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ON THE COMPENSATOR IN THE DOOB-MEYER
DECOMPOSITION OF THE SNELL ENVELOPE*

SAUL D. JACKA? AND DOMINYKAS NORGILAST

Abstract. Let G be a semimartingale, and S its Snell envelope. Under the assumption that
G € H', we show that the finite-variation part of S is absolutely continuous with respect to the
decreasing part of the finite-variation part of G. In the Markovian setting, this enables us to identify
sufficient conditions for the value function of the optimal stopping problem to belong to the domain
of the extended (martingale) generator of the underlying Markov process. We then show that the
dual of the optimal stopping problem is a stochastic control problem for a controlled Markov process,
and the optimal control is characterised by a function belonging to the domain of the martingale
generator. Finally, we give an application to the smooth pasting condition.

Key words. Doob-Meyer decomposition, optimal stopping, Snell envelope, stochastic control,
martingale duality, smooth pasting
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1. Introduction. Given a (gains) process G = (Gy);>0, living on the usual
filtered probability space (Q, F,F = (F;)¢>0,P), the classical optimal stopping prob-
lem is to find a maximal reward vy = sup,~, E[G,], where the supremum is taken
over all F - stopping times. In order to compute vy, we consider, the value process
vy = esssup, s, E[G;|F,], t > 0. It is, or should be, well-known (see, for example,
El Karoui [16], Karatzas and Shreve [31]) that under suitable integrability and regu-
larity conditions on the process G, the Snell envelope of G, denoted by S = (S;)¢>o0,
is the minimal supermartingale which dominates G and aggregates the value pro-
cess at each F-stopping time o > 0, so that S, = v, almost surely. Moreover,
To := inf{r > o : S, = G,} is the minimal optimal stopping time, so, in particular,
Se = v, = E[G,,|F,] almost surely. A successful construction of the process S leads,
therefore, to the solution of the initial optimal stopping problem.

In the Markovian setting the gains process takes the form G = g(X), where g(-) is
some payoff function applied to an underlying Markov process X. Under very general
conditions, the Snell envelope is then characterised as the least super-mean-valued
function V() that majorizes g(-). A standard technique to find the value function
V(+) is to solve the corresponding obstacle (free-boundary) problem. For an exposition
of the general theory of optimal stopping in both settings we also refer to Peskir and
Shiryaev [39].

The main aim of this paper is to answer the following canonical question of in-
terest:

QUESTION. When does the value function V() belong to the domain of the ex-
tended (martingale) generator of the underlying Markov process X ¢

Very surprisingly, given how long general optimal stopping problems have been
studied (see Snell [49]), we have been unable to find any general results about this.
As the title suggests, we tackle the question by considering the optimal stopping
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2 S. D. JACKA AND D. NORGILAS

problem in a more general (semimartingale) setting first. If a gains process G is
sufficiently integrable, then S is of class (D) and thus uniquely decomposes into the
difference of a uniformly integrable martingale, say M, and a predictable, increasing
process, say A, of integrable variation. From the general theory of optimal stopping
it can be shown that 7, := inf{r > o : A, > 0} is the maximal optimal stopping time,
while the stopped process S™ = (Siaz, )1>0 is a martingale. Now suppose that G is a
semimartingale itself. Then its finite variation part can be further decomposed into
the sum of increasing and decreasing processes that are, as random measures, mutually
singular. Off the support of the decreasing one, G is (locally) a submartingale, and
thus in this case it is suboptimal to stop, and we again expect S to be (locally) a
martingale. This also suggests that A increases only if the decreasing component
of the finite variation part of G decreases. In particular, we prove the following
fundamental result (see Theorem 3.6):

the finite-variation process in the Doob-Meyer decomposition of S
is absolutely continuous with respect to the decreasing part of the
corresponding finite-variation process in the decomposition of G.

This being a very natural conjecture, it is not surprising that some variants of it
have already been considered. As a helpful referee pointed out to us, several versions
of Theorem 3.6 were established in the literature on reflected BSDEs under various
assumptions on the gains process, see El Karoui et. al. [17] (G is a continuous semi-
martingale), Crepéy and Matoussi [9] (G is a cadlag quasi-martingale), Hamadéne
and Ouknine [23] (G is a limiting process of a sequence of sufficiently regular semi-
martingales). We note that these results (except Hamadéne and Ouknine [23], where
the assumed regularity of G is exploited) are proved essentially by using (or appro-
priately extending) the related (but different) result established in Jacka [27]. There,
under the assumption that S and G are both continuous and sufficiently integrable
semimartingales, the author shows that a local time of S — G at zero is absolutely
continuous with respect to the decreasing part of the finite-variation process in the
decomposition of G. Our proof of Theorem 3.6 relies on the classical methods estab-
lishing the Doob-Meyer decomposition of a supermartingale.

The first part of section 3 is devoted to the groundwork necessary to establish
Theorem 3.6. It turns out that an answer to the motivating question of this paper
then follows naturally. In particular, in the second part of section 3, in Theorem 3.18,
we show that, under very general assumptions on the underlying Markov process X,
if the payoff function g(-) belongs to the domain of the martingale generator of X, so
does the value function V'(-) of the optimal stopping problem.

In section 4 we discuss some applications. First, we consider a dual approach to
optimal stopping problems due to Davis and Karatzas [10] (see also Rogers [43], and
Haugh and Kogan [24]). In particular, from the absolute continuity result announced
above, it follows that the dual is a stochastic control problem for a controlled Markov
process, which opens the doors to the application of all the available theory related
to such problems (see Fleming and Soner [19]). Secondly, if the value function of the
optimal stoping problem belongs to the domain of the martingale generator, under a
few additional (but general) assumptions, we also show that the celebrated smooth fit
principle holds for (killed) one-dimensional diffusions.
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COMPENSATOR OF THE SNELL ENVELOPE 3

2. Preliminaries.

2.1. General framework. Fix a time horizon T € (0, 00]. Let G be an adapted,
cadlag gains process on (Q, F,F = (F;)o<i<7,P), where F is a right-continuous and
complete filtration. We suppose that Fq is trivial. In the case T' = oo, we interpret
Foo = 0'( Uo<t<oo ]-'t) and Gy = liminf; ., G;. For two F-stopping times o1, o1
with 01 < o3 P-a.s., by 75, », we denote the set of all F-stopping times 7 such that
P(oy <7 < o03) =1. We will assume that the following condition is satisfied:

(2.1) ]E[ sup |Gt|} < 00,
0<t<T

and let
G be the space of all adapted, cadlag processes such that (2.1) holds.

