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Abstract We perform a detailed analysis of the solvability of linear strain equations

on hyperbolic surfaces under a technical assumption (noncharacteristic). For regular

enough hyperbolic surfaces, it is proved that smooth infinitesimal isometries are dense

in the W 2,2 infinitesimal isometries and that smooth enough infinitesimal isometries

can be matched with higher order infinitesimal isometries. Then those results are

applied to elasticity of thin shells for the Γ-limits. The recovery sequences (Γ-lim

sup inequlity) are obtained for dimensionally-reduced shell theories, when the elastic

energy density scales like hβ , β ∈ (2, 4), that is, intermediate regime between pure

bending (β = 2) and the von-Karman regime (β = 4), where h is thickness of a shell.
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1 Introduction and main results

Let M ⊂ IR3 be a surface with a normal ~n and let the middle surface of a shell be an

open set Ω ⊂M. Let T k(M) denote all the k-order tensor fields onM for an integer k ≥ 0.

Let T 2
sym (M) be all the 2-order symmetrical tensor fields on M. For y ∈ H1(Ω, IR3), we

decompose it into y =W +w~n, where w = 〈y, ~n〉 and W ∈ T (Ω). For U ∈ T 2
sym (Ω) given,
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linear strain tensor of a displacement y ∈ W 1,2(Ω, IR3) of the middle surface Ω takes the

form

symDW + wΠ = U for x ∈ Ω, (1.1)

where D is the connection of the induced metric in M, 2 symDW = DW + DTW, and

Π is the second fundamental form of M. Equation (1.1) plays a fundamental role in the

theory of thin shells, see [5, 6, 7, 8] . When U = 0, a solution y to (1.1) is referred

to as an infinitesimal isometry. Under a technical assumption (noncharacteristic) on

hyperbolic surfaces, we establish existence, uniqueness, and regularity of solutions for

(1.1). For regular enough hyperbolic surface that satisfies a noncharacteristic assumption,

it is proved that smooth infinitesimal isometries are dense in theW 2,2(Ω, IR3) infinitesimal

isometries (Theorem 1.2) and that smooth enough infinitesimal isometries can be matched

with higher order infinitesimal isometries (Theorem 1.3). This matching property is an

important tool in obtaining recovery sequences (Γ-lim sup inequlity) for dimensionally-

reduced shell theories in elasticity, when the elastic energy density scales like hβ , β ∈ (2, 4),

that is, intermediate regime between pure bending (β = 2) and the von-Karman regime

(β = 4). Such results have been obtained for elliptic surfaces [8] and developable surfaces

[5]. A survey on this topic is presented in [6]. Here we shall establish the similar results

for hyperbolic surfaces in Theorems 1.6-1.7.

We state our main results for the hyperbolic surfaces as follows.

A region Ω ⊂M is said to be hyperbolic if its Gaussian curvature κ is strictly negative.

We assume throughout this paper that

κ(x) < 0 for x ∈ Ω.

We introduce the notion of a noncharacteristic region below, subject to the second funda-

mental form Π of the surface M.

Definition 1.1 A region Ω ⊂M is said to be noncharacteristic if

Ω = {α(t, s) | (t, s) ∈ (0, a) × (0, b) },

where α : [0, a]× [0, b] →M is an imbedding map which is a family of regular curves with

two parameters t, s such that

Π(αt(t, s), αt(t, s)) 6= 0, for all (t, s) ∈ [0, a]× [0, b],

Π(αs(0, s), αs(0, s)) 6= 0, Π(αs(a, s), αs(a, s)) 6= 0, for all s ∈ [0, b],

Π(αt(0, s), αs(0, s)) = Π(αt(a, s), αs(a, s)) = 0, for all s ∈ [0, b].
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Consider a surface given by the graph of a function h : IR2 → IR,

M = { (x, h(x)) |x = (x1, x2) ∈ IR2 }.

Under the coordinate system ψ(p) = x for p = (x, h(x)) ∈M,

∂x1 = (1, 0, hx1(x)), ∂x2 = (0, 1, hx2(x)), ~n =
1

√

1 + |∇h|2
(−∇h, 1),

Π = − 1
√

1 + |∇h|2
∇2h, κ =

hx1x1hx2x2 − h2x1x2

(1 + |∇h|2)2 .

(i) Let h(x) = h1(x1)+h2(x2) where hi : IR→ IR are C 2 functions with h′′1(x1)h
′′
2(x2) <

0. Let σi ∈ IR for 1 ≤ i ≤ 4 with σ1 < σ2 and σ3 < σ4. Then

Ω = { (x, h(x)) |σ1 < x1 < σ2, σ3 < x2 < σ4 }

is noncharacteristic.

(ii) Let h(x) = x31 − 3x1x
2
2. Then

κ(p) < 0 for p = (x, h(x)), x ∈ IR2, |x| > 0.

For ε > 0 and σ1 < σ2 given

Ω = { (x, h(x)) | ε < x1 <
1

ε
,
σ1
x1

< x2 <
σ2
x1

}

is noncharacteristic. However, there exists a region on M for the h, that is not a nonchar-

acteristic. For example, a region

Ω = { (x, h(x)) | a < |x| < b }

is not noncharacteristic, where 0 < a < b and |x| = x21 + x22, since its boundaries |x| = a

and |x| = b are not noncharacteristic curves.

Moreover, if Ω is given by a single principal coordinate, i.e.,

Ω = {α(t, s) | (t, s) ∈ (a, b) × (c, d) },

where

∇∂t~n = λ1∂t, ∇∂s~n = λ2∂s, λ1 > 0, λ2 < 0,

and ~n is the normal of M, then Ω is a noncharacteristic region clearly. Since a principal

coordinate exists locally [14], a noncharacteristic region also exists locally.

The notion of the noncharacteristic region is a technical assumption and a different

region is given in [13]. In general, for U ∈ T 2
sym (Ω) given, there are many solutions to

(1.1). The aim of this assumption is to help us choose a regular solution for each U. In
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fact, equation (1.1) can be translated into a scalar second order partial differential equa-

tion (see Theorem 2.1 later), which is elliptic for the elliptic surface [8], parabolic for the

developable surface with no flat part [5], and hyperbolic for the hyperbolic surface, respec-

tively. Here we assume Ω to be a noncharacteristic region in order to set up appropriate

boundary conditions such that the scalar equation is to be well-posedness (see Theorem

4.1 and (4.1)-(4.5)). The main observation is that if the values of a solution v to the hyper-

bolic equation (2.25) and its derivatives along a noncharacteristic curve are preset, then

the solution v is uniquely determined in some neighborhood of this curve. We first solve

(2.25) locally and then paste up the local solutions to yield a global one (see Lemma 4.4),

where the noncharacteristic assumption is such that this produce is successful. We believe

the corresponding results hold true for a more general region but some more complicated

discusses may be involved.

We say that a noncharacteristic region Ω ⊂M is of class Cm,1 for some integer m ≥ 0

if the surface M is of class Cm,1 and all the curves α(0, ·), α(a, ·), and α(·, s) for each

s ∈ [0, b] are of class Cm,1. The points α(0, 0), α(a, 0), α(0, b), and α(a, b) are angular

points of Ω even if Ω is smooth.

Theorem 1.1 Let Ω be a noncharacterisic region of class C 2,1. For U ∈ C 1,1(Ω, T 2
sym ),

there exists a solution y =W +w~n ∈ C 0,1(Ω, IR3) to equation (1.1) satisfying the bounds

‖W‖C 1,1(Ω,T ) + ‖w‖C 0,1(Ω) ≤ C‖U‖C 1,1(Ω,T 2
sym ). (1.2)

If, in addition, Ω ∈ Cm+2,1, U ∈ Cm+1,1(Ω, T 2
sym ) for some m ≥ 1, then

‖W‖Cm+1,1(Ω,T ) + ‖w‖Cm,1(Ω) ≤ C‖U‖Cm+1,1(Ω,T 2
sym ). (1.3)

Remark 1.1 For the solvability of (1.1), the noncharacterisic assumption of Ω can

be relaxed. Let Ω be not a noncharacterisic region but there be a noncharacterisic one Ω̂

such that Ω ⊂ Ω̂. Then Theorem 1.1 still holds true. In fact, we can extend U such that

Û ∈ Cm+1,1(Ω̂, T 2
sym ) with the estimate

‖Û‖Cm+1,1(Ω̂,T 2
sym ) ≤ C‖U‖Cm+1,1(Ω,T 2

sym ).

Then we solve (1.1) on Ω̂ to obtain a solution y for which (1.3) still holds.

For y ∈ W 1,2(Ω, IR3), we denote the left hand side of equation (1.1) by sym∇y. Let

V(Ω, IR3) = {V ∈ W 2,2(Ω, IR3) | sym∇V = 0 }.

Theorem 1.2 Let Ω be a noncharacteristic region of class Cm+2,1 for some inte-

ger m ≥ 0. Then, for every V ∈ V(Ω, IR3) there exists a sequence {Vk } ⊂ V(Ω, IR3) ∩
Cm,1(Ω, IR3) such that

lim
k→∞

‖V − Vk‖W 2,2(Ω,IR3) = 0. (1.4)
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A one parameter family {uε }ε>0 ⊂ C 0,1(Ω, IR2) is said to be a (generalized) mth

order infinitesimal isometry if the change of metric induced by uε is of order εm+1, that

‖∇Tuε∇uε − g‖L∞(Ω,T 2) = O(εm+1) as ε→ 0,

where g is the induced metric of M from IR3, see [5]. A given mth order infinitesimal

isometry can be modified by higher order corrections to yield an infinitesimal isometry

of order m1 > m, a property to which we refer to by matching property of infinitesimal

isometries, [5, 8]. This property plays an important role in the construction of a recover

sequence in the Γ-limit for thin shells.

Theorem 1.3 Let Ω be a noncharacteristic region of class C 2m+1,1. Given V ∈
V(Ω, IR3) ∩ C 2m−1,1(Ω, IR3), there exists a family {wε }ε>0 ⊂ C 1,1(Ω, IR3), equibounded

in C 1,1(Ω, IR3), such that for all small ε > 0 the family:

uε = id + εV + ε2wε

is a mth order infinitesimal isometry of class C 1,1.

Let A : Ω → IR3×3 be a matrix field. We define A ∈ T 2(Ω) by

A(α, β) = 〈A(x)α, β〉 for α, β ∈ TxΩ, x ∈ Ω.

For V ∈ V(Ω, IR3) given, there exists a unique A ∈ W 1,2(Ω, T 2) such that

∇αV = A(x)α for α ∈ TxM, A(x) = −AT (x), x ∈ Ω. (1.5)

The finite strain space is the following closed subspace of L2(Ω, T 2
sym )

B (Ω, T 2
sym ) = { lim

h→0
sym∇wh |wh ∈ W 1,2(Ω, R3) }

where limits are taken in L2(Ω, T 2
sym ), see [3, 7, 9]. B (Ω, T 2

sym ) and V(Ω, IR3) are two

basic spaces for the Γ-limit functional. A region Ω ⊂M is said to be approximately robust

if

(A2)tan ∈ B (Ω, T 2
sym ) for V ∈ V(Ω, IR3),

where

(A2)tan(α, β) = 〈A2α, β〉 for α, β ∈ TxΩ, x ∈ Ω.

If Ω is approximately robust, then the Γ-limit functional can be simplified to the bending

energy. An approximately robust surface exhibits a better capacity to resist stretching so

that the limit functional consists only of a bending term, see [7].

Theorem 1.4 Let Ω ⊂ M be a noncharacteristic region of class C 2,1. Then Ω is

approximately robust.
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Application to elasticity of thin shells Let ~n be the normal field of surface M.

Consider a family {Ωh }h>0 of thin shells of thickness h around Ω,

Ωh = {x+ t~n(x) |x ∈ Ω, |t| < h/2 }, 0 < h < h0,

where h0 is small enough so that the projection map π : Ωh → Ω, π(x + t~n) = x is well

defined. For a W 1,2 deformation uh : Ωh → IR3, we assume that its elastic energy (scaled

per unit thickness) is given by the nonlinear functional:

Eh(uh) =
1

h

∫

Ωh

W (∇uh)dz.

The stored-energy density function W : IR3 × IR3 → IR is C 2 in an open neighborhood

of SO(3), and it is assumed to satisfy the conditions of normalization, frame indifference

and quadratic growth: For all F ∈ IR3 × IR3, R ∈ SO (3),

W (R) = 0, W (RF ) =W (F ), W (F ) ≥ C dist 2(F, SO(3)),

with a uniform constant C > 0. The potential W induces the quadratic forms ([1])

Q3(F ) = D2W (Id)(F,F ), Q2(x, Ftan) = min{Q3(F̂ ) | F̂ = Ftan }.

We shall consider a sequence eh > 0 such that:

0 < lim
h→0

eh/h
β <∞ for some 2 < β ≤ 4. (1.6)

Let

βm = 2 + 2/m.

Recall the following result.

Theorem 1.5 [7] Let Ω be a surface embedded in IR3, which is compact, connected,

oriented, of class C 1,1, and whose boundary ∂Ω is the union of finitely many Lipschitz

curves. Let uh ∈ W 1,2(Ωh, IR
3) be a sequence of deformations whose scaled energies

Eh(uh)/eh are uniformly bounded. Then there exist a sequence Qh ∈ SO (3) and ch ∈ IR3

such that for the normalized rescaled deformations

yh(z) = Qhuh(x+
h

h0
t~n(x))− ch, z = x+ t~n(x) ∈ Ωh0 ,

the following holds.

(i) yh converge to π in W 1,2(Ωh0 , IR
3).

(ii) The scaled average displacements

Vh(x) =
h

h0
√
eh

∫ h0/2

−h0/2
[yh(x+ t~n)− x]dt
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converge to some V ∈ V(Ω, IR3).

