θ = ΨA−1

st ΨT (of the same size as A) and the eigenvectors V are only for the purpose
of analysis used to explain the idea of our method. In practice, for a long vector
v = Ψv̂, we don’t need to keep track of the whole vector, but only need to store its
much shorter coefficients v̂ of compressed dimension N instead. When we compute
v2 = Θv1 = ΨA−1

st ΨT v1, it is equivalent to computing v̂2 = A−1
st Mv̂1, where vj =

Ψv̂j , j = 1, 2, and M = ΨTΨ. One can check that the analysis presented above still
applies. So in the implementation of our method, we only deal with operator A−1

st M

and short vectors V̂ , and the long eigenvectors V and Ψ will not appear until in the
very end when we recover V = ΨV̂ . We remark that since the eigenvectors of Θ are
orthogonal, their coefficient vectors V̂ are M -orthogonal, i.e., V̂ TMV̂ = I. We use
‖x‖M to denote the norm

√
xTMx.

Recall that in the Lanczos method with respect to operator Θ, the upper-
Hessenberg matrix T in the Arnoldi relation

ΘV = V T + feT

is indeed tridiagonal, since Θ is symmetric, and V T [V, f] = [I,0]. This upper-
Hessenberg matrix T being tridiagonal is the reason why the implicit restarting process
(Algorithm 2) is efficient. Now since we are actually dealing with the operator A−1

st M

and the coefficient vectors V̂ T = M−1ΨTV , the Arnoldi relation becomes

A−1
st MV̂ = V̂ T + f̂ eT ,

where f̂ = M−1ΨT f . So as long as we keep V̂ M -orthogonal and f̂ M -orthogonal to
V̂ , T will still be tridiagonal since

T = V̂ TMV̂ T = V̂ TM(V̂ T + f̂ eT) = V̂ TMA−1
st MV̂

is symmetric. We therefore modified Algorithm 1 to Algorithm 3 to takeM -orthogonal-
ity into consideration.

Summarizing the analysis above, we propose Algorithm 4 for extending a given
collection of eigenpairs using the Lanczos-type method. The operator OP (· ;Ast,M,
εop) exploits our key idea that uses M = ΨTΨ as the preconditioner to effectively
reduce the number of PCG iterations in every operation of A−1

st M . For convenience,
we will use x = pcg(A, b,M, x0, ε) to represent the operation of computing x = A−1b
using the PCG method with preconditioner M and initial guess x0, subject to relative
error ε. x = pcg(A, b,−, x0, ε) means no preconditioner is used (i.e., the normal CG
method), and x = pcg(A, b,M,−, ε) means an all zero vector is used as the initial
guess.

Given an existing eigenspace Vini = ΨV̂ini, Algorithm 4 basically uses the Lanczos
method to find the following eigenpairs of Θ in the space V ⊥ini. Notice that the output

V̂ex gives the coefficients of the desired eigenvectors Vex in the basis Ψ. However,
differently from the classical Lanczos method, we do not prescribe a specific number
for the output eigenpairs. Instead, we set a threshold µ to bound the last output
eigenvalue. As we will develop our idea into a multilevel algorithm that pursues a
number of target eigenpairs hierarchically, the output of the current level will be used
to generate the initial eigenspace for the higher level. Therefore, the purpose of setting
a threshold µ on the current level is to bound the restricted condition number on the
higher level, as the initial eigenspace Vini from the lower level helps to bound the
restricted condition number on the current level.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 277

Algorithm 3 General Lanczos iteration (p-step extension).

Input: V̂ , T , f̂ , target operator op(·), p, inner product matrix M

Output: V̂ , T , f̂
1: k = column number of V̂ ;
2: for i = 1 : p do
3: β = ‖f̂‖M ;
4: if β < ε then
5: generate a new random f̂ , β = ‖f̂‖M ;
6: end if
7: T ←

(
T

βeTk+i−1

)
, v̂ = f̂/β, V̂ ← [V̂ , v̂];

8: w = op(v̂);

9: h = V̂ TMw, T ← [T, h];

10: f̂ = w − V̂ h;
11: Reorthogonalize to adjust f(with respect to M -orthogonality);
12: end for

Function y = Operator OP (x;Ast,M, εop).

1: w = Mx;
2: y = pcg(Ast, w,M,−, εop);

Algorithm 4 Eigenpair extension.

Input: V̂ini, Dini, OP (· ;Ast,M, εop), target number mtar,
prescribed accuracy ε, eigenvalue threshold µ, searching step d.

Output: V̂ex, Dex.
1: Generate random initial vector V̂ = v̂ that is M -orthogonal to V̂ini;
2: repeat
3: perform d steps of general Lanczos iteration (Algorithm 3) with operator OP

to extend V̂ , T ;
4: while Lanczos residual > ε, do
5: Perform c ·d steps of shifts to restart Lanczos (Algorithm 2) and renew V̂ , T ;
6: end while
7: Find the smallest eigenvalue of T as µ̂;
8: until µ̂ < µ or dim(V̂) ≥ mtar − dim(V̂ini).

9: mnew = dim(V̂);
10: while Lanczos residual > ε, do
11: Perform c · mnew steps of shifts to restart Lanczos (Algorithm 2) and renew

V̂ , T ;
12: end while
13: PSPT = T (Schur decomposition);

14: V̂ex = [V̂ini, V̂ P], Dex =

[
Dini

S

]
;

The choice of the threshold µ will be discussed in detail after we introduce the
refinement procedure. Here, to develop a hierarchical spectrum completion method
using the analysis above, we state the hierarchical versions of Lemma 4.4 and Theo-
rem 4.5.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

278 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Lemma 4.7. Let Ψ(k) be given in (14), and M (k) = (Ψ(k))TΨ(k). Then we have

λmin(M (k)) ≥ 1, λmax(M (k)) ≤ 1 + εkδk,

and thus

κ(M (k)) ≤ 1 + εkδk.

Proof. The proof is similar to the proof of Lemma 4.4. Let U (k) = (Φ(k))⊥ be
the orthogonal complement basis of Φ(k). According to Theorem 2.6, we have

‖x− PΦ(k)x‖22 ≤ εk‖x‖2A,

which implies that

U (k)(U (k))T = (In −Φ(k)(Φ(k))T) ≤ εkA.

Noticing that (Φ(k))TΨ(k) = IN(k) , Φ(k)(Φ(k))T +U (k)(U (k))T = In, we thus have

M (k) = (Ψ(k))TΦ(k)(Φ(k))TΨ(k) + (Ψ(k))TU (k)(U (k))TΨ(k)

= IN(k) + (Ψ(k))TU (k)(U (k))TΨ(k),

=⇒ IN(k) �M (k) � IN(k) + εk(Ψ(k))TAΨ(k) = IN(k) + εkA
(k).

Therefore we have λmin(M (k)) ≥ 1, and by Corollary 2.5 we have

λmax(M (k)) ≤ 1 + εkλmax(A(k)) ≤ 1 + εkδk.

Theorem 4.8. Let A(k) and Ψ(k) be given in (14), and M (k) = (Ψ(k))TΨ(k). Let

(µ
(k)
i , v

(k)
i), i = 1, . . . , N (k), be the essential eigenpairs of Θ(k) = Ψ(k)(A(k))−1(Ψ(k))T .

Define

z
(k)
i = (M (k))−

1
2 (Ψ(k))T v

(k)
i , 1 ≤ i ≤ N (k).

Given an integer mk, let Z
(k)

m+
k

= span{z(k)
i : mk < i ≤ N (k)}, then Z

(k)

m+
k

is an

invariant space of A
(k)
Ψ = (M (k))−

1
2A(k)(M (k))−

1
2 , and we have

κ(A
(k)
Ψ , Z

(k)
m+) ≤ µ(k)

mk+1δk.

Moreover, consider using the PCG method to solve A(k)x = w for w ∈ W
(k)

m+
k

with

preconditioner M (k) and initial guess x0 such that r0 = w − A(k)x0 ∈ W (k)

m+
k

, where

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 279

W
(k)

m+
k

= span{(Ψ(k))T v
(k)
i : mk < i ≤ N (k)}. Let x∗ be the exact solution, and xt be

the solution at the tth step of the PCG iteration. Then we have

‖xt − x∗‖A(k) ≤ 2


√
µ

(k)
mk+1δk − 1√
µ

(k)
mk+1δk + 1

t

‖x0 − x∗‖A(k)

and

‖xt − x∗‖2 ≤ 2

√
εkµ

(k)
mk+1δ

2
k


√
µ

(k)
mk+1δk − 1√
µ

(k)
mk+1δk + 1

t

‖x0 − x∗‖2.

Recall that we will use the CG method to implement Lanczos iteration on each
level k to complete the target spectrum. To ensure the efficiency of the CG method,

namely, to bound the restricted condition number κ(A
(k)
Ψ , Z

(k)
m+) on each level, we need

a priori knowledge of the spectrum {(µ(k)
i , v

(k)
i) : 1 ≤ i ≤ mk} such that µ

(k)
mk+1δk is

uniformly bounded. This given spectrum should be inductively computed on the lower
level k + 1. But notice that there is a compression error between each two neighbor
levels, which will compromise the orthogonality and thus the theoretical bound for
restricted condition number, if we directly use the spectrum of the lower level as an a
priori spectrum of the current level. Therefore we introduce a refinement method in
section 5 to overcome this difficulty.

5. Cross-level refinement of eigenspace. In the previous section we have
established a 1-level spectrum extension method, given that a partial accurate spec-
trum is provided. To develop this method into an inductive hierarchical spectrum
completion procedure, a natural idea is to use the spectrum computed at the lower
level as the initial spectrum to be used in the higher level. However, such an initial
spectrum is not actually good enough since there is a compression error between each
two neighboring levels. Thus we need to use a compatible refinement technique to
refine the initial spectrum.

Now consider the cross-level spectrum refinement between the two consecutive lev-
els, the h-level and the l-level. The two operators are Θh = Ψh((Ψh)TAΨh)−1(Ψh)T

and Θl = Ψl((Ψl)TAΨl)−1(Ψl)T , respectively. We have the relations

Ψl = ΨhΨl, U l = ΨhU l,

Alst = (Ψl)TAΨl = (Ψl)T (Ψh)TAΨhΨl = (Ψl)TAhstΨ
l,

Blst = (U l)TAU l = (U l)T (Ψh)TAΨhU l = (U l)TAhstU
l,

(Ahst)
−1 = Ψl(Alst)

−1(Ψl)T + U l(Blst)
−1(U l)T ,

Θh = Ψh
(
Ψl(Alst)

−1(Ψl)T + U l(Blst)
−1(U l)T

)
(Ψh)T = Θl + U l(Blst)−1(U l)T .(24)

Now suppose that we have obtained the first ml essential eigenpairs (µl,i, vl,i),
i = 1, . . . ,ml, of Θl. We want to use these eigenpairs as an initial guess to obtain the
first mh essential eigenpairs of Θh. Recall that we have the estimates

|µh,i − µl,i| ≤ εl, 1 ≤ i ≤ ml,

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

280 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

and
‖Θhvl,i − µh,ivl,i‖2 ≤ 2εl, 1 ≤ i ≤ ml,

where εl is the compression error bound. These estimates give us confidence that
we can obtain (µh,i, vh,i), i = 1, . . . ,mh, efficiently from (µl,i, vl,i), i = 1, . . . ,ml, by
using some refinement technique.