The optimal stopping problem is to compute the maximal expected reward

vo:= sup E[G,].
T7€To, T

Remark 2.1. First note that by (2.1), E[G,] < oo for all 7 € Ty, and thus v
is finite. Moreover, most of the general results regarding optimal stopping problems
are proved under the assumption that G is a non-negative (hence the gains) process.
However, under (2.1), N = (N)o<t<r given by N, = E[supg<,<7|Gs||Fi] is a uni-
formly integrable martingale, while G := N + G defines a non-negative process (even
if G is allowed to take negative values). Then

b= sup B[N, +G,] =E| sup |Gi]| + sup E[G],
T€To, T 0<t<T T7€To0,T

and finding 7¢ is the same as finding vy. Hence we may, and shall, assume without
loss of generality that G > 0.

The key to our study is provided by the family {vs}se7;  of random variables

(2.2) vy = esssupE[G,|F,], o€ Tor.
TE€ETs,T

Note that, since each deterministic time ¢ € [0, 7] is also a stopping time, (2.2) defines
an adapted value process (v¢)o<i<r. For o € To r, it is tempting to regard v, as the
process (v;)o<i<1 evaluated at the stopping time o. It turns out that there is indeed a
modification (S;)o<i<7 of the process (v¢)o<i<7 that aggregates the family {vs }oe7s »
at each stopping time o (see Theorem D.7 in Karatzas and Shreve [31]). This process
S is the Snell envelope of G.

THEOREM 2.2 (Characterisation of S). Let G € G. The Snell envelope process
S of G satisfies

(2.3) So = esssupE[G,|F,], P—a.s.,0€ Tor.
T€To,T

Moreover, S is the minimal cadldag supermartingale that dominates G.

This manuscript is for review purposes only.
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4 S. D. JACKA AND D. NORGILAS

For the proof of Theorem 2.2 under slightly more general assumptions on the
gains process G consult Appendix I in Dellacherie and Meyer [12] or Proposition 2.26
in El Karoui [16].

If G € G, it is clear that G is a uniformly integrable process. In particular, it is also
of class (D), i.e. the family of random variables {G;1{;<} : T is a stopping time}
is uniformly integrable. On the other hand, a right-continuous adapted process Z
belongs to the class (D) if there exists a uniformly integrable martingale N, such
that, for all t € [0,T], |Z:|< N; P-a.s. (see e.g. Dellacherie and Meyer [12], Appendix
I and references therein). In our case, by (2.3) and using the conditional version of
Jensen’s inequality, for t € [0, 7], we have

|S¢|< E[ sup |G| ft:| =N, P-as.
T

0<s<

But, since G € G, N is a uniformly integrable martingale, which proves the following
LEMMA 2.3. Suppose G € G. Then S is of class (D).

Let M denote the set of right-continuous martingales started at zero. Let Mg ;¢
and My 1 denote the spaces of local and uniformly integrable martingales (started at
zero), respectively. Similarly, the adapted processes of finite and integrable variation
will be denoted by F'V and IV, respectively.

It is well-known that a right-continuous (local) supermartingale P has a unique
decomposition P = B—1I where B € M ;o and I is an increasing (F'V') process which
is predictable. This can be regarded as the general Doob-Meyer decomposition of a
supermartingale. Specialising to class (D) supermartingales we have a stronger result
(this is a consequence of, for example, Protter [40] Theorem 16, p.116 and Theorem
11, p.112):

THEOREM 2.4 (Doob-Meyer decomposition). Let G € G. Then the Snell enve-
lope process S admits a unique decomposition

(2.4) S =M —A,

where M* € Moy, and A is a predictable, increasing IV process.

Remark 2.5. It is normal to assume that the process A in the Doob-Meyer de-
composition of S is started at zero. The duality result alluded to in the introduction
is one reason why we do not do so here.

An immediate consequence of Theorem 2.4 is that S is a semimartingale. In
addition, we also assume that G is a semimartingale with the following decomposition:

(2.5) G=N+D,

where N € My o and D is a F'V process. Unfortunately, the decomposition (2.5) is
not, in general, unique. On the other hand, uniqueness is obtained by requiring the
FV term to also be predictable, at the cost of restricting only to locally integrable
processes. If there exists a decomposition of a semimartingale X with a predictable
FV process, then we say that X is special. For a special semimartingale we always
choose to work with its canonical decomposition (so that a F'V process is predictable).
Let
G be the space of semimartingales in G.

This manuscript is for review purposes only.
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COMPENSATOR OF THE SNELL ENVELOPE 5

LEMMA 2.6. Suppose G € G. Then G is a special semimartingale.

See Theorems 36 and 37 (p.132) in Protter [40] for the proof.

The following lemma provides a further decomposition of a semimartingale (see
Proposition 3.3 (p.27) in Jacod and Shiryaev [28]). In particular, the F'V term of a
special semimartingale can be uniquely (up to initial values) decomposed in a pre-
dictable way, into the difference of two increasing, mutually singular F'V processes.

LEMMA 2.7. Suppose that K is a cadldag, adapted process such that K € FV.
Then there exists a unique pair (K, K™) of adapted increasing processes such that
K—-Ky=K"—K~ and [|dKs;|= KT + K~. Moreover, if K is predictable, then
K*, K~ and [|dK| are also predictable.

2.2. Markovian setting.

The Markov process. Let (E,&) be a metrizable Lusin space endowed with the
o-field of Borel subsets of E. Let X = (Q,G,G;, X4,0,, P, : x € E;t € Ry) be a
Markov process taking values in (E, £). We assume that a sample space 2 is such that
the usual semi-group of shift operators (6;);>¢ is well-defined (which is the case, for
example, if Q = E%°) is the canonical path space). If the corresponding semigroup
of X, (P), is the primary object of study, then we say that X is a realisation of a
Markov semigroup (P;). In the case of (P;) being sub-Markovian, i.e. Plp < 1g,
we extend it to a Markovian semigroup over E2 = FE U {A}, where A is a coffin-
state. We also denote by C(X) = (Q, F, Ft, Xt,60:, P, : ¢ € E,t € Ry) the canonical
realisation associated with X, defined on  with the filtration (F;) deduced from
FY = 0(Xs : s < t) by standard regularisation procedures (completeness and right-
continuity).

In this paper our standing assumption is that the underlying Markov process X is
a right process (consult Getoor [20], Sharpe [46] for the general theory). Essentially,
right processes are the processes satisfying Meyer’s regularity hypotheses (hypothéses
droites) HD1 and HD2. If a given Markov semigroup (P;) satisfies HD1 and pu is an
arbitrary probability measure on (E,£), then there exists a homogeneous E-valued
Markov process X with transition semigroup (P;) and initial law u. Moreover, a real-
isation of such (P;) is right-continuous (Sharpe [46], Theorem 2.7). Under the second
fundamental hypothesis, HD2, ¢ — f(X}) is right-continuous for every a-excessive
function f. Recall, for @ > 0, a universally measurable function f : £ — R is a-
super-median if e"*' P, f < f for all t > 0, and a-excessive if it is a-super-median and
e P f — fast— 0. If (P) satisfies HD1 and HD2 then the corresponding realisa-
tion X is strong Markov (Getoor [20], Theorem 9.4 and Blumenthal and Getoor [7],
Theorem 8.11).