(iii) lim infh→0Eh(uh)/eh ≥ I(V ), where

I(V ) =
1

24

∫

Ω
Q2

(

x, (∇(A~n)−A∇~n)tan
)

dg, (1.7)

where A is given in (1.5).

The above result proves the lower bound for the Γ-convergence. We now state the

upper bound in the Γ-convergence result for a smooth noncharacteristic region.

Since Ω is approximately robust (Theorem 1.4), Theorem 1.6 below follows from [7,

Theorem 2.3] immediately.

Theorem 1.6 Let Ω ⊂ M be a noncharacteristic region of class C 2,1. Assume that

(1.6) holds for β = 4. Then for every V ∈ V(Ω, IR3) there exists a sequence of deformations

{uh } ⊂ W 1,2(Ω, IR3) such that (i) and (ii) of Theorem 1.5 hold. Moreover,

lim
h→0

1

eh
Eh(uh) = I(V ), (1.8)

where I(V ) is given in (1.7).

Theorem 1.7 Let assumption (1.6) hold with 2 < β < 4. Let Ω ⊂M be a noncharac-

teristic region of class C 2m+1,1, where m ≥ 2 is given such that

eh = o (hβm).

Then the results in Theorem 1.6 hold.

The rest of the paper is organized as follows.

Section 2 reduces the linear strain equations (1.1) into one scalar second order equation

(2.25) (Theorem 2.1).

Sections 3 makes preparations to solve problem (2.25). The main observation is that

under an asymptotic coordinate system, this equation locally takes a normal form (Propo-

sition 4.1). Thus we studies solvability regions for the normal equation, in where existence,

uniqueness and estimates for solutions are presented.

Section 4 is devoted to solvability of the scalar equation (2.25). Using solvability of a

normal equation in Section 3, we first solve the scalar equation (2.25) locally and then path

the local solutions together (Theorems 4.1-4.4), where the noncharacteristic assumption

of the region Ω is needed to guarantee this process to be successful.

Section 5 returns to the main theorems in Section 1, and provides proofs for them,

using the main results in Section 4.
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2 Linear Strain Equations

We reformulate some expressions from [4, Section 9.2] to reduce (1.1) to a coordinate

free, scalar equation which can be solved by selecting special charts.

Let k ≥ 1 be an integer. Let T ∈ T k(M) be a kth order tensor field and let X ∈ T (M)

be a vector field. We define a k − 1th order tensor field by

iXT (X1, · · · ,Xk−1) = T (X,X1, · · · ,Xk−1) for X1, · · · , Xk−1 ∈ T (M),

which is called an inner product of T with X. For any T ∈ T 2(M) and α ∈ TxM,

tr g i αDT

is a linear functional on TxM, where tr g i αDT is the trace of the 2-order tensor field

i αDT in the induced metric g. Thus there is a vector, denoted by Λ(T ), such that

〈Λ(T ), α〉 = tr g i αDT for α ∈ TxM, x ∈M. (2.1)

Clearly, the above formula defines a vector field Λ(T ) ∈ T (M).

We also need another linear operator Q as follows. Let M be oriented and E be the

volume element of M with the positive orientation. Let x ∈M be given and let e1, e2 be

an orthonormal basis of TxM with the positive orientation, that is,

E(e1, e2) = 1 at x.

We define Q : TxM → TxM by

Qα = 〈α, e2〉e1 − 〈α, e1〉e2 for all α ∈ TxM. (2.2)

Q is well defined in the following sense: Let ê1, ê2 be a different orthonormal basis of TxM

with the positive orientation,

E(ê1, ê2) = 1.

Let

êi =
2

∑

j=1

αijej for i = 1, 2.

Then

1 = E(ê1, ê2) = α11α22 − α12α21.

Using the above formula, a simple computation yields

〈α, ê2〉ê1 − 〈α, ê1〉ê2 = 〈α, e2〉e1 − 〈α, e1〉e2.

Clearly, Q : TxM → TxM is an isometry and

QT = −Q, Q2 = − Id .
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Remark 2.1 Q : TxM → TxM is the rotation by π/2 along the clockwise direction.

The operator, defined above, defines an operator, still denoted by Q : T (M) → T (M), by

(QX)(x) = QX(x), x ∈M, X ∈ T (M).

For each k ≥ 2, the operator Q further induces an operator, denoted by Q∗: T k(M) →
T k(M) by

(Q∗T )(X1, · · · ,Xk) = T (QX1, · · · , QXk), X1, · · · , Xk ∈ T (M), T ∈ T k(M). (2.3)

Notice that orientability of M is necessary to operators Q or Q∗.

Let x ∈ Ω be given and let y ∈W 1,2(Ω, IR3). Set

p(y)(x) =
1

2
[∇y(e2, e1)−∇y(e1, e2)] for x ∈ Ω, (2.4)

where ∇y(α, β) = 〈∇βy, α〉 for α, β ∈ TxM, ∇ is the differential in the Euclidean space

IR3, and e1, e2 is an orthonormal basis of TxM with the positive orientation. It is easy to

check that the value of the right hand side of (2.4) is independent of choice of a positively

orientated orthonormal basis. Thus

p : W 1,2(Ω, IR3) → L2(Ω)

is a linear operator.

For U ∈ T 2
sym (M) given, consider problem

sym∇y(α, β) = U(α, β) for α, β ∈ TxM, x ∈M, (2.5)

where y ∈W 1,2(Ω, IR3).

Let x ∈ Ω be given. To simplify computation we use many times the following special

frame field: Let E1, E2 be a positively orientated frame field normal at x with following

properties

〈Ei, Ej〉 = δij in some neighbourhood of x,

DEi
Ej = 0, ∇Ei

~n = λiEi at x for 1 ≤ i, j ≤ 2, (2.6)

where ∇ is the connection of the Euclidean space IR3, D is the connection of M in the

induced metric, ~n is the normal field of M, and λ1λ2 = κ is the Gaussian curvature. It

follows from (2.6) that

Π(Ei, Ej) = λiδij , ∇Ei
Ej = −λiδij~n at x for 1 ≤ i, j ≤ 2, (2.7)

where Π(α, β) = 〈∇α~n, β〉 is the second fundamental form of M. We need to deal with the

relation between the connections ∇ and D, carefully.
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Let y ∈W 1,2(Ω, IR3) be a solution to problem (2.5). Then (2.5) reads















∇y(E1, E1) = U(E1, E1),

∇y(E2, E1) +∇y(E1, E2) = 2U(E1, E2),

∇y(E2, E2) = U(E2, E2),

in some neighbourhood of x. (2.8)

Let

v = p(y)

and define

u = ∇y(~n,E1)E1 +∇y(~n,E2)E2. (2.9)

We can check easily that u is a globally defined vector field on Ω. Moreover, v satisfies

v + U(E2, E1) = ∇y(E2, E1), v − U(E1, E2) = −∇y(E1, E2) (2.10)

in some neighbourhood of x. Therefore, {v, u} determines ∇αy for α ∈ TxM, that is,

{

∇E1y = U(E1E1)E1 + [v + U(E1, E2)]E2 + 〈u,E1〉~n,
∇E2y = [−v + U(E1, E2)]E1 + U(E2, E2)E2 + 〈u,E2〉~n.

(2.11)

The relation (2.11) can be rewritten as in a form of coordinate free

∇αy = i αU − vQα+ 〈u, α〉~n for α ∈ TxM, x ∈ Ω.

The function v and the vector field u are the new dependent variables and we proceed to

find the differential equations they satisfy.

Differentiating the first equation in (2.10) with respect to E2 and using the relations

(2.6) and (2.7), we have

E2(v) +DU(E2, E1, E2) = ∇2y(E2, E1, E2) +∇y(∇E2E2, E1)

= E1[∇y(E2, E2)]− λ2∇y(~n,E1)

= DU(E2, E2, E1)− λ2〈u,E1〉 at x, (2.12)

where the following formula has been used

∇2y(E2, E1, E2) = ∇2y(E2, E2, E1) at x.

Similarly, we obtain

E1(v)−DU(E1, E2, E1) = −DU(E1, E1, E2) + λ1〈u,E2〉 at x. (2.13)
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Combining (2.12), (2.13) and (2.6) yields

Dv = [DU(E1, E2, E1)−DU(E1, E1, E2)]E1 + λ1〈u,E2〉E1

+[DU(E2, E2, E1)−DU(E2, E1, E2)]E2 − λ2〈u,E1〉E2

= Q{[DU(E2, E1, E1) +DU(E2, E2, E2)]E2 − [DU(E2, E2, E2) +DU(E1, E1, E2)]E2

+[DU(E1, E2, E2) +DU(E1, E1, E1)]E1 − [DU(E1, E1, E1) +DU(E2, E2, E1)]E1}
+∇~nQu

= Q[Λ(U)−D( tr gU)] +∇~nQu for x ∈ Ω, (2.14)

where the operator Q : TxM → TxM is defined in (2.2), Λ(U) ∈ X (Ω) is given in (2.1),

and ∇~n : TxM → TxM is the shape operator, defined by

∇~nα = ∇α~n for α ∈ TxM, x ∈M.

Now we proceed to derive the differential equations for which the function v satisfies.

Since

κ = Π(E1, E1)Π(E2, E2)−Π2(E1, E2) in a neighbourhood of x,

from (2.6) and (2.7) we compute

Dκ = [DΠ(E1, E1, E1)λ2 + λ1DΠ(E2, E2, E1)]E1

+[DΠ(E1, E1, E2)λ2 + λ1DΠ(E2, E2, E2)]E2 at x. (2.15)

Using (2.14), (2.6) and (2.7), we have

D(∇~nQu)(E1, E1) = E1〈∇~nQu,E1〉 = E1〈u,QT∇E1~n〉
= Du(QT∇E1~n,E1) + 〈u,DE1(Q

T∇E1~n)〉
= λ1Du(E2, E1) +DΠ(E1, E1, E1)〈u,E2〉 −DΠ(E1, E1, E2)〈u,E1〉 at x, (2.16)

where the symmetry of DΠ is used. A similar computation yields

D(∇~nQu)(E2, E2) = −λ2Du(E1, E2)

+DΠ(E1, E2, E2)〈u,E2〉 −DΠ(E2, E2, E2)〈u,E1〉 at x. (2.17)

Multiplying (2.16) by λ2 and (2.17) by λ1, respectively, summing them, and using (2.15),

we obtain

〈D(∇~nQu), Q∗Π〉 = κ[Du(E2, E1)−Du(E1, E2)] + 〈Qu,Dκ〉. (2.18)

Note that the function Du(E2, E1) −Du(E1, E2) is globally defined on Ω which is inde-

pendent of choice of a positively orientated orthonormal basis when the vector field u is

given. From (2.14) and (2.18), we obtain

〈D2v,Q∗Π〉 = 〈D{Q[Λ(U)−D( tr gU)]}, Q∗Π〉+ κ[Du(E2, E1)−Du(E1, E2)] + 〈Qu,Dκ〉.
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Next, let us consider the compatibility conditions which insure that a y to satisfy (2.11)

exists when the function v and the vector field u are given to satisfy (2.14). We define B :

TxM → TxM for x ∈ Ω by

Bα = i αU − vQα+ 〈u, α〉~n for α ∈ TxM. (2.19)

It is easy to check that there is a y : Ω → IR3 such that

∇αy = Bα for α ∈ TxM, x ∈ Ω

if and only if the operator B satisfies

∇X(BY ) = ∇Y (BX) +B[X,Y ] for X, Y ∈ X (Ω). (2.20)

Using (2.6), (2.7), (2.13), and (2.19), we have

∇E1(BE2) = [DU(E2, E1, E1)− E1(v) + λ1〈u,E2〉]E1 +DU(E2, E2, E1)E2

+[Du(E2, E1)− λ1U(E2, E1) + vλ1]~n

= DU(E1, E1, E2)E1 +DU(E2, E2, E1)E2

+[Du(E2, E1)− λ1U(E2, E1) + vλ1]~n at x. (2.21)

Similarly, we obtain

∇E2(BE1) = DU(E1, E1, E2)E1 +DU(E2, E2, E1)E2

+[Du(E1, E2)− λ2U(E1, E2)− vλ2]~n at x. (2.22)

It follows from (2.21) and (2.22) that the relation (2.20) holds if and only if

Du(E2, E1)−Du(E1, E2) + tr gU(Q∇~n·, ·) + v tr gΠ = 0 for x ∈ Ω.

Moreover, we assume that

κ(x) 6= 0 for all x ∈ Ω. (2.23)

From (2.14), we obtain

u = Q(∇~n)−1Q[Λ(U)−D( tr gU)]−Q(∇~n)−1Dv for x ∈ Ω. (2.24)

The above derivation yields the following.

Theorem 2.1 ([4]) Suppose that (2.23) holds. Let v be a solution to problem

〈D2v,Q∗Π〉 = P (U)− vκ tr gΠ+X(v) for x ∈ Ω, (2.25)
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where

P (U) = 〈D{Q[Λ(U) −D( tr gU)]}, Q∗Π〉 − 〈Q[Λ(U)−D( tr gU)], (∇~n)−1Dκ〉
−κ tr gU(Q∇~n·, ·), (2.26)

X = (∇~n)−1Dκ. (2.27)

Let u be given by (2.24). Then there is a y to satisfy (2.5) such that (2.11) holds. Moreover,

|∇y|2(x) = |U |2(x) + 2v2(x) + |u(x)|2 for x ∈ Ω.

If, in addition, y =W + w~n, w = 〈y, ~n〉, then

u = Dw − iWΠ,

Dw = iWΠ−Q(∇~n)−1Dv +Q(∇~n)−1Q[Λ(U)−D( tr gU)].

Remark 2.2 A solution y, modulo a constant vector, in Theorem 2.1 is unique when

a solution v to (2.25) is given.