Indeed, we will use the orthogonal iteration with Ritz acceleration as our refine-
ment method. Consider an initial guess Q(0) of the first m eigenvectors of an SPD
operator Θ. To obtain more accurate eigenvalues and eigenspace, the orthogonal
iteration with Ritz acceleration runs as follows:

Q(0) ∈ Rn×m given with (Q(0))TQ(0) = Im

F (0) = ΘQ(0)

for k = 1, 2, . . .

Q(k)R(k) = F (k−1) (QR factorization)

F (k) = ΘQ(k)(∗)
S(k) = (Q(k))TF (k)

P (k)D(k)(P (k))T = S(k) (Schur decomposition)

Q(k) ← Q(k)P (k)

F (k) ← F (k)P (k)

end

To state the convergence property of the orthogonal iteration with Ritz accel-
eration, we first define the distance between two spaces. Let V1, V2 ⊂ Rn be two
linear spaces, and PV1 ,PV2 be the orthogonal projections onto V1, V2, respectively.
We define the distance between V1 and V2 as

dist(V1, V2) = ‖PV1 − PV2‖2.

We also use the same notation dist(V1, V2) when V1, V2 are matrices of column vectors.
In this case dist(V1, V2) means dist(span{V1}, span{V2}).

Suppose that the diagonal entries µ
(k)
i , i = 1, . . . ,m, of D(k) are in a decreasing

order, then µ
(k)
i is a good approximation of the ith eigenvalue of Θ, and span{Q(k)

i }
is a good approximation of the eigenspace spanned by the first i eigenvectors of Θ,

where Q
(k)
i denotes the first i columns of Q(k). We would like to emphasize that

the meaning of the superscript (k) of µ
(k)
i is different from those in section 4. More

precisely, we have the following convergence estimate.

Theorem 5.1 (Stewart, 1968 [29]). Let (µi, vi), i = 1, . . . , N , be the ordered

(essential) eigenpairs of Θ, and let µ
(k)
i , i = 1, . . . ,m, be the ordered eigenvalues of

D(k) = (Q(k))TΘQ(k) given in the orthogonal iteration with Ritz acceleration (∗). Let
Vm = [v1, v2, . . . , vm], and d(0) = dist(Vm, Q

(0)). Then we have

|µi − µ(k)
i | ≤ O

((
µm+1

µi

)2k

· ‖Θ‖2 ·
(d(0))2

1− (d(0))2

)
, 1 ≤ i ≤ m.

Moreover, we have

dist(Vm, Q
(k)) ≤ O

((
µm+1

µm

)k
· d(0)√

1− (d(0))2

)
,

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 281

and for i = 1, . . . ,m− 1, if we further assume that αi = µi − µi+1 > 0, then we have

dist(Vi, Q
(k)
i) ≤ O

((
µm+1

µi

)k
· d(0)√

1− (d(0))2

)

+ O

(√
i

αi
·
(
µ2
m+1

µmµi

)k
· ‖Θ‖2 ·

(d(0))2

1− (d(0))2

)
,

where Vi and Q
(k)
i are the first i columns of Vm and Q(k), respectively.

Now we go back to our problem, where we have Θ = Θh, m = ml, and Q(0) =
V lml

= [vl,1, . . . , vl,ml
]. We next consider the efficiency of this refinement technique

in our problem. As long as the initial distance d(0) = dist(V hml
, V lml

) < 1, the first

mh eigenvalues and the eigenspace of the first mh eigenvectors of Θh converge ex-
ponentially fast at a rate (

µh,ml+1

µh,mh

)k. We can expect that a few iterations of re-

finement will be sufficient to give an accurate eigenspace for narrowing down the
residual spectrum of Θh, if we can ensure that the ratio

µh,ml+1

µh,mh

is small enough. This

will be verified in our numerical examples to be presented in section 7. In partic-
ular, to refine the first mh eigenpairs subject to a prescribed accuracy ε, we need
K = O(log(1

ε)/ log(
µh,mh

µh,ml+1
)) refinement iterations.

The main cost of the refinement procedure comes from the computation of ΘhQ(0)

and the computation of ΘhQ(k) in each iteration. We will reduce the computational
cost by using the fact that Q(k) is a good approximation of eigenvectors of Θh. We
first consider how to compute ΘhQ(0) efficiently.

Notice that in our problem, we take Q(0) = V lml
, whose columns are the first ml

eigenvectors of Θl. Therefore by (24), we have

ΘhQ(0) = ΘhV lml
= ΘlV lml

+ U l(Blst)−1(U l)TV lml
= V lml

Dl
ml

+ U l(Blst)−1(U l)TV lml
,

where Dl
ml

is a diagonal matrix whose diagonal entries are µl,1, µl,2, . . . , µl,ml
. Recall

that by Lemma 2.3 and Corollary 2.5, κ(Blst) is bounded by εlδh that can be well
controlled in the decomposition procedure. Thus it is efficient to solve (Blst)

−1 using
the CG method. As we have mentioned before, applying (U l)T or U l from the left
is performed by doing patchwise Householder transformations that involve only one
local Householder vector on each patch, which takes O(Nh) computational cost, where
Nh is the compressed dimension on level h or the size of Ahst. Therefore in the CG
method, the cost of matrix multiplication of Blst = (U l)TAhstU

l mainly comes from
the number of nonzero entries of Ahst. Then the total computational cost of computing
ΘhQ(0) subject to a relative error ε can be bounded by

O

(
ml · nnz(Ahst) · εlδh · log

(
1

ε

))
.

Next, we consider how to compute ΘhQ(k). To do so, we first compute w
(k)
i =

(Ψh)T q
(k)
i , where q

(k)
i is the ith column of Q(k), then compute (Ahst)

−1w
(k)
i , and

apply Ψh. Again we will use the PCG method with predictioner Mh = (Ψh)TΨh to

compute (Ahst)
−1w

(k)
i . As we have discussed in section 4, this is equivalent to using the

CG method to compute (AhΨ)−1z
(k)
i , where AhΨ = (Mh)−

1
2Ahst(M

h)−
1
2 , and z

(k)
i =

(Mh)−
1
2w

(k)
i = (Mh)−

1
2 (Ψh)T q

(k)
i . Inspired by Corollary 4.6, we seek to provide a

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

282 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

good initial guess for the CG method to ensure efficiency. In the orthogonal iteration
with Ritz acceleration (∗), one can check that (Q(k))T (ΘhQ(k)−Q(k)D(k)) = 0, where

D(k) is a diagonal matrix with diagonal entries µ
(k)
1 , µ

(k)
2 , . . . , µ

(k)
ml and, therefore,

(Z(k))T
(
(AhΨ)−1Z(k) − Z(k)D(k)

)
= (Q(k))TΨh(Mh)−

1
2

(
(AhΨ)−1(Mh)−

1
2 (Ψh)TQ(k) − (Mh)−

1
2 (Ψh)TQ(k)D(k)

)
= (Q(k))T

(
Ψh(Ahst)

−1(Ψh)TQ(k) −Ψh(Mh)−1(Ψh)TQ(k)D(k)
)

= (Q(k))T
(

ΘhQ(k) −Q(k)D(k)
)

= 0,

where we have used that Q(k) ∈ span{Ψh} and so Ψh(Mh)−1(Ψh)TQ(k) = Q(k).

This observation implies that if we use µ
(k)
i z

(k)
i as the initial guess for computing

(AhΨ)−1z
(k)
i using the CG method, the initial residual z

(k)
i − (AhΨ)(µ

(k)
i z

(k)
i) is orthog-

onal to (AhΨ)−1Z(k). Since Q(k) are already good approximate essential eigenvectors
of Θh, Z(k) are good approximate eigenvectors of (AhΨ)−1, we can expect that the
target eigenspace Zmh

, namely, the eigenspace of the first mh eigenvectors of (AhΨ)−1,
can be well spanned in span{(AhΨ)−1Z(k)}. Therefore we can reasonably assume that

z
(k)
i − (AhΨ)(µ

(k)
i z

(k)
i) ∈ Zm+

h
= Z⊥mh

, and so again we can benefit from the restricted

condition number κ(AhΨ, Zm+
h

) ≤ µh,mh+1δh as introduced in section 4. Moreover, we

notice that the spectral residual ‖Θhq
(k)
i −µ

(k)
i q

(k)
i ‖2 is bounded by 2εl by Lemma 3.3,

and we have
(25)

‖(Ahst)−1w
(k)
i −µ

(k)
i (Mh)−1w

(k)
i ‖2 ≤ ‖(A

h
Ψ)−1z

(k)
i −µ

(k)
i z

(k)
i ‖2 = ‖Θhq

(k)
i −µ

(k)
i q

(k)
i ‖2,

where we have used λmin(Mh) ≥ 1 (Lemma 4.7). Thus if we use µ
(k)
i z

(k)
i as the initial

guess, the initial error will be bounded by 2εl at most, and the CG procedure will
only need

O
(
κ(AhΨ, Zm+

h
) · log

(εl
ε

))
= O

(
µh,mh+1δh · log

(εl
ε

))
iterations to achieve a relative accuracy ε, instead of O(κ(AhΨ, Zm+

h
) · log(1

ε)). Notice

that using the initial guess µ
(k)
i z

(k)
i for (AhΨ)−1z

(k)
i is equivalent to using the initial

guess µ
(k)
i (Mh)−1w

(k)
i for (Ahst)

−1w
(k)
i .

Supported by the analysis above, we will compute (Ahst)
−1w

(k)
i using the PCG

method with preconditioner Mh and initial guess µ
(k)
i (Mh)−1w

(k)
i . Again suppose

that in each PCG iteration, we also use the CG method to apply (Mh)−1 subject to
a higher relative accuracy ε̂, which takes O(nnz(Mh) · κ(Mh) · log(1

ε̂)) computational
cost. In practice, it is sufficient to take ε̂ comparable to ε. Recalling that nnz(Mh) ≤
nnz(Ahst), and κ(Mh) ≤ O(εhδh) (Lemma 4.7), the cost of computing ΘhQ(k) subject
to a relative error ε is then bounded by

O

(
ml · µh,mh+1δh · log

(εl
ε

)
· nnz(Ahst) · εhδh · log

(
1

ε

))
.

Notice that in each refinement iteration we also need to perform one QR fac-
torization and one Schur decomposition, which together cost O(Nh ·m2

l). However,

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 283

as we have mentioned in the introduction, we only consider the asymptotic com-
plexity of our method when the original A becomes superlarge. In this case, the
number mtar of the target eigenpairs is considered as a fixed constant, and so the
term O(Nh · m2

l) ≤ O(Nhm2
tar) is considered to be minor and will be omitted in

our complexity analysis. Therefore, the total cost of refining the first mh eigenpairs
subject to a prescribed accuracy ε can be bounded by

O

(
ml · nnz(Ahst) · εlδh · log

(
1

ε

))
+O

(
ml · µh,mh+1δh · log

(εl
ε

)
· nnz(Ahst)

· εhδh · log

(
1

ε

)
· log

(
1

ε

)
/ log

(
µh,mh

µh,ml+1

))
.