Remark 2.8. One has the following inclusions among classes of Markov processes:

(Feller) C (Hunt) C (right)

Let £ be a given extended infinitesimal (martingale) generator of X with a domain
D(L), i.e. we say a Borel function f: E — R belongs to D(L) if there exists a Borel
function h : E — R, such that fot\h(Xs)|ds < 00, Vt > 0, P,-a.s. for each x and the

process Mf = (M])y>¢, given by
t

(2.6) Aﬁ::ﬂXﬁff@ﬂf/mMXQ@,tZO,er
0

is a local martingale under each P, (see Revuz and Yor [42] p.285), and then we write
h=Lf.

This manuscript is for review purposes only.
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6 S. D. JACKA AND D. NORGILAS

Remark 2.9. Note that if A € £ and P,(A({t : X; € A} = 0) = 1 for each
x € E, where ) is Lebesgue measure, then h may be altered on A without affecting
the validity of (2.6), so that, in general, the map f — h is not unique. This is why
we refer to ¢ martingale generator.

Optimal stopping problem. Let X = (2,G,G:, X;,01,P, : 2 € E;t € Ry) be
a right process. Given a function g : E — R (with g(A) = 0), « > 0 and T €
R, U {oco} define a corresponding gains process G (we simply write G if a = 0)
by G¢ = e *g(X;) for t € [0,7]. In the case of T = 0o, we make a convention
that G% = liminf, ,. G¢. Let £¢,&" be the o-algebras on E generated by excessive
functions and universally measurable sets, respectively (recall that £ C £¢ C £*). We
write

g € Y, given that g(-) is £°-measurable and G is of class (D).

For a filtration (Qt), and (ét) - stopping times 01 and o2, with P, 0<01 <0, <T] =

1,z € E, let T5,.0,(G) be the set of (G;) - stopping times 7 with Py[oq <7 < 0] = 1.
Consider the following optimal stopping problem:

V()= sup Egle “g(X;)], z€kE.
7€T0,7(9)

By convention we set V(A) = g(A). The following result is due to El Karoui et
al. [18].

THEOREM 2.10. Let X = (Q,G,G;, X4,04, P, : x € E;t € Ry) be a right process
with canonical filtration (Fy). If g € Y, then

V()= sup E, e g(X,)], z€E,
T€To, 7 (F)

and (e=*'V(X3)) is a Snell envelope of G*, i.e. for allx € E and T € Ty r(F)

e”"V(X;) = esssup E,[GT|F;] Ps-a.s.
o€Tr,r(F)

The first important consequence of the theorem is that we can (and will) work with
the canonical realisation C(X). The second one provides a crucial link between the
Snell envelope process in the general setting and the value function in the Markovian
framework.

Remark 2.11. The restriction to gains processes of the form G = ¢g(X) (or G* if
a > 0) is much less restrictive than might appear. Given that we work on the canonical
path space with 6 being the usual shift operator, we can expand the state-space of X
by appending an adapted functional F, taking values in the space (E’,£’), with the
property that

(2.7) {Fiis € A €eo(Fs)Uo(0s0X,: 0<u<t), forall Aec&'.
This allows us to deal with time-dependent problems, running rewards and other

path-functionals of the underlying Markov process.

LEMMA 2.12. Suppose X is a canonical Markov process taking values in the space
(E, &) where E is a locally compact, countably based Hausdorff space and & is its Borel
o-algebra. Suppose also that F is a path functional of X satisfying (2.7) and taking
values in the space (E',E") where E' is a locally compact, countably based Hausdorff

This manuscript is for review purposes only.
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COMPENSATOR OF THE SNELL ENVELOPE 7

space with Borel o-algebra &', then, defining Y = (X, F), Y is still Markovian. If X
is a strong Markov process and F' is right-continuous, then Y is strong Markov. If X
is a Feller process and F' is right-continuous , then Y is strong Markov, has a cadlag
modification and the completion of the natural filtration of X, F, is right-continuous
and quasi-left continuous, and thus Y is a right process.

Example 2.13. If X is a one-dimensional Brownian motion, then Y, defined by

t s
Y; = (Xt,L?, sup X, exp(—/ a(Xu)du)f(Xs)ds>, t>0,
0<s<t 0 0

where LY is the local time of X at 0, is a Feller process on the filtration of X.

3. Main results. In this section we retain the notation of subsection 2.1 and
subsection 2.2.

3.1. General framework. The assumption that G € G (i.e. G is a semimartin-
gale with integrable supremum and G = N+ D is its canonical decomposition), neither
ensures that N € Mg, nor that D is an IV process, the latter, it turns out, being
sufficient for the main result of this section to hold. In order to prove Theorem 3.6
we will need a stronger integrability condition on G.

For any adapted cadlag process H, define

(3.1) H* = sup |Hy
0<t<T
and
* * 1
(3.2) | H||so=||H*||o:= E[|H*|P]"?, 1<p< .

Remark 3.1. Note that G = S', so that under the current conditions we have
that G € S'.

For a special semimartingale X with canonical decomposition X = B + I, where
B € My o and I is a predictable F'V process (with Iy = Xj), define the HP norm,
for 1 < p < o0, by

T
(33) I1Xlbo= 1Bllsr+]| [ 1a.

|, +15llzr,
Lr

and, as usual, write X € H? if || X||yr < 0.

Remark 3.2. A more standard definition of the HP norm is with || B||s» replaced

by H[B,B];/ ®||». However, the Burkholder-Davis-Gundy inequalities (see Protter
[40], Theorem 48 and references therein) imply the equivalence of these norms.

The following lemma follows from the fact that I* < f0T|dfs| + |Ip|, P—a.s:
LEMMA 3.3. On the space of special semimartingales, the HP norm is stronger

than SP for 1 < p < oo, i.e. convergence in HP implies convergence in SP.

In general, it is challenging to check whether a given process belongs to H', and thus
the assumption that G € H! might be too stringent. On the other hand, under the
assumptions in the Markov setting (see subsection 3.2), we will have that G is locally
in #'. Recall that a semimartingale X belongs to MY .. for 1 < p < oo, if there exists

This manuscript is for review purposes only.



8 S. D. JACKA AND D. NORGILAS

a sequence of stopping times {o, }nen, increasing to infinity almost surely, such that
for each n > 1, the stopped process X" belongs to HP. Hence, the main assumption
in this section is the following;:

ASSUMPTION 3.4. G is a semimartingale in both S* and H;. .

Remark 3.5. Given that G € H', Lemma 3.3 implies that Assumption 3.4 is
satisfied, and thus all the results of subsection 2.1 hold. Moreover, we then have a
canonical decomposition of G

(3.4) G=N+D,

with N € My yr and a predictable IV process D. On the other hand, under As-
sumption 3.4, the decomposition (3.4) still holds, however, N and D are only locally
uniformly integrable martingale (started at zero) and the process of integrable varia-
tion, respectively, i.e. G € Mgy and I7* is a process of IV, where {0, },,>1 is a
localising sequence.

