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Abstract We perform a detailed analysis of the solvability of linear strain equations
on hyperbolic surfaces under a technical assumption (noncharacteristic). For regular
enough hyperbolic surfaces, it is proved that smooth infinitesimal isometries are dense
in the W22 infinitesimal isometries and that smooth enough infinitesimal isometries
can be matched with higher order infinitesimal isometries. Then those results are
applied to elasticity of thin shells for the I'-limits. The recovery sequences (I-lim
sup inequlity) are obtained for dimensionally-reduced shell theories, when the elastic
energy density scales like h?, 3 € (2,4), that is, intermediate regime between pure

bending (8 = 2) and the von-Karman regime (8 = 4), where h is thickness of a shell.
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1 Introduction and main results

Let M C IR? be a surface with a normal 77 and let the middle surface of a shell be an
open set Q C M. Let T*(M) denote all the k-order tensor fields on M for an integer k > 0.
Let T2, (M) be all the 2-order symmetrical tensor fields on M. For y € H'(Q, IR?), we

sym

decompose it into y = W + wii, where w = (y, ) and W € T/(2). For U € T?

sym

(Q) given,
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linear strain tensor of a displacement y € W 12(Q, IR3) of the middle surface Q takes the
form

sym DW +wll =U for z€Q, (1.1)

where D is the connection of the induced metric in M, 2sym DW = DW + DTW, and
IT is the second fundamental form of M. Equation (1.1) plays a fundamental role in the
theory of thin shells, see [5, 6, 7, 8] . When U = 0, a solution y to (1.1) is referred
to as an infinitesimal isometry. Under a technical assumption (noncharacteristic) on
hyperbolic surfaces, we establish existence, uniqueness, and regularity of solutions for
(1.1). For regular enough hyperbolic surface that satisfies a noncharacteristic assumption,
it is proved that smooth infinitesimal isometries are dense in the W22(Q, IR?) infinitesimal
isometries (Theorem 1.2) and that smooth enough infinitesimal isometries can be matched
with higher order infinitesimal isometries (Theorem 1.3). This matching property is an
important tool in obtaining recovery sequences (I-lim sup inequlity) for dimensionally-
reduced shell theories in elasticity, when the elastic energy density scales like h?, 5 € (2,4),
that is, intermediate regime between pure bending (8 = 2) and the von-Karman regime
(B8 =4). Such results have been obtained for elliptic surfaces [8] and developable surfaces
[5]. A survey on this topic is presented in [6]. Here we shall establish the similar results
for hyperbolic surfaces in Theorems 1.6-1.7.

We state our main results for the hyperbolic surfaces as follows.

A region Q2 C M is said to be hyperbolic if its Gaussian curvature & is strictly negative.

We assume throughout this paper that
k(z) <0 for z €.

We introduce the notion of a noncharacteristic region below, subject to the second funda-

mental form II of the surface M.
Definition 1.1 A region QQ C M 1is said to be noncharacteristic if
Q={alt,s)|(t s) € (0,a) x(0,b) },

where « : [0,a] x [0,b] = M is an imbedding map which is a family of reqular curves with

two parameters t, s such that
(c(t,s), cu(t,s)) #0, forall (t,s) € [0,a] x [0,0],

II(as(0,8),a5(0,s)) #0, II(as(a,s),as(a,s)) #0, forall sel0,b],

(v (0,5), a5(0,8)) = (o (a, s),as(a,s)) =0, forall se€]0,b].



Consider a surface given by the graph of a function h : IR? — IR,
M = {(z,h(z)) |z = (z1,22) € R?}.

Under the coordinate system ¢(p) = z for p = (z, h(z)) € M,

. 1
ox1 = (1,0, h‘wl(x))7 0o = (0,1,hm2 (z)), 7= m(—Vh,l),
1 2 hwlrl hmzm - h?clxg

——=V~h, =

VI IVAP " T A [VRP)?
(i) Let h(z) = hy(x1)+he(2) where h; : IR — IR are C? functions with hY (z1)h4(22) <

0. Let 0; € IR for 1 <1i < 4 with 01 < 09 and 03 < 04. Then

QZ{((L’,h(QJ))’O’l <z < o9, O’3<$2<0’4}

is noncharacteristic.
(ii) Let h(z) = 23 — 3x123. Then

k(p) <0 for p=(z,h(z)), =eclR* |z|>0.
For € > 0 and o1 < 09 given
1 o4 09
Q= ,h <ri< -, —< a2 < —
{@h@)]e<m <z D <m< )

is noncharacteristic. However, there exists a region on M for the h, that is not a nonchar-

acteristic. For example, a region
Q={(z,h(z))|a<]|z|<b}

is not noncharacteristic, where 0 < a < b and |z| = 2% + 22, since its boundaries |z| = a
and |z| = b are not noncharacteristic curves.

Moreover, if €2 is given by a single principal coordinate, i.e.,

Q={a(t,s)[(ts) € (a,b) x (¢,d) },

where
Vot = )\1875, VTt = )\268, A1 >0, A <0,

and 77 is the normal of M, then 2 is a noncharacteristic region clearly. Since a principal
coordinate exists locally [14], a noncharacteristic region also exists locally.

The notion of the noncharacteristic region is a technical assumption and a different

2

region is given in [13]. In general, for U € Tg,, (Q2) given, there are many solutions to

(1.1). The aim of this assumption is to help us choose a regular solution for each U. In



fact, equation (1.1) can be translated into a scalar second order partial differential equa-
tion (see Theorem 2.1 later), which is elliptic for the elliptic surface [8], parabolic for the
developable surface with no flat part [5], and hyperbolic for the hyperbolic surface, respec-
tively. Here we assume €2 to be a noncharacteristic region in order to set up appropriate
boundary conditions such that the scalar equation is to be well-posedness (see Theorem
4.1 and (4.1)-(4.5)). The main observation is that if the values of a solution v to the hyper-
bolic equation (2.25) and its derivatives along a noncharacteristic curve are preset, then
the solution v is uniquely determined in some neighborhood of this curve. We first solve
(2.25) locally and then paste up the local solutions to yield a global one (see Lemma 4.4),
where the noncharacteristic assumption is such that this produce is successful. We believe
the corresponding results hold true for a more general region but some more complicated

discusses may be involved.

We say that a noncharacteristic region Q C M is of class C™! for some integer m > 0
if the surface M is of class C™! and all the curves «(0,-), a(a,-), and a(-,s) for each
s € [0,b] are of class C™!. The points «(0,0), a(a,0), «(0,b), and a(a,b) are angular

points of € even if 2 is smooth.

Theorem 1.1 Let Q be a noncharacterisic region of class C*'. ForU € CH1(Q, T2 ),

sym
there exists a solution y = W +wii € C%Y(Q, IR3) to equation (1.1) satisfying the bounds
Wlcriom + lwlcorgy < ClUcri@orz,, ) (1.2)

If, in addition, Q € C™+2L U e C™HLYQ, T2 ) for some m > 1, then

sym
Wilgmirior) +lwllgmi@) < ClU[gmiiorz,, ) (1.3)
Remark 1.1 For the solvability of (1.1), the noncharacterisic assumption of Q can
be relaxed. Let ) be not a noncharacterisic region but there be a noncharacterisic one Q

such that Q C Q. Then Theorem 1.1 still holds true. In fact, we can extend U such that
Ue ¢ (Q, T2, ) with the estimate

sym
U] om0, ) S CllUll gmr1 @12, ):
Then we solve (1.1) on Q to obtain a solution y for which (1.3) still holds.
For y € W2(Q, IR?), we denote the left hand side of equation (1.1) by sym Vy. Let
VQ, R} ={V e W2*(Q,R®) | symVV =0}.

Theorem 1.2 Let Q be a noncharacteristic region of class C™ %1 for some inte-
ger m > 0. Then, for every V € V(Q,IR3) there exists a sequence { Vi } € V(Q,IR?) N
C™YQ, R?) such that
|V — Vk”wZQ(Q’BS) =0. (1.4)

lim
k—oo



A one parameter family {u. }.~o C C%1(Q,R?) is said to be a (generalized) mth

order infinitesimal isometry if the change of metric induced by wu. is of order e™*!, that

VT UV, — 9l Lo 2y = O(E™) as e —0,

where g is the induced metric of M from IR3, see [5]. A given mth order infinitesimal
isometry can be modified by higher order corrections to yield an infinitesimal isometry
of order m; > m, a property to which we refer to by matching property of infinitesimal
isometries, [5, 8]. This property plays an important role in the construction of a recover

sequence in the I'-limit for thin shells.

Theorem 1.3 Let Q be a noncharacteristic region of class C?"tLl. Given V €
V(Q, IR?) N C?=LY(Q, R?), there exists a family {w. }eso C CHY(Q, R3), equibounded
in CLY(Q, IR3), such that for all small € > 0 the family:

ue = id + eV + 2w,
is a mth order infinitesimal isometry of class C L.
Let A: Q — IR3*3 be a matrix field. We define A € T?(Q2) by
Ala, B) = (A(x)a, B) for «, B €T, x€q.
For V € V(Q, IR?) given, there exists a unique A € W 2(Q, T?) such that
VoV =A(x)a for acT,M, Alx)=-A(z), zc. (1.5)

The finite strain space is the following closed subspace of L?(Q, T2 )

sym

B(Q,T2 )= { Jim sym Ve, | wy, € W h2(Q, R%) }

sym

where limits are taken in L2(Q,T2 ), see [3, 7, 9]. B(Q,T2 ) and V(Q, R?) are two

sym sym
basic spaces for the I'-limit functional. A region 2 C M is said to be approzimately robust
if
(AY)gan € B(Q,T2,,) for V€ V(Q,R?),

sym

where

(A)ian(a, B) = (A%, B) for @, BETQ, 2€Q.

If Q is approximately robust, then the I'-limit functional can be simplified to the bending
energy. An approximately robust surface exhibits a better capacity to resist stretching so

that the limit functional consists only of a bending term, see [7].

Theorem 1.4 Let Q C M be a noncharacteristic region of class C%'. Then Q is

approximately robust.



Application to elasticity of thin shells Let 77 be the normal field of surface M.
Consider a family { Qp }x~0 of thin shells of thickness h around 2,

Qp={x+ti(x)|z e, |t|<h/2}, 0<h< hy,

where hg is small enough so that the projection map 7 : Qp — Q, w(z + tii) = z is well
defined. For a W 12 deformation uy, : ), — IR®, we assume that its elastic energy (scaled

per unit thickness) is given by the nonlinear functional:

1
Ep(up) = o W (Vup)dz.
h

The stored-energy density function W : IR® x IR> — IR is C? in an open neighborhood
of SO(3), and it is assumed to satisfy the conditions of normalization, frame indifference
and quadratic growth: For all F' € IR? x IR3, R € SO (3),

W(R)=0, W(RF)=W(F), W(F)>Cdist?(F, SO(3)),
with a uniform constant C' > 0. The potential W induces the quadratic forms ([1])
Q3(F) = D*W(Id)(F,F), Qa(w, Fian) = min{ Q3(F) | F' = Fian }.
We shall consider a sequence e, > 0 such that:
0<flli£%eh/hﬁ<oo for some 2 < § < 4. (1.6)

Let
Bm =2+2/m.

Recall the following result.

Theorem 1.5 [7] Let Q be a surface embedded in IR3, which is compact, connected,
oriented, of class CY', and whose boundary 0K is the union of finitely many Lipschitz
curves. Let up, € WH2(Q,, IR?) be a sequence of deformations whose scaled energies
Ey(up) /e are uniformly bounded. Then there exist a sequence Qp € SO (3) and ¢;, € IR?

such that for the normalized rescaled deformations
h .
yn(z) = Qpup(x + h—tn(:z:)) —cp, z=x+ti(z) € U,
0

the following holds.
(i) yn converge to m in W 2(Qy,, IR?).

(i) The scaled average displacements

v h_ [ t77) — a]dt
W)= o= [ ot 1) —a]

6



converge to some V € V(, IR3).
(23i) liminfy, 0 Ep(up)/en > 1(V), where

1V) = 7 || @2 (V(AR) — AV )i ). (1.7

where A is given in (1.5).

The above result proves the lower bound for the I'-convergence. We now state the
upper bound in the I'-convergence result for a smooth noncharacteristic region.
Since ) is approximately robust (Theorem 1.4), Theorem 1.6 below follows from [7,

Theorem 2.3] immediately.

Theorem 1.6 Let Q C M be a noncharacteristic region of class C?'. Assume that
(1.6) holds for B = 4. Then for every V € V(2, IR3) there exists a sequence of deformations
{up} € WH2(Q, IR?) such that (i) and (i3) of Theorem 1.5 hold. Moreover,

1
lim —F -7 1.
fim = w(un) = 1(V), (1.8)

where I(V') is given in (1.7).

Theorem 1.7 Let assumption (1.6) hold with 2 < B < 4. Let Q@ C M be a noncharac-

2m+1Ll

teristic region of class , where m > 2 1is given such that

en = o (hPm).
Then the results in Theorem 1.6 hold.

The rest of the paper is organized as follows.

Section 2 reduces the linear strain equations (1.1) into one scalar second order equation
(2.25) (Theorem 2.1).

Sections 3 makes preparations to solve problem (2.25). The main observation is that
under an asymptotic coordinate system, this equation locally takes a normal form (Propo-
sition 4.1). Thus we studies solvability regions for the normal equation, in where existence,
uniqueness and estimates for solutions are presented.

Section 4 is devoted to solvability of the scalar equation (2.25). Using solvability of a
normal equation in Section 3, we first solve the scalar equation (2.25) locally and then path
the local solutions together (Theorems 4.1-4.4), where the noncharacteristic assumption
of the region € is needed to guarantee this process to be successful.

Section 5 returns to the main theorems in Section 1, and provides proofs for them,

using the main results in Section 4.



2  Linear Strain Equations

We reformulate some expressions from [4, Section 9.2] to reduce (1.1) to a coordinate
free, scalar equation which can be solved by selecting special charts.