(26)

Again we remark that the operator Θh and the long vectors Q(k), F (k), V l, and V h

are only for analysis use. Operations on long vectors of size n will be very expensive
and unnecessary, especially on lower levels where the compression dimension Nh(the
size of Ahst) is small. Noticing that all long vectors on the h-level are in span{Ψh} as

Q(k) = ΨhQ̂(k), F (k) = ΨhF̂ (k), V lml
= ΨhV̂ lml

, V hmh
= ΨhV̂ hmh

,

we thus only operate on their coefficients in the basis Ψh. Correspondingly, when-
ever we need to consider orthogonality of long vectors, we replace it by the Mh-
orthogonality of their coefficient vectors. One can check that all discussions above
still apply. Also another advantage of using the coefficient vectors is that in the pre-

vious discussions, the good initial guess µ
(k)
i (Mh)−1w

(k)
i = µ

(k)
i (Mh)−1(Ψh)T q

(k)
i =

µ
(k)
i q̂(k) is obtained explicitly.

Summarizing the analysis above, we propose the following Algorithm 5 as our
refinement method. Since we want the eigenspace spanned by the first mh eigenvectors

of Θh to be computed accurately, the refinement stops when dist(Q
(k−1)
mh , Q

(k)
mh) < ε

for some prescribed accuracy ε, where Q
(k)
mh denotes the first mh columns of Q(k).

Since Q(k) is orthogonal, one can check that

dist(Q(k−1)
mh

, Q(k)
mh

) = ‖Q(k)
mh
−Q(k−1)

mh
(Q(k−1)

mh
)TQ(k)

mh
‖2

= ‖Q̂(k)
mh
− Q̂(k−1)

mh
(Q̂(k−1)

mh
)TMhQ̂(k)

mh
‖Mh

≤
√
λmax(Mh)‖Q̂(k)

mh
− Q̂(k−1)

mh
(Q̂(k−1)

mh
)TMhQ̂(k)

mh
‖2

≤
√

1 + εhδh‖Q̂(k)
mh
− Q̂(k−1)

mh
(Q̂(k−1)

mh
)TMhQ̂(k)

mh
‖F .

In practice, we use ‖Q̂(k)
mh − Q̂

(k−1)
mh (Q̂

(k−1)
mh)TMhQ̂

(k)
mh‖F < ε√

1+εhδh
as the stopping

criterion since it is easy to check. We have used Lemma 4.7 to bound λmax(Mh).

6. Overall algorithms. Combining the refinement method and the extension
method, we now propose our overall Algorithm 6 for computing partial eigenpairs
of an SPD matrix A. It utilizes the a priori multiresolution decomposition of A to
compute the first mtar eigenpairs of A−1, by passing approximate eigenpairs from
lower levels to higher levels to finally reach a prescribed accuracy. In particular, this
algorithm starts with the eigendecomposition of the lowest level (whose dimension is

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

284 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Algorithm 5 Eigenpair refinement.

Input: V̂ lml
, Dl

ml
, prescribed accuracy ε, target eigenvalue threshold µh.

Output: V̂ hmh
, Dh

mh
.

1: Set Q̂(0) = V lml
, D(0) = Dl

ml
, k = 0;

2: for i = 1 : ml do
3: gi = pcg(Blst, (U

l)TMhq̂
(0)
i ,−,−, ε); (Q̂ = [q̂1, . . . , q̂ml

])
4: end for
5: F̂ (0) = Q̂(0)D(0) + U lG; (G = [g1, . . . , gml

])
6: repeat
7: k ← k + 1;
8: Q̂(k)R(k) = F̂ (k−1); (QR factorization with respect to Mh orthogonality, i.e.,

(Q̂(k))TMhQ̂(k) = I)

9: W (k) = MhQ̂(k);
10: for i = 1 : ml do
11: f̂

(k)
i = pcg(Ahst, w

(k)
i ,Mh, µ

(k−1)
i q̂

(k)
i , ε); (F̂ = [f̂1, . . . , f̂ml

])
12: end for
13: S(k) = (W (k))T F̂ (k);
14: P (k)D(k)(P k))T = S(k) (Schur decomposition, diagonals of D(k) in decreasing

order);

15: renew mh so that µ
(k)
mh ≥ µh > µ

(k)
mh+1;

16: Q̂(k) ← Q̂(k)P (k), F̂ (k) ← F̂ (k)P (k);

17: until ‖Q̂(k)
mh − Q̂

(k−1)
mh (Q̂

(k−1)
mh)TMhQ̂

(k)
mh‖F < ε.

18: V̂ hmh
= Q̂

(k)
mh , Dh

mh
= D

(k)
mh . (D

(k)
mh denotes the first mh-size block of D(k))

small enough), refines and extends the approximate eigenpairs on each level, and stops
at the highest level. The overall accuracy is achieved by the prescribed compression
error of the highest level. It could be clearer using a flow chart (Figure 1) to illustrate
the procedure of our method. If we see the eigenproblem of the original matrix A as
a complicated model, our algorithm resolves the model complexity by hierarchically
simplifying/coarsening the original model into an inductive sequence of approximate
models.

Algorithm 6 Hierarchical eigenpair computation.

Input: K-level decomposition {Θ(k)}Kk=1 of SPD matrix A, target number mtar,
searching step d, prescribed multi-level accuracies {ε(k)}, extension thresholds

{µ(k)
ex }Kk=1, refinement thresholds {µ(k)

re }Kk=1.
Output: V , D.

1: Find the eigen pairs [V̂
(K)
ex , D

(K)
ex] of the eigen problem (A

(K)
st)−1M (K)x = µx;

2: for k = K − 1 : 1 do
3: V̂

(k+1)
ex ← Ψ(k+1)V̂

(k+1)
ex

4: [V̂
(k)
ini , D

(k)
ini] = Eigen Refine([V̂

(k+1)
ex , D

(k+1)
ex]; ε(k), µ

(k)
re);

5: op = OP (· ;A(k),M (k), ε(k));

6: [V̂
(k)
ex , D

(k)
ex] = Eigen Extend([V̂

(k)
ini , D

(k)
ini]; op, ε

(k), µ
(k)
ex , d,mtar);

7: end for
8: V = Ψ(1)V̂

(1)
ex D = D

(1)
ex .D

ow
nl

oa
de

d
04

/1
0/

19
 to

 1
31

.2
15

.7
1.

19
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 285

Fig. 1. Flow chart illustrating the procedure of Algorithm 6.

Recall that the output V̂
(k)
ex of the extension process and the initializing process

are the coefficients of V
(k)
ex in the basis Ψ(k). When passing these results from level

k to level k − 1, we need to recover the coefficients of V
(k)
ex in the basis Ψ(k−1).

This can be done by simply reforming V̂
(k)
ex ← Ψ(k)V̂

(k)
ex (line 3 in Algorithm 6), since

V
(k)
ex = Ψ(k)V̂

(k)
ex = Ψ(k−1)Ψ(k)V̂

(k)
ex .

In Algorithm 6, the parameters should be chosen carefully to ensure computa-
tional efficiency, by using the analysis in the previous sections. We shall discuss the
choice of each parameter separately. To be consistent, we first clarify some nota-
tions. Let m̂k,mk be the numbers of output eigenpairs of the refinement process
and the extension process, respectively, on level k. Ignoring numerical errors, let

(µ
(k)
i , v

(k)
i), i = 1, . . . , N (k), be the essential eigenpairs of the operator Θ(k) as in

section 4. Let (µ
(k)
i , v

(k)
i), i = 1, . . . ,mk, denote the output eigenpairs on level k.

Notice that (µ
(k)
i , v

(k)
i), i = 1, . . . , m̂k, are the outputs of the refinement process, and

(µ
(k)
i , v

(k)
i), i = m̂k + 1, . . . ,mk, are the outputs of the extension processs

Choice of multilevel accuracies {ε(k)}. Notice that there is a compression
error εk between level k and level k − 1. That is to say, no matter how accurately
we compute the eigenpairs of Θ(k), they are approximations of eigenpairs of Θ(k−1)

subject to accuracy no better that εk. Therefore, on the one hand, the choice of the
algorithm accuracy ε(k) for the eigenpairs of Θ(k) on each level should not compromise
the compression error. On the other hand, the accuracy should not be overachieved
due to the presence of the compression error. Therefore, we choose ε(k) = 0.1× εk in
practice.

Choice of thresholds {(µ(k)
re , µ

(k)
ex)}K

k=1. These thresholds provide control on
the smallest eigenvalues of output eigenpairs of both the refinement process and the
extension process in that

µ
(k)
m̂k
≥ µ(k)

re > µ
(k)
m̂k+1, µ(k)

ex ≥ µ(k)
mk
, k = 1, 2, . . . ,K.

Recall that the outputs of the refinement process are the inputs of the extension
process, and the outputs of the extension process are the inputs of the refinement
process on the higher level. By Theorem 4.8, to ensure the efficiency of the extension
process, we need to uniformly control the restricted condition number

κ(A
(k)
Ψ , Z

(k)

m̂+
k

) ≤ µ(k)
m̂k+1δk < µ(k)

re δk.

Recall that in section 5 the convergence rate of the refinement process is given by
µh,ml+1

µh,mh

, where l corresponds to k+ 1 and h corresponds to k on each level k. Thus to

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

286 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

ensure the efficiency of the refinement process we need to uniformly control the ratio

µ
(k)
mk+1+1

µ
(k)
m̂k

≤
µ

(k)
mk+1

µ
(k)
re

≤
µ

(k+1)
mk+1 + εk+1

µ
(k)
re

≤ µ
(k+1)
ex + εk+1

µ
(k)
re

,

where εk+1 is the compression error between level k+ 1 and level k, and we have used

Lemma 3.3. Thus, more precisely, we need to choose thresholds {(µ(k)
re , µ

(k)
ex)}Kk=1 so

that there exist uniform constants κ > 0, γ ∈ (0, 1) so that

(27) (i) µ(k)
re δk ≤ κ, (ii)

µ
(k+1)
ex + εk+1

µ
(k)
re

≤ γ.

Due to the existence of εk, condition (ii) implies that there is no need to choose µ
(k)
ex

much smaller than εk, which suffers from overcomputing but barely improves the
efficiency of the refinement process. So one convenient way is to choose

(28) µ(k)
re = αεk+1, µ(k)

ex = βεk

for some uniform constants α, β > 0 such that α > 1+β. Recall that when construct-
ing the multiresolution decomposition, we impose conditions εkδk ≤ c and εk = ηεk+1

for some uniform constants c > 0 and η ∈ (0, 1). Thus we have

µ(k)
re δk =

α

η
εkδk ≤

αc

η
= κ,

µ
(k+1)
ex + εk+1

µ
(k)
re

=
1 + β

α
= γ < 1.