We finally arrive to the main result of this section:

THEOREM 3.6. Suppose Assumption 3.4 holds. Let A be a predictable, increasing
IV process in the decomposition of the Snell envelope S, as in Theorem 2.4. Let D~
(DT) denote the decreasing (increasing) components of D, as in Lemma 2.7. Then

A is, as a measure, absolutely continuous with respect to D~ almost surely on [0,T7,
and p, defined by

e = 0<t<T,

has a version that satisfies 0 < pp < 1 almost surely.

Remark 3.7. Asis usual in semimartingale calculus, we treat a process of bounded
variation and its corresponding Lebesgue-Stiltjes signed measure as synonymous.

The proof of Theorem 3.6 is based on the discrete-time approximation of the pre-
dictable F'V processes in the decompositions of S (2.4) and G (2.5). In particular, let
Pn={0=1ty <ty <ty <..<tg =T} n=12,.. bean increasing sequence of
partitions of [0, 7] with maxi<p<g, t} —t}_; — 0 as n — co. Note that here T' < co
is fixexd, but arbitrary. Let Sy = Sp if £ <t < tj,, and Sp = St define the
discretizations of S, and set

AM =0 if0<t<tl

A? = E[St;L — St;?‘]:tg.tl] if tz <t< tZJrl, k=1,2,.. .k, — 1,

1

M=

Jj=1
kn
A7 = E[Spn | — Sen|Fin ],

Jj=1

If S is regular in the sense that for every stopping time 7 and nondecreasing
sequence (7, )nen of stopping times with 7 = lim,,_, o 7, we have lim,_, E[S, | =
E[S;], or equivalently, if A is continuous, Doléans [14] showed that A} — A; uniformly
in L' as n — oo (see also Rogers and Williams [44], VI.31, Theorem 31.2). Hence,
given that S is regular, we can extract a subsequence {A}"}, such that lim;_, ., A" =
Ay a.s. On the other hand, it is enough for G to be regular:

This manuscript is for review purposes only.
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COMPENSATOR OF THE SNELL ENVELOPE 9

LEMMA 3.8. Suppose G € G is a reqular gains process. Then so is its Snell
envelope process S.

See Appendix A for the proof.

Remark 3.9. If it is not known that G is regular, Kobylanski and Quenez [32],
in a slightly more general setting, showed that S is still regular, provided that G is
upper semicontinuous in expectation along stopping times, i.e. for all 7 € T%7 and
for all sequences of stopping times (7, ),>1 such that 7, T 7, we have

E[G;] > limsup E[G,].
n—oo

The case where S is not regular is more subtle. In his classical paper Rao [41]
utilised the Dunford-Pettis compactness criterion and showed that, in general, A} —
A; only weakly in L' as n — oo (a sequence (X, )nen of random variables in L!
converges weakly in L' to X if for every bounded random variable Y we have that
E[X,Y] — E[XY] as n — 00).

Recall that weak convergence in L' does not imply convergence in probability,
and therefore, we cannot immediately deduce an almost sure convergence along a
subsequence. However, it turns out that by modifying the sequence of approximating
random variables, the required convergence can be achieved. This has been done
in recent improvements of the Doob-Meyer decomposition (see Jakubowski [29] and
Beiglbock et al. [4]. Also, Siorpaes [48] showed that there is a subsequence that
works for all (t,w) € [0,T] x Q simultaneously). In particular, Jakubowski proceeds
as Rao, but then uses Komlds’s theorem [34] and proves the following (Jakubowski
[29], Theorem 3 and Remark 1):

THEOREM 3.10. There exists a subsequence {n;} such that for t € U5 P, and
as L — oo

1, &
(3.5) — AM) = Ay, a.s. and in L.
L(; t ) !

In particular, in any subsequence we can find a further subsequence such that (3.5)
holds.

Proof of Theorem 3.6. Let (0,)n>1 be a localising sequence for G such that, for
each n > 1, G = (Gip,, Jo<t<r is in H'. Similarly, set S7» = (Sin,, Jo<i<T for a
fixed n > 1. We need to prove that

(3.6) 0< AT — A%» < (D7)I" — (D7)7" as.,

since then, as o, T oo almost surely, as n — 0o, and by uniqueness of A and D~
the result follows. In particular, since A is increasing, the first inequality in (3.6) is
immediate, and thus we only need to prove the second one.

After localisation we assume that G € H. Forany 0 <t <T and 0<e<T —t
we have that

E[S; [ Fi] = E[ esssup E[G,|Fite]

TETtte,T
E[E[G,|Fi]
E[G,|F] as.,

d

Y

7
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where 7 € Tiqe,r is arbitrary. Therefore

(3.7 E[S;, | Ft] > esssup E[G.|F] as.

TETtqe,T

Then by (2.3) and using (3.7) together with the properties of the essential supremum
(see also Lemma A.1l in the Appendix A) we obtain

E[S; — S;, |Fi] < esssupE[G,|F;] — esssup E[G|F]

r€Tir TE€Ttte,T
<esssup E[Gr — Gry 46| Ft
T€Tt, T
(3.8) = esssup E[G; — G yqe)|Fi
T€7—t‘t+e
= esssup E[G, — G, | F;] a.s.
TETt t4e

The first equality in (3.8) follows by noting that Tiyer C Tir, and that for any
T € Tiye,r the term inside the expectation vanishes. Using the decomposition of G
and by observing that, for all 7 € T 1e, (D — D;,.) < 0, while N is a uniformly
integrable martingale, we obtain

E[S, — Syy|Fi] < esssup E[Dy, . — D[]
TETt,t+4e

(3.9) —E[D;,, — Dy | F] as.

Finally, for 0 < s < t < T, applying Theorem 3.10 to A together with (3.9) gives

L k
A== Jim 2 (30 BiSg, - SpnlF )

=1 j=k'
1 L k
(3.10) < Jim Z(Z > ElDy — Dy, |]-‘tﬁl]) as.,
=1 j=k'

where k' < k are such that ¢} < s < tZ,’H and t)' <t < tzlﬂ . Note that D~ is also
the predictable, increasing I'V process in the Doob-Meyer decomposition of the class
(D) supermartingale (G — D). Therefore we can approximate it in the same way as
A, so that D; — Dy is the almost sure limit along, possibly, a further subsequence
{ny, } of {ni}, of the right hand side of (3.10). O
We finish this section with a lemma that gives an easy test as to whether the given

process belongs to H, . (consult Appendix A for the proof).

LeEmMA 3.11. Let X € G with a canonical decomposition X = L + K, where
L € My ,oc and K is a predictable F'V process. If the jumps of K are uniformly
bounded by some finite constant ¢ > 0, then X € H}, .