Remark 2.3 If Ω is elliptic and Π > 0, then ĝ = Π is another metric on Ω. From

[11] we have

〈D2v,Q∗Π〉 = κ∆ĝv +
1

2κ
Π(QDκ,QDv) for x ∈ Ω,

where ∆ĝ is the Laplacion of the metric ĝ. Thus, in this case equation (2.25) becomes

∆gv =
1

κ
P (U)− v tr gΠ+

1

2κ
X(v) for x ∈ Ω.

3 Solvability Regions for Normal Equations

Under an asymptotic coordinate system, equation (2.25) on a hyperbolic surface takes

the form of a normal equation in IR2 locally, such as in (3.1) below. Thus the local

solvability of equation (2.25) transfers to that of equation (3.1) in the Euclidean space

IR2. We study the solvability of the normal equation (3.1) in the space IR2 in this section.

We consider the following normal equation

wx1x2(x) = η(f,w) for x = (x1, x2) ∈ IR2 (3.1)

where

η(f,w) = f + f0(x)w(x) +X(w),

f0 is a function, and X = (X1,X2) is a vector field on IR2.

Regions E(γ), R(z, a, b), Pi(β), Ξi(β, γ) and Φ(β, γ, β̂) In appropriate asymptotic co-

ordinate systems, the problem (2.25) can transfer to solvability of (3.1) on E(γ), R(z, a, b),

Pi(β), Ξi(β, γ) or Φ(β, γ, β̂) with appropriate boundary data. We now introduce those re-

gions to establish the corresponding solvability.
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3.1 Regions E(γ) and R(z, a, b)

Let k ≥ 0 be an integer. Let f0 and X be of class C k−1,1, where C−1,1 = L∞. A curve

γ(t) = (γ1(t), γ2(t)) : [a, b] → IR2 is said to be noncharacteristic if

γ′1(t)γ
′
2(t) 6= 0 for t ∈ [a, b].

We define a linear operator F : IR2 → IR2 by

Fx = (x2,−x1) for x = (x1, x2) ∈ IR2. (3.2)

Let γ(t) = (γ1(t), γ2(t)) : [0, t0] → IR2 be a noncharacteristic curve with γ′1(0)γ
′
2(0) < 0.

We assume that

γ′1(t) > 0, γ′2(t) < 0 for t ∈ [0, t0]. (3.3)

Otherwise, we consider the curve z(t) = γ(−t+ t0). Set

E(γ) = { (x1, x2) ∈ IR2 | γ1 ◦ γ−1
2 (x2) < x1 < γ1(t0), γ2(t0) < x2 < γ2(0) }. (3.4)

Consider the boundary data

w ◦ γ(t) = q0(t), 〈∇w,F γ̇〉 ◦ γ(t) = q1(t) for t ∈ (0, t0). (3.5)

Next, we consider a rectangle. For z = (z1, z2) ∈ IR2, a > 0, and b > 0 given, let

R(z, a, b) = (z1, z1 + a)× (z2, z2 + b). (3.6)

Consider the boundary data

w(x1, z2) = p1(x1), w(z1, x2) = p2(x2) (3.7)

for x1 ∈ [z1, z1 + a] and x2 ∈ [z2, z2 + b], respectively.

Let f be a function with its domain E. For simplicity, we denote ‖f‖C k,1 = ‖f‖C k,1(E),

‖f‖W k,2 = ‖f‖W k,2(E), and so on.

Proposition 3.1 Let q0 be of C k,1 and q1, f be of C k−1,1, respectively. Then problem

(3.1) admits a unique solution w ∈ C k,1(E(γ)) with the data (3.5). Moreover, there is a

C > 0, independent of solutions w, such that

‖w‖C k,1 ≤ C(‖q0‖C k,1 + ‖q1‖C k−1,1 + ‖f‖C k−1,1). (3.8)

Proposition 3.2 Let p1 and p2 be of class C k,1 with p1(z1) = p2(z2). Let f be of class

C k−1,1. Then there is a unique solution w ∈ C k,1(R(z, a, b)) to (3.1) with the data (3.7)

satisfying

‖w‖C k,1 ≤ C(‖p1‖C k,1 + ‖p2‖C k,1 + ‖f‖C k−1,1).

14



The proofs of Propositions 3.1 and 3.2 will be given after Lemma 3.2.

Lemma 3.1 Let T > 0 be given. There is a εT > 0 such that if |γ(0)| ≤ T and

max{γ1(t0)− γ1(0), γ2(0)− γ2(t0)} < εT , Theorem 3.1 holds true.

Proof. The proof is broken into several steps as follows.

Step 1. Let k = 0 and let w ∈ C0,1(E(γ)) be a solution to (3.1) with the data (3.5).

It follows from (3.5) that

wx1 ◦ γ(t) =
1

|γ′(t)|2 [γ
′
1(t)q

′
0(t) + γ′2(t)q1(t)], wx2 ◦ γ(t) =

1

|γ′(t)|2 [γ
′
2(t)q

′
0(t)− γ′1(t)q1(t)].

Let x = (x1, x2) ∈ E(γ) be given. We integrate (3.1) with respect to the first variable

ζ1 over (γ1 ◦ γ−1
2 (ζ2), x1) for ζ2 ∈ (γ2 ◦ γ−1

1 (x1), x2) to have

wx2(x1, ζ2) = wx2 ◦ γ(γ−1
2 (ζ2)) +

∫ x1

γ1◦γ−1
2 (ζ2)

η(f,w)(ζ1, ζ2)dζ1. (3.9)

Then integrating the above identity over (γ2 ◦ γ−1
1 (x1), x2) with respect to the second

variable ζ2 yields

w(x1, x2) = B (q0, q1) +

∫

E(x)
η(f,w)dζ,

where

B (q0, q1) = q0 ◦ γ−1
1 (x1) +

∫ γ−1
2 (x2)

γ−1
1 (x1)

γ′2(t)
|γ′(t)|2 [γ

′
2(t)q

′
0(t)− γ′1(t)q1(t)]dt, (3.10)

E(x) = { (ζ1, ζ2) | γ1 ◦ γ2(ζ2) < ζ1 < x1, γ2 ◦ γ−1
1 (x1) < ζ2 < x2 }. (3.11)

Step 2. We define an operator I : C 0,1(E(γ)) → C 0,1(E(γ)) by

I(w) = B (q0, q1) +

∫

E(x)
η(f,w)dζ for w ∈ C 0,1(E(γ)). (3.12)

It is easy to check that w ∈ C 0,1(E(γ)) solves (3.1) with the data (3.5) if and only if

I(w) = w.

Next, we show that there is a 0 < εT ≤ 1 such that when |γ(0)| ≤ T and 0 <

max{γ1(t0) − γ1(0), γ2(0) − γ2(t0)} < εT , the map I : C 0,1(E(γ)) → C 0,1(E(γ)) is con-

tractible. Thus the existence and uniqueness of solutions in the case k = 0 follows from

Banach’s fixed point theorem.

A simple computation shows that for w ∈ C 0,1(E(γ))

[I(w)]x1 =
1

|γ′(t)|2 [γ
′
1(t)q

′
0(t) + γ′2(t)q1(t)]

∣

∣

∣

t=γ−1
1 (x1)

+

∫ x2

γ2◦γ−1
1 (x1)

η(f,w)(x1, ζ2)dζ2,

[I(w)]x2 =
1

|γ′(t)|2 [γ
′
2(t)q

′
0(t)− γ′1(t)q1(t)]

∣

∣

∣

t=γ−1
2 (x2)

+

∫ x1

γ1◦γ−1
2 (x2)

η(f,w)(ζ1, x2)dζ1.
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The above formulas yield for w1, w2 ∈ C 0,1(E(γ)),

‖I(w1)− I(w2)‖C 0,1(E(γ))
≤ CT max{λ, λ2}‖w1 − w2‖C 0,1(E(γ))

,

where

λ = max{γ1(t0)− γ1(0), γ2(t0)− γ2(0)}, CT = ‖f0‖L∞(|x|≤2T ) + ‖X‖L∞(|x|≤2T ).

Thus, the map I : C 0,1(E(γ)) → C0,1(E(γ)) is contractible if λ > 0 is small.

Step 3. Consider the case k = 1. Let q0 ∈ C 1,1[0, t0], q1 ∈ C 0,1[0, t0], and f ∈
C 0,1(E(γ)) be given. By Step 2, there is a εT > 0 such that if |γ(0)| ≤ T and 0 < λ < εT ,

problem (3.1) has a unique solution w ∈ C 0,1(E(γ)) with the data (3.5). A formal

computation shows that u = wx1 solves problem

ux1x2 = η(f̂ , u) for x ∈ E(γ), (3.13)

with the data

u ◦ γ(t) = q̂0(t), 〈∇u,F γ̇〉 ◦ γ(t) = q̂1(t) for t ∈ (0, t0), (3.14)

where

f̂ = fx1 + f0x1w +∇∂x1X(w), q̂0(t) =
1

|γ′(t)|2 [γ
′
2(t)q

′
0(t) + γ′1(t)q1(t)],

q̂1(t) =
γ′2(t)
γ′1(t)

q̂′0(t)−
|γ′(t)|2
γ′1(t)

η(f,w) ◦ γ(t).

We apply Step 2 to problem (3.13) and (3.14) to obtain u = wx1 ∈ C 0,1(E(γ)) when

0 < λ < εT . A similar argument yields wx2 ∈ C 0,1(E(γ)). Thus w ∈ C 1,1(E(γ)).

By repeating the above procedure, the existence and uniqueness of the solutions in the

cases k ≥ 2 are obtained.

Step 4. Let map I : C k,1(E(γ)) → C k,1(E(γ)) be defined in Step 2 and let w ∈
C k,1(E(γ)) be the solution to problem (3.1) with the data (3.5). Then

‖w‖C k,1 = ‖I(w)‖C k,1 ≤ ‖I(0)‖C k,1 + ‖I(w) − I(0)‖C k,1

≤ C(‖q0‖C k,1 + ‖q1‖C k−1,1 + ‖f‖C k−1,1) +CT max{λ, λ2}‖w‖C k,1 .

Thus, the estimate (3.8) follows if λ > 0 is small. ✷

By a similar argument as for Lemma 3.1, we have the following lemmas.

Lemma 3.2 Let T > 0. There is εT > 0 such that if |z| ≤ T and 0 < max{a, b} < εT ,

then Proposition 3.2 holds.
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Proof of Proposition 3.1. We shall show that the assumptions |γ(0)| ≤ T and

max{γ1(t0) − γ1(0), γ2(t0) − γ2(0)} < εT in Lemma 3.1 are unnecessary. Let T > 0 be

given such that

E(γ) ⊂ {x ∈ IR2 | |x| ≤ T }.

Let εT > 0 be given such that Lemmas 3.1 and 3.2 hold. We divide the curve γ into m

parts with the points τ0 = 0, τ0 < τ1 < · · · < τm = t0 such that

|γ(τi+1)− γ(τi)| =
εT
2
, 0 ≤ i ≤ m− 2, |γ(t0)− γ(τm−1)| ≤

εT
2
.

For simplicity, we assume that m = 3. The other cases can be treated by a similar argu-

ment.

In the case of m = 3, we have

E(γ) = (∪2
i=0Ei) ∪ (∪3

i=1Ri) (3.15)

where

Ei = {x ∈ E(γ) | γ1(τi) ≤ x1 ≤ γ1(τi+1), γ2(τi+1) ≤ x2 ≤ γ2(τi) } i = 0, 1, 2,

R1 = [γ1(τ1), γ1(τ2)]× [γ2(τ1), γ2(0)], R2 = [γ1(τ2), γ1(t0)]× [γ2(τ2), γ2(τ1)],

R3 = [γ1(τ2), γ1(t0)]× [γ2(τ1), γ2(0)].

From Lemma 3.1, problem (3.1) admits a unique solution wi ∈ C k,1(Ei) for each i = 0,

1, and 2, respectively, with the corresponding data and the corresponding estimates. We

define w ∈ C k,1(∪2
i=0Ei) by

w(x) = wi(x) for x ∈ Ei for i = 0, 1, 2.

We extend the domain of w from ∪3
i=0Ei to E(γ) by the following way. By Lemma 3.2,

we define w ∈ C k,1(Ri) to be the solution ui ∈ C k,1(Ri) to problem (3.1) with the data

ui(γ1(τi), x2) = wi−1(γ1(τi), x2) for x2 ∈ [γ2(τi), γ2(τi−1)],

ui(x1, γ2(τi)) = wi(x1, γ2(τi)) for x1 ∈ [γ1(τi), γ1(τi+1)],

for i = 1, and 2, respectively. Then we extend w on C k,1(R3) to be the solution u3 of

(3.1) with the data

u3(γ1(τ2), x2) = u1(γ1(τ2), x2) for x2 ∈ [γ2(τ1), γ2(0)],

u3(x1, γ2(τ2)) = u2(x1, γ2(τ2)) for x1 ∈ [γ1(τ2), γ1(t0)].

To complete the proof, we have to show that w is a C k,1 solution on all the connection

segments between any two subregions above. Consider the subregion

Ẽ = E0 ∪ E1 ∪R1.
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Since |γ(τ2)− γ(0)| ≤ εT , Lemma 3.1 insures that problem (3.1) admits a unique solution

w̃ ∈ C k,1(Ẽ) with the corresponding data. Then the uniqueness implies that w(x) = w̃(x)

for x ∈ Ẽ. In particular, w is C k,1 on the segments { (γ1(τ1), x2) |x2 ∈ [γ2(τ1), γ2(0)] } and

{ (x1, γ2(τ1)) |x1 ∈ [γ1(τ1), γ1(τ2)] }, respectively. By a similar argument, we show that w

is also C k,1 on all the other segments.

The estimates in (3.8) follow from the ones in Lemmas 3.1 and 3.2. ✷

Proof of Proposition 3.2. We divided R(z, a, b) into a sum of small rectangles and

apply Lemma 3.2 to paste the solutions together. ✷

To have density results in Theorem 1.2, we also need estimates of some (boundary)

traces of the solutions. For σ ∈ (0, t0), let

βσ(t) = γ(σ)− tF γ̇(σ) for t ∈ (0, tσ),

where tσ > 0 is such that βσ(tσ) ∈ ∂E(γ).