Choice of searching step d. In the first part of the extension algorithm, we

explore the number mk so that µ
(k)
mk ≤ µ

(k)
ex , and we do this by setting an exploring step

size d and examining the last few eigenvalues every d steps of the Lanczos iteration.
The step size d should neither be too large to avoid overcomputing, nor too small to

ensure efficiency. In practice, we choose d = min{bdim Ψ(k)

10 c, bmtar

10 c}.
Complexity. Now we summarize the complexity of Algorithm 6 for computing

the first mtar largest eigenpairs of A−1 for an SPD matrix A ∈ Rn×n subject to an
error ε. Suppose we are provided a K-level MMD of A with εkδk ≤ c, εk = ηεk+1,

and ε1 = ε. In what follows, we will uniformly estimate nnz(A
(k)
st) ≤ nnz(A), ε(k) ≥

ε(1) = 0.1ε1, and mk ≤ mtar.
We first consider the complexity of all refinement processes. Notice that by our

choice εk+1

ε(k) = εk+1

0.1ε(k) = 1
0.1η , the factor log(εlε) in (26), which is now log(εk+1

ε(k)), can be

estimated as O(log(1
η)). Since we can will make sure

µ
(k)
mk+1+1

µ
(k)
m̂k

≤ γ for some constant

γ < 1, the factor log(
µh,mh

µh,ml+1
) in (26), which is now log(

µ
(k)
m̂k

µ
(k)
mk+1+1

), can be seen as

a constant. Also using estimates µh,mh
δh ≤ αc

η = O(cη), εlδh ≤ c
η , εhδh ≤ c, and

log 1
ε = O(log 1

ε), we modify (26) to obtain the complexity of all K-level refinement
processes

(29) O

(
mtar · nnz(A) · c

2

η
log

(
1

η

)
·
(

log
1

ε

)2

·K

)
.

Next we consider the complexity of all extension process. As we have discussed in
section 4, the major cost of the extension process comes from the operation of adding

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 287

a new vector (the adding operation) to the Lanzcos vectors (line 7 of Algorithm 3
that happens in line 3 of Algorithm 4). Using estimates µmδ(P) ≤ αc

η = O(cη),

ε(P)δ(P) ≤ c, log 1
ε = O(log 1

ε), we modify (23) to obtain the cost of every single call
of the adding operation as

O

(
c2

η
· nnz(A) ·

(
log

1

ε

)2
)
.

On every level, the indexes contributing to adding operations go from m̂k + 1 to mk.
Due to the refinement process, we have m̂k ≤ mk+1, and so every single index from
1 to mtar may contribute more than one adding operation. But if we reasonably

assume that µ
(k+1)
ex > µ

(k−1)
re , namely β > αη under parameter choice (28), we will

have m(k+1) < m̂(k−1), and so every index from 1 to mtar will contribute no more
than two adding operations. Therefore the total cost of all extension processes can
be estimated as

(30) O

(
mtar ·

c2

η
· nnz(A) ·

(
log

1

ε

)2
)
.

We remark that the cost of implicit restarting process is only a constant multiple of
(30). Combining (29) and (30), we obtain the total complexity of our method

(31) O

(
mtar · nnz(A) · c

2

η
log

(
1

η

)
·
(

log
1

ε

)2

·K

)
.

To further simplify (31), we need to use estimates for the MMD given in the previous

work [10]. In particular, to preserve sparsity nnz(A
(k)
st) ≤ nnz(A), we need to choose

the scale ratio η−1 = (log 1
ε + log n)p for some constant p. We remark that for graph

Laplacian, p = 1, the resulting level number is K = O(logn
log(log 1

ε +logn)
). The condition

bound c can be imposed to be uniformly constant by the algorithm given in [10]. Then
the overall complexity of Algorithm 6 can be estimated as

O

(
mtar · nnz(A) ·

(
log

1

ε
+ log n

)p
·
(

log
1

ε

)2

· log n

)

= O

(
mtar · nnz(A) ·

(
log

1

ε
+ log n

)p+3
)
.

(32)

7. Numerical examples. In this section we present several numerical examples
for the eigensolver. We will use Algorithm 6 to compute a relative large number of
eigenpairs of large matrices subject to prescribed accuracies.

7.1. Dataset description. The datasets we use are drawn from different phys-
ical contexts. They are generated as three-dimensional (3D) point clouds and trans-
formed into graphs by adding edges in the K-nearest neighbors setting.

• The first dataset is the well-known “Stanford Bunny” from the Stanford 3D
Scanning Repository.1 A reconstructed bunny has 35947 vertices that can be
embedded into a surface in R3 with 5 holes in the bottom.

1http://graphics.stanford.edu/data/3Dscanrep/

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://graphics.stanford.edu/data/3Dscanrep/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

288 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Fig. 2. Datasets. From left to right: (1) bunny (point cloud and sculpture); (2) brain; (3)
Swissroll.

• The second dataset is the magnetic resonance imaging (MRI) data of the
brain from the Open Access Series of Imaging Sciences (OASIS).2 They use
FreeSurfer to reconstruct the surface from an MRI scan and obtain a point
cloud with 48463 points.

• The third dataset is a “SwissRoll” model, which is popular in manifold learn-
ing. Vertices are generated by

(33) (xi, yi, zi) = (ticos(ti), yi, tisin(ti)) + ηi, i = 1, 2, . . . , n,

where ti
i.i.d∼ U [1.5π, 4.5π], yi

i.i.d∼ U [0, 20], and ηi
i.i.d∼ N (0, 0.05I3) (where i.i.d.

is independent and identically distributed). It can be viewed as a spiral of one
and a half rounds plus random noise. In our examples the roll has n = 20000
points.

With point clouds at hand, we apply the k-nearest neighbors to construct graphs with
kbunny = 20, kbrain = 20, and kswissroll = 10. Each existing edge eij is weighted as

e−r
2
i,j/σ, where ri,j is the Euclidean distance between vertices vi and vj , and σ is a

parameter. We have σbunny = 10−6, σbrain = 10−4, and σswiss = 0.1. Figure 2 shows
the point clouds of datasets.

From the graphs given above, we construct their related graph Laplacians L in
the general setting:

Lij =


∑
k∼i wik, i = j,

−wij , i 6= j.

Further, without loss of generality, we rescale all graph Laplacians and add uni-
form self-loops of weight 1 to them, so that each of them satisfies (i)λ1 = 1, (ii)
λ2 = O(1). Under this construction, we obtain three graph Laplacian matrices
Lbunny, Lbrain, Lswissroll. Lbunny has size n = 35947, sparsity nnz = 714647, and
condition number κ(Lbunny) = 1.86 × 104; Lbrain has size n = 48463, sparsity
nnz = 1038065, and condition number κ(Lbunny) = 1.14 × 105; Lswissroll has size
n = 20000, sparsity nnz = 248010, and condition number κ(Lbunny) = 1.15× 106.

7.2. Numerical MMD. Before computing eigenpairs of graph Laplacians from
our datasets using Algorithm 6, we need to apply Algorithm 6, proposed in [10], to
obtain the MMD, which is the only precomputation step in our proposed algorithm.

2http://www.oasis-brains.org/

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.oasis-brains.org/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 289

Table 1
Computation time (in seconds) for the 4-level Brain, 3-level SwissRoll, and the 4-level SwissRoll

examples using the proposed hierarchical multilevel eigensolver; the IRLM with a CG solver and the
IRLM with incomplete Cholesky preconditioned CG solver.

Eigenpairs Methods 4-level Brain 4-level SwissRoll 3-level SwissRoll

Decomposition∗ 34.589 8.124 9.430

300

Proposed∗∗

Level-4 0.010 0.011 -

Level-3 0.841 0.560 0.083

Level-2 29.122 40.796 18.729

Level-1 61.286 18.846 22.440

Total (∗+ ∗∗) 125.848 68.337 50.682

IRLM-CG 174.028 81.005

IRLM-ICCG 525.73 289.385

200

Proposed∗∗

Level-4 0.010 0.011 -

Level-3 0.826 0.526 0.083

Level-2 25.560 28.094 11.517

Level-1 54.951 12.107 18.378

Total (∗+ ∗∗) 115.936 48.862 39.408

IRLM-CG 124.871 61.479

IRLM-ICCG 417.632 196.217

100

Proposed∗∗

Level-4 0.010 0.011 -

Level-3 0.831 0.531 0.083

Level-2 25.056 22.062 9.883

Level-1 31.882 8.066 12.029

Total (∗+ ∗∗) 92.368 38.794 31.425

IRLM-CG 115.676 48.713

IRLM-ICCG 324.648 90.175

Table 2
Matrix decomposition time (in seconds) for different examples.

Data 4-level Brain 4-level SwissRoll 3-level SwissRoll

Time 34.589 8.124 9.430

For each graph Laplacian, we the decomposition with a prescribed condition bound
c and a series of multilevel resolutions (compression errors) {εk}Kk=1. Recall that the
total complexity for [10, Algorithm 6] is O(nnz(A) · log n · (log 1

ε + log n)3d+p), where
d denotes the intrinsic geometric dimension of the graph. By comparison with the
complexity estimate in (32), when mtar � (log 1

ε + log n)3d−2, the precomputation
time for constructing MMD only takes up a relative small portion of overall time.
As illustrated in Table 1, even with the precomputation time taken into account, our
proposed algorithm is still faster than other well-established methods.

Note that we perform two decompositions with different multiresolutions for the
SwissRoll data. The decomposition time for each example is reported in Table 2. The
detailed information of all decompositions which will be used for eigenpair computa-
tion are reported in Appendix B.1.

7.3. The coarse level eigenpair approximation. We first use the decom-
positions given above to compute the first few eigenpairs of graph Laplacians with
relatively low accuracies. Numerical results reveal that even on the coarse levels, the

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

290 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

compressed (low-dimensional) operators show good spectral approximation properties
with regard to the smallest eigenvalues of L (or the largest eigenvalues of L−1). A
quantitative error report is presented in Appendix B.2. We also qualitatively test the
accuracy of the approximate eigenvectors of the compressed operators, by comparing
their behaviors in image segmentation to those of the true eigenvectors of the original
Laplacian operators.

7.4. The multilevel eigenpair computation. To test the efficacy of the hi-
erarchical structure in our approach, we use our main Algorithm 6 to compute a
relatively large number of eigenpairs of Laplacian matrices subject to the prescribed
accuracy. In particular, we compute the first 500 eigenpairs of the graph Laplacian
from both the Brain data and the SwissRoll data, subject to some prescribed accu-
racy ε. The numerical results are reported in Appendix B.3. Our results show the
efficiency of our algorithm. We can see that both the iteration number of each refine-
ment process and the iteration number of each CG/PCG operation in every level are
well-bounded uniformly, which is due to the proper strategy of parameter selection
discussed in section 6.

8. Comparison with the IRLM. Owing to the observation in [16] that the
IRLM is still one of the best performing and well-known algorithms for finding a large
portion of smallest eigenpairs, in this section, we compare the computation complexity
of our proposed algorithm with the IRLM.

To quantitatively compare the two methods, we record the computation time and
the number of CG iterations as the benchmarks. The reasons for doing this are as
follows:

• In a large-scale setting, a direct method for solving the sparse matrix A−1

is general, but not practical since large memory storage is required. Instead,
iterative methods, especially the CG method (as A is SPD in our case) is
employed.