3.2. Markovian setting. In the rest of the section (and the paper) we consider
the following optimal stopping problem:

(3.11) V(@)= swp Edo(X,)) xeE.

for a measurable function g : £ — R and a Markov process X satisfying the following
set of assumptions:

This manuscript is for review purposes only.
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ASSUMPTION 3.12. X is a right process.
ASSUMPTION 3.13. supg<,<plg(X¢)|€ L'(P;), z € E.

ASSUMPTION 3.14. g € (L), i.e. g(-) belongs to the domain of a martingale
generator of X.

Remark 3.15. Lemma 2.12 tells us that if X is Feller and F' is an adapted path-
functional of the form given in (2.7) then (a modification of) (X, F) satisfies Assump-
tion 3.12.

Ezample 3.16. Let X = (X;)¢>0 be a Markov process and let D(£) be the domain
of a classical infinitesimal generator of X, i.e. the set of measurable functions f : £ —

~

R, such that lim;,o(E;[f(X:)] — f(x))/t exists. Then D(L£) C D(L). In particular,
1. if X = (X)i>0 is a solution of an SDE driven by a Brownian motion in R4,
then C2(R%,R) C D(L);
2. if the state space F is finite (so that X is a continuous time Markov chain),

then any measurable and bounded f : F — R belongs to D(L)
3. if X is a Lévy process on R? with finite variance increments then CZ (R4, R) C

D(£)
Note that the gains process is of the form G = ¢g(X), while by Theorem 2.10, the
corresponding Snell envelope is given by

ST L V(Xt) < T,
o g(Xp) i t>T.

In a similar fashion to that in the general setting, Assumption 3.13 ensures the class
(D) property for the gains and Snell envelope processes. Moreover, under Assump-
tion 3.14,

t
(3.12) 9(Xy) = g(z) + MY +/ Lg(Xs)ds, 0<t<T,z€E,
0

and the F'V process in the semimartingale decomposition of G = g(X) is absolutely
continuous with respect to Lebesgue measure, and therefore predictable, so that (3.12)
is a canonical semimartingale decomposition of G = ¢g(X). Then, by Assumption 3.13,
and using Lemma 3.11, we also deduce that g(X) € H},..

Remark 3.17. When T < oo, the optimal stopping problem, in general, is time-
inhomogeneous, and we need to replace the process X; by the process Z; = (¢, Xy),
t €[0,T], so that (3.11) reads

(3.13) V(t,z) = sup E;, [g(t+ 7, Xi+r)], z€E,

T€T0,7—t

where g : [0,7] x E — R is a new payoff function (consult Peskir and Shiryaev [39]
for examples). In this case, Assumption 3.14 should be replaced by a requirement
that there exists a measurable function h : [0,T] x E — R such that M := §(Z;) —
g(0,z) — fot h(Z,)ds defines a local martingale.

The crucial result of this section is the following:

THEOREM 3.18. Suppose Assumptions 3.12,5.13 and 3.14 hold. Then V € D(L).

This manuscript is for review purposes only.
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Proof. In order to be consistent with the notation in the general framework, let
t
Dy = g(Xo) + / Lo(X.)ds, 0<t<T.
0

Recall Lemma 2.7. Then DT and D~ are explicitly given (up to initial values) by

t
Dj = [ £o(x.)*ds,
0
t
D;::/ Lg(Xs)™ds.
0

In particular, D~ is, as a measure, absolutely continuous with respect to Lebesgue
measure. By applying Theorem 3.6, we deduce that

t
(3.14) V(X)) = Vi(z) + M — / 1eLg(Xs)~ds, 0<t<T,zecR,
0

where p is a non-negative Radon-Nikodym derivative with 0 < ugs < 1. Then we also
have that f0t|,u8£g(Xs)_|ds < 00, for every 0 <t < T.

In order to finish the proof we are left to show that there exists a suitable mea-
surable function A : F — R such that A; = fot pusLg(Xs)~ds = f(f A(Xy)ds a.s., for all
t € [0,T]. For this, recall that a process Z (on (2, G,G;, X, 01, P, :x € E;t € Ry) or
just on C(X)) is additive if Zg =0 a.s. and Ziys = Zy+ Zs06; a.s., for all s,t € [0,T].
Then, for any measurable function f : E — R, Z{ = f(X,) — f(z) defines an additive
process. (Cinlar et al. [8] gives necessary and sufficient conditions for Z/ to be a
semimartingale.) More importantly, if Zf is a semimartingale, then the martingale
and F'V processes in the decomposition of Zf are also additive, see Theorem 3.18 in
Cinlar et al. [8].

Finally, we have that A; = fot usLg(Xs)~ds, t € [0,T], is an increasing additive
process such that dA; < dt. Set K; = liminf, o scq(At+s —A¢)/s and f(z) = E5[Kol,
x € E. Then by Proposition 3.56 in Cinlar et al. [8], we have that, for ¢ € [0, 77,
A = fot B(X,)ds Py-a.s. for each z € E. O

Remark 3.19. In some specific examples it is possible to relax Assumption 3.14.
Let § := {z € E : V() = g(x)} be the stopping region. It is well-known that
S = V(X) is a martingale on the go region S¢, i.e. M€ given by

t
¢ d
M éf/o 1(x,_cse)dSs

is a martingale (see Lemma A.2). This implies that fot 1(x,_ese)dAs = 0, and
therefore we note that in order for V€ ID(L), we need D to be absolutely con-
tinuous with respect to Lebesgue measure A only on the stopping region i.e. that
Jo Lix._es)dDs < A. For example, let E = R, fix K € Ry and consider g(-) given
by g(z) = (K —x)", x € E. We can easily show, under very weak conditions, that
S C [0, K] and so we need only have that fo 1(x._<k)dDs is absolutely continuous.

4. Applications: duality, smooth fit. In this section we retain the setting of
subsection 3.2.

This manuscript is for review purposes only.
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COMPENSATOR OF THE SNELL ENVELOPE 13

4.1. Duality. Let x € E be fixed. As before, let M ;;; denote all the right-
continuous uniformly integrable cadlag martingales (started at zero) on the filtered
space (Q, F,F,P,), x € E. The main result of Rogers [43] in the Markovian setting
reads:

THEOREM 4.1. Suppose Assumption 3.12 and 3.13 hold. Then

(4.1) V(z)= sup E,;[G,]= inf Egj[ sup (Gt — Mt)}, xe k.
T€TOT MeMG y; 0<t<T

We call the right hand side of (4.1) the dual of the optimal stopping problem. In
particular, the right hand side of (4.1) is a ”generalised stochastic control problem
of Girsanov type”, where a controller is allowed to choose a martingale from MS,U I8
x € E. Note that an optimal martingale for the dual is M*, the martingale appearing
in the Doob-Meyer decomposition of .S, while any other martingale in MG ;; gives
an upper bound of V(z). We already showed that M* = MY, which means that,
when solving the dual problem, one can search only over martingales of the form M7,
for f € D(L), or equivalently over the functions f € D(L£). We can further define
DMO,UI C D(L) by

Doy = {f €D(L): f > g, f is superharmonic, M’ e Mour}.