Proposition 3.3 Let f0 and X be of class C 0,1. Let q0 be of class W 2,2 and q1, f be

of class W 1,2, respectively. Then problem (3.1) admits a unique solution w ∈ W 2,2 with

the data (3.5). Moreover, there is a C > 0, independent of solutions w, such that

‖w‖2W 2,2 + ‖wx2 ◦ βσ‖2W 1,2 ≤ C(‖q0‖2W 2,2 + ‖q1‖2W 1,2 + ‖f‖W 1,2), (3.16)

where W i,2 = W i,2(E(γ)) for 1 ≤ i ≤ 2.

Proof A similar argument as for Theorem 3.1 shows that a unique solution w ∈
W 2,2(E(γ)) with the data (3.5) exists, and the estimate

‖w‖2W 2,2 ≤ C(‖q0‖2W 2,2 + ‖q1‖2W 1,2 + ‖f‖W 1,2) (3.17)

holds.

Let βσ(t) = (βσ1(t), βσ2(t)). Using equation (3.1), we have

wx2x2 ◦ βσ(t) = wx2x2 ◦ γ ◦ γ−1
2 ◦ βσ2(t) +

∫ βσ1(t)

γ1◦γ−1
2 ◦βσ2(t)

[η(f,w)]x2(ζ1, βσ2(t))dζ1,

which yields

|wx2x2 ◦ βσ(t)|2 ≤ 2|wx2x2 ◦ γ ◦ γ−1
2 ◦ βσ2(t)|2

+2[γ1(t0)− γ1(0)]C

∫ βσ1(t)

γ1◦γ−1
2 ◦βσ2(t)

(|f |2 + |∇f |2 + |w|2 + |∇w|2 + |∇2w|2)(ζ1, βσ2(t))dζ1.

Integrating the above inequality over (0, tσ) with respect to t, we obtain

‖wx2x2 ◦ βσ‖2L2 ≤ C(‖f‖2W 1,2 + ‖q0‖2W 2,2 + ‖q1‖2W 1,2 + ‖w‖2W 2,2).
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A similar computation shows that ‖∇wx1 ◦ βσ‖2L2 , ‖∇w ◦ βσ‖2L2 , and ‖w ◦ β‖2L2 can be

bounded also by the right hand side of the above inequality. Thus estimate (3.16) follows

from (3.17). ✷

Let

Γ(γ,w) =
1

∑

j=0

‖∇jw ◦ γ‖2L2(0,t0)
+

∫ t0

0
[|wx1x1 ◦ γ(t)|2t+ |wx2x2 ◦ γ(t)|2(t0 − t)]dt. (3.18)

Proposition 3.4 Let f0 and X be of class C 0,1. Then there are 0 < c1 < c2 such that

for all solutions w ∈ W 2,2 to problem (3.1)

c1Γ(γ,w) ≤ ‖f‖2W 1,2 + ‖w‖2W 2,2 ≤ c2[‖f‖2W 1,2 + Γ(γ,w)], (3.19)

‖w(·, γ2(0))‖2W 1,2(γ1(0),γ1(t0))
+

∫ γ1(t0)

γ1(0)
|wx1x1(x1, γ2(0))|2(x1−γ1(0))dx1 ≤ c2[‖f‖2W 1,2+Γ(γ,w)],

‖w(γ1(t0), ·)‖2W 1,2(γ2(t0),γ2(0))
+

∫ γ2(0)

γ2(t0)
|wx2x2(γ1(t0), x2)|2(x2−γ2(t0))dx2 ≤ c2[‖f‖2W 1,2+Γ(γ,w)],

where W i,2 = W i,2(E(γ)) for 1 ≤ i ≤ 2.

Proposition 3.5 Let f0 and X be of class C 0,1. Then there is C > 0 such that for

all solutions w ∈ W 2,2(R(z, a, b)) to problem (3.1)

‖w‖2W 2,2 ≤ C(‖f‖2W 1,2 + ‖p1‖2W 2,2(z1,z1+a) + ‖p2‖2W 2,2(z2,z2+b)). (3.20)

The proofs of the above two propositions will complete from Lemmas 3.3 and 3.4 below

by an argument as for Proposition 3.1. We omit the details.

Lemma 3.3 Let T > 0 be given. There is εT > 0 such that if |γ(0)| ≤ T and

max{γ1(t0)− γ1(0), γ2(0)− γ2(t0)} < εT , Proposition 3.4 holds.

Proof Step 1 Using (3.1) we have

wx1x1(x) = wx1x1 ◦ γ ◦ γ−1
1 (x1) +

∫ x2

γ2◦γ−1
1 (x1)

[η(f,w)]x1(x1, ζ2)dζ2,

which yields

|wx1x1(x)|2 ≤ 2|wx1x1◦γ◦γ−1
1 (x1)|2+2[x2−γ2◦γ−1

1 (x1)]

∫ γ2(0)

γ2◦γ−1
1 (x1)

|[η(f,w)]x1(x1, ζ2)|2dζ2,

and

|wx1x1◦γ◦γ−1
1 (x1)|2 ≤ 2|wx1x1(x)|2+2[x2−γ2◦γ−1

1 (x1)]

∫ γ2(0)

γ2◦γ−1
1 (x1)

|[η(f,w)]x1(x1, ζ2)|2dζ2,
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respectively. Integrating thee above two inequalities, first with respect to x2 over (γ2 ◦
γ−1
1 (x1), γ2(0)) and then with respect to x1 over (γ1(0), γ1(t0)) respectively, we obtain

‖wx1x1‖2L2 ≤ 2σ12

∫ t0

0
|wx1x1 ◦ γ(t)|2tdt+ ε2TCT (‖f‖2W 1,2 + ‖w‖2W 2,2)

and

σ11

∫ t0

0
|wx1x1 ◦ γ(t)|2tdt ≤ 2‖wx1x1‖2L2 + ε2TCT (‖f‖2W 1,2 + ‖w‖2W 2,2),

where

σ11 = inf
t∈(0,t0)

[γ2(0)− γ2(t)]γ
′
1(t)/t, σ12 = sup

t∈(0,t0)
[γ2(0)− γ2(t)]γ

′
1(t)/t,

CT = sup
|x|≤2T

(1 + f20 + |∇f0|2 + |X|2 + |∇X|2).

By similar arguments, we establish the following

‖wx2x2‖2L2 ≤ 2σ22

∫ t0

0
|wx2x2 ◦ γ(t)|2(t0 − t)dt+ ε2TCT (‖f‖2W 1,2 + ‖w‖2W 2,2),

σ21

∫ t0

0
|wx2x2 ◦ γ(t)|2(t0 − t)dt ≤ 2‖wx2x2‖2L2 + ε2TCT (‖f‖2W 1,2 + ‖w‖2W 2,2),

where

σ21 = inf
t∈(0,t0)

[γ1(t0)− γ1(t)][−γ′2(t)]/(t0 − t), σ22 = sup
t∈(0,t0)

[γ1(t0)− γ1(t)][−γ′2(t)]/(t0 − t).

Step 2 As in Step 1, we have

‖wx1‖2L2 ≤ 2σ12

∫ t0

0
|wx1 ◦ γ(t)|2tdt+ ε2TCT (‖f‖2L2 + ‖w‖2W 1,2)

≤ 2σ12t0‖wx1 ◦ γ‖2L2(0,t0)
+ ε2TCT (‖f‖2L2 + ‖w‖2W 1,2),

σ11

∫ t0

0
|wx1 ◦ γ(t)|2tdt ≤ 2‖wx1‖2L2 + ε2TCT (‖f‖2L2 + ‖w‖2W 1,2). (3.21)

In addition, since

wx1 ◦ γ ◦ γ−1
2 (x2) = wx1(x)−

∫ x1

γ1◦γ−1
2 (x2)

wx1x1(ζ1, x2)dζ1 for x2 ∈ (γ2(t0), γ2(0)),

it follows that

σ21

∫ t0

0
|wx1 ◦ γ(t)|2(t0 − t)dt ≤ 2‖wx1‖2L2 + ε2T ‖wx1x1‖2L2 . (3.22)

Combing (3.21) and (3.22), we have

min{σ11, σ21}‖wx1 ◦ γ‖2L2(0,t0)
≤ 1

t0
(σ21

∫ t0/2

0
|wx1 ◦ γ(t)|2(t0 − t)dt+ σ11

∫ t0

t0/2
|wx1 ◦ γ(t)|2tdt)

≤ 1

t0
[4 + ε2T (CT + 1)](‖f‖2L2 + ‖w‖2W 2,2).
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By a similar computation, we obtain

‖wx2‖2L2 ≤ 2σ12t0‖wx2 ◦ γ‖2L2(0,t0)
+CT ε

2
T (‖f‖2L2 + ‖w‖2W 1,2),

min{σ11, σ21}‖wx2 ◦ γ‖2L2(0,t0)
≤ 1

t0
[4 + ε2T (CT + 1)](‖f‖2L2 + ‖w‖2W 2,2),

‖w‖2L2 ≤ 2σ12t0‖w ◦ γ‖2L2(0,a) + ε2T ‖wx2‖2L2 ,

min{σ11, σ21}‖w ◦ γ‖2L2(0,t0)
≤ 1

t0
[4 + ε2T (CT + 1)]‖w‖2W 1,2 .

Step 3 From Steps 1 and 2, we obtain

[1− (4CT + 1)ε2T ]‖w‖2W 2,2 ≤ 2[(σ12(1 + t0) + σ22]Γ(γ,w) + (4CT + 1)ε2T ‖f‖2W 1,2 ,

when λ is small, and

min{σ11, σ21}Γ(γ,w) ≤ 2{2 + CT ε
2
T +

3

t0
[4 + (CT + 1)ε2T ]}(‖f‖2W 1,2 + ‖w‖2W 2,2),

respectively. Thus (3.19) follows.

Step 4 We have

wx1x1(x1, γ2(0)) = wx1x1 ◦ γ ◦ γ−1
1 (x1) +

∫ γ2(0)

γ2◦γ−1
1 (x1)

[η(f,w)]x1(x1, ζ2)dζ2,

which gives, by (3.19),

∫ γ1(t0)

γ1(0)
|wx1x1(x1, γ2(0))|2(x1 − γ1(0))dx1 ≤ 2

∫ t0

0
|wx1x1 ◦ γ(t)|2[γ1(t)− γ1(0)]dt

+C(‖f‖2W 1,2 + ‖w‖2W 2,2) ≤ C[‖f‖2W 1,2 + Γ(γ,w)].

A similar argument completes the proof of the third inequality in Proposition 3.4. ✷

A similar argument yields the following.

Lemma 3.4 Let T > 0 be given. There is εT > 0 such that if |z| ≤ T and 0 <

max{a, b} < εT , then Proposition 3.5 holds.

3.2 Regions Pi(β)

Let β = (β1, β2) : [0, t0] → IR2 be a noncharcteristic curve with β′1(0)β
′
2(0) > 0. We

assume

β′i(t) > 0 for t ∈ [0, t0], i = 1, 2. (3.23)

Otherwise, we consider the curve z(t) = β(−t+ t0). Set

P1(β) = { (x1, x2) |β1 ◦ β−1
2 (x2) < x1 < β1(t0), β2(0) < x2 < β2(t0) }, (3.24)
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and consider the boundary data

wx2 ◦ β(t) = p(t), t ∈ (0, t0); w(x1, β2(0)) = p1(x1), x1 ∈ (β1(0), β1(t0)). (3.25)

Set

P2(β) = { (x1, x2) |β1(0) < x1 < β1 ◦ β−1
2 (x2), β2(0) < x2 < β2(t0) }, (3.26)

and consider the boundary data

wx1 ◦ β(t) = p(t), t ∈ (0, t0); w(β1(0), x2) = p2(x2), x1 ∈ (β1(0), β1(t0)). (3.27)

By similar arguments for the region E(γ), we establish Propositions 3.6-3.8 below. The

details are omitted.

Proposition 3.6 Let the curve β be of class C k−1,1. Let p1 (or p2 ) be of class

C k,1 and let p, f be of class C k−1,1. Then problem (3.1) admits a unique solution w ∈
C k,1(P1(β)) (or C k,1(P2(β)) with the data (3.25) ( or (3.27)) to satisfy

‖w‖C k,1 ≤ C(‖p‖C k−1,1 + ‖p1‖C k,1 + ‖f‖C k−1,1)(or (‖p‖C k−1,1 + ‖p2‖C k,1 + ‖f‖C k−1,1)).

Proposition 3.7 Let the curve β be of class C 1. Let f0 and X be of class C 0,1. Let

p1 (or p2 ) be of class W 2,2 and let p, f be of class W 1,2. Then problem (3.1) admits

a unique solution w ∈ W 2,2(P1(β)) (or W 2,2(P2(β)) with the data (3.25) (or (3.27)) to

satisfy

‖w‖W 2,2 ≤ C(‖p‖W 1,2 + ‖p1‖W 2,2 + ‖f‖W 1,2)(or (‖p‖W 1,2 + ‖p2‖W 2,2 + ‖f‖W 1,2)).

Let

Γ(Pi, w) =

∫ t0

0
|p′(t)|2(t0 − t)dt+ ‖pi‖2W 1,2 +

∫ βi(t0)

βi(0)
|p′′i (xi)|2(xi − zi)]dxi, i = 1, 2.