Let k > 1 be an integer. Let T € T (M) be a kth order tensor field and let X € T'(M)
be a vector field. We define a k — 1th order tensor field by

iXT(Xla e 7Xk—1) = T(X7 X17 e 7Xk—1) for Xla ) Xk—l € T(M)7
which is called an inner product of T with X. For any T € T?(M) and o € T, M,
trgio DT

is a linear functional on T, M, where tr i, DT is the trace of the 2-order tensor field
ioDT in the induced metric g. Thus there is a vector, denoted by A(T'), such that

(MT),0) = tryioDT for a€T,M, z€ M. (2.1)

Clearly, the above formula defines a vector field A(T') € T'(M).
We also need another linear operator () as follows. Let M be oriented and £ be the
volume element of M with the positive orientation. Let € M be given and let eq, es be

an orthonormal basis of T, M with the positive orientation, that is,
Ele1,e9) =1 at x.
We define Q : T, M — T, M by
Qo = (o, ez)e; — (a,e1)es for all o €T, M. (2.2)

Q is well defined in the following sense: Let é1, é5 be a different orthonormal basis of T, M
with the positive orientation,
E(é1,62) = 1.

Let
2
éi = Zaijej for i= 1, 2.
j=1
Then
1= E&(é1,€62) = ar1ane — a12091.
Using the above formula, a simple computation yields
(Oé, é2>é1 - <Oé, é1>é2 = <Oé, €2>€1 — <Oé,€1>62.

Clearly, @ : T, M — T, M is an isometry and

Q'=-Q Q'=-1.



Remark 2.1 Q: T,M — T, M is the rotation by w/2 along the clockwise direction.
The operator, defined above, defines an operator, still denoted by Q : T'(M) — T(M), by
(QX)(x) = QX(x), weM, XeT(M)

For each k > 2, the operator @ further induces an operator, denoted by Q*: T*(M) —
TF(M) by

(Q*T) (X1, -, Xp) = T(QX1,--,QXy), Xy, -, Xp&€T(M), TeTHM). (2.3)

Notice that orientability of M is necessary to operators @ or Q™.
Let z €  be given and let y € W12(Q, IR3). Set

p(y)(z) = %[Vy(eg,el) — Vy(ey,e9)] for z€Q, (2.4)

where Vy(a, 8) = (Vgy,a) for a, B € T, M, V is the differential in the Euclidean space
IR3, and ey, ey is an orthonormal basis of T, M with the positive orientation. It is easy to
check that the value of the right hand side of (2.4) is independent of choice of a positively

orientated orthonormal basis. Thus
p: WHAQ,R? — L*(Q)

is a linear operator.
For U € T?

5ym (M) given, consider problem

symVy(a,p) =U(a,B) for «, peT,M, x€M, (2.5)

where y € W12(Q, R3).

Let x € Q be given. To simplify computation we use many times the following special
frame field: Let E;, Fs be a positively orientated frame field normal at x with following
properties

(Ei, Ej) = 6;; in some neighbourhood of z,
DEiEj = 0, VElﬁ = )\ZEZ at = for 1 < i, j < 2, (2.6)

where V is the connection of the Euclidean space IR, D is the connection of M in the
induced metric, 7 is the normal field of M, and A1 Ay = k is the Gaussian curvature. It
follows from (2.6) that

H(Ei,Ej) = )\iéija VE Ej = —)\Zéwﬁ at z for 1 S ’i, j § 2, (27)

i

where II(«, 8) = (Va7, 5) is the second fundamental form of M. We need to deal with the

relation between the connections V and D, carefully.



Let y € W12(Q, IR?) be a solution to problem (2.5). Then (2.5) reads

Vy(Er, Er) = U(Ey, Er),
Vy(Es, Ev) + Vy(Ey, Ey) = 2U(FE1, E2),  in some neighbourhood of z. (2.8)
Vy(Es, Ep) = U(Es, E),

Let
v =p(y)

and define
u = Vy(ﬁ, E\)E; + Vy(ﬁ, Es)Es. (2.9)

We can check easily that u is a globally defined vector field on ). Moreover, v satisfies
U+U(E2,E1) = Vy(EQ,El), ’U—U(El,Eg) = —Vy(El,Eg) (210)
in some neighbourhood of x. Therefore, {v,u} determines V,y for a € T, M, that is,

{ VEly = U(ElEl)El + [’U + U(El,Eg)]EQ + <U,E1>ﬁ, (2 11)

Ve,y=[-v+U(E1, Ey)|E) + U(E2, E3)Es + (u, Es)i.
The relation (2.11) can be rewritten as in a form of coordinate free
Voy =1U —vQa + (u,a)ii for «a€T,M, x €.

The function v and the vector field u are the new dependent variables and we proceed to
find the differential equations they satisfy.

Differentiating the first equation in (2.10) with respect to Fs and using the relations
(2.6) and (2.7), we have

E5(v) + DU(Ea, By, Ey) = V?y(Ey, Ey, Ea) + Vy(Vg,Ea, Er)
= E1[Vy(Es, Es)] — \oVy(7i, Ey)
= DU(EQ,EQ,El) — )\2<U,E1> at x, (2.12)

where the following formula has been used
V2y(Ey, Er, By) = V?y(Ey, By, Er)  at .
Similarly, we obtain

El(?}) — DU(El, EQ,El) = —DU(El,El, EQ) + )\1<U,E2> at x. (2.13)

10



Combining (2.12), (2.13) and (2.6) yields
Dv = [DU(By, Es, E1) — DU(E1, Ey, E2)|Ey + A (u, Eo) B
L [DU(Es, Es, Br) — DU(Es, By, E2)| By — Mo{u, E1)Es
= Q{[DU(Es, Er, Er) + DU(Ey, E3, E3)|Ez — [DU(Ea, Ea, E2) + DU(E1, E1, E3)|Es
+[DU(E1, FEs, Eg) + DU(El, Eq, El)]El — [DU(El, FEq, El) + DU(EQ, Es, El)]El}
+ViQu
=QAWU) = D(tryU)] +ViiQu for z€Q, (2.14)
where the operator Q : T, M — T, M is defined in (2.2), A(U) € X() is given in (2.1),
and Vil : T,M — T, M is the shape operator, defined by
Via =Van for ae€e T, M, r e M.

Now we proceed to derive the differential equations for which the function v satisfies.
Since
k =1I(Ey, E)I(Ey, By) — I?(Fy, Ey)  in a neighbourhood of z,

from (2.6) and (2.7) we compute

Dk = [DH(El, El, El))\z + )\1DH(E2, Eg, El)]El
+[DH(E1, FEq, EQ))\Q + )\1DH(E2, FEs, EQ)]EQ at x. (2.15)

Using (2.14), (2.6) and (2.7), we have

D(ViiQu)(E1, By) = E(ViiQu, By) = E1(u, Q" Vg, )
= DU(QTvEl 7, El) + <u7 Dg, (QTvEl ﬁ»
= M Du(Ey, Er) + DI(En, By, E1)(u, E2) — DII(Ey, By, Eo)(u, Er)  at @, (2.16)

where the symmetry of DII is used. A similar computation yields

D(VﬁQu)(Eg, Eg) = —)\QDU(El, Eg)
+DH(E1,E2,E2)<U, E2> — DH(EQ,EQ,E2)<U, E1> at x. (217)

Multiplying (2.16) by A2 and (2.17) by Aj, respectively, summing them, and using (2.15),

we obtain
(D(ViiQu), Q*II) = k[Du(E2, E1) — Du(E1, E2)] + (Qu, Dk). (2.18)

Note that the function Du(FE2, Ey) — Du(FE1, Es) is globally defined on Q which is inde-
pendent of choice of a positively orientated orthonormal basis when the vector field u is
given. From (2.14) and (2.18), we obtain

(D?*v,Q"IL) = (D{Q[A(U) — D(tr yU)]}, Q"IT) + k[Du(Es, Er) — Du(Ey, Ez)] +(Qu, Dr).

11



Next, let us consider the compatibility conditions which insure that a y to satisfy (2.11)
exists when the function v and the vector field u are given to satisfy (2.14). We define B :
ToM — T, M for x € Q by

Ba=1i,U —vQa+ (u,a)ii  for o€ T, M. (2.19)
It is easy to check that there is a y :  — IR? such that
Voay=Ba for aeT, M, z <)
if and only if the operator B satisfies
Vx(BY)=Vy(BX)+ B[X,Y] for X, Y e€X(Q). (2.20)
Using (2.6), (2.7), (2.13), and (2.19), we have

Vi, (BE3) = [DU(Es, Eq, E1) — E1(v) + A {u, E9)|Ey + DU(E3, Es, Eq)E,
+[Du(Esy, Eqy) — MU (F2, E1) + v\]7i
= DU(F1, E1, Ey)Eqy + DU (Es, Es, Eq)Es
+[Du(Ey, E1) — MU (Es, E1) + v\ at  x. (2.21)

Similarly, we obtain

Ve, (BE\) = DU(E1, E1, Ex)Ey + DU (E3, Eo, Eq ) Es
+[Du(E1, EQ) — )\QU(El, EQ) — ’L))\g]ﬁ at . (222)

It follows from (2.21) and (2.22) that the relation (2.20) holds if and only if
Du(FE3, Eq1) — Du(Eh, Ep) + tr U(QVri-,-) +vtrJJI=0 for x€Q.
Moreover, we assume that
k(z) #0 forall x €. (2.23)
From (2.14), we obtain
u=Q(Vi) 'Q[AU) — D(tr,U)] — Q(VA) *Dv for =z €. (2.24)
The above derivation yields the following.
Theorem 2.1 ([4]) Suppose that (2.23) holds. Let v be a solution to problem

(D*v,Q*TI) = P(U) — vk tr JJI+ X(v) for x€Q, (2.25)

12



where
P(U) = (D{QIA(U) — D(tr,U)]}, Q*IT) — (QIA(U) — D(tr (U)), (Vi)' D)
—ktr U(QVi-, ), (2.26)
X = (VA) ' Dk. (2.27)
Let u be given by (2.24). Then there is a y to satisfy (2.5) such that (2.11) holds. Moreover,
\Vy2(z) = |U|*(z) + 20%(z) + |u(z)]> for z€Q.
If, in addition, y = W 4+ wi, w = (y, i), then
u = Dw — iwll,
Dw = iwIl — Q(ViA) 'Dv+ Q(ViA) *Q[A(U) — D(tr ,U)].

Remark 2.2 A solution y, modulo a constant vector, in Theorem 2.1 is unique when

a solution v to (2.25) is given.

Remark 2.3 If Q is elliptic and 11 > 0, then § = II is another metric on Q. From
[11] we have

1
(D%v, Q*TI) = kAgv + %H(QD/{, QDv) for x €,

where Ay is the Laplacion of the metric g. Thus, in this case equation (2.25) becomes

1 1
Agv = EP(U) —vtrgH—FﬁX(v) for x €.

3 Solvability Regions for Normal Equations

Under an asymptotic coordinate system, equation (2.25) on a hyperbolic surface takes
the form of a normal equation in IR? locally, such as in (3.1) below. Thus the local
solvability of equation (2.25) transfers to that of equation (3.1) in the Euclidean space
IR?. We study the solvability of the normal equation (3.1) in the space IR? in this section.

We consider the following normal equation
Weyzo(2) = (fyw) for x = (z1,20) € IR? (3.1)

where
n(f,w) = f+ folx)w(z) + X(w),
fo is a function, and X = (X1, X3) is a vector field on IR?.
Regions E(v), R(z,a,b), P;(B), Ei(5,7v) and ®(8,, ﬁ) In appropriate asymptotic co-
ordinate systems, the problem (2.25) can transfer to solvability of (3.1) on E(v), R(z,a,b),
Pi(B), Zi(B,7) or ®(8,~, B) with appropriate boundary data. We now introduce those re-

gions to establish the corresponding solvability.
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3.1 Regions E(vy) and R(z,a,b)

Let k£ > 0 be an integer. Let fy and X be of class C*~11 where C~11 = L. A curve
Y(t) = (71(t),72(t)) : [a,b] — IR? is said to be noncharacteristic if

NE7(t) #0 for t€ [a,b].
We define a linear operator F : IR? — IR? by
Fx = (x9,—x,) for z=(x1,x5) € IR> (3.2)

Let v(t) = (71(t),72(t)) : [0, 0] — IR? be a noncharacteristic curve with 4 (0)v4(0) < 0.
We assume that
Vi) >0, ~4(t) <0 for tel0,to). (3.3)

Otherwise, we consider the curve z(t) = y(—t + tg). Set

B(y) = {(z1,22) € R* |y 075 (w2) < 21 < m(to), 72(to) < 22 < 72(0) }. (3.4)

Consider the boundary data
wor(t) = aolt), (Vw,Fi)or(t) =aqi(t) for te (0,t). (3.5)

Next, we consider a rectangle. For z = (21, 20) € IR%, a > 0, and b > 0 given, let

R(z,a,b) = (21,21 + a) X (22,22 + D). (3.6)

Consider the boundary data
w(z1,29) = p1(21), w(z1,72) = pa(z2) (3.7)

for x1 € [21,21 + a] and x4y € [29, 29 + 1], respectively.
Let f be a function with its domain E. For simplicity, we denote || [ qr1 = [lfl cr1 ),

1/l wrz = [[fll w2 (g, and so on.

Proposition 3.1 Let qo be of C™! and q1, f be of C*~11 respectively. Then problem
(3.1) admits a unique solution w € C*Y(E(v)) with the data (3.5). Moreover, there is a
C > 0, independent of solutions w, such that

[l ger < Clllgoll cer + llgull gr-ra + 1 f I g r=r)- (3.8)

Proposition 3.2 Let p; and ps be of class C*1 with p1(21) = pa(22). Let f be of class
CH=LL Then there is a unique solution w € CHY(R(z,a,b)) to (3.1) with the data (3.7)
satisfying

hwll cor < Cllpill gra + P2l orr + 1l gr1):
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The proofs of Propositions 3.1 and 3.2 will be given after Lemma 3.2.

Lemma 3.1 Let T > 0 be given. There is a ep > 0 such that if |y(0)] < T and
max{v1(to) —71(0),72(0) — v2(to)} < er, Theorem 3.1 holds true.