To conclude that V' € Dyy,,, we need to show that V' is superharmonic, i.e. for
all stopping times o € 7% and all z € E, E,[V(X,)] < V(z). But this follows
immediately from the Optional Sampling theorem, since S = V(X) is a uniformly
integrable supermartingale. Hence, as expected, we can restrict our search for the
best minimising martingale to the set D, ;-

THEOREM 4.2. Suppose that G = g(X) and the assumptions of Theorem 3.18
hold. Let Daq, ,,; be the set of admissible controls. Then the dual problem, i.e. the
right hand side of (4.1), is a stochastic control problem for a controlled Markov process
(X, Y1, Z2h, fe Dy, (defined by (4.2) and (4.3)), with a value function V given
by (4.4)

Proof. For any f € Dmz ., ® € E and y, 2z € R, define processes Y7/ and Z7 via

t
(4.2) v/ =y +/ Lf(Xs)ds, 0<t<T,
0
(43)  Zl= s (f@)+g(X,) — F(X)+Y]), 0<s<t<T,
s<r<t

and to allow arbitrary starting positions, set Zif = Z({t V z, for z > g(x) + y. Note
that, for any f € D(£), Y/ is an additive functional of X. Lemma 2.12 implies that
if f € Damyy, then (X,Y7, Z7) is a Markov process.

DeﬁneV:Esz—HRby

(4.4) Viz,y,z) = et E.y.[Z)], (2,9,2) € ExRxR.

It is clear that this is a stochastic control problem for the controlled Markov process
(X, Yyt zf ), where the admissible controls are functions in Dy, ;. Moreover, since
V' € Dmy.yr» by virtue of Theorem 4.1, and adjusting initial conditions as necessary,
we have

V(l') = V(‘T,ng(x)) = Ew,O,g(w)[Z’l‘{]a x € k.

This manuscript is for review purposes only.
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|

4.2. Some remarks on the smooth pasting condition. We will now discuss
the implications of Theorem 3.18 for the smoothness of the value function V(-) of the
optimal stopping problem given in (3.11).

Remark 4.3. While in Theorem 4.4 (resp. Theorem 4.9) we essentially recover (a
small improvement of) Theorem 2.3 in Peskir [37] (resp. Theorem 2.3 in Samee [45]),
the novelty is that we prove the results by means of stochastic calculus, as opposed
to the analytic approach in [37] (resp. [45]).

In addition to Assumption 3.13 and Assumption 3.14, we now assume that X is a
one-dimensional diffusion in the Itd6-McKean [26] sense, so that X is a strong Markov
process with continuous sample paths. We also assume that the state space £ C R is
an interval with endpoints —co < a < b < +00. Nnote that the diffusion assumption
implies Assumption 3.12. Finally, we assume that X is regular: for any z,y € int(E),
P.[ry, < oo] > 0, where 7, = min{t > 0: X; = y}. Let > 0 be fixed; a corresponds
to a Kkilling rate of the sample paths of X.

The case without killing: « = 0. Let s(-) denote a scale function of X, i.e. a
continuous, strictly increasing function on E such that for [, r, x € E, with a <1 <
xz <71 <b, we have

s(x) = s(l)
s(r) —s(l)’

see Revuz and Yor [42], Proposition 3.2 (p.301) for the proof of existence and prop-
erties of such a function.

From (4.5), using regularity of X and that V(X) is a supermartingale of class
(D) we have that V(+) is s-concave:

(4.5) P.(r <m) =

s(r) — s(x) s(z) —s(l)
(4.6) V(z) > V(l)m + V(r)m, x €l r].
THEOREM 4.4. Suppose the assumptions of Theorem 3.18 are satisfied, so that
V € D(L). Further assume that X is a regqular, strong Markov process with continuous
sample paths. Let Y = s(X), where s(-) is a scale function of X.
1. Assume that for each y € [s(a), s(b)], the local time of Y aty, LY, is singular
with respect to Lebesque measure. Then, if s € C1, V(-), given by (3.11),
belongs to C'*.
2. Assume that ([Y,Y]:)i>0 is, as a measure, absolutely continuous with respect
to Lebesgue measure. If s'(+) is absolutely continuous, then V € C1 and V'(-)
is also absolutely continuous.

Remark 4.5. If G is the filtration of a Brownian motion, B, then ¥ = s(X) is a
stochastic integral with respect to B (a consequence of martingale representation):

t
(4.7) Y, =Y, +/ 0.dB;.
0

Moreover, Proposition 3.56 in Cinlar et al. [8] ensures that o, = o(Y;) for a suitably
measurable function ¢ and

[Y,Y]t:/o o?(Yy)ds.

This manuscript is for review purposes only.
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In this case, both, the singularity of the local time of Y and absolute continuity
of [Y,Y] (with respect to Lebesgue measure), are inherited from those of Brownian
motion. On the other hand, if X is a regular diffusion (not necessarily a solution to
an SDE driven by a Brownian motion), absolute continuity of [Y, Y] still holds, if the
speed measure of X is absolutely continuous (with respect to Lebesgue measure).

Proof. Note that Y = s(X) is a Markov process, and let K denote its martingale
generator. Moreover, V(z) = W(s(x)) (see Lemma 4.7 and the following remark),
where, on the interval [s(a), s(b)], W(-) is the smallest nonnegative concave majorant
of the function §(y) = g o s7!(y). Then, since V € D(L),

t
V(X)) =V(z)+ M) +/ LV(X,)du, 0<t<T,
0

and thus
t
W) = W(y) + MY +/ (LV)os ' (Ya)du, 0<t<T.
0
Therefore, W € D(K), since
t
(4.8) W) = W)+ MY + [ KW (V)
0

for y € [s(a),s(b)], 0 <t < T, with KW = LV o s~ <0.
On the other hand, using the generalised 1t6 formula for concave/convex functions
(see e.g. Revuz and Yor [42], Theorem 1.5 p.223) we have

s(b)

W) =W+ [ Wl [ | Livtas),

for y € [s(a),s(b)], 0 < t < T, where L} is the local time of Y; at z, and v is a
non-negative o-finite measure corresponding to the second derivative of —W in the
sense of distributions. Then, by the uniqueness of the decomposition of a special
semimartingale, we have that, for t € [0, T],

t s(b)
(4.9) —/ KW(Yu)du:/ Liv(dz) as.
0 s(a)

We prove the first claim by contradiction. Suppose that v({zp}) > 0 for some
20 € (s(a), s(b)). Then, using (4.9) we have that

t s(b)
@10) - / KW (Y,)du = Lov({z0}) + / 1y Liv(dz) aus.
0

s(a)

Since L;° is positive with positive probability and, by assumption, LY, y € [s(a), s()],
is singular with respect to Lebesgue measure, the process on the right hand side of
(4.10) is not absolutely continuous with respect to Lebesgue measure, which contra-
dicts absolute continuity of the left hand side. Therefore, v({zp}) = 0, and since zy
was arbitrary, we have that v does not charge points. It follows that W € C'. Since
s € C' by assumption, we conclude that V € C*.