Proposition 3.8 Let the curve β be of class C 1. Let f0 and X be of class C 0,1. Then

there are 0 < c1 < c2 such that for all solutions w ∈ W 2,2(Pi(β)) to problem (3.1) with

the corresponding boundary data satisfy

c1Γ(Pi, w) ≤ ‖w‖2W 2,2 + ‖f‖2W 1,2 ≤ c2[Γ(Pi, w) + ‖f‖2W 1,2 ],

c1‖w|xi=βi(t0)‖2W 2,2 ≤
∫ t0

0
|p′(t)|2dt+

∫ βi(t0)

βi(0)
|p′′i (x1)|2(xi − βi(0))]dxi + ‖pi‖2W 1,2 + ‖f‖2W 1,2

≤ c2(‖w|xi=βi(t0)‖2W 2,2 +

∫ βi(t0)

βi(0)
|p′′i (xi)|2(xi − βi(0))]dxi + ‖pi‖2W 1,2 + ‖f‖2W 1,2), (3.28)

for i = 1, and 2, respectively.

Remark 3.1 (3.28) implies that p ∈ W 1,2 if and only if w|xi=βi(t0) ∈ W 2,2. However,

the case of p /∈ W 1,2 may happen.
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3.3 Regions Ξi(β, γ)

Let γ : [0, t1] → IR2 and β : [0, t0] → IR2 be two noncharacterstic curves with γ(0) =

β(0) such that

γ1(t1) ≤ β1(t0), γ′1(t) > 0, γ′2(t) < 0, β′1(t) > 0, β′2(t) > 0

hold. Set

Ξ1(β, γ) = P1(β) ∪R(z, a, b) ∪ E(γ), (3.29)

where P1(β), R(z, a, b), and E(γ) are given in (3.24), (3.6), and (3.4), respectively, with

z = (β1(t0), γ2(0)), a = γ(t1) − β1(t0), and b = β2(t0) − γ2(t0). Consider the boundary

data

wx2 ◦ β(t) = p(t) for t ∈ [0, t0], (3.30)

w ◦ γ(t) = q0(t), 〈∇w,F γ̇〉 ◦ γ(t) = q1(t) for t ∈ (0, t1), (3.31)

where F is given by (3.2).

Let γ : [0, t1] → IR2 and β : [0, t0] → IR2 be two noncharacterstic curves with γ(t1) =

β(0) such that

γ2(0) ≥ β2(t0), γ′1(t) > 0, γ′2(t) < 0, β′1(t) > 0, β′2(t) > 0

hold. Set

Ξ2(β, γ) = E(γ) ∪R(z, a, b) ∪ P2(β), (3.32)

where E(γ), R(z, a, b), and P2(β) are given in (3.4), (3.6), and (3.26), respectively, with

z = (γ1(t1), γ2(t0)), a = β(t0)− γ1(t1), and b = γ2(0) − β2(t0). Consider the data

wx1 ◦ β(t) = p(t) for t ∈ [0, t0], (3.33)

w ◦ γ(t) = q0(t), 〈∇w,F γ̇〉 ◦ γ(t) = q1(t) for t ∈ (0, t1), (3.34)

where F is given by (3.2).

We consider solvability of (3.1) on Ξ1(β, γ). To have a C k,1 solution on Ξ1(β, γ), we

need some kind of compatibility conditions at the point γ(0) = β(0). From Proposition

3.1, problem (3.1) admits a unique solution u ∈ C k,1(E(γ)) with the data (3.31). From

Proposition 3.6, there is a unique solution v ∈ C k,1(P1(β)) to problem (3.1) with the data

vx2 ◦ β(t) = p(t), t ∈ (0, t0), v(x1, β2(0)) = u(x1, β2(0)), x1 ∈ [β1(0), β1(t0)]. (3.35)

In terms of the uniqueness, if problem (3.1) has a unique solution w ∈ C k,1(Ξ1(β, γ)) with

the data (3.30) and (3.31) together, then

w(x) =

{

v(x) for x ∈ P1(β),

u(x) for x ∈ E(γ).
(3.36)
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Conversely, if we define w by the formula (3.36), then whether it is a C k,1 solution to (3.1)

on Ξ1(β, γ) depends on the C k,1 regularity of w at the point β(0). Thus, compatibility

conditions are something which can guarantee that w is C k,1 at γ(0) = β(0), that is

∇ju ◦ γ(0) = ∇jv ◦ β(0) for 0 ≤ j ≤ k. (3.37)

The solution u with the data (3.31) yields

∇u ◦ γ(t) = 1

|γ′(t)|2 (γ
′
1(t)q

′
0(t) + γ′2(t)q1(t), γ

′
2(t)q

′
0(t)− γ′1(t)q1(t)) (3.38)

for t ∈ [0, t1]. Using (3.1) and (3.38), we have

ux2x1 ◦ γ(t) = f ◦ γ(t) + 1

|γ′(t)|2 [γ
′
2(t)X1 ◦ γ(t)− γ′1(t)X2 ◦ γ(t)]q1(t)

+f0 ◦ γ(t)q0(t) +
1

|γ′(t)|2 [γ
′
1(t)X1 ◦ γ(t) + γ′2(t)X2 ◦ γ(t)]q′0(t) (3.39)

for t ∈ (0, t1). Next, differentiating the second component in (3.38) with respect to variable

t and using (3.39), we obtain

ux2x2 ◦ γ(t) = −γ
′
1

γ′2
f ◦ γ(t)− γ′1

γ′2
f0 ◦ γq0

−[
2〈γ′′, γ′〉
|γ′|4 +

γ′1
|γ′|2γ′2

(γ′1X1 ◦ γ + γ′2X2 ◦ γ)−
γ′′2

|γ′|2γ′2
]q′0 +

1

|γ′|2 q
′′
0

+[
2〈γ′′, γ′〉γ′1
|γ′|4γ′2

− γ′1
|γ′|2γ′2

(γ′2X1 ◦ γ − γ′1X2 ◦ γ)−
γ′′1

|γ′|2γ′2
]q1 −

γ′1
|γ′|2γ′2

q′1. (3.40)

By repeating the above procedure, we have shown that, for 1 ≤ j ≤ k − 1, there are j

order tensor fields Aαβ(t), A
1
α(t), and A

0
α(t) such that

∇jux2 ◦ γ(t) =
∑

α+β≤j−1

∂αx1
∂βx2

f ◦ γ(t)Aαβ(t) +
∑

α≤j

q
(α)
1 (t)A1

α(t)

+
∑

α≤j+1

q
(j)
0 (t)A0

α(t) for t ∈ [0, t1]. (3.41)

Let v ∈ C k,1(P1(β)) be the solution to (3.1) with the data (3.35). Then

p′(t) = 〈∇vx2(β(t)), β̇(t)〉, p′′(t) = 〈∇2vx2(β(t)), β̇(t)⊗ β̇(t)〉+ 〈∇vx2(β(t)), β̈(t)〉

for t ∈ [0, t0]. Some computations show that

p(l)(t) = 〈∇lvx2(β(t)), β̇(t)⊗ · · · ⊗ β̇(t)〉
+

∑

j1+···+ji=l, 1≤i≤l−1

aj1···ji〈∇ivx2(β(t)), β
(j1)(t)⊗ · · · ⊗ β(ji)(t)〉 (3.42)

for t ∈ [0, t0], and 1 ≤ l ≤ k, where aj1···ji are positive integers. Then assumption (3.37) is

stated as the following.
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Definition 3.1 Let the curves β and γ be of class C k,1. Let q0 be of class C k,1 and

p, q1, f of class C k−1,1, respectively. It is said that the kth order compatibility conditions

hold at γ(0) = β(0) if |γ′(0)|2p(0) = γ′2(0)q
′
0(0)− γ′1(0)q1(0) and

p(l)(0) = 〈∇lux2 ◦ γ(0), β̇(0) ⊗ · · · ⊗ β̇(0)〉
+

∑

j1+···+ji=l, 1≤i≤l−1

aj1···ji〈∇iux2 ◦ γ(0), β(j1)(0)⊗ · · · ⊗ β(ji)(0)〉 (3.43)

for 1 ≤ l ≤ k−1, where ∇iux2 ◦γ(0) and aj1···ji are given in (3.41) and (3.42), respectively.

Proposition 3.9 Let the curves β and γ be of class C k,1. Let q0 be of class C k,1

and p, q1, f of class C k−1,1, respectively. If k ≥ 1, we assume that the kth order com-

patibility conditions hold at γ(0) = β(0). Then problem (3.1) admits a unique solution

w ∈ C k,1(Ξ1(β, γ)) with the data (3.30) and (3.31). Moreover, the following estimates

hold

‖w‖C k,1 ≤ C(‖p‖C k−1,1 + ‖q0‖C k,1 + ‖q1‖C k−1,1 + ‖f‖C k−1,1).

Proof The uniqueness and the estimate follows from Propositions 3.1, 3.2, and 3.6. It

is remaining to show the existence. Let u and v be given in (3.36) with the corresponding

boundary date. Let h be the solution to (3.1) on R(z, a, b) with the data

h(x1, γ2(0)) = u(x1, γ2(0)) for x1 ∈ [β1(t0), γ1(t1)],

h(β1(t0), x2) = v(β1(t0), x2) for x2 ∈ [γ2(0), β2(t0)],

where R(z, a, b) is given in (3.29). We now define

w(x) =















v for x ∈ P1(β),

u for x ∈ E(γ),

h for x ∈ R(z, a, b).

Then w is a solution to (3.1) with the data (3.30) and (3.31). Next we shall show w ∈
C k,1(Ξ1(β, γ)).

We proceed by induction in k ≥ 0. The definition of w guarantees w ∈ C 0,1(Ξ1(β, γ)).

Let w ∈ C k,1(Ξ1(β, γ)). Next we show that the k + 1th order compatibility conditions

imply w ∈ C k+1,1(Ξ1(β, γ)). For this purpose it is enough to show that w is

Ck+1 on the segments

ϑ = { (x1, β2(0)), (x2, β1(t0)) |x1 ∈ [β1(0), γ1(t0)], x2 ∈ [γ2(0), β2(t0)] }.

By the induction assumptions, we have

∂ix1
∂jx2

v(x1, β2(0)) = ∂ix1
∂jx2

u(x1, β2(0)) for β1(0) ≤ x1 ≤ β1(t0), (3.44)
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for 0 ≤ i+j ≤ k. Next we show that (3.44) are true with i+j = k+1. Since v(x1, β2(0)) =

u(x1, β2(0)) for all x1 ∈ [β1(0), β1(t0)], it follows that

∂k+1
x1

v(x1, β2(0)) = ∂k+1
x1

u(x1, β2(0)) for all x1 ∈ [β1(0), β1(t0)].

Let i + j = k + 1 with j ≥ 1. If i ≥ 1, then j = k + 1 − i ≤ k and, by the induction

assumptions,

∂jx2
v(x1, β2(0)) = ∂jx2

u(x1, β2(0)) for all x1 ∈ [β1(0), β1(t0)],

which yield

∂ix1
∂jx2

v(x1, β2(0)) = ∂ix1
∂jx2

u(x1, β2(0)) for all x1 ∈ [β1(0), β1(t0)]. (3.45)

Next we check the case of i = 0 and j = k + 1.

Using (3.1), we have

(

∂k+1
x2

v(x1, β2(0))
)

x1

= ∂kx2
(vx1x2)(x1, β2(0)) = ∂kx2

[f + f0v +X1vx1 +X2vx2 ](x1, β2(0))

= X2(x1, β2(0))∂
k+1
x2

v(x1, β2(0)) + ∂kx2
[f + f0v +X1vx1 ](x1, β2(0))

+[
k
∑

i=1

Ci
k∂

i
x2
X2∂

k−i+1
x2

v](x1, β2(0)). (3.46)

Let

ρ(x1) = ∂kx2
[f + f0v +X1vx1 ](x1, β2(0)) + [

k
∑

i=1

Ci
k∂

i
x2
X2∂

k−i+1
x2

v](x1, β2(0))

for x1 ∈ [β1(0), β1(t0)]. It follows from (3.46) that τ(x1) = ∂k+1
x2

v(x1, β2(0)) is the solution

to problem

{

τ ′(x1) = X2(x1, β2(0))τ(x1) + ρ(x1) for x1 ∈ [β1(0), β1(t0)],

τ(β1(0)) = ∂k+1
x2

v(β(0)).
(3.47)

Moreover, the induction assumptions, w ∈ C k,1(Ξ1(β, γ))), yield

〈∇ivx2(z), β
(j1)(0) ⊗ · · · β(ji)(0)〉 = 〈∇iux2(z), β

(j1)(0) ⊗ · · · β(ji)(0)〉

for j1 + · · · + ji = l, 1 ≤ i ≤ l − 1, and 1 ≤ l ≤ k. Then the k + 1th order compatibility

conditions imply

〈∇kvx2 ◦ β(0), β̇(0)⊗ · · · ⊗ β̇(0)〉 = 〈∇kux2 ◦ γ(0), β̇(0) ⊗ · · · ⊗ β̇(0)〉.

Using (3.45) and β′2(0) > 0, we obtain

∂k+1
x2

u ◦ γ(0) = ∂k+1
x2

v ◦ β(0). (3.48)
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In addition, it follows from the induction assumptions and (3.45) that

ρ(x1) = ∂kx2
[f + f0u+X1ux1 ](x1, β2(0)) + [

k
∑

i=1

Ci
k∂

i
x2
X2∂

k−i+1
x2

u](x1, β2(0)),

for x1 ∈ [β1(0), β1(t0)]. By a similar computation as in (3.46), ∂k+1
x2

u(x1, β2(0)) is also a

solution to problem (3.47) with the same initial date (3.48). The uniqueness of solutions

of problem (3.47) yields

∂k+1
x2

v(x1, β2(0)) = ∂k+1
x2

u(x1, β2(0)), x1 ∈ [β1(0), β1(t1)].

Thus w is C k+1 on the segment

{ (x1, β2(0)) |x1 ∈ [β1(0), β1(t0)] }.

A similar argument shows that w is C k+1 on the rest of ϑ. The induction is complete. ✷

By similar arguments, we have Propositions 3.10-3.12 below. The details are omitted.