• In both the IRLM and our proposed algorithm, the dominating complexity
comes from the operation of computing A−1b for some b.

Remark 8.1. For small-scale problems, a direct solver (such as sparse Cholesky
factorization) for A−1 is preferred in the IRLM. In this way, only one factorization
step for A is required prior to the IRLM. Moreover, solving for A−1 in each iteration
is replaced by solving two lower triangular matrix systems. This will bring a signif-
icant speedup for the IRLM. However, recall that we are aiming at understanding
the asymptotic behavior and performance of these methods. Therefore, the IRLM
discussed in this section employs the iterative solver instead of a direct solver.

To be consistent, all the experiments are performed on a single machine equipped
with Intel(R) Core(TM) i5-4460 CPU with 3.2 GHz and 8 GB DDR3 1600 MHz RAM.
Both the proposed algorithm and the IRLM are implemented using C++ with the
Eigen Library for fairness. In particular, the built-in (P)CG solvers are used in the
IRLM implementation, instead of implementing on our own.

Table 1 shows the overall computation time for computing the leftmost (i) 300,
(ii) 200, and (iii) 100 eigenpairs using (i) our proposed algorithm; (ii) the IRLM with
incomplete Cholesky PCG (IRLM-ICCG); and (iii) the IRLM with a classical CG
method (IRLM-CG). In this numerical example, the error tolerance of the eigenvalues
in all three cases are set to 10−5. Since the error for IRLM cannot be obtained a priori,
we fine-tune the relative error tolerance for the (P)CG solver such that eigenvalues
error are of order O(10−6). For the proposed algorithm, the time required for levelwise

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 291

eigenpair computation is recorded. In the bottom level (level-4 or level-3 in these
cases), we have used the built-in eigensolver function in the Eigen Library to obtain
the full eigenpairs (corresponding to line 1 in Algorithm 6). As the problem size is
small, the time complexity is insignificant for all three examples.

The total runtime of our proposed algorithm in each example is computed by
summing up all levels’ computation time, plus the MMD time (which is the sec-
ond row in Table 1). For all these examples, our proposed algorithm outperforms
the IRLM. Although both the size of the matrices and their corresponding condition
numbers are not extremely large, the numerical experiments already show a observ-
able improvement. From the theoretical analysis discussed in the previous sections,
this improvement will even be magnified if the SPD matrices are of larger scales and
more ill-conditioned. Indeed, we assert that our proposed algorithm cannot be fully
utilized in these illustrations. Therefore, one of the main future works is to per-
form detailed numerical experiments in these cases. For instance, by considering the
3-level and 4-level SwissRoll examples, we observe that a 3-level decomposition is in-
deed sufficient for the SwissRoll graph Laplacian, where we recall the corresponding
condition number is ‖A‖2 = 1.15 × 106. Therefore, using a 3-level decomposition,
the overall runtime reduction goes up to approximately 37% when 300 eigenpairs are
required.

Notice that the time required for the IRLM-ICCG is notably much more than
that of the IRLM-CG, which contradicts our usual experience regarding precondi-
tioning. In fact, such a phenomenon can be explained as follows: In the early stage of
the IRLM, preconditioning with incomplete Cholesky factorization helps in reducing
the iteration number of the CG. However, when the eigensubspace is gradually pro-
jected away throughout the IRLM process, the spectrum of the remaining subspace
reduces and therefore CG iteration numbers also drop significantly. On the contrary,
preconditioning with incomplete Cholesky ignores such an update in the spectrum
and, therefore, the CG iteration number is uniform throughout the whole Lanczos
iteration. Hence, the classical CG method is preferred if a large number of leftmost
eigenpairs are required. Figure 3(a) shows the CG iteration numbers in the IRLM-
ICCG, IRLM-CG, and, respectively, our proposed hierarchical eigensolver versus the
Lanczos iteration. More precisely, if we call Vk in (20) to be the Lanczos vector, the
horizontal axis in the figure then corresponds to the first time we generate the ith
column of the Lanczos vector. For IRLM methods, it is equivalent to the extension
procedure for the ith column of the Lanczos vector, which corresponds to lines 6–8
in Algorithm 1. In particular, the CG iteration number recorded in this figure cor-
responds to the operation op in Line 8 of Algorithm 1. For our proposed algorithm,
there are three separate sections, each section’s CG iteration numbers correspond to
the formation of Lanczos vectors in the 3rd-, 2nd-, and 1st-levels, respectively. Since
we may also update some of these Lanczos vectors during the refinement process,
some overlaps in the recording of CG iteration numbers corresponding to those Lanc-
zos vectors are observed. With the spectrum-preserving hierarchical preconditioner M
introduced in our algorithm, the CG iteration number for computing A−1b for some
b is tremendously reduced. In contrast, the CG iteration number for IRLM-CG is the
largest at the beginning but decreases exponentially and asymptotically converges to
our proposed result. For IRLM-ICCG, the incomplete Cholesky factorization does
not capture the spectrum update and therefore the iteration numbers are uniform
throughout the computation. This observation is also consistent with the time com-
plexity as shown in Table 1. Figure 3(b) shows the corresponding normalized plot,
where the iteration number is normalized by log(1

ε).

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

292 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

(a) (b)

Fig. 3. (a) The PCG iteration number in the 4-level SwissRoll example. The IRLM-ICCG
methods exhibit a uniform iteration number, while the IRLM-ID has an exponentially decaying iter-
ation number. For our proposed algorithm, since the spectrum-preserving hierarchical preconditioner
M is employed, the CG iteration number is minimum. This is also consistent with the time com-
plexity shown in Table 1. (b) The corresponding normalized plot, where the iteration number is
normalized by log(ε).

Similar results can also be plotted for the 4-level Brain and the 3-level SwissRoll
examples. We therefore skip those plots to avoid repetition.

9. Conclusion and future works. In this work, we proposed a spectrum pre-
serving preconditioned hierarchical eigensolver to compute a large number of leftmost
eigenpairs of a sparse SPD matrix. This eigensolver exploits the well-conditioned
property of the decomposition components obtained through the MMD, the nice spec-
tral property Lanczos procedure, and also the preconditioning characteristics of the
CG method. In particular, we proposed an extension-refinement iterative scheme, in
which eigenpairs are hierarchically extended and refined from the ones obtained from
the previous level up to the desired amount. Moreover, we introduced a specially de-
signed spectrum-preserving preconditioner for the PCG method to compute x = A−1b
for some b during the iterations. We also presented a theoretical analysis on the run-
time complexity and the asymptotic behavior of our proposed algorithm is reported.
Finally, we conducted quantitative numerical experiments and a comparison with the
IRLM, which demonstrated the efficiency and effectiveness of our proposed algorithm.

We would like to remark that the proposed algorithm and its implementation are
still in the early stage as the main purpose of this work is to explore the possibility of
integrating the multiresolution operator compression framework with the Krylov-type
iterative eigensolver. Therefore, one of the future topics is to conduct comprehensive
numerical studies of our algorithm with various large-scale, real data such as graph
Laplacians of real network data, or stiffness matrices stemmed from the discretiza-
tion of high-contrasted elliptic PDEs. These studies will help numerically confirm
the asymptotic behavior of the relative condition numbers of M and Ast, especially
when we need to compute a large number of leftmost eigenpairs from large-scale oper-
ators. Another possible research direction is to investigate the parallelization of this
algorithm. This is important when we solve a large-scale eigenvalue problem.

Appendix A. In this section, we compare our method for compressed eigenprob-
lems and the method proposed by Ozoliņš et al. [22]. We start with the straightforward
compression directly using the eigenvectors corresponding to the smallest eigenvalues,

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 293

which can be obtained by solving the following optimization problem:

(34)
Ψ = arg min

Ψ̂

∑N
i=1 ψ̂

T
i Aψ̂i

s.t. ψ̂Ti ψ̂j = δij , i, j = 1, 2, . . . , N.

The compression using eigenvectors well known as the PCA method is optimal in the
2-norm sense for fixed compressed dimension N . However, computing a large number
of eigenvectors is a hard problem itself, not to mention that we actually intend to
approximate eigenpairs using the compressed operator. Also the spatially extended
profiles of exact eigenvectors make them less favorable in many fields of research.
Then as modification, Ozolǐs et al. [22] added an L1 regularization term to impose
the desired locality on Ψ. They modified the optimization problem (34) as

(35)
Ψ = arg min

Ψ̂

∑N
i=1

(
ψ̂Ti Aψ̂i + 1

µ‖ψ̂i‖1
)

s.t. ψ̂Ti ψ̂j = δij , i, j = 1, 2, . . . , N.

The L1 regularization, as widely used in many optimization problems for sparsity
pursuit, effectively ensures each output ψi to have spatially compact support, at the
cost of compromising the approximation accuracy compared to PCA. The factor µ
controls the locality of Ψ. A smaller µ gives more localized profiles of Ψ, which,
however, result in a larger compression error for a fixed N . The loss of approximation
accuracy can be compensated for by increasing, yet not significantly, the basis number
N . An algorithm based on the split Bregman iteration was also proposed in [22]
to effectively solve the problem (35). In summary, their work provides an effective
method to find a bunch of localized basis functions that can approximately span the
eigenspace of smallest eigenvalues of A.

Although our approach to operator compression is originally developed from a
different perspective based on the finite element method (FEM), it can be reformulated
as an optimization problem similar to (34). In fact, to obtain the basis Ψ used in
our method, we can simply replace the nonlinear constraints ψTi ψj = δij , i, j =
1, 2, . . . , N, by linear constraints ψTi φj = δij , i, j = 1, 2, . . . , N, to get

(36)
Ψ = arg min

Ψ̂

∑N
i=1 ψ̂

T
i Aψ̂i

s.t. ψ̂Ti φj = δij , i, j = 1, 2, . . . , N.

Here Φ = [φ1, φ2, . . . , φN] is a dual basis that we construct ahead of Ψ to provide an a
priori compression error estimate as stated in Theorem 2.1. As the constraints become
linear, problem (36) can be solved explicitly by Ψ = A−1Φ(ΦTA−1Φ)−1 as mentioned
in (7). Instead of imposing locality by adding L1 regularization as in (35), we obtain
the exponential decaying feature of Ψ by constructing each dual basis function φi
locally. That is the locality of Φ and the strong correlation ΨTΦ = I automatically
give us the locality of Ψ under the energy minimizing property. The optimization
form (36) was derived by Owhadi in [20] where Ψ was used as the FEM basis to solve
second order elliptic equations with rough coefficients. This methodology was then
generalized to problems on higher order elliptic equations [11], general Banach spaces
[21], and general sparse SPD matrices [10]. In all previous works the nice spectral
property of Ψ has been observed and in particular the eigenspace corresponding to the
smallest M eigenvalues of A can be well approximately spanned by Ψ of a relatively
larger dimension N = O(M).

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

294 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

N = 50 N = 75 N = 100

Fig. 4. Results of problems (35) and (36) for N = 50 (first column), N = 75 (second column),
and N = 100 (third column). First row: the first 50 eigenvalues of A and those of the compressed
problems. Second row: examples of local basis functions. Third row: examples of local basis functions
in log scale.