This manuscript is for review purposes only.



oo
S0
B W N R O

v Ot Ot Ot

J 33

at

RERS|

0 0 00 0 = I =
S © 0w N>

v Ot Ot Ot Ot Ut Ut Ot Ot Ot

%
NSEERIURI Gt

16 S. D. JACKA AND D. NORGILAS

We now prove the second claim. By assumption, [Y,Y] is absolutely continuous
with respect to Lebesgue measure (on the time axis). Invoking Proposition 3.56 in
Cinlar et al. [8] again, we have that

vl= [

(as in Remark 4.5). A time-change argument allows us to conclude that YV is a time-
change of a BM and that we may neglect the set {t : 02(Y;) = 0} in the representation
(4.8). Thus

W(Y:) = W(Yo)+/0t 1Nc(Yu)dMuV+/0t Ine (Y ) KW (Yy)du

where N is the zero set of 0. Then, using the occupation time formula (see, for
example, Revuz and Yor [42], Theorem 1.5 p.223) we have that

s(b)
/ICW du—/ f(v, YYu—/ f(z)Lidz as.,
s(b)

where f : [s(a),s(b)] = R i

0<r<t<T,n(rt]) fs((:) ( - )dzandﬂ' fs((j)( f)l/(dz)
define measures on the time axis, which, by virtue of (4.9), are equal (and thus both
are absolutely continuous with respect to Lebesgue measure). Now define 7! :=
{t : Y; € [ILI]}, s(a) <1 <1 < s(b). Then the restrictions of n and 7 to T4,
M|t and 7|7, are also equal. Moreover, since Y is a local martingale, it is also a

semimartingale. Therefore, for every 0 <t < T, L7 is carried by the set {t : Y; = z}
(see Protter [40], Theorem 69 p.217). Hence, for each ¢ € [0, 7],

(y) Now observe that, for

l 7
(4.11) mmmm:[Lﬁ@w:[mww:ﬂﬂmwx

and, since [ and [ are arbitrary, the left and right hand sides of (4.11) define mea-
sures on [s(a), s(b)] C R, which are equal. It follows that v is absolutely continuous
with respect to Lebesgue measure on [s(a), s(b)] and f(z)dz = v(dz). This proves
that W € C! and W'(-) is absolutely continuous on [s(a), s(b)] with Radon-Nikodym
derivative f. Since the product and composition of absolutely continuous functions
are absolutely continuous, we conclude that V’(+) is absolutely continuous (since s'(-)
is, by assumption). d

Remark 4.6. We note that for a smooth fit principle to hold, it is not necessary
that s € C'. Given that all the other conditions of Theorem 4.4 hold, it is sufficient
that s(-) is differentiable at the boundary of the continuation region. On the other
hand, if g € D(L), V € C!, even if g ¢ C'.

Moreover, since V = g on the stopping region, Theorem 4.4 tells us that g € C!
on the interior of the stopping region. However, the question whether this stems
already from the assumption that g € D(L£) is more subtle. For example, if g € D(L)
and g is a difference of two convex functions, then by the generalised 1t6 formula and
the local time argument (similarly to the proof of Theorem 4.4) we could conclude
that g € C' on the whole state space E.

This manuscript is for review purposes only.
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Case with killing: o« > 0. We now generalise the results of the Theorem 4.4 in the
presence of a non-trivial killing rate. Consider the following optimal stopping problem

(4.12) V(z) = sup E.le”*"g(X;)], z€E.
TeTOT

Note that, since a > 0, using the regularity of X together with the supermartingale
property of V(X)) we have that

(4.13) V() > V()E e "l cr ] F V(r)Eg e ™1, <], x€][l,r] CE.

Define increasing and decreasing functions ¢, ¢ : E — R, respectively, by

(4.14) W(z) = {Ex[e‘““]a frse = {I/Ec[e‘“”}, if z <c

1/Ecle =], ifx>c Eple 7], ifex>c
where ¢ € E is arbitrary. Then, (¥;)o<;<7 and (®;)o<i<7, given by
\I/t = 67Qt¢(Xt), (I)t = 67Qt¢(Xt), 0 S t S T,

respectively, are local martingales (and also supermartingales, since v, ¢ are non-
negative); see Dynkin [15] and It6 and McKean [26].
Let p1,p2 : [I,7] = [0,1] (where [I,r] C E) be given by

yat (x) =E; [efan ]-'rl<'rr]7 p?(x) =E,; [eianl'rr<rl}~

Continuity of paths of X implies that p;(-),7 = 1,2, are both continuous (the proof
of continuity of the scale function in (4.5) can be adapted for a killed process). In
terms of the functions ¥(+), ¢(-) of (4.14), using appropriate boundary conditions, one
calculates

P(@)o(r) — P(r)¢(x) pa() = P(D)o(x) — P(x)o(l)
b()e(r) = (r)e(l) | P(D)e(r) —p(r)el)’

Let §: EF — Ry be the continuous increasing function defined by §(x) = ¥ (x)/¢(x).
Substituting (4.15) into (4.13) and then dividing both sides by ¢(z) we get

Vig) VD) 3(r) —38(x) V() 3(z)—3(0)
¢(x) — o(1) S(r)=5(1)  o(r) 8(r)—501)

so that V(-)/(-) is -concave.

Recall that (4.13) essentially follows from V(-) being a-superharmonic, so that it
satisfies Ey[e*"V(X;)] < V() for € F and any stopping time 7. Since ® and ¥
are local martingales, it follows that the converse is also true, i.e. given a measurable
function f : E — R, f(-)/¢(:) is S-concave if and only if f(-) is a-superharmonic
(Dayanik and Karatzas [11], Proposition 4.1). This shows that a value function V(-)
is the minimal majorant of g(-) such that V(-)/¢(-) is §-concave.

(4.15) pi(z) = x € [l,r].

zell,r] CE,

LEMMA 4.7. Suppose [l,7] C E and let W(-) be the smallest nonnegative concave
magorant of § := (g/¢) o 571 on [3(1),3(r)], where 37! is the inverse of 5. Then
V(z) = ¢p(x)W(5(x)) on [I,r].