Proposition 3.10 Let the curves β and γ be of class C 1. Let f0 and X be of class

C 0,1. Let q0 be of class W 2,2 and p, q1, f of class W 1,2, respectively, such that the

1th order compatibility conditions hold true at γ(0). Then problem (3.1) admits a unique

solution w ∈ W 2,2(Ξ1(β, γ)) with the data (3.30) and (3.31). Moreover, the following

estimates hold

‖w‖W 2,2 ≤ C(‖p‖W 1,2 + ‖q0‖W 2,2 + ‖q1‖W 1,2 + ‖f‖W 1,2).

Let

Γi(β,w) =

∫ t0

0
|[wxi

◦ β(s)]′|2(t0 − s)ds for s ∈ (0, t0), i = 1, 2. (3.49)

Proposition 3.11 Let the curves β and γ be of class C 1. Let f0 and X be of class

C 0,1. Then there are 0 < c1 < c2 such that for all solutions w ∈ W 2,2(Ξ1(β, γ)) to problem

(3.1)

c1[Γ(γ,w) + Γ2(β,w)] ≤ ‖w‖2W 2,2 + ‖f‖2W 1,2 ≤ c2[Γ(γ,w) + Γ2(β,w) + ‖f‖2W 1,2 ],

where Γ(γ,w) is given in (3.18).

Proposition 3.12 The corresponding results as in Propositions 3.9, 3.10, and 3.11

hold where Ξ1(β, γ) and Γ2(β,w) are replaced with Ξ2(β, γ) and Γ1(β,w), respectively.
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3.4 Region Φ(β, γ, β̂)

Let β : [0, t0] → IR2, γ : [0, t1] → IR2, and β̂ : [0, t2] → IR2 be noncharacteristic

curves with β(0) = γ(0) and γ(t1) = β̂(0) such that

γ1(t1) ≥ β1(t0), γ′1(t) > 0, γ′2(t) < 0, β′1(t) > 0, β′2(t) > 0,

γ2(t1) ≥ β̂2(t2), β̂′1(t) > 0, β̂′2(t) > 0.

We define

Φ(β, γ, β̂) = Ξ1(β, γ) ∪R(z, a, b) ∪ P2(β̂),

where Ξ1(β, γ), R(z, a, b), P2(β̂) are given in (3.29), (3.6), and (3.26), respectively, with

z = (γ1(t1), β̂2(t2)), a = β̂1(t2) − γ1(t1), and b = β2(t0) − β̂(t2). Consider the boundary

data

wx2 ◦ β(t) = p1(t), t ∈ [0, t0], wx1 ◦ β̂(t) = p2(t), t ∈ (0, t2), (3.50)

w ◦ γ(t) = q0(t), 〈∇w,F γ̇〉 ◦ γ(t) = q1(t) for t ∈ (0, t1). (3.51)

By similar arguments as for Ξ1(β, γ), we have Propositions 3.13-3.15 below. The details

are omitted.

Proposition 3.13 Let the curves β, γ, and β̂ be of class C k,1. Let q0 be of class

C k,1, and p1, p2, q1, f of class C k−1,1 such that the kth order compatibility conditions

hold true at γ(0) and γ(t1), respectively. Then problem (3.1) admits a unique solution

w ∈ C k,1(Φ(β, γ, β̂)) with the data (3.50) and (3.51). Moreover, the following estimates

hold

‖w‖2
C k,1 ≤ C(‖p1‖2C k−1,1 + ‖p2‖2C k−1,1 + ‖q0‖2C k,1 + ‖q1‖2C k−1,1 + ‖f‖2

C k−1,1).

Proposition 3.14 Let the curves β, γ, and β̂ be of class C 1. Let f0 and X be of class

C 0,1. Let q0 be of class W 2,2, and p1, p2, q1, f of class W 1,2, such that the 1th order

compatibility conditions hold true at γ(0) and γ(t1), respectively. Then problem (3.1)

admits a unique solution w ∈ W 2,2(Φ(β, γ, β̂)) with the data (3.50) and (3.51). Moreover,

the following estimates hold

‖w‖2W 2,2 ≤ C(‖p1‖2W 1,2 + ‖p2‖2W 1,2 + ‖q0‖2W 2,2 + ‖q1‖2W 1,2 + ‖f‖2W 1,2).

Proposition 3.15 Let the curves β, γ, and β̂ be of class C 1. Let f0 and X be of

class C 0,1. Then there are 0 < c1 < c2 such that for all solutions w ∈ W 2,2(Φ(β, γ, β̂)) to

problem (3.1)

c1[Γ(γ,w)+Γ1(β̂, w)+Γ2(β,w)] ≤ ‖w‖2W 2,2+‖f‖2W 1,2 ≤ c2[Γ(γ,w)+Γ1(β̂, w)+Γ2(β,w)+‖f‖2W 1,2 ],

where Γ(γ,w), Γ1(β̂, w), and Γ2(β,w) are given in (3.18) and (3.49), respectively.
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4 Solvability for Hyperbolic Surfaces

Let M ⊂ IR3 be a hyperbolic surface with the normal field ~n and let Ω ⊂ M be a

noncharacteristic region, where

Ω = {α(t, s) | (t, s) ∈ (0, a) × (0, b) }.

We consider solvability of problem under appropriate part boundary data

〈D2w,Q∗Π〉 = f + f0w +X(w) for x ∈ Ω, (4.1)

where f0 is a function on M and X ∈ T (M) is a vector field on M. Clearly, equation

(2.25) takes the form of (4.1).

To set up boundary data, we consider some boundary operators. Let x ∈ ∂Ω be given.

µ ∈ TxM with |µ| = 1 is said to be the noncharacteristic normal outside Ω if there is a

curve ζ : (0, ε) → Ω such that

ζ(0) = x, ζ ′(0) = −µ, Π(µ,X) = 0 for X ∈ Tx(∂Ω).

Let µ be the the noncharacteristic normal field along ∂Ω. Let the linear operator Q :

TxM → TxM be given in (2.2) for x ∈ M. Recall that the shape operator ∇~n : TxM →
TxM is defined by ∇~nX = ∇X~n(x) for X ∈ TxM. We define boundary operators Ti :

TxM → TxM by

TiX =
1

2

[

X + (−1)iχ(µ,X)ρ(X)Q∇~nX for X ∈ TxM, i = 1, 2, (4.2)

where

χ(µ,X) = sign det
(

µ,X,~n
)

, ̺(X) =
1√
−κ signΠ(X,X), (4.3)

and sign is the sign function.

We shall consider the part boundary data

〈Dw,T2αs〉 ◦ α(0, s) = p1(s), 〈Dw,T2αs〉 ◦ α(a, s) = p2(s) for s ∈ (0, b), (4.4)

w ◦ α(t, 0) = q0(t),
1√
2
〈Dw, (T2 − T1)αt〉 ◦ α(t, 0) = q1(t) for t ∈ (0, a). (4.5)

To have a smooth solution, we need some kind of compatibility conditions as follows.

Let A and B be kth order and mth order tensor fields on M, respectively, with k ≥ m.

We define A( i−)B to be a (k −m)th order tensor field by

A( i−)B(X1, · · · ,Xk−m) = 〈 iXk−m
· · · iX1A,B〉(x) for x ∈M, (4.6)

where X1, · · · , Xk−m are vector fields on M.
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For convenience, we assume that

|αt(t, 0)| = 1 for t ∈ [0, a].

Then Qαt, αt forms an orthonormbal basis of Tα(t,0)M with the positive orientation for

all t ∈ [0, a] and

Q∇~nαt = Π(αt, αt)Qαt −Π(αt, Qαt)αt for t ∈ [0, a].

Let k ≥ 1 be an integer. First, we assume that w is a C k,1 solution to (4.1) in a

neighborhood of the curve α(t, 0) with the data (4.5). Then

Dw(α(t, 0)) = B1(t)q
′
0(t) + C0(t)q1(t) for t ∈ [0, a],

where

B1(t) = [αt +
Π(αt, Qαt)

Π(αt, αt)
Qαt], C0(t) =

√
2

̺(αt)Π(αt, αt)
Qαt,

are vector fields along the curve α(t, 0), from which we obtain

DαtDw(α(t, 0)) = DαtB1q
′
0(t) +B1(t)q

′′
0 (t) +DαtC0q1(t) + C0(t)q

′
1(t).

Using (4.1) and the above formula, we compute along the curve α(t, 0) to have

D2w(Qαt, Qαt)Π(αt, αt) = f + f0w + 〈Dw,X〉 − 〈DαtDw,αt〉Π(Qαt, Qαt)

+2〈DαtDw,Qαt〉Π(Qαt, αt)

= f + f0q0(t) + [〈X,B1(t)〉+ 〈DαtB1, Z(t)〉]q′0(t) + 〈B1(t), Z(t)〉q′′0(t)
+[〈X,C0(t)〉+ 〈DαtC0, Z(t)〉]q1(t) + 〈C0(t), Z(t)q

′
1(t) for t ∈ [0, a], (4.7)

where

Z(t) = 2Π(Qαt, αt)Qαt −Π(Qαt, Qαt)αt.

Since Π(αt, αt) 6= 0 for all t ∈ [0, a], we have obtained two order tensor fields, A2(t), B2
i (t),

and C2
i (t), that are given by f0, X, Π, Qαt, αt, and their differentials, such that

D2w(α(t, 0)) = A2(t)f +
2

∑

i=0

B2
i (t)q

(i)
0 (t) +

1
∑

i=0

C2
i (t)q

(i)
1 (t) for t ∈ [0, a].

By repeating the above procedure, we obtain (k + i)th order tensors fields Ak+i
i (t), and

kth order tensor fields Bk
i (t), C

k
i (t), such that

Dkw(α(t, 0)) = Qk(q0, q1, f)(t) for t ∈ [0, a],

where

Qk(q0, q1, f)(t) =
k−2
∑

i=0

Ak+i
i (t)( i−)Dif(α(t, 0)) +

k
∑

i=0

Bk
i (t)q

(i)
0 (t) +

k−1
∑

i=0

Ck
i (t)q

(i)
1 (t) (4.8)

for t ∈ [0, a] and k ≥ 2, where “( i−)” is defined in (4.6).
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Definition 4.1 Let q0 be of class C k,1, and p1, p2, q1, f of class C k−1,1 to be said to

satisfy the kth order compatibility conditions at α(0, 0) and α(a, 0) if

pj(tj) = 〈B1(tj),T2αs〉q′0(tj) + 〈C0(tj),T2αs〉q1(tj), (4.9)

p
(l)
j (0) = 〈Ql(q0, q1, f)(tj), γ̇j(0)⊗ · · · ⊗ γ̇j(0)〉

+
∑

j1+···+ji=l, 1≤i≤l−1

aj1···ji〈Qi(q0, q1, f)(tj), γ
(j1)
j (0)⊗ · · · ⊗ γ

(ji)
j (0)〉 (4.10)

for 1 ≤ l ≤ k−1, where aj1···ji are positive integers given in (3.42), j = 1, 2, γ1(s) = α(0, s),

γ2(s) = α(a, s), t1 = 0, and t2 = a.

Our main task in this section is to establish the following.

Theorem 4.1 Let Ω be a noncharacteristic region of class Cm+2,1 and let f0 and X

be of class Cm−1,1. Let q0 be of class Cm,1, and p1, p2, q1, f be of Cm−1,1, respectively.

If m ≥ 1, we assume that the mth compatibility conditions holds. Then there is a unique

solution w ∈ Cm,1(Ω) to problem (4.1) with the data (4.4) and (4.5) satisfying

‖w‖Cm,1(Ω) ≤ C(‖q1‖Cm−1,1[0,a] + ‖q0‖Cm,1[0,a] + ‖p1‖Cm−1,1[0,b]

+‖p2‖Cm−1,1[0,b]) + ‖f‖Cm−1,1(Ω)). (4.11)

Remark 4.1 If p1, p2 ∈ Cm−1,1
0 (0, b), q0 ∈ Cm,1

0 (0, a), q1 ∈ Cm−1,1
0 (0, a), and f ∈

Cm−1,1
0 (Ω) for an integer m ≥ 0, then the mth order compatibility conditions are clearly

true.

Theorem 4.2 Let Ω be a noncharacteristic region of class C 2,1 and let f0 and X be

of class C 0,1. Let q0 be of class W 2,2, and p1, p2, q1, f of class W 1,2 to satisfy the 1th

order compatibility conditions. Then there is a unique solution w ∈ W 2,2(Ω) to problem

(4.1) with the data (4.4) and (4.5). Moreover, there is C > 0, in dependent of solution w,

such that

‖w‖2W 2,2(Ω) ≤ C(‖q0‖2W 2,2(0,a) + ‖q1‖2W 1,2(0,a) + ‖p1‖2W 1,2(0,b)

+‖p2‖2W 1,2(0,b) + ‖f‖W 1,2(Ω)). (4.12)

We define

Γ(Ω, w) =

∫ b

0
(|p′1(s)|2 + |p′2(s)|2)(b− s)ds+ Γ(α(·, 0), w), (4.13)

where p1, p2 are given in (4.4), and

Γ(α(·, 0), w) =
1

∑

j=0

‖∇jw ◦ α(·, 0)‖2L2(0,a)

+

∫ a

0
[|D2w(T1αt,T1αt)|2t+ |D2w(T2αt,T2αt)|2(a− t)]dt. (4.14)
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Theorem 4.3 Let Ω be a noncharacteristic region of class C 2,1 and let f0 and X be

of class C 0,1. Then there are 0 < c1 < c2 such that for all solutions w ∈ W 2,2(Ω) to

problem (4.1)

c1Γ(Ω, w) ≤ ‖w‖2W 2,2(Ω) + ‖f‖2W 1,2(Ω) ≤ c2(‖f‖2W 1,2(Ω) + Γ(Ω, w)). (4.15)

Next, we assume that f = 0 to consider problem

〈D2w,Q∗Π〉 = f0w +X(w) for x ∈ Ω. (4.16)

Denote by Υ(Ω) all the solutions w ∈ W 2,2(Ω) to problem (4.16). For w ∈ Υ(Ω), we let

Γ(w) =

∫ b

0
(|p′1(s)|2 + |p′2(s)|2)ds + ‖q0‖2W 2,2(0,a) + ‖q1‖2W 1,2(0,a),

where p1, p2, q0, and q1 are given in (4.4) and (4.5), respectively. We define

H(Ω) = {w ∈ Υ(Ω)with the 1th order compatibility conditions | Γ(w) <∞}.