To further compare the problems (35) and (36), we test both of them on the one-
dimensional Kronig–Penney model studied in [22] with rectangular potential wells
replaced by inverted Gaussian potentials. In this example, the matrix A comes from
discretization of the PDE operator − 1

2∆+V (x) defined on the domain Ω with periodic

boundary condition. In particular, Ω = [0, 50] and V (x) = −V0

∑Nel

j=1 exp(− (x−xj)2

2δ2).
As in [22], we discretize Ω with 512 equally spaced nodes, and we choose Nel = 5,
V0 = 1, δ = 3, and xj = 10j−5 (instead of xj = 10j in [22], which essentially changes
nothing).

For problem (36), we divide Ω into N equal-length intervals {Ωi}Ni=1, and choose
the dual basis Φ = [φ1, φ2, . . . , φN] such that φi is the discretization of the indicator
function 1(Ωi)(1(Ωi)(x) = 1 for x ∈ Ωi, otherwise, 1(Ωi)(x) = 0. We use Ψo to denote
the exact result of problem (36), namely, Ψo = A−1Φ(ΦTA−1Φ)−1. Since Ψo is not
orthogonal, we should compute the eigenvalues from the general eigenvalue problem
ΨT
o AΨov = λΨT

o Ψov (Lemma 3.2) as approximations of the eigenvalues of A. We use
λo to denote these approximate eigenvalues.

For problem (35), we use Algorithm 1 and exactly the same parameters provided
in [22], which means we are simply reproducing their results, except that we use a
finer discretization (512 rather than 128) and we shift the potential V (x). We have
used normalized Φ as the initial guess for Algorithm 1 in [22], and choose µ = 10. We
use Ψcm to denote the result of problem (35). We use λcm to denote the eigenvalues
of ΨT

cmAΨcm.
We compare the approximate eigenvalues to the first 50 eigenvalues of A. The first

row of Figure 4 shows that both methods give very good approximations of λ(A). And
when N increases, the approximations become better. But relatively, the results λcm

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 295

from Figure 4 are closer to the ground truth than our results λo from (36). To improve
our results, we simply solve problem (36) again, but this time using the previous result
Ψo as the dual basis. That is we compute Ψo2 = A−1Ψo(Ψ

T
o A
−1Ψo), and compute

eigenvalues λo2 from the general eigenvalue problem ΨT
o2AΨo2v = λΨT

o2Ψo2v. We
can see that the approximate eigenvalues λo2 are even closer to the ground truth.
An interpretation of this improvement is that if we see Ψo = A−1Φ(ΦTA−1Φ)−1 as
a transformation from Φ to Ψo, then the part A−1Φ is equivalent to applying the
inverse power method to make Ψo more aligned to the eigenspace of the smallest
eigenvalues, while the part (ΦTA−1Φ)−1 is to force ΨT

o Φ = I so Ψo inherits some
weakened locality from Φ. So if we apply this transformation to Ψo again to obtain
Ψo2, Ψo2 will approximate the eigenspace of the smallest eigenvalues better, but with
more loss of locality.

In the second and third rows of Figure 4, we show some examples of the local basis
functions ψcm, ψo, and ψo2 (all are normalized to have unit l2 norm). Interestingly,
these basis functions are not just localized as expected, but indeed they have very
similar profiles. One can see that for N = 75, the basis functions ψcm and ψo are
almost identical. So it seems that in spite of how we impose locality (either the L1

minimization approach, or the construction of the dual basis Φ), the local behaviors
of the basis functions are determined by the operator A itself. We believe that this
“coincidence” is governed by some intrinsic property of A, which may be worth further
exploration and study. If we can understand a higher level, unified mechanism that
results in the locality of the basis, we may be able to extend these methods to a more
general class of operators. We also observed that as N goes large, ψo and ψo2 become
more and more localized since the support of the dual basis functions are smaller and
smaller. However the locality of ψcm doesn’t change much as N increases, since we
use the same penalty parameter µ = 10 for (35) in this experiment.

We would like to remark that, though these two problems result in local basis
functions with similar profiles, problem (35) requires us to use the split Bregman
iteration to obtain the N basis functions simultaneously. In our problem (36), since
the constraints are linear and separable, the basis functions can be obtained separately
and directly without iteration. Furthermore, thanks to the exponential decay of the
basis functions, each subproblem for obtaining one basis function can be restricted to
a local domain without significant loss of accuracy, and the resulting local problem
can be solved very efficiently. For definitions and detailed properties of these local
problems for obtaining a localized basis; please refer to [10, section 3]. Therefore
the algorithm for solving problem (36) can be highly localized and embarrassingly
parallel.

Appendix B.

B.1. Numerical details for subsection 7.2. Tables 3 and 4 give the detailed
information of all decompositions we will use for eigenpair computation. In Table 3,
K is the number of levels, ε1 is the finest (prescribed) accuracy, η is the ratio εk/εk+1,
and c is the condition bound such that εkδk ≤ c. By Lemma 4.7, the condition number
of M (k) is bounded as κ(M (k)) ≤ 1 + εkδk ≈ c, and by Corollary 2.5, the condition
number of B(k) is bounded as κ(B(k)) ≤ εkδk−1 ≤ c/η. We can see in Table 4 that
these bounds are well satisfied. Recall that the bounded condition number of M (k) is
essential for the efficiency of Algorithm 4, and the bounded condition number of B(k)

is essential for the efficiency of Algorithm 5.
Table 4 also shows the detailed information for all four decompositions. The 2-

norm of A(k), namely, λmax(A(k)), decreases as k increases, and is well-bounded as

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

296 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Table 3
Decomposition information.

Data K ε1 η c Bound on κ(M(k)) Bound on κ(B(k))

Bunny 2 10−3 0.1 20 20 200

Brain 4 10−4 0.2 20 20 100

SwissRoll 3 10−5 0.1 20 20 200

SwissRoll 4 10−5 0.2 20 20 100

Table 4
Decomposition information of (i) Bunny (2-level) (ii) Brain (4-level), and (iii) SwissRoll (3,

4-level) data. m , nnz(A(0)).

Level k εk Size of A(k) nnz(A(k)) ‖A(k)‖2 nnz(M(k)) κ(M(k)) κ(B(k))

The 2-level decomposition of Bunny data.

0 - 35947 714647 = m 1.86× 104 - - -

1 10−3 2641 613571 ≈ 0.86m 1.05× 104 203445 ≈ 0.28m 1.45 5.58

2 10−2 198 27774 ≈ 0.04m 1.37× 103 10808 ≈ 0.02m 2.05 45.03

The 4-level decomposition of Brain data.

0 - 48463 1038065 = m 1.14× 105 - - -

1 10−4 11622 2546246 ≈ 2.45m 7.82× 104 725328 ≈ 0.70m 1.29 5.80

2 5× 10−4 1713 431269 ≈ 0.42m 2.01× 104 189051 ≈ 0.18m 1.84 18.34

3 2.5× 10−3 252 37230 ≈ 0.04m 3.33× 103 20126 ≈ 0.02m 2.19 28.23

4 1.25× 10−2 35 1217 < 0.01m 4.53× 102 1093 < 0.01m 2.02 35.08

The 3-level decomposition of SwissRoll data.

0 - 20000 248010 = m 1.15× 106 - - -

1 10−5 5528 689032 ≈ 2.78m 4.31× 105 197020 ≈ 0.79m 1.45 10.06

2 10−4 723 108887 ≈ 0.44m 7.44× 104 35213 ≈ 0.14m 2.30 67.47

3 10−3 55 2215 < 0.01m 5.45× 103 1365 < 0.01m 3.92 185.93

The 4-level decomposition of SwissRoll data.

0 - 20000 248010 = m 1.15× 106 - - -

1 10−5 5528 689032 ≈ 2.78m 4.31× 105 197020 ≈ 0.79m 1.45 10.06

2 5× 10−5 1347 215811 ≈ 0.87m 9.36× 104 65169 ≈ 0.26m 1.90 26.52

3 2.5× 10−4 203 18849 ≈ 0.08m 1.89× 104 9063 ≈ 0.04m 3.06 98.87

4 1.25× 10−3 53 1939 < 0.01m 3.72× 103 1193 < 0.01m 3.36 51.14

‖A(k)‖2 ≤ δk ≤ cε−1
k as expected by Corollary 2.5 (we have normalized µ1 = ‖L−1‖2

to 1). And the sparsities of A(k) and M (k) are of the same order as the sparsity of
A(0) = L, i.e., nnz(A(k)), nnz(M (k)) = O(nnz(A(0))) as we mentioned at the end of
subsection 2.1.

B.2. Numerical details of subsection 7.3. We take the bunny data and the
brain data as examples. For the bunny data, we use the lowest level k = 2 with
compression error ε2 = 0.01; for the brain data, we use level k = 3 with compression

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 297

(a) error µi − µ̃i and residual
‖L−1ṽi − µiṽi‖2

(b) relative error of µi and λi

(c) error µi − µ̃i and residual
‖L−1ṽi − µiṽi‖2

(d) relative error of µi and λi

Fig. 5. The error, the residual, and the relative error. Top: Bunny data; bottom: Brain data.

error ε3 = 0.0025. We compute the first 50 eigenpairs {ṽi, λ̃i} of the compressed
operator by directly solving the general eigenproblem (Lemma 3.2)

A(k)zi = λ̃iM
(k)zi, ṽi = Ψ(k)zi, i = 1, . . . , 50.

The computation of the coarse level eigenproblem is much more efficient due to the
compressed dimension. To show the error of the approximate eigenvalues, the ground
truth is obtained by using the Eigen C++ library.3 Figure 5 shows the absolute and
relative errors of these eigenvalues. In both cases µi is the ith largest eigenvalue of
L−1 and λi = 1/µi; µ̃i is the ith largest eigenvalue of the compressed problem Θ(k)

and λ̃i = 1/µ̃i. By Lemma 3.3, |µi − µ̃i| is bounded by εk and ‖L−1ṽi − µiṽi‖2 is
bounded by 2εk. We can see in Figure 5 that both estimates are well satisfied. In
particular, the error of the first eigenvalue is close to the bound of εk. However, the
first eigenpair is already known. Therefore, we are only interested in the 2nd up to
50th eigenvalues and we embed the subplot of these eigenvalue errors as shown in
Figures 5(a) and 5(c), respectively.

Next, we qualitatively examine the accuracy of the approximate eigenvectors of
the compressed operators by comparing their behaviors in image segmentation to
those of the true eigenvectors of the original Laplacian operators. In the image seg-
mentation, the eigenvectors of the graph Laplacian provide a solution to the graph

3Eigen C++ Library is available at http://eigen.tuxfamily.org/index.php?title=Main Page.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://eigen.tuxfamily.org/index.php?title=Main_Page

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

298 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Fig. 6. Colormap (left) and partition (right) using the 2nd, 4th, and 6th eigenvectors of the
original/compressed operator.

partitioning problem. Namely, for a partition (A,B) that satisfies A ∪ B = V and
A ∩ B = ∅, a measure of their disassociation called the normalized cut (Ncut) is
defined as [25]

(37) Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)
,

where

cut(A,B) =
∑

u∈A,v∈B
w(u, v), assoc(A, V) =

∑
u∈A,t∈V

w(u, t).