Proof. The proof is broken into several steps as follows.
Step 1. Let k = 0 and let w € C%'(E(v)) be a solution to (3.1) with the data (3.5).
It follows from (3.5) that

(1),2[%( )h(6) + (0 (0] 1wy 07(0) = o (1>

Let x = (x1,x2) € E(7) be given. We integrate (3.1) with respect to the first variable
C1 over (71075 ' (G2), 1) for Go € (72 097 ' (21), 72) to have

2 [va(t)qo(t) — 11 (t)q(t)].

1

wes(, @) = way 0y @)+ [ ()G (3.9)

1075 (C2 )

Then integrating the above identity over (y2 o vy 1(x1),x2) with respect to the second
variable (5 yields

w(zy, x2) = B (g0, q1) + /E BRCRLLS

where

B (q0,q1) = qo 077 (1) + (a0 (t) — Y1 () ()]dt, (3.10)

E(z) ={(¢1,) 1 07%(G) <G <z1,7207 (1) < @ <22} (3.11)
Step 2. We define an operator I : C%'(E(v)) = C%(E(v)) by

I(w) = Blava) + [, I Tor e 0P (B)) (3.12)

It is easy to check that w € C%!(E(y)) solves (3.1) with the data (3.5) if and only if
I(w) = w.

Next, we show that there is a 0 < ep < 1 such that when |y(0)] < T and 0 <
max{71(to) — 71(0),72(0) — 2(to)} < er, the map I : COY(ER)) — COLER)) is con-
tractible. Thus the existence and uniqueness of solutions in the case k = 0 follows from
Banach’s fixed point theorem.

A simple computation shows that for w € C%Y(E(y))

[L(w)]ey = (1)‘2 (71 (t)qp(t) + ’Yé(t)%(t)]‘t:ﬁl(xl) + /jQ )n(f,w)(%Cz)dCz,

[y (t 207y a1

1 , =
Hw)le: = 75 )‘2[72() ()—'vl(t)ql(t)]\t:%1(1,2)Jr/V )n(f,w)(Clawz)dcl-

10751($2
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The above formulas yield for wy, we € C%YH(E(y)),

12 (w1) = I(w2)l| goa gy, < Crmax{h, A }Hlwr — wall o 5y,

where

A = max{v1(to) —71(0),72(t0) —72(0)}, Cr = |[follee(zj<2m) + I X | Lo (|| <21)-

Thus, the map I : C%(E(y)) — C%'(E(y)) is contractible if A > 0 is small.

Step 3. Consider the case k = 1. Let qo € CUH0,40], ¢ € C%[0,40], and f €
C%L(E(y)) be given. By Step 2, there is a ep > 0 such that if [y(0)] < T and 0 < \ < e,
problem (3.1) has a unique solution w € C%'(E(y)) with the data (3.5). A formal

computation shows that u = w,, solves problem

Ug 2y = 1(f,u) for z € E(y), (3.13)
with the data
uwoy(t) = qo(t), (Vu, Fy)or(t)=aq(t) for te(0,to), (3.14)
where
1

f = for+ fonw + Vo, X (), dlt) =

/ 2
() = 200500 - () o0

We apply Step 2 to problem (3.13) and (3.14) to obtain v = w,, € C%(E(y)) when
0 < A < er. A similar argument yields w,, € C%(E(y)). Thus w € CYY(E(y)).

By repeating the above procedure, the existence and uniqueness of the solutions in the

cases k > 2 are obtained.
Step 4. Let map I : CHY(E(y)) - CFL(E(y)) be defined in Step 2 and let w €
CH®L(E(v)) be the solution to problem (3.1) with the data (3.5). Then

lwll ger = [T(w)lgrer < IO gra + [[1(w) = L(0)] g ra
< Claoll grr + llaill grra + 1l gr-14) + Or max{A, X} |wl| ¢ k1.

Thus, the estimate (3.8) follows if A > 0 is small. m

By a similar argument as for Lemma 3.1, we have the following lemmas.

Lemma 3.2 Let T > 0. There is ep > 0 such that if |z] < T and 0 < max{a,b} < e,
then Proposition 3.2 holds.
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Proof of Proposition 3.1. We shall show that the assumptions |y(0)] < T and
max{7y1(to) — 71(0),72(t0) — 12(0)} < er in Lemma 3.1 are unnecessary. Let 7' > 0 be

given such that

E(y) c{xe R*||z| < T}
Let e > 0 be given such that Lemmas 3.1 and 3.2 hold. We divide the curve ~ into m
parts with the points 7o =0, 70 < 71 < - -+ < T3, = o such that

. 3
0<i<m=2 Pto) = 7(rm-1)| < 5

€T

[V (Tit1) = y(7i)| = o

For simplicity, we assume that m = 3. The other cases can be treated by a similar argu-
ment.

In the case of m = 3, we have

E() = (UioEi) U (UL Ry) (3.15)
where

Ei={z e EM®)|m(n) <z1 <yi(mit1), 72(Tit1) < a2 <o)} i=0, 1, 2,

Ry = [y1(m1),m(m2)] X [y2(11),72(0)],  Ra = [v1(72),71(to)] X [v2(72),72(71)],
Rs = [v1(72),71(to)] X [v2(71),72(0)].

From Lemma 3.1, problem (3.1) admits a unique solution w; € C**(E;) for each i = 0,
1, and 2, respectively, with the corresponding data and the corresponding estimates. We
define w € C*Y(U2_ E;) by

w(z) = wi(x) for ze€E; for i=0,1,?2.

We extend the domain of w from U}_ E; to E(v) by the following way. By Lemma 3.2,
we define w € C*1(R;) to be the solution u; € C*1(R;) to problem (3.1) with the data

ui(v1(7i), 22) = wi—1(1(7),w2) for a9 € [v2(7i), v2(Ti-1)],

ui(21,72(7)) = wi(21,72(r))  for  x1 € [v1(7i), 71 (7i41)],

for i = 1, and 2, respectively. Then we extend w on C¥!(R3) to be the solution ug of
(3.1) with the data

uz(y1(72), x2) = ur(11(72),22) for x3 € [y2(m1),72(0)],

uz(r1,72(72)) = u2(21,72(12)) for z1 € [11(72),71(t0)]-

To complete the proof, we have to show that w is a C*?! solution on all the connection

segments between any two subregions above. Consider the subregion
E = EO U El @] Rl.
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Since |y(m2) —7(0)| < e, Lemma 3.1 insures that problem (3.1) admits a unique solution
we C kl(E) with the corresponding data. Then the uniqueness implies that w(z) = @(x)
for z € E. In particular, w is C*1 on the segments { (y1(71),z2) | x2 € [y2(71),72(0)] } and
{(z1,72(m1)) |21 € [n1(71),7(72)] }, respectively. By a similar argument, we show that w
is also C*! on all the other segments.

The estimates in (3.8) follow from the ones in Lemmas 3.1 and 3.2. O

Proof of Proposition 3.2. We divided R(z,a,b) into a sum of small rectangles and
apply Lemma 3.2 to paste the solutions together. O

To have density results in Theorem 1.2, we also need estimates of some (boundary)

traces of the solutions. For o € (0,ty), let
Bs(t) = (o) —tFy(o) for te(0,t,),
where t, > 0 is such that 5,(t,) € OE(7).

Proposition 3.3 Let fo and X be of class C%'. Let qo be of class W22 and qi, f be
of class W12, respectively. Then problem (3.1) admits a unique solution w € W2 with
the data (3.5). Moreover, there is a C > 0, independent of solutions w, such that

w3y 22 + [ was © Bell3y 1z < Clllaoliy 2z + a3y e + 1] wre), (3.16)
where W52 = WH2(E(y)) for 1 <i<2.

Proof A similar argument as for Theorem 3.1 shows that a unique solution w €
W 22(E(7)) with the data (3.5) exists, and the estimate

lwll3y 22 < Cllaoll3y 22 + llarlZy 1z + 1fllwrz) (3.17)
holds.
Let B5(t) = (Bs1(t), Br2(t)). Using equation (3.1), we have
1 Bo’l(t)
Weoxy © BO'(t) = Wgozy ©YO Y O 50'2 (t) + / 1 [n(fv w)]ZBQ (Clv ﬁo2 (t))d<17
Y107, 0Be2(t)

which yields
| Wy © Bo(t)P < 2JwWgygy 0y © 72_1 o ﬁ02(t)‘2
Bo1(®) 2 2 2 2 2 12
+2[71(to) — 71(0)]C ) (1fI7+ VI + |w]” + [Vl + [VZw|*) (¢, Bo2(t))dCr.

Y1075 ~0Bs2(t

Integrating the above inequality over (0,t,) with respect to t, we obtain

[zszs © Bollze < CUF Iy rz + llaoll3y 22 + lanl3y 2 + lwl3y2).
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A similar computation shows that |[Vwg, o 85|25, [[Vw o By[2,, and [|w o 8|2, can be

bounded also by the right hand side of the above inequality. Thus estimate (3.16) follows

from (3.17). O
Let

1 . to
D w) = 3 19900 Y + [ may 0902t + [wases 0 YO (t0 — O]t (3.18)
j=0

Proposition 3.4 Let fy and X be of class C%'. Then there are 0 < ¢; < ¢o such that
for all solutions w € W2 to problem (3.1)

al(y,w) < [[f[3y 12 + lwl3yee < clll 3y + D0, w)l, (3.19)
2 7 (to) 2 2
[[w(-,72(0)) le(%(O)M(to))—’_[n(O) (Wayay (21,72(0))[* (1 =71(0))dz1 < e[| f[[5 124 (7, w)],
5 72(0) 9 9
lw(y1(to), )|l W1,2(72@0)772(0))“‘/4/2(150) [Wayzy (71 (t0), 22) | (w2—2(t0))dz2 < cof| f]] W L2 +I (7, w)],

where W52 = WH2(E(y)) for 1 <i<2.

Proposition 3.5 Let fo and X be of class C%'. Then there is C > 0 such that for
all solutions w € W 2?(R(z,a,b)) to problem (3.1)

lollBy 2z < CUFPByne + 11120 ey 122200 ry) (3:20)

The proofs of the above two propositions will complete from Lemmas 3.3 and 3.4 below

by an argument as for Proposition 3.1. We omit the details.

Lemma 3.3 Let T > 0 be given. There is ep > 0 such that if |y(0)] < T and
max{v1(to) —71(0),72(0) — 12(to)} < er, Proposition 3.4 holds.

Proof Step 1 Using (3.1) we have

2
Waro () =warm 07007 @)+ [ () (01, Co) G
Y207, " (21)

which yields

2(0)
e (D < 2z, r0n7 o) P42lra—mponi o)l [ w0l (o1, @) Pla

Y207, (1)
and
72(0)

Iwzlxlovovfl(fvl)lzé2lwmm($)|2+2[<E2—72071_1(<E1)]/ - )I[n(f,w)]xl(:vl,@)lzd(z,
Y207, (21
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respectively. Integrating thee above two inequalities, first with respect to xo over (7 o

Y7 (21),72(0)) and then with respect to 21 over (v1(0),71(to)) respectively, we obtain

to
[werar 32 < 2012 [ s 01Ot + o111y 12 + 1wy 22)

and
fo 2 2 2 2 2
011/0 [Weyzy 0 Y(#)[7tdt < 2| weyay |72 + 7O ([ fll 3y 12 + w5y 22),

where

o= inf [1(0) — @)/t o= sup [(0) — ) ()1,
te(0,to0) te(0,to)

Cr= sup (1+ f2+ |Vl + X+ |VX?).
|| <2T

By similar arguments, we establish the following

to
[assallts < 2022 [ frazs 0 1) F(to = Ot + ST By + w3y 22),

to
021/0 Wy 0 V(E)P(to — )t < 2||wanasll72 + EFCT (I f 3y 12 + w3y 22),

where

091 = tei(%ff )[’Yl(to) —n@®l=n®)]/(to—1), o2 = tes(lollj )[’Yl (to) = n(O)[=72(®)]/(to — 1)

Step 2 As in Step 1, we have

to
[wey |72 < 2012/0 |way 0 (1)|*tdt + 70T (| f1172 + w3y 1.2)

< 2012t0][wey © Y F20,10) + EFOT(IFIIF2 + [wlTy12),

to
our [ w0 v(OF 1t < 22+ FCr(IS 1+l (32)
In addition, since
x
Wy 07 07y (T) = Wy, () —/ L Waa (Caw2)dGy for @z € (12(t0), 72(0)),
Y1075 (22)

it follows that
o 2 2 2 2
oar [ ey 0Ot = )t < 2uey |3+ H ey [ (322)

Combing (3.21) and (3.22), we have

to
|wzy 0 y(t)[?tdt)
/2

IN

) 1 to/2
min{o1, 091 }Hwe, © YlI72(0.4) %(021 /0 |wqy 07(1)?(to — t)dt + Ull/t
0

IN

1
Lt er(Cr + DIIfIZ2 + lwlFy2z)-
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By a similar computation, we obtain
lwas 72 < 2012t0]|way 0 V|72 (0,y) + Crer(If 172 + w5y 12),

. 1
min{o1, 021 }|we, © YIIZ20,4) < At et (Cr + DIFIZ2 + wlFy22),
2 2 2
lwl|Z2 < 2015t0[w 0 Y172 (g ) + €T llwas 72,

. 1
min{o11, 091w 0 7|20 ) < %[4 +e7(Cr + D] [[w|3y 12

Step 3 From Steps 1 and 2, we obtain
[1— (4Cr + Deg]|lwl3y 22 < 2[(012(1 + to) + o22] (v, w) + (4CT + 1)eF || fl[fyr.2,
when A is small, and
min{o1, 091 }T(y, w) < 2{2 + Oref + %[4 + (O + Dt M 3y 12 + w3y 22),

respectively. Thus (3.19) follows.
Step 4 We have
1 72(0)
Wy (71,72(0)) = Weiz1 ©7°MN (z1) + / 1 n(f, w)]m (w1, C2)d(a,
Y201~ (%1)
which gives, by (3.19),

71 (to) 9 to 9
[ iy (01,72(0) Bl = 910 <2 [ gz, 0 9@ (t) = 12 (0))de
71(0) 0

O3y 12 + w3y 22) < ClIfIRy 12 + Tl w)l.

A similar argument completes the proof of the third inequality in Proposition 3.4. O

A similar argument yields the following.