Theorem 4.4 Let Ω be a noncharacteristic region of class C 2,1 and X of class C 0,1.

For each w ∈ Υ(Ω), there exists a sequence wn ∈ H(Ω) such that

lim
n→∞

‖wn − w‖W 2,2(Ω) = 0.

The remains of this section is devoted to the proofs of Theorems 4.1-4.4. The proofs

of Theorems 4.1-4.2 and 4.3-4.4 are given after Lemma 4.5 and Lemma 4.7, respectively.

We shall solve (4.1) locally in asymptotic coordinate systems and then paste the local

solutions together. A chart ψ(p) = (x1, x2) on M is said to be an asymptotic coordinate

system if

Π(∂x1, ∂x1) = Π(∂x2, ∂x2) = 0. (4.17)

Let p ∈ M. Then κ(p) < 0 if and only if there exists an asymptotic coordinate system at

p([10]). In this system

κ(q) = −Π2(∂x1, ∂x2)

detG
, detG = |∂x1|2|∂x2|2 − 〈∂x1, ∂x2〉2.

In an asymptotic coordinate system, equation (4.1) takes a normal form. We have the

following.

Proposition 4.1 Let M be a hyperbolic orientated surface and let ψ(p) = (x1, x2) :

U(⊂ M) → IR2 be an asymptotic coordinate system on M with the positive orientation.

Then

〈D2w,Q∗Π〉 = ±2

√

−κ
detG

wx1x2(x) + the first order terms, (4.18)

where w(x) = w◦ψ−1(x) and the sign takes − if Π(∂x1, ∂x2) > 0 and + if Π(∂x1, ∂x2) < 0,

respectively.
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Proof Let p ∈ U be fixed. Let αi = (αi1, αi2)
T ∈ R2 be such that

(α1, α2) ∈ SO (2), det(α1, α2) = 1, G(p)αi = ηiαi for i = 1, 2,

where ηi > 0 are the eigenvalues of the matrix G(p). Set

Ei = αi1∂x1 + αi2∂x2 for i = 1, 2. (4.19)

Since

〈Ei, Ej〉 = αT
i G(p)αj = ηjδij for 1 ≤ i, j ≤ 2,

E1√
η1
,
E2√
η2

forms an orthonormal basis of Mp. Moreover, E1√
η1
, E2√

η2
is of the positive orien-

tation due to

det
( E1√

η1
,
E2√
η2
, ~n

)

= det[
(

∂x1, ∂x2, ~n
)









α11√
η1

α21√
η2

0
α12√
η1

α22√
η2

0

0 0 1









] = det
(

∂x1, ∂x2, ~n
) 1√

η1η2
= 1.

It follows from (2.2) that

Q
E1√
η1

= − E2√
η2
, Q

E2√
η2

=
E1√
η1
.

Using the above relations and the formulas (4.17), we have at p

η1η2〈D2w,Q∗Π〉 = D2w(E1, E1)Π(E2, E2)− 2D2w(E1, E2)Π(E1, E2)

+D2w(E2, E2)Π(E1, E1)

= 2[α21α22D
2w(E1, E1)− (α11α22 + α12α21)D

2w(E1, E2)

+α11α12D
2w(E2, E2)]Π(∂x1, ∂x2)

= 2D2w(α21E1 − α11E2, α22E1 − α12E2)Π(∂x1, ∂x2)

= −2(α11α22 − α12α21)
2D2w(∂x2, ∂x2)Π(∂x1, ∂x2)

= −2[wx1x2 −D∂x1∂x2(w)]Π(∂x1, ∂x2), (4.20)

where the formula

α11α22 − α12α21 = det(α1, α2) = 1,

has been used.

(4.18) follows from (4.20) since κ = −Π2(∂x1, ∂x2)

η1η2
. ✷

Lemma 4.1 There is a σ0 > 0 such that, for all p ∈ Ω, there exist asymptotic coordi-

nate systems ψ : B(p, σ0) → IR2 with ψ(p) = (0, 0), where B(p, σ0) is the geodesic plate in

M centered at p with radius σ0.
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Proof. For p ∈ Ω, let σ(p) denote the least upper bound of the radii σ for which

an asymptotic systems ψ = x : B(p, σ) → IR2 with ψ(p) = (0, 0) exists. From the

existence of local asymptotic coordinate systems, σ(p) > 0 for all p ∈ Ω. Let p, q ∈ Ω, and

q ∈ B(p, σ(p)). Let

σ1(q) = inf
z∈M,d(z,p)=σ(p)

d(q, z),

where d(·, ·) is the distance function on M ×M in the induced metric. Then σ1(q) > 0

and B(q, σ1(q)) ⊂ B(p, σ(p)), since q ∈ B(p, σ(p)).

For any 0 < σ̂ < σ1(q), B(q, σ̂) ⊂ B(p, σ(p)). Thus, there is a 0 < σ < σ(p) such that

B(q, σ̂) ⊂ B(p, σ). Let ψ = x : B(p, σ) → IR2 be an asymptotic system with ψ(p) = (0, 0).

Set ψ̂(z) = ψ(z)−ψ(q) for z ∈ B(q, σ̂). Then ψ̂ : B(q, σ̂) → IR2 is an asymptotic coordinate

system with ψ̂(q) = (0, 0), that is,

σ(q) ≥ σ1(q) for q ∈ B(p, σ(p)).

Thus, σ(p) is lower semi-continuous in Ω and minp∈Ω σ(p) > 0 since Ω is compact. ✷

Lemma 4.2 Let γ : [0, a] → M be a regular curve without self intersection points.

Then there is a σ0 > 0 such that, for all p ∈ { γ(t) | t ∈ (0, a) }, S(p, σ0) has at most two

intersection points with { γ(t) | t ∈ [0, a] }, where S(p, σ0) is the geodesic circle centered at

p with radius σ0. If p = γ(0), or γ(a), then S(p, σ0) has at most one intersection point

with { γ(t) | t ∈ [0, a] }.

Proof. By contradiction. Let the claim in the lemma be not true. For each integer

k ≥ 1, there exists tk < t1k < t2k(or tk > t1k > t2k) in [0, a] such that

d(γ(tk), γ(t
1
k)) = d(γ(tk), γ(t

2
k)) =

1

k
for k ≥ 1. (4.21)

We may assume that

tk → t0, t1k → t1, t2k → t2 as k → ∞,

for certain points t0, t1, t2 ∈ [0, a]. Then 0 ≤ t0 ≤ t1 ≤ t2 ≤ a and

γ(t0) = γ(t1) = γ(t2).

The assumption that the curve γ has no self intersection point implies that

t0 = t1 = t2.

For k ≥ 1, let

fk(t) =
1

2
ρ2k(γ(t)), for t ∈ [0, a],
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where ρk(p) = d(γ(tk), p) for p ∈ M. It follows from (4.21) that there is a ζk with t1k <

ζk < t2k such that

f ′k(ζk) = 0.

On the other hand, the formula f ′k(t) = ρk(γ(t))〈Dρk(γ(t)), γ̇(t)〉 implies that f ′k(tk) = 0.

Thus, we obtain ηk ∈ (tk, ζk) such that

f ′′k (ηk) = 0 for k ≥ 1.

Since

f ′′k (t) = D(ρkDρk)(γ̇(t), γ̇(t)) + ρk(γ(t))〈Dρk(γ(t)),Dγ̇(t)γ̇〉,

we have

|γ̇(t0)|2 = f ′′0 (t
0) = lim

k→∞
f ′′k (ηk) = 0,

which contradicts the regularity of the curve γ, where

f0(t) =
1

2
d2(γ(t0), γ(t)) for t ∈ [0, a].

✷

We need the following.

Proposition 4.2 (i) det
(

Q∇~nX,X,~n(x)
)

= Π(X,X)(x) for X ∈ TxM, x ∈M.

(ii) Π(Q∇~nX,Q∇~nX) = κΠ(X,X) for X ∈ TxM, x ∈M.

Proof Let x ∈ M be given. Let e1, e2 be an orthonormal basis of TxM with the

positive orientation such that

Π(ei, ej)(x) = λiδij for 1 ≤ i, j ≤ 2. (4.22)

Then

det
(

Q∇~nX,X,~n
)

= det
(

e1, e2, ~n
)









λ2〈X, e2〉 〈X, e1〉 0
−λ1〈X, e1〉 〈X, e2〉 0

0 0 1









= Π(X,X). (4.23)

In addition, using (4.22), we have

Π(Q∇~nX,Q∇~nX) = Π
(

− λ1〈X, e1〉e2 + λ2〈X, e2〉e1, −λ1〈X, e1〉e2 + λ2〈X, e2〉e1
)

= λ21λ2〈X, e1〉2 + λ22λ1〈X, e2〉2 = κΠ(X,X).

✷
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Lemma 4.3 Let p0 ∈M and let B(p0, σ) be the geodesic ball centered at p0 with radius

σ > 0. Let γ : [−a, a] → B(p0, σ) and β : [−b, b] → B(p0, σ) be two noncharacteristic curves

of class C 1, respectively, with

γ(0) = β(0) = p0, Π(γ̇(0), β̇(0)) = 0.

Let ψ̂ : B(p0, σ) → IR2 be an asymptotic coordinate system. Then there exists an asymp-

totic coordinate system ψ : B(p0, σ) → IR2 with ψ(p0) = (0, 0) such that

ψ(γ(t)) = (t,−t) for t ∈ [−a, a], (4.24)

β′1(s) > 0, β′2(s) > 0 for s ∈ [−b, b], (4.25)

where ψ(β(s)) = (β1(s), β2(s)). Moreover, for X = X1∂x1 +X2∂x2 with Π(X,X) 6= 0, we

have

̺(X)Q∇~nX = χ
(

γ′(0), β′(0)
)

{

X1∂x1 −X2∂x2, X1X2 > 0,

−X1∂x1 +X2∂x2, X1X2 < 0,
(4.26)

where ̺(X) is given in (4.3) and

χ
(

γ′(0), β′(0)
)

= sign det
(

γ′(0), β′(0), ~n(p0)
)

.

Proof. Let ψ̂(p0) = (0, 0) and

ψ̂(γ(t)) = (γ1(t), γ2(t)) for t ∈ [−a, a].

Since γ is noncharacteristic,

Π(γ̇(t), γ̇(t)) = 2γ′1(t)γ
′
2(t)Π(∂x1, ∂x2) 6= 0 for t ∈ [−a, a].

Without loss of generality, we assume that

γ′1(t) > 0, γ′2(t) < 0 for t ∈ [−a, a]. (4.27)

We extend the domain [−a, a] of γ(t) to IR such that

lim
t→±∞

γ1(t) = ±∞, lim
t→±∞

γ2(t) = ∓∞,

and the relations (4.27) hold for all t ∈ IR. Consider a diffeomorphism ϕ(x) = y : R2 → IR2

given by

ϕ(x) = (γ−1
1 (x1),−γ−1

2 (x2)) for x = (x1, x2) ∈ IR2. (4.28)

Then ϕ ◦ ψ̂ : B(p0, σ) → IR2 is an asymptotic coordinate system such that

ϕ ◦ ψ̂(γ(t)) = (t,−t) for t ∈ [−a, a]. (4.29)
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Let ϕ ◦ ψ̂(β(s)) = (β1(s), β2(s)). Since β is noncharacteristic,

β′1(s)β
′
2(s) 6= 0 for s ∈ [−b, b].

In addition, the assumption Π(γ̇(0), β̇(0)) = 0 and the relation (4.29) imply that

0 = Π(γ̇(0), β̇(0)) = Π(∂x1 − ∂x2, β
′
1(0)∂x1 + β′2(0)∂x2) = [β′2(0)− β′1(0)]Π(∂x1, ∂x2),

that is, β′1(0) = β′2(0). If β
′
1(0) > 0, we let ψ(p) = ϕ ◦ ψ̂(p) to have (4.25). If β′1(0) < 0,

we define instead of (4.28)

ϕ(x) = (γ−1
2 (x2),−γ−1

1 (x1)) for x = (x1, x2) ∈ IR2.

Thus (4.25) follows again.

Next, we prove (4.26). Let Q∇~nX = Y1∂x1+Y2∂x2. Since (Y1X2+Y2X1)Π(∂x1, ∂x2) =

Π
(

Q∇~nX,X
)

= 〈Q∇~nX,∇~nX〉 = 0, we have

Q∇~nX = σ(X1∂x1 −X2∂x2),

where σ is a function. Using Proposition 4.2 (ii), we obtain

σ2 = −κ.

Next, from (4.24) and (4.25), we have

(

γ′(0), β′(0), ~n
)

=
(

∂x1, ∂x2, ~n
)









1 β′1(0) 0

−1 β′2(0) 0

0 0 1









,

which yields

sign det
(

γ′(0), β′(0), ~n
)

= sign det
(

∂x1, ∂x2, ~n
)

.

Thus (4.26) follows from Proposition 4.2 (i). ✷

Denote

Ω(0, s0) = {α(t, s)| t ∈ (0, a), s ∈ (0, s0) } for s0 ∈ [0, b]. (4.30)

Then Ω = Ω(0, b).