Shi and Malik [25] shows that, for a connected graph, minimizing Ncut can be
rephrased as finding the eigenvector v2 that corresponds to the second smallest eigen-
value λ2 of the graph Laplacian (since we always have λ1 = 0 and v1 a uniform
vector). Taking sign(v2) transforms it into a binary vector which gives a satisfactory
cut. Moreover, the next few eigenvectors provide further cuts of the previously par-
titioned fractions. Therefore, our eigensolver may serve as a powerful tool for graph
partitioning, as well as its applications including image segmentation and manifold
learning.

We test graph partitioning on bunny and brain datasets using the eigenvectors of
both original and compressed operators. Figures 6 and 7 shows the colormap and the
partition generated by some selected eigenvectors. From the pictures we can see that
the original and the compressed operators give very similar results when it comes to
graph partitioning. The compressed operator is not only easier to compute, but also
gives a satisfactory partition in practical settings.

Figure 8 gives an example of refining the partition with more eigenvectors. In
the brain data, a fraction that is left intact in the first 5 eigenvectors (the light green
part on the left) is divided into a lot more fractions when eigenvectors pile up to 15.

B.3. Numerical details of subsection 7.4. For both the Brain data and the
SwissRoll data, we compute the first 500 eigenpairs of the graph Laplacian subject
to prescribed accuracy |λ−1

i − λ̃
−1
i | = |µi − µ̃i| ≤ ε = ε1. The three decompositions

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 299

Fig. 7. Colormap (left) and partition (right) using the 2nd, 4th, and 6th eigenvectors of the
original/compressed operator.

Fig. 8. Heaping up more eigenvectors leads to finer partition. Left: partition using the first 5
eigenvectors. Middle: a uniform fraction from the previous partition. Right: further partition using
the next 10 eigenvectors.

Table 5
Computation information. m , nnz(A(0)).

Data Decomposition (α, β) (η, c) κ γ Total #Iter Total main cost

Brain 4-level (5, 2) (0.2, 20) 500 3/5 12 4.37× 105 ·m

4-level (3, 1) (0.2, 20) 300 2/3 15 4.13× 105 ·m

SwissRoll 3-level (5, 2) (0.1, 20) 1000 3/5 13 7.56× 105 ·m

3-level (3, 1) (0.1, 20) 600 2/3 16 7.17× 105 ·m

SwissRoll 4-level (5, 2) (0.2, 20) 500 3/5 19 7.00× 105 ·m

4-level (3, 1) (0.2, 20) 300 2/3 28 5.86× 105 ·m

of these two datasets are used in this section. For each decomposition, we apply
Algorithm 6 with two sets of parameters, (α, β) = (5, 2) and (α, β) = (3, 1). The
details of the results that are obtained using Algorithm 6 are summarized in Tables 5–
8. In Table 5, parameters α, β, κ, γ are defined in Section 6. In Tables 6–8, we
collect numerical results that reflect the efficiency of each single process (refinement
or extension). Here we give a detailed description of the notations in these tables:

• #I and #O denote the number of input and output eigenpairs. To be consis-
tent with the notations defined in section 6, we use (#I,#O) = (mk+1, m̂k)

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

300 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Table 6
4-level eigenpairs computation of Brain data with (η, c) = (0.2, 20), m , nnz(A(0)).

(α, β) = (5, 2)

R
efi

n
em

en
t

Level k (#I,#O) #Iter #cg(B(k+1)) #(B(k+1)) #pcg(A(k)) #(A(k)) #(M(k)) Main cost

3 (7, 4) 4 7 24.43 28 10.97 6.10 5.66× 101 ·m

2 (41, 17) 4 41 25.90 164 16.26 6.12 4.50× 103 ·m

1 (207, 84) 4 207 23.44 828 19.17 4.64 1.02× 105 ·m

E
x
te

n
si

o
n

Level k (#I,#O) #̂(A(k)) ε(k)
#̂(A(k))

log(1/ε(k))
#pcg(A(k)) #(A(k)) #(M(k)) Main cost

3 (4, 41) 43 2.5× 10−4 5.18 175 16.93 5.39 4.37× 102 ·m

2 (17, 207) 75 5.0× 10−5 7.57 500 32.27 5.47 2.27× 104 ·m

1 (84, 500) 82 10−5 7.12 1248 44.23 4.45 3.07× 105 ·m

(α, β) = (3, 1)

R
efi

n
em

en
t

Level k (#I,#O) #Iter #cg(B(k+1)) #(B(k+1)) #pcg(A(k)) #(A(k)) #(M(k)) Main cost

3 (15, 6) 5 15 24.54 75 7.74 6.07 1.08× 102 ·m

2 (78, 28) 5 78 25.85 390 11.17 6.01 7.39× 103 ·m

1 (276, 140) 5 276 23.43 1380 14.28 4.67 1.29× 105 ·m

E
x
te

n
si

o
n

Level k (#I,#O) #̂(A(k)) ε(k)
#̂(A(k))

log(1/ε(k))
#pcg(A(k)) #(A(k)) #(M(k)) Main cost

3 (6, 78) 37 2.5× 10−4 4.46 225 14.12 5.41 4.70× 102 ·m

2 (28, 276) 57 5.0× 10−5 5.75 600 27.91 5.43 2.34× 104 ·m

1 (140, 500) 63 10−5 5.47 1080 42.09 4.46 2.53× 105 ·m

for refinement processes on level k, and (#I,#O)= (m̂k,mk) for extension
processes on level k.

• #Iter denotes the number of orthogonal iterations in the refinement process.
Note that this number is controlled by the ratio γ.

• #cg(B(k)) denotes the number of CG calls concerning B(k) in the refinement
process; #pcg(A(k)) denotes the number of PCG calls concerning A(k) in the
refinement process and the extension process. #(B(k)) and #(A(k)) denote
the average numbers of matrix-vector multiplications concerning B(k), A(k),
respectively, namely, the average numbers of iterations, in one single call
of CG or PCG. Note that #(B(k)) is controlled by log(1/ε(k))κ(B(k)) ≤
log(1/ε(k))c/η, and #(A(k)) by log(1/ε(k))κ(A

(k)
Ψ , Z

(k)

m̂+
k

) ≤ log(1/ε(k))αc/η.

• As the extension process proceeds, the target spectrum to be computed on
this level shrinks even more, and so does the restricted condition number
of the operator. Thus the number of iterations in each PCG call get much
smaller than its expected control log(1/ε(k))αc/η, which is a good thing in
practice. So to study how the theoretical bound log(1/ε(k))αc/η really affects

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 301

Table 7
3-level eigenpairs computation of SwissRoll data with (η, c) = (0.1, 20), m , nnz(A(0)).

(α, β) = (5, 2)

R
efi

n
em

en
t Level k (#I,#O) #Iter #cg(B(k+1)) #(B(k+1)) #pcg(A(k)) #(A(k)) #(M(k)) Main cost

2 (21, 12) 7 21 52.14 147 17.61 6.33 3.91× 103 ·m

1 (232, 100) 6 232 47.23 1392 16.08 5.29 1.86× 105 ·m

E
x
te

n
si

o
n Level k (#I,#O) #̂(A(k)) ε(k)

#̂(A(k))

log(1/ε(k))
#pcg(A(k)) #(A(k)) #(M(k)) Main cost

2 (12, 232) 94 10−5 8.16 650 28.20 7.25 2.67× 104 ·m

1 (100, 500) 101 10−6 7.31 1200 59.44 6.10 5.42× 105 ·m

(α, β) = (3, 1)

R
efi

n
em

en
t Level k (#I,#O) #Iter #cg(B(k+1)) #(B(k+1)) #pcg(A(k)) #(A(k)) #(M(k)) Main cost

2 (35, 19) 8 35 51.89 280 13.13 6.45 5.74× 103 ·m

1 (315, 165) 8 315 46.85 2520 12.73 5.37 2.66× 105 ·m

E
x
te

n
si

o
n Level k (#I,#O) #̂(A(k)) ε(k)

#̂(A(k))

log(1/ε(k))
#pcg(A(k)) #(A(k)) #(M(k)) Main cost

2 (19, 315) 69 10−5 5.99 700 25.10 7.29 2.57× 104 ·m

1 (165, 500) 78 10−6 5.65 1005 54.91 6.11 4.20× 105 ·m

the efficiency of PCG calls, it is more reasonable to investigate the maximal
number of iterations in one PCG call on each level. We use #̂(A(k)) to denote
the largest number of iterations in one single PCG call on level k.

• #(M (k)) denotes the average number of matrix-vector multiplications con-
cerning M (k) in one single CG call concerning M (k). Such CG calls occur in
the PCG calls concerning A(k), where M (k) acts as the preconditioner. Note
that #(M (k)) is controlled by log(1/ε(k))κ(M (k)) ≤ log(1/ε(k))(1 + c).

• “Main cost” denotes the main computational cost contributed by matrix-
vector multiplication flops. In the refinement process we have

main cost =#cg(B(k+1)) ·#(B(k+1)) · nnz(A(k))

+ #pcg(A(k)) ·#(A(k)) ·
(
nnz(A(k)) + #(M (k)) · nnz(M (k))

)
,

while in the extension process we have

main cost = #pcg(A(k)) ·#(A(k)) ·
(
nnz(A(k)) + #(M (k)) · nnz(M (k))

)
.

Tables 6–8 show the efficiency of our algorithm. We can see that #(B(k)) and
#(M (k)) are well-bounded as expected, due to the artificial imposition of the condition

bound c. #̂(A(k)) and the numerical condition number #̂(A(k))/ log(1/ε(k)) are also
well-controlled by choosing α properly to bound κ = αc/η. It is worth mentioning

that #̂(A(k))/ log(1/ε(k)) appears to be uniformly bounded for all levels, actually much
smaller than κ, which reflects our uniform control on efficiency. #Iter is well-bounded
due to the proper choice of β for bounding γ = (1 + β)/α.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

302 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

Table 8
4-level eigenpairs computation of SwissRoll data: (η, c) = (0.2, 20), m , nnz(A(0)).