Proof. Define V(x) = ¢(z)W(5(z)) on [l,r]. Then, trivially, V(-) majorizes g(-)
and V(-)/¢(-) is §-concave. Therefore V(z) < V(x) on [I,r].
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On the other hand, let W(y) = (V/9) (57 (y)) on [3(1),5(r)]. Since V(z) > g(= )
and (V/@)(:) is s-concave on [I,7], W(:) is concave and majorizes (g/¢) o 5~ 1) o
[5(1), 5(r)]. Hence, W(y) < W (y) on [5(1),5(r)].

Finally, (V/¢)(x) < (V/¢)(x) = W(3(x)) < W(3(2)) = (V/é)(x) on [L,]. 0

Remark 4.8. When o = 0, let (¢, ¢) = (s,1). Then Lemma 4.7 is just Proposition
4.3. in Dayanik and Karatzas [11].

With the help of Lemma 4.7 and using parallel arguments to those in the proof
of Theorem 4.4 we can formulate sufficient conditions for V' to be in C' and have
absolutely continuous derivative.

THEOREM 4.9. Suppose the assumptions of Theorem 3.18 are satisfied, so that
V € D(L). Further assume that X is a regular Markov process with continuous
sample paths. Let ¥(-), #(-) be as in (4.14) and consider the process Y = 5(X).
1. Assume that, for each y € [5(a), §(b)], the local time of Y at y € [5(a), 5(D)],
LY, is singular with respect to Lebesque measure. Then if 1, ¢ € C*, V),
given by (4.12), belongs to C*.
2. Assume that [Y,Y] is, as a measure, absolutely continuous with respect to
Lebesgue measure. If ¢'(+), &' (-) are both absolutely continuous, then V'(-) is
aslo absolutely continuous.

Proof. First note that Y is not necessarily a local martingale, while ®Y is. Indeed,
®Y = V. Hence

t
(Noseer = ([ wavi+@v))

is the difference of two local martingales, and thus is a local martingale itself. Using
the generalised It6 formula for concave/convex functions, we have

(4.16) ®,W(Y;) = /W )dd, /W L)dN, — /S(T)qb Liv(dz),

for y € [5(1),5(r)], 0 < t < T, where L? is the local time of ¥; at z, and v is a
non-negative o-finite measure corresponding to the derivative W" in the sense of
distributions.

On the other hand, if g € D(L), then V € D(L). Therefore,

t

t
(417) e~ V(X,) = V(x)+/ e*“desV+/ L a}V(X)ds, 0<t<T.
0 0

Then, similarly to before, from the uniqueness of the decomposition of the Snell
envelope, we have that the martingale and F'V terms in (4.16) and (4.17) coincide.
Hence, for ¢ € [0, 7],

5(r) ) t
/ e M o(Xy) Liv(dz) = */ e" L —alV(Xs)ds as.
5(1) 0

Using the same arguments as in the proof of Theorem 4.4 we can show that both
statements of this theorem hold. The details are left to the reader. ]
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Appendix A.

LEMMA A.1. For each 0 <t <T, the family of random variables {E[G,|F] : T €
Tir} is directed upwards, i.e. for any o1, o9 € T, there exists o3 € Ty, such that

E[G,,|Fi] V E[Gs, | Fi] < E[Go,|Fi], a.s.

Proof. Fix t € [0,T]. Suppose o1, 02 € T r and define A := {E[G,,|F:] >
E[Gy,|Ft]}. Let 03 := 0114 + 021 4c. Note that o3 € T; 7. Using Fi-measurability of
A, we have

E|Goy|Ft] = LAE[Go, | Ft] + 1 a<E[Gp, | Ft]
= ]E[Ggl |]:t] V ]E[Gog |]:t] a.s.,

which proves the claim.

LEMMA A.2. Let G € G and S be its Snell envelope with decomposition S =
M*—A. For0<t<T and e > 0, define

(A1) ;=inf{s >1: Gy > S5 —€}.

Then Age = Ay a.s. and the processes (Ake) and A are indistinguishable.

Proof. From the directed upwards property (Lemma A.1) we know that E[S;] =
SUP,e7; 1 E[G;]. Then for a sequence (7,)nen of stopping times in T; r, such that
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lim,,—, o0 E[G, ] = E[S], we have
E[G,] < E[S., | =E[M; — A, ]=E[S] - E[A,, — A,

since M* is uniformly integrable. Hence, since A is non-decreasing,

0< lim E[S,, — G, ]|=- lim E[A, — A <0,
n—oo n—oo

and thus we have equalities throughout. By passing to a sub-sequence we can assume
that

(A.2) nh_)n;O(STn -G, )=0= nh—{go(AT” —A:) as.

The first equality in (A.2) implies that Kf < 7, a.s., for some large enough ng € N,
and thus A < A, , for all ng < n. Since A is non-decreasing, we also have that
0 < Age — A; < A, — A; as, ng < n, and from the second equality in (A.2) we
conclude that Axe = A; a.s. The indistinguishability follows from the right-continuity
of G and S. O

A.1. Proofs of results in section 2.

Proof of Lemma 2.12. The completed filtration generated by a Feller process sat-
isfies the usual assumptions, in particular, it is both right-continuous and quasi-left-
continuous. The latter means that for any predictable stopping time o, F,_ = F,.
Moreover, every cadlag Feller process is left-continuous over stopping times and sat-
isfies the strong Markov property. On the other hand, every Feller process admits
a cadlag modification (these are standard results and can be found, for example, in
Revuz and Yor [42] or Rogers and Williams [44]). All that remains is to show that the
addition of the functional F' leaves (X, F') strong Markov. This is elementary from
(2.7). |

A.2. Proofs of results in section 3.

Proof of Lemma 3.8. Let (7,)nen be a nondecreasing sequence of stopping times
with lim,,_,c 7, = 7, for some fixed 7 € Ty r. Since S is a supermartingale, E[S, ] >
E[S;], for every n € N. For a fixed € > 0, K¢ (defined by (A.1)) is a stopping time,
and by Lemma A.2, AK%L = A, a.s. Therefore, since M* is uniformly integrable,

E[Sk: | = E[Mj, — Ax: | =E[M;, — A, ] =E[S,].
Thus, by the definition of K ,
]E[GK;H] > E[SK;H] —e=E[S,,]—e

Let 7 :=lim,, , K5 . Note that the sequence (an)neN is non-decreasing and dom-
inated by K¢. Hence 7 < 7 < K¢. Finally, using the regularity of G we obtain

E[S;] > E[S:] > E[G:] = li_)m E[GK;n] > li_>m E[S;,] — €.
Since € is arbitrary, the result follows. ]
Proof of Lemma 3.11. For n > 1, define

¢
Tp = inf{t > 0: / |dKs|> n}.
0
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Clearly 7, T co as n — oo. Then for each n > 1

tATh Tn
E[/O Iszl]SE[/O dK, ]

—E| / K, ]] + |AK, |
<n+ec.

Therefore, since X € G,
1L 1< IIXT"HSIHE[/ |[dK,]] < oo,
0

and thus, || X™||31< oo, for all n > 1.
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