Lemma 3.4 Let T > 0 be given. There is ey > 0 such that if |z| < T and 0 <
max{a,b} < ep, then Proposition 3.5 holds.
3.2 Regions P;(5)

Let 8 = (B1,532) : [0,t0] — IR? be a noncharcteristic curve with 31(0)35(0) > 0. We
assume
Bit) >0 for telo,t), i=1, 2. (3.23)

Otherwise, we consider the curve z(t) = S(—t + tg). Set

Pi(B) = { (x1,22) | B1 0 By ' (x2) < m1 < Bi(to), B2(0) <z < Balto) }, (3.24)
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and consider the boundary data

wa, 0 B(t) = p(t), t€(0,t0);  w(zy,F2(0)) =pi(z1), 21 € (61(0), Bi(to)).  (3.25)

Set

Py(B) = { (z1,22) | B1(0) < z1 < B1 0 By (x2), B2(0) < z2 < Pa(to) }, (3.26)

and consider the boundary data

Wy, O 5(t) = p(t), t e (O,to); w(ﬂl (0),%2) = pg(l’g), T € (51 (0),,81 (to)). (327)

By similar arguments for the region E(v), we establish Propositions 3.6-3.8 below. The
details are omitted.

Proposition 3.6 Let the curve B8 be of class C*~ b1, Let py (or ps ) be of class
CkL and let p, f be of class C*~V1. Then problem (3.1) admits a unique solution w €
CHRL(PL(B)) (or CPL(Py(B)) with the data (3.25) ( or (3.27)) to satisfy

[wll e < CUlpll gr—11 + lIp1ll gra + ([ £l gr-1.0) (o ([Ipll gr-11 + [IP2ll ot + (| £ ]| gr-1.1))-

Proposition 3.7 Let the curve § be of class C'. Let fo and X be of class C%'. Let
p1 (or py ) be of class W22 and let p, f be of class W52, Then problem (3.1) admits
a unique solution w € W 22(Py(B)) (or W 22(Py(B)) with the data (3.25) (or (3.27)) to
satisfy

lwll w22 < Clpllw e + [lprllwee + [ Fllwr2) Cor (pllw e +[lp2llwee + [1Fllwr2))-

Let

to , 9 9 Bi(to) " 2 .
OB w) = [T OP G0~ e+ IplRge + [l Pl =l =1, 2

Proposition 3.8 Let the curve (8 be of class C'. Let fo and X be of class C%'. Then
there are 0 < ¢ < ¢y such that for all solutions w € W *2(P;(83)) to problem (3.1) with

the corresponding boundary data satisfy
al(Pyw) < wl3yee + 11 fl5y1e < c2[0(Pyw) + [ f[3y 2],

i (L

2 o 2 Bilto) 2 2 2
1l1t0]a,— g0y 2 22 < /0 P+ [ ) Pl — GO+ il + 1750

Bi(to)
< ea([[wa,=p, 1) 13y 22 + /B-(O) 1Py ()P (i = Bi(0)]d; + [pill 3y e + [1F 13 12),  (3.28)
fori=1, and 2, respectively.

Remark 3.1 (3.28) implies that p € W 2 if and only if Wy, =g, (10) € W 22 However,
the case of p ¢ W12 may happen.
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3.3 Regions Z;(3,7)

Let 7 : [0,¢1] — IR? and B : [0,t9] — IR? be two noncharacterstic curves with v(0) =
B(0) such that

le(tl) < /Bl(t())r ’Yi(t) > 07 ’Yé(t) < 07 Bi(t) > 07 /Bé(t) >0

hold. Set

51(5,’7) = Pl(ﬁ) U R(Z’a’ b) U E(/y)’ (3'29)

where Py (), R(z,a,b), and E(y) are given in (3.24), (3.6), and (3.4), respectively, with

z = (B1(t0),12(0)), a = ~(t1) — P1(to), and b = Pa(tg) — v2(to). Consider the boundary
data
wy, o B(t) =p(t) for te€]0,t], (3.30)

woy(t) =q(t), (Vw,Fy)on(t)=aq(t) for te(0t), (3.31)

where F is given by (3.2).
Let v : [0,t1] — IR? and B : [0,t9] — IR? be two noncharacterstic curves with y(t;) =
B(0) such that

72(0) > B2(t0)7 ’Yi(t) > 07 ’Yé(t) < 07 /Bi(t) > 07 /Bé(t) >0

hold. Set

E2(8,7) = E(y) U R(z,a,b) U Py(B), (3.32)
where F(v), R(z,a,b), and P5(3) are given in (3.4), (3.6), and (3.26), respectively, with
z = (71(t1),72(t0)), a = B(te) — 71(t1), and b = v2(0) — B2(tg). Consider the data

wey 0 B(H) = plt) for 1€ [0,10], (3.33)

woy(t) =q(t), (Vw,Fy)oy(t)=aq(t) for te(0t), (3.34)

where F is given by (3.2).

We consider solvability of (3.1) on Z1(8,7). To have a C*! solution on Z;(3,7), we
need some kind of compatibility conditions at the point v(0) = (0). From Proposition
3.1, problem (3.1) admits a unique solution u € C*1(E(y)) with the data (3.31). From
Proposition 3.6, there is a unique solution v € C*!(P;(3)) to problem (3.1) with the data

vz, 0 B(t) = p(t), te€(0,t0), wv(x1,B2(0)) =ulz1,B82(0)), x1 € [B1(0),B1(t)]- (3.35)

In terms of the uniqueness, if problem (3.1) has a unique solution w € C*1(Z;(8,~)) with
the data (3.30) and (3.31) together, then

w(z) = {v(m) for z € Pi(B),
u(z) for =z € E(7).

(3.36)
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Conversely, if we define w by the formula (3.36), then whether it is a C*! solution to (3.1)
on Z1(f,7) depends on the C*! regularity of w at the point 5(0). Thus, compatibility
conditions are something which can guarantee that w is C*! at v(0) = 5(0), that is

Viuo~(0) = Vivo f(0) for 0<j<k. (3.37)
The solution u with the data (3.31) yields

Vuor(t) = (Vi (®)ao(t) +72(t)ar(t), 2(t)ao(t) — 71 (t)ar(t)) (3.38)

()2
for t € [0,¢1]. Using (3.1) and (3.38), we have
1

Uzyay ©Y(E) = fon(t) + W[Vé(t)Xl 0 (t) = 71 (1) X2 0 y(t)]ar (%)

+foo(t)qo(t) + W[’Yi(t)Xl o () + V5(H) X2 o y()]go(t) (3.39)

for t € (0,t1). Next, differentiating the second component in (3.38) with respect to variable
t and using (3.39), we obtain

" "
Ugozy © V(t) = __/f © V(t) - _/fO ©7Yqo
Y2 V2

2(v",9') Mmoo , ¥ L,
- (11 X107y +vX2079) — lao + =%
[v']4 1V >3 171274 V)2
2(v", Y"1 S, , v S
[ - (1o X107y —mXa07) — lon — q- (3.40)
V5 WP ! V'[9 Y2

By repeating the above procedure, we have shown that, for 1 < j < k — 1, there are j
order tensor fields A,s(t), AL(t), and A%(t) such that

Viug, 0n(t) = > 9805, f oy Aas(t) + Y ai (H)AL(H)

at+pB<j—1 a<j
+ 3 A for te[0,t]. (3.41)
a<j+l

Let v € C*Y(Py(B)) be the solution to (3.1) with the data (3.35). Then

p/(t) = <V?Jx2 (5@))7 /B(t)>7 p//(t) = <V2Ux2 (5@))7 /B(t) ® B(t» + <vvx2 (/B(t))a B(t»

for t € [0,10]. Some computations show that

PO(t) = (Ve (B()), B(t) ® -+ @ B(t))
+ > aj,. (Vg (B()), BY (1) @ - @ U (1)) (3.42)

drteti=, 1<i<l-1

for t € [0,%0], and 1 <1 < k, where aj,...;, are positive integers. Then assumption (3.37) is
stated as the following.
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Definition 3.1 Let the curves B and v be of class C*1. Let qo be of class C*' and
p, qi, [ of class C*=Y1 respectively. It is said that the kth order compatibility conditions
hold at 7(0) = B(0) if |7'(0)[p(0) = 75(0)q5(0) — 71(0)q1(0) and

pV(0) = (V'ug, 07(0), B(0) @ -+ @ 5(0))
+ > jyonjs (Viug, 07(0), BUY(0) @ -+ @ BUD(0))  (3.43)
Jitetii=l, 1<i<l—1

for1 <1< k-1, where V'ug,0v(0) and aj,...j, are given in (3.41) and (3.42), respectively.

Proposition 3.9 Let the curves § and v be of class C™'. Let qo be of class C*!
and p, q1, f of class CF=L1 respectively. If k > 1, we assume that the kth order com-
patibility conditions hold at v(0) = B(0). Then problem (3.1) admits a unique solution
w € CRLYE((B,7)) with the data (3.30) and (3.31). Moreover, the following estimates
hold

[l gea < Cllpll g2 + llgoll cra + lgall g e=ra + [l g a-r0)-

Proof The uniqueness and the estimate follows from Propositions 3.1, 3.2, and 3.6. It
is remaining to show the existence. Let u and v be given in (3.36) with the corresponding
boundary date. Let h be the solution to (3.1) on R(z,a,b) with the data

h(z1,72(0)) = u(z1,72(0)) for 1 € [Bi(to), 1 (t1)],

h(Bi(to), v2) = v(B1(to), xz2) for x2 € [12(0),B2(to)],

where R(z,a,b) is given in (3.29). We now define

v for =z e Pi(B),
w(x) =< u for ze E(y),
h for =€ R(z,a,b).

Then w is a solution to (3.1) with the data (3.30) and (3.31). Next we shall show w €
CHH(E1(B.Y)).

We proceed by induction in & > 0. The definition of w guarantees w € C%*(Z1(5,7)).
Let w € CHY(Z,(6,7)). Next we show that the k + 1th order compatibility conditions
imply w € C*L1(Z,(8,7)). For this purpose it is enough to show that w is
C*+1 on the segments

¥ = {(z1,52(0)), (z2,61(t0))[z1 € [81(0),71(t0)], w2 € [12(0), B2(t0)] }-

By the induction assumptions, we have
8;165;221(331,52(0)) = 8;1822’&(331,52(0)) for 51(0) § T § 51(150), (3.44)
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for 0 < i+7j < k. Next we show that (3.44) are true with i+ j = k+ 1. Since v(x1, £2(0)) =
u(z1, B2(0)) for all z1 € [51(0), B1(to)], it follows that

8§j1v(azl,ﬂ2(0)) = (ﬁjlu(xl,ﬂg(O)) for all 1 € [51(0), B1(t0)]-

Leti+j=k+1withj>1.1f¢ > 1, then j = k+1—14 < k and, by the induction

assumptions,
03, v(z1, 2(0)) = B4, u(x1, B2(0)) for all zy € [51(0), Bi(to)],
which yield
6;18:{2@(:131,@(0)) = 5;18£2u(:171,ﬁ2(0)) for all x1 € [1(0), 51 (to)]- (3.45)

Next we check the case of i =0 and j =k + 1.
Using (3.1), we have

(0 o(@r. B2(0))) = 0, (0,0 (w1, B2(0)) = O, [ + fov + X, + Xava] (1, 52(0)
= Xa(1, 52(0))05, (1, B2(0)) + O, [f + fov + X1va,)(x1, B2(0))

k
+> - CLoL, X0k, o] (1, B2(0)). (3.46)
Let
p(z1) = 05, If + fov + X105, )(z1, B2(0 Z CLOL, X205 ](21, B2(0))

for z1 € [51(0), B1(to)]. It follows from (3.46) that 7(z1) = 8% v(zy, B2(0)) is the solution

to problem

(1) = Xa(z1, 82(0))7(21) + p(21) for ;1 € [B1(0), B1(to)],
{< 51(0)) = BEF10(5(0). il

Moreover, the induction assumptions, w € C*(Z,(3,7))), yield
(V'vay(2), BI(0) @ - B9(0)) = (Vugy (2), BU(0) @ -+~ B9(0))

for jij4+---4+5;,=1,1<i<l—1,and 1 <[ < k. Then the k 4+ 1th order compatibility

conditions imply
(VFuz, 0 B(0), B(0) @ -~ ® B(0)) = (VFug, 07(0), B(0) ® - @ 5(0)).
Using (3.45) and $5(0) > 0, we obtain
O w0 4(0) = 05w o B(0). (3.48)
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In addition, it follows from the induction assumptions and (3.45) that
p(‘rl) xg[f+f0u+X1ux1] leBQ chang28I;2_i+lu](‘Tlv/82(0))7

for #1 € [$1(0), B1(to)]. By a similar computation as in (3.46), 0% u(xzy, 82(0)) is also a
solution to problem (3.47) with the same initial date (3.48). The uniqueness of solutions
of problem (3.47) yields

OFHLu(xy, B2(0)) = 08 u(wy, B2(0)), @1 € [B1(0), By (tr))-

C k+1

Thus w is on the segment

{ (w1, 82(0)) | 21 € [B1(0), B1(to)] }-

A similar argument shows that w is C**1 on the rest of 9. The induction is complete. O

By similar arguments, we have Propositions 3.10-3.12 below. The details are omitted.

Proposition 3.10 Let the curves 3 and v be of class C'. Let fo and X be of class
CO. Let gy be of class W22 and p, qi, f of class W Y2, respectively, such that the
1th order compatibility conditions hold true at v(0). Then problem (3.1) admits a unique
solution w € W22(Z1(8,7)) with the data (3.30) and (3.31). Moreover, the following

estimates hold
[wll w2z < C(llpllwre + llaoll wze + llarllwrz + [[fl wa2)-
Let
T;(8,w) = /Oto [wz, 0 B(s)|*(to — s)ds for s € (0,ty), i=1,2. (3.49)

Proposition 3.11 Let the curves 8 and v be of class C'. Let fo and X be of class
COL. Then there are 0 < ¢1 < ¢y such that for all solutions w € W 2%(Z1(8,7)) to problem
(3.1)

ar[L(y,w) +T2(8, w)] < [Jwll3y 22 + [fl5 12 < e2[0(v,w) +T2(8,w) + || f3y1.2],
where T'(y,w) is given in (3.18).