(α, β) = (5, 2)

R
efi

n
em

en
t

Level k (#I,#O) #Iter #cg(B(k+1)) #(B(k+1)) #pcg(A(k)) #(A(k)) #(M(k)) Main cost

3 (18, 10) 6 18 22.61 108 7.19 7.87 3.39× 102 ·m

2 (84, 44) 8 84 43.45 672 10.42 6.49 2.11× 104 ·m

1 (390, 195) 5 390 28.85 1950 11.68 5.42 1.92× 105 ·m

E
x
te

n
si

o
n

Level k (#I,#O) #̂(A(k)) ε(k)
#̂(A(k))

log(1/ε(k))
#pcg(A(k)) #(A(k)) #(M(k)) Main cost

3 (10, 84) 42 2.5× 10−5 3.96 200 18.32 8.43 1.53× 103 ·m

2 (44, 390) 63 5× 10−6 5.16 1050 29.30 7.24 8.47× 104 ·m

1 (195, 50) 71 10−6 5.13 915 57.47 6.10 4.00× 105 ·m

(α, β) = (3, 1)

R
efi

n
em

en
t

Level k (#I,#O) #Iter #cg(B(k+1)) #(B(k+1)) #pcg(A(k)) #(A(k)) #(M(k)) Main cost

3 (31, 16) 7 31 22.45 217 6.09 8.09 5.89× 102 ·m

2 (95, 67) 12 95 43.44 1140 7.66 6.66 2.63× 104 ·m

1 (459, 314) 7 459 28.75 3656 8.71 5.56 2.65× 105 ·m

E
x
te

n
si

o
n

Level k (#I,#O) #̂(A(k)) ε(k)
#̂(A(k))

log(1/ε(k))
#pcg(A(k)) #(A(k)) #(M(k)) Main cost

3 (16, 95) 31 2.5× 10−5 2.92 200 16.61 8.48 1.39× 103 ·m

2 (67, 459) 49 5× 10−6 4.01 1100 25.66 7.27 7.79× 104 ·m

1 (314, 500) 55 10−6 3.98 558 50.61 6.12 2.15× 105 ·m

We may also compare the results for the same decomposition but from two dif-
ferent sets of parameters (α, β). For all three decompositions, the experiments with
(α, β) = (5, 2) have a smaller γ = 3

5 , and thus is more efficient in the refinement
process (fewer #Iter and less refinement main cost). While the experiments with
(α, β) = (3, 1) have a smaller κ that leads to better efficiency in the extension process

(smaller #̂(A(k))/ log(1/ε(k)) and less extension main cost). But since the dominant
cost of the whole process comes from the extension process, then the experiments
with (α, β) = (3, 1) have a smaller total main cost.

We remark that the choice of (α, β) not only determines (κ, γ) that will affect the
algorithm efficiency, but also determines the segmentation of the target spectrum and
its allocation towards different levels of the decomposition. Smaller values of α and
β mean more eigenpairs being computed on coarser levels (larger k), which relieves
the burden of the extension process for finer levels, but also increases the load of
the refinement process. There could be an optimal choice of (α, β) that minimizes
the total main cost, balancing between the refinement and the extension processes.
However, without a priori knowledge of the distribution of the eigenvalues, which is
the case in practice, a safe choice of (α, β) would be α, β = O(1).

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 303

(a) log10(µi − µ̃
(k)
i), i = 1, . . . ,mk (b) log10(‖L−1ṽ

(k)
i − µiṽ

(k)
i ‖2), i =

1, . . . ,mk

(c) log10((µi − µ̃
(k)
i)/µi), i = 1, . . . ,mk (d) log10((λi − λ̃

(k)
i)/λi), i = 1, . . . ,mk

Fig. 9. Convergence of computed spectrum in different errors.

To further investigate the behavior of our algorithm, we focus on numerical ex-
periments carried out on the 4-level decomposition of the SwissRoll data. Figure 9
shows the convergence of the computed spectrum in different errors. Figure 10 shows
the completion and the convergence processes of the target spectrum in the case of
(α, β) = (3, 1) (corresponding to Table 8). We use a log-scale plot to illustrate the
error |µi − µ̃(k)| after we complete the refinement process and the extension process,
respectively, on each level k. As we can see, each application of the refinement process
improves the accuracy of the first m̂k eigenvalues at least by a factor of η = εk

εk+1
,

but at the price of discarding the last mk+1 − m̂k computed eigenvalues. So the
computation of the last mk+1 − m̂k computed eigenvalues on the coarser level k + 1
actually serves as preconditioning to ensure the efficiency of the refinement process on
level k. Then the extension process extends the spectrum to mk that is determined

by the threshold µ
(k)
ex . The whole computation is an iterative process that improves

the accuracy of the eigenvalues by applying the hierarchical Lanczos method to each
eigenvalue at most twice.

We also further verify our critical control on the restricted condition number

κ(A
(k)
Ψ , Z

(k)

m̂+
k

) by κ = αc/η, by showing the dependence of #̂(A(k))(or #̂(A(k))/

log(1/ε(k))) on κ. Recall that #̂(A(k)) denotes the largest number of iterations in
one single PCG call concerning A(k) on level k. Using the 4-level decomposition of
the SwissRoll data with (η, c) = (0.2, 20), we perform Algorithm 6 with fixed β = 1

but different α ∈ [3, 5]. Figure 11 shows #̂(A(k)) versus α for all three levels. By

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

304 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

(a) results after level-3 refine-
ment

(b) results after level-3 exension (c) results after level-2 refine-
ment

(d) results after level-2 exten-
sion

(e) results after level-1 refine-
ment

(f) final results after level-1 ex-
tension

Fig. 10. The completion and convergence process of the target spectrum. The refinement process

retains part of the spectrum subject to threshold µ
(k)
re with improved accuracy, and the extension

process extends the spectrum subject to threshold µ
(k)
ex . The whole process is an iterative procedure

that aims at improving the accuracy of the eigenvalue solver.

(a) #̂A(k) versus α (b) #̂A(k)/ log(ε−1
pcg) versus α

Fig. 11. #̂A(k) versus α in the 4-level SwissRoll example.

Theorem 4.8, we expect that #̂(A(k)) ∝ κ · log(1/ε(k)) ∝ α · log(1/ε(k)). This linear
dependence is confirmed in Figure 11. It is also important to note that the curve
(green) corresponding to level-1 is below the curve (blue) corresponding to level-2 in

Figure 11(b), which again implies that #̂(A(k))/ log(1/ε(k)) is uniformly bounded for
all levels.

Acknowledgments. Ziyun Zhang would like to acknowledge ACM, Caltech and
SMS, PKU for supporting her research visit to Caltech in 2017 summer. She would
also like to thank ACM’s staff for their hospitality during her visit.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICALLY PRECONDITIONED EIGENSOLVER 305

REFERENCES

[1] L. Bergamaschi and E. Bozzo, Computing the smallest eigenpairs of the graph Laplacian,
SeMA J., 75 (2018), pp. 1–16.

[2] L. Bergamaschi, G. Gambolati, and G. Pini, Asymptotic convergence of conjugate gradient
methods for the partial symmetric eigenproblem, Numer. Linear Algebra Appl., 4 (1997),
pp. 69–84.

[3] E. Bozzo and M. Franceschet, Effective and Efficient Approximations of the Generalized
Inverse of the Graph Laplacian Matrix with an Application to Current-Flow Betweenness
Centrality, preprint, arXiv:1205.4894, 2012.

[4] E. Bozzo and M. Franceschet, Resistance distance, closeness, and betweenness, Soc. Netw.,
35 (2013), pp. 460–469.

[5] D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitly restarted Lanczos method for
large symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2 (1994), pp. 1–21.

[6] F. R. Chung, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92, American Mathematical
Society, Providence, RI, 1997.

[7] S. Cocco, R. Monasson, and M. Weigt, From principal component to direct coupling analysis
of coevolution in proteins: Low-eigenvalue modes are needed for structure prediction, PLoS
Comput. Biol., 9 (2013), e1003176.

[8] J. Francis, The transformation: A unitary analogue to the transformation. I, Comput. J., 4
(1961), pp. 265–271.

[9] S. Goedecker, Low complexity algorithms for electronic structure calculations, J. Comput.
Phys., 118 (1995), pp. 261–268.

[10] T. Hou, D. Huang, K. Lam, and P. Zhang, An adaptive fast solver for a general class of
positive definite matrices via energy decomposition, Multiscale Model. Simul., 16 (2018),
pp. 615–678.

[11] Y. T. Hou and P. Zhang, Sparse operator compression of higher-order elliptic operators with
rough coefficients, Res. Math. Sci., 4, (2017), 24.

[12] R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi
iteration, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821.

[13] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia,
1998.

[14] Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems, Math. Comp., 84
(2015), pp. 71–88.

[15] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp.,
83 (2014), pp. 2583–2603.

[16] Á. Mart́ınez, Tuned preconditioners for the eigensolution of large SPD matrices arising in
engineering problems, Numer. Linear Algebra Appl., 23 (2016), pp. 427–443.

[17] L. Meirovitch, Elements of Vibration Analysis, McGraw-Hill, New York, 1975.
[18] M. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.
[19] A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm,

in 14th NIPS’01, MIT Press, Cambridge, MA, 2001, pp. 849–856.
[20] H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from

hierarchical information games, SIAM Rev., 59 (2017), pp. 99–149.
[21] H. Owhadi and C. Scovel, Universal Scalable Robust Solvers from Computational In-

formation Games and Fast Eigenspace Adapted Multiresolution Analysis, preprint,
arXiv:1703.10761, 2017.

[22] V. Ozoliņš, R. Lai, R. Caflisch, and S. Osher, Compressed modes for variational problems
in mathematics and physics, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 18368–18373.

[23] E. Romero, M. B. Cruz, J. E. Roman, and P. B. Vasconcelos, A parallel implementation
of the Jacobi-Davidson eigensolver for unsymmetric matrices, in VECPAR 2010, Springer,
Berlin, 2010, pp. 380–393.

[24] F. Schäfer, T. Sullivan, and H. Owhadi, Compression, Inversion, and Approximate
PCA of Dense Kernel Matrices at Near-Linear Computational Complexity, preprint,
arXiv:1706.02205, 2017.

[25] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal.
Mach. Intell., 22 (2000), pp. 888–905.

[26] G. L. Sleijpen and H. A. Van der Vorst, A Jacobi–Davidson iteration method for linear
eigenvalue problems, SIAM Rev., 42 (2000), pp. 267–293.

[27] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

306 T. Y. HOU, D. HUANG, K. C. LAM, AND Z. ZHANG

[28] D. C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue cal-
culations, in Parallel Numerical Algorithms, Springer, Dordrecht, The Netherlands, 1997,
pp. 119–165.

[29] G. Stewart, Accelerating the orthogonal iteration for the eigenvectors of a Hermitian matrix,
Numer. Math., 13 (1969), pp. 362–376.

[30] H. Xie, A multigrid method for eigenvalue problem, J. Comput. Phys., 274 (2014), pp. 550–561.
[31] H. Xie, L. Zhang, and H. Owhadi, Fast Eigenpairs Computation with Operator Adapted

Wavelets and Hierarchical Subspace Correction, preprint, arXiv:1806.00565, 2018.

D
ow

nl
oa

de
d

04
/1

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Overview of the algorithm
	Previous works
	Outline

	Preliminaries
	Energy decomposition
	Operator compression
	Multiresolution matrix decomposition
	Implicitly restarted Lanczos method

	The compressed eigenproblem
	Hierarchical spectrum completion
	Cross-level refinement of eigenspace
	Overall algorithms
	Numerical examples
	Dataset description
	Numerical MMD
	The coarse level eigenpair approximation
	The multilevel eigenpair computation

	Comparison with the IRLM
	Conclusion and future works
	Appendix A.
	Appendix B.
	Numerical details for subsec: numericalmmd
	Numerical details of subsec: coarseeigenapprox
	Numerical details of subsec: multileveleigencomputation

	References