Proposition 3.12 The corresponding results as in Propositions 3.9, 3.10, and 3.11
hold where Z1(8,7) and T'y(8,w) are replaced with E9(8,7) and T'1(5,w), respectively.
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3.4 Region @(f,7, )

Let B : [0,tg) — IR? ~ : [0,t;] — IR? and B [0,%5] — IR? be noncharacteristic

curves with 8(0) = ~v(0) and ~(t1) = 5(0) such that

Ya(t1) = Ba(ta),  Bi(t) >0, By(t) > 0.
We define

where Z1(8,7), R(z,a,b), Pg(ﬁ) are given in (3.29), (3.6), and (3.26), respectively, with

2z = (m(t1), Ba(t2)), a = Bi(ta) — v1(t1), and b = Ba(ty) — B(t2). Consider the boundary
data

Wy © ﬁ(t) = pl(t)7 te [07 t0]7 Wy, © B(t) = pQ(t)7 te (07 t2)7 (350)

woy(t) =qo(t), (Vw,F¥)o~(t)=q(t) for te(0,t). (3.51)

By similar arguments as for Z1 (3, 7), we have Propositions 3.13-3.15 below. The details

are omitted.

Proposition 3.13 Let the curves 3, v, and B be of class CF1. Let qy be of class
CkL and p1, p2, q1, f of class CF*~1 such that the kth order compatibility conditions
hold true at v(0) and ~(t1), respectively. Then problem (3.1) admits a unique solution
w e CRYD(B,~,B)) with the data (3.50) and (3.51). Moreover, the following estimates
hold

[l s < CUPLIG -1 + P2l e-ra + a0l e + lalle-ra + 11T rm10)-

Proposition 3.14 Let the curves 3, v, and B be of class C'. Let fo and X be of class
CYL. Let qo be of class W22, and p1, pa, qi, [ of class W2, such that the 1th order
compatibility conditions hold true at «(0) and ~y(t1), respectively. Then problem (3.1)
admits a unique solution w € W 22(®(83,~, 3)) with the data (3.50) and (3.51). Moreover,

the following estimates hold

kuz\)\ﬂ,? < C(le”2\2\71»2 + Hp2”2\)\/1»2 + HQOH2W2,2 + HQ1”2VV1,2 + ”f”%;\;lQ)

Proposition 3.15 Let the curves 3, v, and B be of class C'. Let fo and X be of
class C%'. Then there are 0 < ¢1 < ¢y such that for all solutions w € W 22(®(8,7, f)) to
problem (3.1)

cr[T(y, w)+T1 (B, w)+T2 (8, w)] < |[wl 3y 22+ f I3y 12 < 2T (v, w)+T1 (B, w)+Ta (B, w)+| £y 1.2];

where T'(y,w), T1(8,w), and To(B,w) are given in (3.18) and (3.49), respectively.
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4 Solvability for Hyperbolic Surfaces

Let M C IR? be a hyperbolic surface with the normal field 7 and let Q C M be a

noncharacteristic region, where
Q={alt,s)|(ts) € (0,a) x(0,b) }.
We consider solvability of problem under appropriate part boundary data
(D*w,Q*II) = f + fow + X(w) for z€Q, (4.1)

where fy is a function on M and X € T(M) is a vector field on M. Clearly, equation
(2.25) takes the form of (4.1).

To set up boundary data, we consider some boundary operators. Let x € 92 be given.
w € Ty M with |u] = 1 is said to be the noncharacteristic normal outside Q if there is a
curve (¢ : (0,e) — € such that

C0)==z, ¢0)=—-p, Iu,X)=0 for X €T, (09).

Let p be the the noncharacteristic normal field along 0€). Let the linear operator @ :
T,M — T,M be given in (2.2) for z € M. Recall that the shape operator Vi : T,M —
T, M is defined by ViiX = Vx7i(x) for X € T, M. We define boundary operators 7; :
T.M — T, M by

TiX = %[X F(—1)ix( X)p(X)QVAX for X € TLM, i=1,2,  (42)
where )
x(p, X) = sign det (1, X, ), o(X) = = sl (X, X), (4.3)

and sign is the sign function.

We shall consider the part boundary data

(Dw, Taas) o a(0,8) = p1(s), (Dw, Taas) oala,s) =pa(s) for s e (0,b), (4.4)
1
V2

To have a smooth solution, we need some kind of compatibility conditions as follows.
Let A and B be kth order and mth order tensor fields on M, respectively, with k& > m.
We define A(i—)B to be a (k —m)th order tensor field by

wo a(t,0) = qo(t), (Dw, (T2 — T)aw) o a(t,0) = q1(t) for te€(0,a). (4.5)

A(i—)B(Xl, o 7Xk—m) = <iXk:77n o inA,B>((£) for x¢€ ]\47 (46)

where X1, -+, Xj_,, are vector fields on M.
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For convenience, we assume that
lay(t,0)] =1 for te|0,al

Then Qat, oy forms an orthonormbal basis of Ti,;0)M with the positive orientation for
all t € [0,a] and

QViiay = Moy, ap)Qay — (ay, Qo) for ¢ € [0, al.

Let k > 1 be an integer. First, we assume that w is a C*! solution to (4.1) in a
neighborhood of the curve «a(t,0) with the data (4.5). Then

Duw(a(t,0)) = Bi(t)qp(t) + Co(t)qr(t) for t € [0,a],

where
H(Oét, Q()ét) . \/é
(o, ay) Qoal,  Colt) = o(a) (o, ay)

are vector fields along the curve a(t,0), from which we obtain

Bu(t) = [ +

Dy, Dw(a(t,0)) = Dq,B1g)(t) + B1(t)q) (t) + Do, Coqi(t) + Co(t)d, (¢).
Using (4.1) and the above formula, we compute along the curve «(t,0) to have

D?w(Qay, Qo) (o, o) = f + fow 4+ (Dw, X) — (D, Dw, a)TL(Qov, Qovy)
+2(D,, Dw, Qo) II(Qavy, i)
= f+ foao(t) + [(X, B1(t)) + (Do, Br, Z(t)]ap(t) + (Ba(t), Z(t)) a5 (£)
(X, Col)) + (Do Co ZONar (1) + (Colt), Z(D)a, (1) for te(nal,  (47)
where
Z(t) = 2I(Qay, ) Qo — TI(Qavy, Qg ) .

Since I, ai) # 0 for all ¢ € [0, a], we have obtained two order tensor fields, A%(t), B2(t),
and C?(t), that are given by fo, X, II, Qay, oy, and their differentials, such that

2 1
D2w(a(t,0)) = A1) f + 3 BXt)ay (t) + 3. C2(t)g\ (t) for te[0,a].
7=0 1=0

By repeating the above procedure, we obtain (k + i)th order tensors fields A¥"(t), and
kth order tensor fields BF(t), CF(t), such that

Dkw(a(t,O)) = Qk(QOyQLf)(t) for te€ [O,CL],

where
k—2 k , k-1 .
Qk(a0, a1, )(8) = S AR (1) (i =)D f(a(t,0) + 3 BE®)S (1) + 3 CEt)a" (1) (4.8)
7=0 7=0 1=0

for t € [0,a] and k > 2, where “(i—)” is defined in (4.6).
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Definition 4.1 Let qq be of class C*', and p1, p2, q1, f of class CF*~11 to be said to
satisfy the kth order compatibility conditions at «(0,0) and a(a,0) if

pi(ty) = (Bi(t)), Taos)qo(t;) + (Colty), Tacs)qu (L)), (4.9)

p(0) = (Qilgo, a1, (), 5;(0) @ - ©4;(0))

+ > aj1-3.(Qilao, a1, )(t), 77V (0) @+ @47)(0)) (4.10)
Jit+i=l 1<i<[—1

for1 <1< k—1, where aj,...j; are positive integers given in (3.42), j =1, 2, v1(s) = «(0, 5),
72(s) = ala,s), t1 =0, and t3 = a.

Our main task in this section is to establish the following.

Theorem 4.1 Let Q be a noncharacteristic region of class C™ %% and let fo and X
be of class C™ VY. Let g be of class C™, and p1, p2, q1, f be of C™ YL respectively.
If m > 1, we assume that the mth compatibility conditions holds. Then there is a unique
solution w € C™Y(Q) to problem (4.1) with the data (4.4) and (4.5) satisfying

[wl gmagy < Cllarll gm—1a0,q + ol ¢ majoq + P m-11704
Hllp2ll ¢ =110,y + 1f I g 11 c3))- (4.11)

Remark 4.1 If py, po € CB”_l’l(O, b), qo € an’l(O,a), q1 € Cgl_l’l(o,a), and f €
an_l’l(Q) for an integer m > 0, then the mth order compatibility conditions are clearly

true.

Theorem 4.2 Let Q be a noncharacteristic region of class C*' and let fo and X be
of class CYY. Let qo be of class W22, and p1, p2, q1, f of class W2 to satisfy the 1th
order compatibility conditions. Then there is a unique solution w € W2’2(Q) to problem
(4.1) with the data (4.4) and (4.5). Moreover, there is C > 0, in dependent of solution w,
such that

||w||2w272(g) < O(||QOH2WZ»2(O7Q) + ||QI||2W1’2(07Q) + Hp1H2W1’2(07b)
"‘HP2H2\;\/1»2(0J,) + HfHlez(Q))' (4.12)

We define
b
where py, py are given in (4.4), and
1
T(a(-,0),w) =Y [[VIwoal(;,0)[|72(.q
j=0

+ /Oa[\D2w(71at, ﬂat)lzt + \D2w(’7'2at, Bat)\2(a —t)]dt. (4.14)
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Theorem 4.3 Let Q be a noncharacteristic region of class C*' and let fo and X be
of class C%L. Then there are 0 < ¢1 < ¢y such that for all solutions w € W22(Q) to
problem (4.1)

eT( Q2 w) < w3y 22y + 1By 2y < el 12y 1200 + T(2 ). (4.15)
Next, we assume that f = 0 to consider problem
(D*w, Q") = fow + X(w) for z€Q. (4.16)

Denote by T(2) all the solutions w € W %2(Q) to problem (4.16). For w € T(Q), we let

b
D) = [ (ph ) + Ip55) s + 01y o) + 1301200y
where p1, p2, qo, and ¢ are given in (4.4) and (4.5), respectively. We define
H(Q) = {w € T(2) with the 1th order compatibility conditions| I'(w) < oo }.

Theorem 4.4 Let Q be a noncharacteristic region of class C%' and X of class C%!.
For each w € Y(Q), there exists a sequence w, € H(Q) such that

Jim [wn — w22y = 0.

The remains of this section is devoted to the proofs of Theorems 4.1-4.4. The proofs
of Theorems 4.1-4.2 and 4.3-4.4 are given after Lemma 4.5 and Lemma 4.7, respectively.

We shall solve (4.1) locally in asymptotic coordinate systems and then paste the local
solutions together. A chart ¢ (p) = (z1,22) on M is said to be an asymptotic coordinate
system if

I1(0x1,0x1) = (D2, 0z2) = 0. (4.17)
Let p € M. Then k(p) < 0 if and only if there exists an asymptotic coordinate system at
p([10]). In this system

Hz(axl, 8%2)
detG 7

In an asymptotic coordinate system, equation (4.1) takes a normal form. We have the

H(Q) = — det G = ’8351’2‘8%2‘2 — <8xlgax2>2'

following.

Proposition 4.1 Let M be a hyperbolic orientated surface and let ¥(p) = (x1,x2) :
U(C M) — IR? be an asymptotic coordinate system on M with the positive orientation.
Then

(D?w, Q*II) = +2/ % twam( x) + the first order terms, (4.18)
where w(z) = woy ™ (z) and the sign takes — if I1(Ox1, 0x2) > 0 and + if I1(Ox1, Oxa) < 0,

respectively.
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Proof Let p € U be fixed. Let o; = (a1, i2)” € R? be such that
(a1,0) € SO(2), det(an,a2) =1, G(p)ay =micy for i=1, 2,
where 7; > 0 are the eigenvalues of the matrix G(p). Set
E; = a;10x1 + o909 for =1, 2. (4.19)
Since

(B, Ej) = aiTG(p)aj =n;0;; for 1<, j <2

E E
L 2 forms an orthonormal basis of M,,. Moreover, \’/E—_ \’/EZ_ is of the positive orien-

Vi

tation due to

2
9
I~

Q

~ S

Q
S
= o O

1
V12

Ey B
VOIS

=1.

det ( ﬁ) = det[(&nl, 019, ﬁ) | = det (8:171, 0z, ﬁ)

=3

It follows from (2.2) that

oFL B B B
VI VR TR

Using the above relations and the formulas (4.17), we have at p

mnz(D*w, Q*T) = D*w(Ey, B1)(Ea, Ba) — 2D*w(Ey, E2)TI(E1, Es)
+D*w(Ey, Bx)II(Ey, Ey)
= 2[agiage D*w(EL, Ey) — (an1ags + arzas ) D*w(Ey, Eo)
o119 D*w(Ey, Ey)|IL(0x,, )
= 2D?%w(ag1 By — a1 Es, a0 By — a2 B9y, Ox0)
= —2(a1009 — 12001)? D*w(dxg, Ox9)II(D21, O20)

= —2[wg, 2, — Doy, 0x2(w)|II(0x1, D22), (4.20)

where the formula
ajrag — a0 = det(ag, az) =1,

has been used.

2
(4.18) follows from (4.20) since k = _M_

mmn2

O
Lemma 4.1 There is a og > 0 such that, for all p € §Q, there exist asymptotic coordi-

nate systems 1 : B(p,00) — IR? with v(p) = (0,0), where B(p,00) is the geodesic plate in

M centered at p with radius oyg.
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Proof. For p € Q, let o(p) denote the least upper bound of the radii o for which
an asymptotic systems ¢ = z : B(p,0) — IR? with ¢(p) = (0,0) exists. From the
existence of local asymptotic coordinate systems, o(p) > 0 for all p € Q. Let p, ¢ € Q, and
q € B(p,o(p)). Let

= inf
01 (q) 2EM, d%?,p):o‘(p) d(Qv Z),

where d(-,-) is the distance function on M x M in the induced metric. Then o1(q) > 0
and B(q,01(q)) C B(p,a(p)), since ¢ € B(p,a(p)).

For any 0 < 6 < 01(q), B(q,0) C B(p,o(p)). Thus, there is a 0 < ¢ < o(p) such that
B(q,6) C B(p,0). Let ¢ = x : B(p,0) — IR? be an asymptotic system with ¢ (p) = (0, 0).
Set 9)(z) = ¥(2)—(q) for z € B(q, ). Then ¢ : B(gq,6) — IR? is an asymptotic coordinate
system with zﬁ(q) = (0,0), that is,

o(q) > o1(q) for q€ B(p,a(p)).

Thus, o(p) is lower semi-continuous in Q and min, g o(p) > 0 since Q is compact. O

Lemma 4.2 Let v : [0,a] — M be a regqular curve without self intersection points.
Then there is a o9 > 0 such that, for allp € {~(t)|t € (0,a) }, S(p,00) has at most two
intersection points with {y(t) |t € [0,a] }, where S(p,00) is the geodesic circle centered at
p with radius og. If p = v(0), or v(a), then S(p,00) has at most one intersection point
with {y(t) |t € [0,a] }.

Proof. By contradiction. Let the claim in the lemma be not true. For each integer
k > 1, there exists tj, < ti < t2(or tx >t} > t2) in [0,a] such that

A (t4), A1) = Ay (). A() = 7 for k> 1. (121)
We may assume that
ty =10, th =ttt —=t? as k— oo,
for certain points ¢°, t!, 2 € [0,a]. Then 0 < t° < ¢! <2 < a and

(%) = (") = (7).

The assumption that the curve v has no self intersection point implies that

9=t =2
For k > 1, let
1
fi(t) = 5pk(v(t), for te[0,d],



where pi(p) = d(y(tx),p) for p € M. It follows from (4.21) that there is a (j, with t; <
Cr < t2 such that

fi(Ce) = 0.

On the other hand, the formula f/.(t) = p(v(t))(Dpr(v(t)),¥(t)) implies that f;(tx) = 0.
Thus, we obtain 7 € (tx, (x) such that

Y(k) =0 for k> 1.

Since
i (t) = D(prDpr) (7(t), 7 (1) + pr(v(£))(Dpr(¥(t)), Dseyy)s
we have
O = f(1°) = lim () = 0,

which contradicts the regularity of the curve v, where

folt) = 3@, (1) for t€[0,a].

We need the following.

Proposition 4.2 (i) det (QViX, X, ii(z)) = I(X, X)(z) for X € T,M, z € M.
(i7) I(QViAX,QViX) =kIl(X,X) for X €e T,M, z € M.

Proof Let x € M be given. Let ej, e be an orthonormal basis of T, M with the

positive orientation such that
H(ei,ej)(x) = )\252] for 1 < i, j <2 (4.22)
Then

)\2<X,€2> <X,€1>O
det (QViIX, X, i) = det (e1, e2,7) | ~Mi(X,e1) (X, ) 0 | = (X, X). (423)
0 0 1

In addition, using (4.22), we have

M(QVAX,QVAX) =TI( = M(X, er)es + ha(X, ea)er, =M (X, er)es + Aa(X, ea)er )
= A2 (X, e1)? 4+ X2A1 (X, ep)? = KII(X, X).
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Lemma 4.3 Let pg € M and let B(pg, o) be the geodesic ball centered at py with radius
o> 0. Lety:[—a,al = B(pg,0) and 5 : [—b,b] — B(pg, o) be two noncharacteristic curves

of class C1, respectively, with

v(0) = B(0) = po, TI((0), B(0)) = 0.

Let 1[1 : B(po, o) — IR? be an asymptotic coordinate system. Then there exists an asymp-
totic coordinate system v : B(pg, o) — IR? with ¥(po) = (0,0) such that

(y(t)) = (t,—t) for t€[—a,a], (4.24)

Bi(s) >0, B4(s)>0 for se][—b,bl, (4.25)
where Y(B(s)) = (Bi(s), B2(s)). Moreover, for X = X;0x1 + X200z with II(X, X) # 0, we

have

Xlal‘l — XQ@J)Q X1X9 >0
X)QViX = x(~'(0),8'(0 ’ ’ 4.26
o(X)QVAX = x(+/(0),7(0) {_ml Yot Xixe<o G2
where o(X) is given in (4.3) and
/ / . / / .
x(7(0),8(0)) = sign det (+/(0), 8(0), 7(po) )
Proof. Let )(pg) = (0,0) and
b(v(1) = (), 72(t) for ¢ € [~a,al.
Since ~ is noncharacteristic,
H(Y(2),5(t)) = 291 (O)V5(H)1(Ox1,0z2) #0 for t € [—a,al.
Without loss of generality, we assume that
Vi) >0, () <0 for te[—a,al (4.27)

We extend the domain [—a, a] of ¥(t) to IR such that

Am oy (f) = Foo, - lim 9(f) = Foo,

and the relations (4.27) hold for all t € IR. Consider a diffeomorphism ¢(z) =y : R? — IR?
given by
o(x) = (77 M), =75 H(29)) for x = (21,22) € R (4.28)

Then ¢ o T/A) : B(pg, o) — IR? is an asymptotic coordinate system such that

A~

po(y(t)) = (t,—t) for te€[—a,al]. (4.29)
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Let o 9(B(s)) = (B1(s), B2(s)). Since f is noncharacteristic,
Bi(s)By(s) #0 for s € [-b,b].
In addition, the assumption II(%(0), 3(0)) = 0 and the relation (4.29) imply that
0 = I1(%(0), 8(0)) = [(dz1 — B2, B1(0)dz1 + B5(0)dz2) = [B5(0) — BL(0)|TI(Dz1, Dz),

that is, 8](0) = B5(0). If ;(0) > 0, we let ¥(p) = ¢ o P (p) to have (4.25). If 3 (0) < 0,
we define instead of (4.28)

o(r) = (72_1($2)a —71_1($1)) for == (z1,13) € IR?.

Thus (4.25) follows again.
Next, we prove (4.26). Let QViX = Y10x1+Y20z,. Since (Y1 Xo+Y2 X1)I1(0x1, Oxs) =
H(QVﬁX, X) = (QViX, ViiX) = 0, we have

QVﬁX = U(Xlal‘l - Xgal‘Q),
where ¢ is a function. Using Proposition 4.2 (ii), we obtain
0% = —K.

Next, from (4.24) and (4.25), we have

—_

p1(0) 0
(+/(0), 8(0),7) = (9w1,0m5,7) | ~1 50) 0 |,
1

which yields
sign det (7/(0), 3'(0), ﬁ) = sign det (axl, 019, ﬁ)
Thus (4.26) follows from Proposition 4.2 (i). O

Denote
2(0,s0) = { aft,s)|t € (0,a), s € (0,s9) } for s¢€][0,0]. (4.30)

Then Q = Q(0,b).

Lemma 4.4 Let the assumptions in Theorem 4.1 hold. Then there is a 0 < w < b
such that problem (4.1) admits a unique solution w € C™(Q(0,w)) with the data (4.4)
where s € [0,w], and (4.5) to satisfy

[wll g ma @y < Cllpillam-11p0 + P2l e m=v110) + g0l ¢ 10,
il gmosagg + 1l gmosa ) (131)

37



Proof. Let og > 0 be given small such that the claims in Lemmas 4.1 and 4.2 hold,
where () = «(t,0) in Lemma 4.2. We divide the curve a(t,0) into m parts with the
points A; = a(t;,0) such that

Ao =a(0,0), Am=a(a,0), d(\i,Ais1) = ? 0<i<m—2, dm_1,A\m) < ?
where tg = 0, t; > 0, to > t1, ---, and t,,, = @ > t,,—1. For simplicity, we assume that

m = 3. The other cases can be treated by a similar argument.
We shall construct a local solution in a neighborhood of «(t,0) by the following steps.
Step 1. Let 59 > 0 be small such that

a(0,s) € B(Xo,00) for se€[0,s0].

From Lemma 4.3, there is asymptotic coordinate system vg(p) = = : B(\g, 00) — IR? with
Yo(No) = (0,0) such that

Yo(a(t,0)) = (t,—t) for te[0,ta], (4.32)
Bhi(s) >0, Bya(s) >0 forall se|0,so],

where By(s) = vo(a(0,s)) = (Bo1(s), Po2(s)). Let vo(t) = (t,—t). We may assume that
s0 > 0 is given small such that By1(sp) < to since 5p1(0) = 0. Set

E1(B0,70) = P1(Bo) U R((Bo1(s0),0),co.do) U E(70), (4.33)
as in (3.20) with co = t2 — Boi(so) and do = Soa(s0). Then we let
Qo = QN 4y [E1(Bo,70)].
Noting that for the region Qg
x(u(e(t,0)), 04 (t,0)) = x(—as(0,0),04(0,0)) for ¢ € (0,t2),
X(1(ax(0, 5)), 5 (0, 5)) = x(—(0,0), 5(0,0))  for s € (0,50),
from (4.26), we obtain
Tias(0,5) = By ()01, Tocs(0,8) = Big(s)dzs for s € (0,s0), (4.34)

Tiou(t,0) = 0x1, Taau(t,0) = —0ze for t € (0,t9). (4.35)

From Proposition 4.1, solvability of problem (4.1) on QN Y(Z1(Bo,70)) is equivalent
to that of problem (3.1) over the region =(fy, 7). Next, we consider the transfer of the
boundary data under the chart y. The corresponding part data are

Wgqy O 50(8) = (Dw,TMJ © O‘(O’ S)/B(/B(S) = pl(S)/ﬁ(/m(s) for se€ [0780]’
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w(t, —t) = wo g (t, —t) = w(a(t,0)) = q(t) for te€ 0,1,

1
5t =t) = =(Dw, (Ts = Toar) 0 a(t,0) = m(t) for + [0
where

w(z) =wo ™ (x).

It is easy to check that p1 /509, qo, ¢1, and f are mth order compatible at «(0, 0) in the sense
of Definition 4.1 is equivalent to that p1/8(s, qo, ¢1, and f do in the sense of Definition
3.1, where

fog'(x) | detG(x)
2 —koy(x)

f= for € ¢o(B(Xo,00)) C IR,

where det G(x) = det((0x;, 0x;)).

From Proposition 3.9, problem (3.1) admits a unique solution w € C™(Z;(Bo,0))
with the corresponding boundary data. Thus, we have obtained a solution, denoted by
wy € C™1(Qy), to problem (4.1) with the data

(Dwo, Tzas) 0 a(0,8) = pi(s) for s € [0,s0],

1
wp o a(t,0) = qo(t), —2<Dw0, (T2 — Th)aw) o at,0) = qu(t) for t e [0,tq],
where
Qo = QN5 [E1(Bo, 0))-
It follows from the estimate in Proposition 3.9 that

HwOH Cm’l(Q_O) < CPmC (p17p27QO7Q17 f)? (436)

where

PmC (p17p27q07q17f) = ”pl”Cmfl’l(O,b) + szH Cmfl’l(O,b) + ”qO”Cm,l(O@)
+||q1H Cmfl,l(O’a) + ||f||cm71,1(§)

We define a curve on Qg by

Gi(s) = v5 oy (s) for s € [0,51,], (4.37)
where ;
ty if 1 € (0, —2],
Y, (s) = (s+ti,s —t1), st = 2 to
to—t1 if t1 € (57t2)'
Then (;(s) is noncharacteristic and
H(él(O), Oét(tl, 0)) = H(aiﬂl + 8:172, ox1 — al‘Q) =0. (4.38)
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Step 2. Let the curve (3 be given in (4.37). Let s; > 0 be small such that
Cl(s) S B()\l,O'o) for sé€ [0,81].

From the noncharacteristicness of (1 (s) and the relation (4.38) and Lemma 4.3 again, there
exists an asymptotic coordinate system 11 (p) = x : B(\1,09) — IR? with 11 (A1) = (0,0)
and

1 (a(t +t1,0)) = (¢t,—t) for te€[0,t3—t1],

511(3) >0, 512(8) >0 for sé€ [0751]7

where 1(s) = ¥1(¢1(s)) = (B11(8), f12(s)). We also assume that s; > 0 has been taken
small such that 511(s1) < t3. This time, we set

E1(B1,71) = Pi(B1) U R((B11(51),0), c1,d1) U Er (1),
where ¢1 = t5 — t1 — Bu1(s1), dy = Bra(s0), and 71(£) = v (alt + t1,0)). Next, let
0 =Ny [E (B )]
Since for the region O
X(1(C1(5)), G1(8)) = x(—(0,1),¢1(0)) for s € (0,51),

x(p(alty +1,0)), ar(ts +t,0)) = x(—¢1(0), a4 (t1,0)) for t € (0,t3 —t1),

it follows from (4.26) that
TiC1(s) = Br(8)0z1,  Tali(s) = Bra(s)0xz2 for s € (0,51),

Tiaw(ty +t,0) = 0xy, Toou(ts +t,0) = —0xzy for t € (0,t3 —t1).

By some similar arguments in Step 1, we obtain a unique solution w; € Cm’l(Q_l) to
problem (4.1) with the data

(le,Tgéﬁ o B1(s) = (Dwy, 75{1(8)> ofi(s) for se€]0,s1],
1
V2

where wyq is the solution of (4.1) on g, given in Step 1. The following estimate also holds

wi(a(t,0)) = qo(t), (Dwy, (Ta — T1)aw) o a(t,0) = ¢1(t) for t € [t1,t3],

[will gmar @y < CUK{Dwo, TaCi) o Gl gm-1110,6, + laoll ¢ majoq) + a1l g m-11p0 4
(1)
+\|f\|cm71,1(§)) < CT'ymc (p, 0,01, h)- (4.39)

As in Step 1, we define a curve on 1 by

Co(s) =Yy (s +tg—t1,s +t1 —ta) for s€[0,s4), (4.40)
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where

t3 —t1

Sgy =to —t1 if to—11 < 5

S, = t3 — 12 if to—t1 >

2

Then (»(s) is noncharacteristic and
H(ég(O), ay(te,0)) = I(0x1 + dxg, 021 — Jz0) = 0.
Step 3. Let the curve (3 be given in (4.40). Let s3 > 0 be small such that

Ca(s), «ala,s) € B(Ag,00) for s € ]0,s9].

Let ¢2(p) = = : B(A\2,00) — IR? be an asymptotic coordinate system with 5 (Ag) =

Yot +t2,0)) = (t,—t) for t € [0,a— ta],
and
s) >0, Bh(s)>0 for se€]l0,ss],

B21(8), B22(s)).
(B31(8), B32(s)). Next, we prove that

Boy
where Ba(s) = 12((a(s)) =
Let (3(s) = t2(a(a, s))

~~ o~

5{1,1(3) >0, 552(8) >0 for sé€ [0752]7

ts — 1y

(4.41)

(07 0)7

(4.42)

(4.43)

by contradiction. Since «a(a,s) is noncharacteristic, using (4.42) and the assumption

II(ay(a,0), as(a,0)) = 0, we have
B51(0) = B55(0);  thus B4 (s)B5e(s) >0 for se[0,ss).

Let
p(t,s) = aq(t,s) + as(t,s), o(alt+ts,s)) = (ai(t,s),as(t,s)).

Let (4.43) be not true, that is, 85 (s) <0, f45(s) <0 for s € 0, s2]. Thus
p(0,8) = B21(s) + Paz(s) > B21(0) + B22(0) =0 for s € (0,s2],

pla —ta,s) = P31(8) + P32(s) < B31(0) + P32(0) =0 for s € (0,s2].

Let t(s) € (0,a — t2) be such that

a1 (t(s),s) + az(t(s),s) =0 for se (0,s2).

(4.44)

Since a14(0,0) = 1 and «a(t+t9, s) are noncharacteristic for all s € [0, s3], we have oy (¢, s) >

0 and
0 < a1(0,8) < ay(t(s),s) < ai(a—te,s) = B31(s) < B31(0) = a — ta.
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Thus, equality (4.44) means that a(aq(t(s), s)+t2,0) = a(t(s), s), which is a contradiction
since « : [0,a] X [a,b] — M is an imbedding map.
We also assume that s, has been taken so small such that

Ba1(s2) < a—ta, [3a(s2) <0,

since f21(0) = 0 and f32(0) = —(a — t2) < 0. Let y2(t) = ¢a(a(t + t2,0)) = (¢t,—t). We
now set
(B2, 72, B3) = Z1(Ba, v2) U R((a — t2, B32(s2)), 3, d3) U Pa(Bs),

where Z1(82,72), R((a — t2, B32(s2)),¢3,d3), and Po(f3) are given in (3.29), (3.6), and
(3.26), respectively, with c3 = B32(s2) — a + to and ds = Paa(s2) — P32(s2). Let

Q2 = QN1 [D(B2,72, 3)]
This time we use (4.26) to obtain, for the region o,
TiCa(s) = B (s)0x1,  TaGy(s) = Pyy(s)0xa for s € (0, 59),
Tiow(te +t,0) = Ox1, Toou(te +¢,0) = —0xe for t € (0,a —ta),

Tias(a,s) = B4 (s)0z2, Taas(a,s) = B41(s)dz1 for s € (0, s2).

Applying Proposition 3.13, problem (4.1) admits a unique solution wy € Cm’l(ﬁg)
with the data

(Dws, TaCa) 0 Ba(s) = (Dwy, TaCa) 0 Ba(s), (Dwa, Toas)oaa,s) = pa(s) for s € [0,s],

1
wa(a(t,0)) = qo(t), E<Dw2’ (T2 — Ti)aw) o a(t,0) = qi1(t) for t € [to,al.
Using the estimates in Proposition 3.13 and (4.39), we obtain

< C(I[{Dwy, TaG2) © G cm-11(0,5,] T P2l ¢ 11104 + [l@0]l ¢ 1[04
Flarll gm-rapga + 1l gm-11@) < CTmc (p1,p2,90, a1, f)- (4.45)

”w2” Cm’l(Q_z)

Step 4. We define
w=w; for peQ; for i=0,1,2.
Let w > 0 be small such that
a(t,s) € QU UQy for (t,5) € (0,a) x (0,w).

Then w € C™Q(0,w)) will be a solution to (4.1) with the corresponding data if we
show that

wo(p) =wi(p) for peQonQy; wi(p) =wa(p) for peQinNQo. (4.46)
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Since
Wigy © P1(8) = Wog, 0 Bi(s) for s €0, s1],
811)0 811)1

'UJ()(t, —t) = w1 (t, —t), W(t, —t) == W(f, —t) fOT t e [tl, tg],

from the uniqueness in Proposition 3.9, we have

wo(z) =wi(x) for x € =Z1(Bo,v)NE1(B1, 1),

which yields the first identity in (4.46). A similar argument shows that the second identity
in (4.46) is true.
Finally, the estimate (4.31) follows from (4.36), (4.39), and (4.45). O

From a similar argument as for the proof of Lemma 4.4, we obtain the following.

Lemma 4.5 Let the assumptions in Theorem 4.2 hold. Then there is a 0 < w < b
such that problem (4.1) admits a unique solution w € W 22(Q(0,w)) with the data (4.4)
where s € (0,w), and (4.5) to satisfy

”w”2w2,2(9(0,w)) < C(”Q0”2w2»2(07a) + ”‘J1”2wl»2(07a) + leuzw2»2(o7b)
el 22 + 1l wi2g)): (4.47)

We are now ready to prove Theorems 4.1 and 4.2.
Proof of Theorem 4.1 Let N be the set of all 0 < w < b such that the claims in
Lemma 4.4 hold. We shall prove
beN.

Let wp = sup, ey w- Then 0 < wy < b. Thus there is a unique solution w € C™(Q(0,wp))
to (4.1) with the data (4.4), where s € [0,wp), and (4.5).

Next we show that wy = b by contradiction. Let 0 < wp < b. By an argument
as for Lemma 4.4, the solution w € C™!(Q(0,wp)) can be extended such that w €
C™(Q(0,wp)). Then by Lemma 4.4 again, w can be extend outside C™(Q(0,wy)),
which contradicts with the definition of wyg.

Let Ao = a(0,wyp), 00, to = 0, t1, t2, and t3 = a be given as in the proof of Lemma 4.4.

Let ¥o(p) = = : B(\g,00) — IR? be an asymptotic coordinate system with 1y(\g) =
(0,0) such that

Yola(t,wy)) = (t,—t) for t € [0,ts],

Ci(s) > 07 (é(S) >0 for se€ [WO - 607(“)0]7

where 1y (a(0,s)) = (¢1(s),C2(s)).

For € > 0, let
Bo(s) = o(a(0, s +wo —€)) = (Bor(s), Bo2(5)), 0(t) = Y(a(t,wo —¢€)) = (Y01(t),702(t)),
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for s € [0, 2], where By;(s) = (i(s + wog —¢) for i =1, 2. We fixed € > 0 small such that

wot+e<b, Boile) <olt2), Y01 (t) >0, ~pa(t) <O.

Let =1(B0,70) be given as in (4.33). Clearly,

{a(t,wo) |t €[0,t2] } C v5 " (E1(Bo,0))-

From Proposition 3.9, we can extend a solution w such that w is C*! on the segment
{a(t,wy + )|t € [0,t2] }. Repeating Steps 2-4 in the proof of Lemma 4.4, the solution
w can be extended such that w is C*! on the segment { a(t,wp + ¢) |t € [0,a] }, which
contradicts the definition of wy. The proof is complete. O

Proof of Theorem 4.2 A similar argument as in the proof of Theorem 4.1 completes
the proof. O

To prove Theorems 4.3 and 4.4, we need the following lemmas.

Lemma 4.6 Let the assumptions in Theorem 4.3 hold. Then there are 0 < w < b and
C > 0 such that for all solutions w € W 2%(Q) to problem (4.1)

HwH2W2,2(Q(07w)) < C[||f||2wl’2(g) + (2, w)], (4.48)
where Q(0,w) and T'(Q, w) is given in (4.30) and (4.13), respectively.

Proof We keep all the notion in the proof of Lemma 4.4. Let w > 0 be given in Step
4. Then

wo(z) =wo zpo_l(x)

is a solution to problem (3.1) on the region =; (5o, o), where Z1(8o,70) is given in (4.33)

and

Bo(s) = Yo(a(0,8)) = (Bo1(s), Boz2(s)) for s€(0,50), 70(t) =1o(a(t,0)) = (¢, —t)

for t € [0, t2].
It follows from (4.34) and (4.35) that

[ID2w(Tiau(t,0), Tiau(t, 0))] = [worz, 0 70(8)]| < CIVwg 0 30(1)]
Similarly, we have
1D2w(Tz01(t,0), Tas(t, 0)| = [wozses © Y0(B)]| < CIVwg 0 30(t)]
[1D2w(Tios (0, 5), Tiars(0,9))] — [w0e1, © Ho(5)|5EE (5)] < €|V o fo(s)],

1D?w(T304(0, 5), o015 0, 9))| = [t022, © Bo(5) |53 (5)| < C[Vwg o fo(s)]-
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Using the above relations, we obtain
F(’Y(),wo) —i—Fg(ﬂo,wo) < CF(Q,U)), (4.49)

where I'(vp, wg) and T'y(Bp, wo) are given in (3.18) and (3.49), respectively.
Applying Proposition 3.11 to Z1(fp,v0) and using (4.49), we have

P22y < Cllwolyez C(lf13y v + (2 w)).

(E1(Bov0)) =
Using (3.16) by a similar argument as for the above estimates, we obtain

||w||W22( < O([|f3yre +T(Q,w)), for i=1,2.
Thus the estimate (4.48) follows. O

Lemma 4.7 Let the assumptions in Theorem 4.3 hold. Then there is C' > 0 such that
for all solutions w € W 22(Q) to problem (4.1)

D(Q,w) < O(lwll3y 22y + I3y 12¢0)- (4.50)

Proof Step 1 We claim that for each ¢ > 0 small, there is C. > 0 such that

Z [ D wo a0 < Clluliysag + I Rys) (45

Let tg € (0,a) be fixed and let pg = a(tp,0). Let ¢ : (0,¢) — Q be such that

¢(0) =po, ¢'(0) = —p(po),

where u(pg) is the noncharacteristic normal at the boundary point pg outside Q. From
Lemma 4.3, there are 0 < o¢p < min{tp,a — tp} and an an asymptotic coordinate system
Y : B(po,00) — IR? with 1(pg) = (0,0) such that

Pla(t +1t9,0)) = (t,—t) for t € (—o9,00), C(1(s) >0, ¢(s)>0 for se(0,¢),
where ¥(C(s)) = (C1(s), C2(s))- Set
Qe = QNP THE(Y)],

where

y(t) = (t,—t), E()={z] —z2<x1 <01, —oa <22 <01}

Using (4.26) for the region €,,, we obtain

Triou(t 4+ to,0)) = 0x1, Taau(t + to,0) = —0xo for t € (—0g,00),
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where the operators 7; are given in (4.2).
Observe that wo(z) = w o~ (x) is a solution to problem (3.1) on the region E(y).
Applying Proposition 3.4, we have

01/2 .
Z/ ’Djwoa t+tg, s )‘ dt < CZ/ |V w(t, —t)‘2dt

01/2

< C(llwolPy sy + 17 0 By a0 ><0<ku2w2,zm 113y vy

Thus the estimates (4.51) follows from the finitely covering theorem. By a similar

argument, we have

b—e
Z/ D9w o afty, 5)Pds < Celluwllyazgy + 1 f 3z k=12,
€
where t; = 0 and to = a, which particularly imply that

b—e
/8 ()2 (b = 8)ds < Ce(llwlyeziqy + 113y 12)s k=1.2,. (4.52)

Step 2 We treat the estimates at the angular points «(0,0), «(0,b), «(a,0), and
a(a, b), respectively.

Consider the angular «(0,b) first. Let € > 0 be given small. From Lemma 4.3, there
is an asymptotic coordinate system 1 : B(a(0,b),00) — IR? with ¥(a(0,b)) = (0,0) such
that

At = blalt,b) = (t—t) for te 0],

B(s) = 1(a(0,b = 5)) = (Bi(s), Ba(s)),  Bi(s) >0, Pa(s) >0 for sel0,e].
Consider the region Q) = Q2N ¢~ 1[Z1(8,7)]. From (4.26), we have

Toas(0,b — 5) = —B5(s)0xe  for s € (0,¢).
It follows from Proposition 3.11 that
b 102 —1)2 —1)12
/b—al ()7 (b = s)ds < ClIf e ¥ My raz, () + W0V o (5.)
< O(1f 13y 12 + w3y 2.2)-

Similarly, we can treat the estimates at the other angular points. Thus estimate (4.50)
follows by combing the above estimates with those in Step 1. O
Proof of Theorem 4.3 Let R be the set of all 0 < w < b such that estimate (4.48)

is true. Set wp = sup,er w. By Lemmas 4.6 and 4.7, it is sufficient to prove

wo € R.

46



By following the proof of Theorem 4.1, we obtain a £ > 0 small such that
wo
01y sy < CLL (PAG8) P ) = s+ Do 0 =), 0) 1yl

where I'(a(+,wo — ), w) is given in (4.14). On the other hand, we fix 0 < £; < ¢ and apply
Lemma 4.7 to the region Q(wg — &,wp — £1) to obtain

F(a(gwo - E);w) S C[HwH%NZQ(Q(wO_a wo— 81 + ”f”2va 2(9(0.)0—870.1()—81))]
< Olllwl3y 22 (0wm—er) T 1 122 (000 —ery] ( DY (4:48))
< C[lIf I3y 12 + (2 w)].

By Lemma 4.6, we have wg € R. By Lemma 4.7, we obtain wg = b. O

Proof of Theorem 4.4 Let w € T(2) and € > 0 be given. We shall find a w € Hz(Q2)
such that

||w — 1Z)H2W2,2(Q) <e.

Let p1, p2, and qo, q1 be given in (4.4) and (4.5), respectively. Towards approximating
w by H(Q) functions, we first approximate its traces qg, q1, p1, and ps. From Theorem 4.3,
those traces are regular except for the angular points «(0,0), «(0,b), a(a,0), and «(a,b).
Next, we change their values near those angular points to make them regular and to let
the 1th order compatibility conditions hold at «(0,0) and «(a,0).

Step 1 Consider the point «(0,0). Let 0 > 0 be given small by Lemma 4.3 such that
there is an asymptotic coordinate system v : B(a(0,0),0) — IR? with ¥(«(0,0)) = (0,0)
such that

P(al(t,0)) = (¢t,—t) for te[0,t0),
B(s) = ¥(a(0,5)) = (B1(s), B2(5)),  B1(0) = B3(0),  Bi(s) >0, By(s) >0 for s € 0,t),
for some 0 < tgp < min{a,b}/4 small.

From Lemma 4.3, we have
p1(8) = wy, 0 B(s)B4(s) for s € 0,t0],

Qo(t) = we, (t, —t) — way (t, —t),  —V2q1(t) = wy, (t, —t) + wy, (¢, —1) (4.53)

for t € (0,t9). where w(z) = w o 1~!(x). Moreover, we have
2w(7104t, ﬂat) -D w(axla axl) - wxlxl( ) Damlaxl( )(ta _t) = P11 + ¢17

and
*w(Taar, Tao) = @22 + ¢o.
By differential the equations in (4.53) in ¢ € (0, ty) and using the formulas (4.1) and (4.18),

we obtain

1

e11= [0 (t) — V241 (t)], @22 = Z[al(t) + V24, (t)] for t € (0,t),

N |
N =
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¢1 = some frist order terms of w, ¢ = some frist order terms of w.

By Theorem 4.3
P1 S W1’2(07t0)7 q0 € W172(07t0)7 q1, Q011t1/2, $22, ¢17 ¢2 S L2(07t0)-
Thus

gt = (p11 + @)t/ € L2(0,t0),  ¢4tY? = —=(pa2 — o11)tY? € L2(0,1).

Sl

We also need the following.

Lemma 4.8 Let
(1) = Lab(®) + VIn(D)] for 1 (0.1)

Then z € C[0,to] and
p1(0) + 2(0)B3(0) = 0. (4.54)

Proof of Lemma 4.8 It follows from 2’ = p99 € L?(0,ty) that z € C[0,to).

We have
. BaoBy (t)
Wy, 0 B0 By (t) — wy, (t,—t) = / Wy, (T, S)ds,

—t

from which we obtain
. ) . B20B, (1) )
02y 080 B (1) = way (6,0 < (B0 BT O +4) [ st 9.
For € > 0 given, let ¥ € [¢/2,¢] be fixed such that
|w902 ° 5 ° 51_1(19) = Wyy (197 _19)|2 = inf |w$2 ° 5 ° ﬁl_l(t) - wa(tv _t)|2'
tele/2,e]

Then
. , 2 . e B2oBy (D) )
s 0 B0 57 0) w0 = < Z(ro BT +el [T a0,
o)

e P08y (1) N
< 0/ / |Wayay (t, 8)|°ds  for t € [e/2,¢e].
0 J—t

Thus, w € W22(Q) implies, by (4.53), that (4.54) holds.

Let 0 < € < ty given small. We shall construct ¢y and ¢; to satisfy the following.

(1) qo(t) = qo(t), 1 (t) = qu(t) for t € [¢, a);
(2) Go € W2%(0,a) and ¢; € W 2(0,a);
(3) The following 1th order compatibility conditions hold at the point «(0, 0),

2p1(0) + [G0(0) + v241(0)]B3(0) = 0;
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(4) If w € Y(Q) is such that
w o aft,0) = go(t), %(Dw, (T2 — T1)aw) o a(t,0) = ¢1(t) for t e (0,a),

<DZD,7EO£S> © a(O,s) = pl(S)’ <D’LZ),'TQO(S> © O‘(O’ S) = p2(5) for se€ (07 b)7

then
rQw-w)—0 as e—0.

For the above purposes, we define

o { o0(e) + [ah(to) — J2° e11ds — [3° paads]t + [5(t — s)paa(s)ds, t € [0,e),
Qo(t) =
q(t) tE€leal,

and
an(t) = qu(to) + 5 [ pruds — 75 [ pmds,  t € (0,¢),
q(t), telea,
where

o0(e) = qo(e) — qf(e)e + /0€ s@aa(s)ds.

Clearly, (1) and (2) hold for the above ¢ and §;. Since

to to
qo(to) — p11ds— ; poads = qj(e) /gpgg q0(e)—z(e)+2(0), for te(0,¢),

)

% /;O p1ds — % /tto wa2ds = q1(e) — qu1(to) + %[z(t) — 2(e)],

using (4.54), we have

2p1(0) + [G0(0) + v241(0)]85(0) = gh(e) + V241 (e) — 22(¢) = 0.

Next, we check (4). It follows that

lq0(t) — dolt y/ / des+/ (t — ) pan(s)ds]?
<2e—t+tn- / lgo (T |2Td7'—|— —e / lpaz(s)Pds  for te (0,¢).
In addition,
/ Al 2 c 2 € ‘ 2
i) = b = | [ ou()as? < ) [Clon)Psds for 1 0.0)
Similarly, we have

lq1(t) — qu(t)]> < (ln%) /06 lp11(5)>sds  for t € (0,¢).
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Using (4.14) and the above estimates, we have

1 €
T((.0),w =) =3 ID(w =)o Olfaoo + [ 1% = 0)(Tiar, i)t

+|D2 — ) (Taa, Tacw)|*(a — t)]dt
<€ [ao(s) = ) + lah(t) = (OF +1an(®) ~ (0

o1 — PPt + w22 — Poo|)dt

< C/()E[(|qg(t)|2 + @11 (8)*)t + | (t)[*]dt, (4.55)
where ) )
P11 = 5[@6’(’5) — V23 (1)] =0, o= 5[@6’@) + V24 (1)] = 2.

Thus (4) follows.

Step 2 As in Step 1, we change the values of ¢y and ¢; near the point a(a,0) to get go
and ¢; in W 2?2 (0,a) and in W 1,2 (0, a), respectively, such that the 1th order compatibility
conditions at a(a,0) hold to approximate gy and g;. Then we change the values of p; and p,
near the points «(0,b) and a(a, b), respectively, such that pi, po € W 52(0,b) approximate
p1 and po, respectively. Thus the proof completes from Theorem 4.2. O

5 Proofs of Main Results in Section 1

Proof of Theorem 1.1 Let Q C M be a noncharacterisic region of class C*!. For

Ue chliq, T2 ., ) given, we consider problem
symVy=U on Q. (5.1)

(1) Consider problem
(D*v,Q* ) = P(U) — 2vktr JJI+ X(v) for z€Q, (5.2)

where P(U) and X are given in (2.26) and (2.27), respectively, with the boundary data

(Dv, Taas) o (0, s) = (Dv, Taas) o aa,s) =0 for s € (0,b), (5.3)
voa(t0) = %(DU, (T2 — T)ag) o (t,0) =0 for te (0,a), (5.4)

where 7; and 73 are given in (4.2).
Since
PU) e L*(Q), X e L>(Q),

it follows from Theorem 4.1 that problem (5.2) with the data (5.3) and (5.4) has a unique
solution v € C%1(Q) with the bounds

ol gorq) < ClUN ey, - (5.5)
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From Theorem 2.1, there is a solution y € C%1(Q, R3) to (5.1). Let
w=(y,n), W=y—wn.

Then w € C%1(Q). Tt follows from [12, lemma 4.3] that W € C11(Q,T) and (1.2) holds.
(2) Let Q€ C™2 and U € ¢™F5Y(Q, T2 ) be given for some m > 1. Let

sym
() =aq()=0 for te]l0,al]

Let Oy (O, O,P(U)) (t) be given in the formula (4.8) for ¢t € [0,a] and 1 <k <m — 1. We

define
i =1 " f 0,5] (5.6)
i(s) = ors or s€|0,b], j=1, 2 5.6
’ ln:ll & l5t1)8l7 m > 2,

where py)(tj) are given by the right hand sides of (4.10) for 1 </ <m—1land 1 <j <2,
where g9 = ¢1 = 0 and f = P(U). Clearly, the mth compatibility conditions hold true for
the above qo, q1, ¢1, ¢2, and P(U). From Theorem 4.1, there is a solution v € C™(Q)

to problem (5.2) with the data

(Dv, Taas) o (0, 8) = ¢1(s), (Dv,Taas) o afa,s) = ¢ao(s) for s € (0,b),
1
V2

Moreover, it follows from (4.11) and (2.26) that

voa(t,0) = —=(Dv, (T2 — T1)au) o a(t,0) =0 for t € (0,a).
[0l gmaggy < ClUNgmeri 12,

which implies the estimate (1.3) is true. O
Proof of Theorem 1.2 Let

V=W+wn, w= (V).

The regularity of
sym DW = —wIl € W22(Q, R?)

implies
W e W32(Q,T).

Let Fq, E5 be a frame field on ) with the positive orientation and let
v = %[VV(Eg,El) V(B ).
From Theorem 2.1 v is a solution to problem
(D0, Q*TI) = —2uktr JJI+ X(v) for z€Q, (5.7)
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where rtr Il € C™1(Q) and X = (Vi) 'Dk € C™ HHQ,T), where CHH(Q,T) =
L>(Q,T).
It is easy to check that

VgV =Dg,W 4+ wVgi+ [Ei(w) —II(W, E;)]i for i=1, 2.
Thus
v = DW (Ey, E\) — DW(E1, Es) € W22(Q).

From Theorems 4.4, 4.1, and 4.2, there are solutions v, € C™1(Q) to problem (5.7) such
that
Jimf|lon, = vflyw2z(g) = 0.
Let
U, = —Q(Vit) 'Dv,, u=—-Q(Vi) 'Duv.

Then u, € C™ L1(Q).
From Theorem 2.1 (see (2.11)), there exist V,, € C™(Q, IR?) such that

/=, B Enn
{vElvn a2 + (un, V)R, n=1,2 - (5.8)

VEQVTL = —v, B + <uTL7 E2>’fi,

Define
A A t A
Vi(a(t, s)) = V(a0 5)) — Vi(c(0,0)) + V(a(0,0)) +/ Vo Vpdt for n=1,2, -
0
Thus V,, € V(Q, R?) N C™L(Q, IR3)) satisfy (1.4). m

Proof of Theorem 1.3 As in [5] we conduct in 2 < ¢ < m. Let

-1
u: =Y elw;

=0

be an (i — 1)th order isometry of class C2(m~"+D+L1(Q [R3) where wo = id and w; =V

for some 7 > 2. Then
k
ZVijVwk_j =0 for 0<Ek<i-—1.
§=0
Next, we shall find out w; € C2("=9+L1(Q) IR3) such that
e = Us + Eiwi

is an ith order isometry. From Theorem 1.1 there exists a solution w; € C2m=)+11 (Q, R?)

to problem
1 i—1
sym Vw; = 5 sym Z sym VijVwi_j
j=1
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which satisfies

i—1
lwill 2m-i+11g sy < ClID_ sym Vijvwi—j”c?<mﬂ+1%1(ﬁ7m3)
j=1
i—1
<C Z [Jw; l C2(m—i+D+11 () [R3) [|wi—j]| C20m—i+D+1,1 () j3)-
j=1
The conduction completes. O

Theorem 1.4 will follow from the density of the Sobolev space and Proposition 5.1

below.

Proposition 5.1 Let Q@ C M be a noncharacteristic region of class C%'. Then for
Uec W32(Q,T2 ) there exits a solution w € W 22(Q, IR?) to problem

sym

sym Vw = U.

Proof Consider problem (5.2) with the data (5.3) and (5.4). By (4.9) the first or-
der compatibility conditions hold. Since P(U) € W 1%(Q), the proposition follows from
Theorems 4.2 and 2.1. O

Proof of Theorem 1.7 A recovery sequence can be constructed, based on Theorems
1.2 and 1.3, as in the proof of [5, Theorem 6.2]. We present a skeleton of the proof. For
the further details, see [5].

From the density of Theorem 1.2 and the continuity of the functional I with respect
to the strong topology of W22 we can assume V € V(Q, R?*) N C?™~L1(Q, R3).

Step 1 Let e = \/;7 so e — 0, as h — 0, by assumption (1.6). Therefore, by Theorem
1.3, there exists a sequence w, : Q — IR3, equibounded in C11(Q, IR?), for all h > 0,

ue = id + eV + 2w,
is a mth isometry of class C!. Then
™t = o(Veh).

Consider the sequence of deformations uy € W 12(Qy, IR?) defined by

2
up(z + 1) = us(x) + ti(x) + EEdh(l’) for z+tii(x) € Qp,

where 7i.(x) denotes the unit normal to u.(Q) at u.(z) and d, € W *°(Q, IR3) is such
that limy, o h'/?||dp|| 1.0 = 0 and

}lLiH?(l) dp(x) = 2¢(z, sym (V(AR) — All)tan) for z € Q,
%
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where c¢(z, Fian) denotes the unique vector satisfying Qo(x, Fian) = Q3(Fian + ¢ ® 7i(x) +
fi(x) ® ¢). We have
fie(z) = 7i(x) + cAni + O(e?).

Step 2 We have

Eh(uh) 1 h0/2/ h . th t2h?
= w t 14+ —tr JJI+ —
oh el J—noj2 Jo (Vay" (z + tii(x))) (1 + I rgll+ 12 K

)dgadt,
where Vy,y"(x + tii(z)) = Vuy(z + %ﬁ) Let
K"z +ti(x)) = (Viy") T Vi — 1d.

Using the formulas VZu,Vu, = Id + O(e™) = Id + o(Vel) and he = VP, we have

Veh h t
KM = 2t ¢ (Id + t—H)_l sym (V(Ar) — AI)(1d + —hH)_l + o(Veh),
ho ho ho
h
(KMt ity = 2" T (e, dy) + 0 (VeR),
0
tvel th
(Kha, /) = he (Vue(Id + M)y dy) + o (Vel) for a e T
0 0
Then
i Ko, _ b G (AR) — AT i ()
lim oV T sym 7l in ho)s
K'i 2t

}13_)1110 W = h—oc(gn7 sym (V(Af) — All)tan) in  L(Qp,).
Step 3 We have

(Vyyn) _ 1 K" 1 h2 1 h|2
DAVYIh) _ Zou(C  _O(K o (|KM?).
I - S0u(o 0K ) + o (KM
Then the limit (1.8) follows from Step 2. O
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