Lemma 4.4 Let the assumptions in Theorem 4.1 hold. Then there is a 0 < ω ≤ b

such that problem (4.1) admits a unique solution w ∈ Cm,1(Ω(0, ω)) with the data (4.4)

where s ∈ [0, ω], and (4.5) to satisfy

‖w‖
Cm,1(Ω(0,ω))

≤ C(‖p1‖Cm−1,1[0,b] + ‖p2‖Cm−1,1[0,b] + ‖q0‖Cm,1[0,a]

+‖q1‖Cm−1,1[0,a] + ‖f‖Cm−1,1(Ω)). (4.31)
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Proof. Let σ0 > 0 be given small such that the claims in Lemmas 4.1 and 4.2 hold,

where γ(t) = α(t, 0) in Lemma 4.2. We divide the curve α(t, 0) into m parts with the

points λi = α(ti, 0) such that

λ0 = α(0, 0), λm = α(a, 0), d(λi, λi+1) =
σ0
3
, 0 ≤ i ≤ m− 2, d(λm−1, λm) ≤ σ0

3
,

where t0 = 0, t1 > 0, t2 > t1, · · · , and tm = a > tm−1. For simplicity, we assume that

m = 3. The other cases can be treated by a similar argument.

We shall construct a local solution in a neighborhood of α(t, 0) by the following steps.

Step 1. Let ŝ0 > 0 be small such that

α(0, s) ∈ B(λ0, σ0) for s ∈ [0, s0].

From Lemma 4.3, there is asymptotic coordinate system ψ0(p) = x : B(λ0, σ0) → IR2 with

ψ0(λ0) = (0, 0) such that

ψ0(α(t, 0)) = (t,−t) for t ∈ [0, t2], (4.32)

β′01(s) > 0, β′02(s) > 0 for all s ∈ [0, s0],

where β0(s) = ψ0(α(0, s)) = (β01(s), β02(s)). Let γ0(t) = (t,−t). We may assume that

s0 > 0 is given small such that β01(s0) ≤ t2 since β01(0) = 0. Set

Ξ1(β0, γ0) = P1(β0) ∪R((β01(s0), 0), c0, d0) ∪E(γ0), (4.33)

as in (3.29) with c0 = t2 − β01(s0) and d0 = β02(s0). Then we let

Ω0 = Ω ∩ ψ−1
0 [Ξ1(β0, γ0)].

Noting that for the region Ω0

χ(µ(α(t, 0)), αt(t, 0)) = χ(−αs(0, 0), αt(0, 0)) for t ∈ (0, t2),

χ(µ(α(0, s)), αs(0, s)) = χ(−αt(0, 0), αs(0, 0)) for s ∈ (0, s0),

from (4.26), we obtain

T1αs(0, s) = β′01(s)∂x1, T2αs(0, s) = β′02(s)∂x2 for s ∈ (0, s0), (4.34)

T1αt(t, 0) = ∂x1, T2αt(t, 0) = −∂x2 for t ∈ (0, t2). (4.35)

From Proposition 4.1, solvability of problem (4.1) on Ω∩ψ−1
0 (Ξ1(β0, γ0)) is equivalent

to that of problem (3.1) over the region Ξ1(β0, γ0). Next, we consider the transfer of the

boundary data under the chart ψ0. The corresponding part data are

wx2 ◦ β0(s) = 〈Dw,T2αs〉 ◦ α(0, s)/β′02(s) = p1(s)/β
′
02(s) for s ∈ [0, s0],
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w(t,−t) = w ◦ ψ−1
0 (t,−t) = w(α(t, 0)) = q0(t) for t ∈ [0, t2],

∂

∂ν
w(t,−t) = 1√

2
〈Dw, (T2 − T1)αt〉 ◦ α(t, 0) = q1(t) for t ∈ [0, a],

where

w(x) = w ◦ ψ−1(x).

It is easy to check that p1/β
′
02, q0, q1, and f aremth order compatible at α(0, 0) in the sense

of Definition 4.1 is equivalent to that p1/β
′
02, q0, q1, and f̂ do in the sense of Definition

3.1, where

f̂ =
f ◦ ψ−1

0 (x)

2

√

detG(x)

−k ◦ ψ−1
0 (x)

for x ∈ ψ0(B(λ0, σ0)) ⊂ IR2,

where detG(x) = det(〈∂xi, ∂xj〉).
From Proposition 3.9, problem (3.1) admits a unique solution w ∈ Cm,1(Ξ1(β0, γ0))

with the corresponding boundary data. Thus, we have obtained a solution, denoted by

w0 ∈ Cm,1(Ω0), to problem (4.1) with the data

〈Dw0,T2αs〉 ◦ α(0, s) = p1(s) for s ∈ [0, s0],

w0 ◦ α(t, 0) = q0(t),
1√
2
〈Dw0, (T2 − T1)αt〉 ◦ α(t, 0) = q1(t) for t ∈ [0, t2],

where

Ω0 = Ω ∩ ψ−1
0 [Ξ1(β0, γ0)].

It follows from the estimate in Proposition 3.9 that

‖w0‖Cm,1(Ω0)
≤ CΓmC (p1, p2, q0, q1, f), (4.36)

where

ΓmC (p1, p2, q0, q1, f) = ‖p1‖Cm−1,1(0,b) + ‖p2‖Cm−1,1(0,b) + ‖q0‖Cm,1(0,a)

+‖q1‖Cm−1,1(0,a) + ‖f‖Cm−1,1(Ω).

We define a curve on Ω0 by

ζ1(s) = ψ−1
0 ◦ γt1(s) for s ∈ [0, st1 ], (4.37)

where

γt1(s) = (s+ t1, s − t1), st1 =











t1 if t1 ∈ (0,
t2
2
],

t2 − t1 if t1 ∈ (
t2
2
, t2).

Then ζ1(s) is noncharacteristic and

Π(ζ̇1(0), αt(t1, 0)) = Π(∂x1 + ∂x2, ∂x1 − ∂x2) = 0. (4.38)
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Step 2. Let the curve ζ1 be given in (4.37). Let s1 > 0 be small such that

ζ1(s) ∈ B(λ1, σ0) for s ∈ [0, s1].

From the noncharacteristicness of ζ1(s) and the relation (4.38) and Lemma 4.3 again, there

exists an asymptotic coordinate system ψ1(p) = x : B(λ1, σ0) → IR2 with ψ1(λ1) = (0, 0)

and

ψ1(α(t+ t1, 0)) = (t,−t) for t ∈ [0, t3 − t1],

β′11(s) > 0, β′12(s) > 0 for s ∈ [0, s1],

where β1(s) = ψ1(ζ1(s)) = (β11(s), β12(s)). We also assume that s1 > 0 has been taken

small such that β11(s1) ≤ t3. This time, we set

Ξ1(β1, γ1) = P1(β1) ∪R((β11(s1), 0), c1, d1) ∪ E1(γ1),

where c1 = t3 − t1 − β11(s1), d1 = β12(s0), and γ1(t) = ψ1(α(t + t1, 0)). Next, let

Ω1 = Ω ∩ ψ−1
1 [Ξ1(β1, γ1)].

Since for the region Ω1

χ(µ(ζ1(s)), ζ
′
1(s)) = χ(−αt(0, t1), ζ

′
1(0)) for s ∈ (0, s1),

χ(µ(α(t1 + t, 0)), αt(t1 + t, 0)) = χ(−ζ ′1(0), αt(t1, 0)) for t ∈ (0, t3 − t1),

it follows from (4.26) that

T1ζ ′1(s) = β′11(s)∂x1, T2ζ ′1(s) = β′12(s)∂x2 for s ∈ (0, s1),

T1αt(t1 + t, 0) = ∂x1, T2αt(t1 + t, 0) = −∂x2 for t ∈ (0, t3 − t1).

By some similar arguments in Step 1, we obtain a unique solution w1 ∈ Cm,1(Ω1) to

problem (4.1) with the data

〈Dw1,T2ζ̇1〉 ◦ β1(s) = 〈Dw0,T2ζ̇1(s)〉 ◦ β1(s) for s ∈ [0, s1],

w1(α(t, 0)) = q0(t),
1√
2
〈Dw1, (T2 − T1)αt〉 ◦ α(t, 0) = q1(t) for t ∈ [t1, t3],

where w0 is the solution of (4.1) on Ω0, given in Step 1. The following estimate also holds

‖w1‖Cm,1(Ω1)
≤ C(‖〈Dw0,T2ζ̇1〉 ◦ ζ1‖Cm−1,1[0,s1]

+ ‖q0‖Cm,1[0,a] + ‖q1‖Cm−1,1[0,a]

+‖f‖Cm−1,1(Ω)) ≤ CΓmC (p, q0, q1, h). (4.39)

As in Step 1, we define a curve on Ω1 by

ζ2(s) = ψ−1
1 (s+ t2 − t1, s+ t1 − t2) for s ∈ [0, st2 ], (4.40)
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where

st2 = t2 − t1 if t2 − t1 ≤
t3 − t1

2
; st2 = t3 − t2 if t2 − t1 >

t3 − t1
2

.

Then ζ2(s) is noncharacteristic and

Π(ζ̇2(0), αt(t2, 0)) = Π(∂x1 + ∂x2, ∂x1 − ∂x2) = 0. (4.41)

Step 3. Let the curve ζ2 be given in (4.40). Let s2 > 0 be small such that

ζ2(s), α(a, s) ∈ B(λ2, σ0) for s ∈ [0, s2].

Let ψ2(p) = x : B(λ2, σ0) → IR2 be an asymptotic coordinate system with ψ2(λ2) = (0, 0),

ψ2(α(t+ t2, 0)) = (t,−t) for t ∈ [0, a − t2], (4.42)

and

β′21(s) > 0, β′22(s) > 0 for s ∈ [0, s2],

where β2(s) = ψ2(ζ2(s)) = (β21(s), β22(s)).

Let β3(s) = ψ2(α(a, s)) = (β31(s), β32(s)). Next, we prove that

β′31(s) > 0, β′32(s) > 0 for s ∈ [0, s2], (4.43)

by contradiction. Since α(a, s) is noncharacteristic, using (4.42) and the assumption

Π(αt(a, 0), αs(a, 0)) = 0, we have

β′31(0) = β′32(0); thus β′31(s)β
′
32(s) > 0 for s ∈ [0, s2].

Let

p(t, s) = α1(t, s) + α2(t, s), ψ2(α(t+ t2, s)) = (α1(t, s), α2(t, s)).

Let (4.43) be not true, that is, β′31(s) < 0, β′32(s) < 0 for s ∈ [0, s2]. Thus

p(0, s) = β21(s) + β22(s) > β21(0) + β22(0) = 0 for s ∈ (0, s2],

p(a− t2, s) = β31(s) + β32(s) < β31(0) + β32(0) = 0 for s ∈ (0, s2].

Let t(s) ∈ (0, a − t2) be such that

α1(t(s), s) + α2(t(s), s) = 0 for s ∈ (0, s2). (4.44)

Since α1t(0, 0) = 1 and α(t+t2, s) are noncharacteristic for all s ∈ [0, s2], we have α1t(t, s) >

0 and

0 < α1(0, s) < α1(t(s), s) < α1(a− t2, s) = β31(s) < β31(0) = a− t2.
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Thus, equality (4.44) means that α(α1(t(s), s)+t2, 0) = α(t(s), s), which is a contradiction

since α : [0, a] × [a, b] →M is an imbedding map.

We also assume that s2 has been taken so small such that

β21(s2) < a− t2, β32(s2) < 0,

since β21(0) = 0 and β32(0) = −(a − t2) < 0. Let γ2(t) = ψ2(α(t + t2, 0)) = (t,−t). We

now set

Φ(β2, γ2, β3) = Ξ1(β2, γ2) ∪R((a− t2, β32(s2)), c3, d3) ∪ P2(β3),

where Ξ1(β2, γ2), R((a − t2, β32(s2)), c3, d3), and P2(β3) are given in (3.29), (3.6), and

(3.26), respectively, with c3 = β32(s2)− a+ t2 and d3 = β22(s2)− β32(s2). Let

Ω2 = Ω ∩ ψ−1
2 [Φ(β2, γ2, β3)].

This time we use (4.26) to obtain, for the region Ω2,

T1ζ ′2(s) = β′21(s)∂x1, T2ζ ′2(s) = β′22(s)∂x2 for s ∈ (0, s2),

T1αt(t2 + t, 0) = ∂x1, T2αt(t2 + t, 0) = −∂x2 for t ∈ (0, a − t2),

T1αs(a, s) = β′32(s)∂x2, T2αs(a, s) = β′31(s)∂x1 for s ∈ (0, s2).

Applying Proposition 3.13, problem (4.1) admits a unique solution w2 ∈ Cm,1(Ω2)

with the data

〈Dw2,T2ζ̇2〉 ◦β2(s) = 〈Dw1,T2ζ̇2〉 ◦β2(s), 〈Dw2,T2αs〉 ◦α(a, s) = p2(s) for s ∈ [0, s2],

w2(α(t, 0)) = q0(t),
1√
2
〈Dw2, (T2 − T1)αt〉 ◦ α(t, 0) = q1(t) for t ∈ [t2, a].

Using the estimates in Proposition 3.13 and (4.39), we obtain

‖w2‖
Cm,1(Ω̂2)

≤ C(‖〈Dw1,T2ζ̇2〉 ◦ ζ2‖Cm−1,1[0,s2]
+ ‖p2‖Cm−1,1[0,b] + ‖q0‖Cm,1[0,a]

+‖q1‖Cm−1,1[0,a] + ‖f‖Cm−1,1(Ω)) ≤ CΓmC (p1, p2, q0, q1, f). (4.45)

Step 4. We define

w = wi for p ∈ Ωi for i = 0, 1, 2.

Let ω > 0 be small such that

α(t, s) ∈ Ω0 ∪ Ω1 ∪ Ω2 for (t, s) ∈ (0, a) × (0, ω).

Then w ∈ Cm,1(Ω(0, ω)) will be a solution to (4.1) with the corresponding data if we

show that

w0(p) = w1(p) for p ∈ Ω0 ∩Ω1; w1(p) = w2(p) for p ∈ Ω1 ∩ Ω2. (4.46)
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Since

w1x2 ◦ β1(s) = w0x2 ◦ β1(s) for s ∈ [0, s1],

w0(t,−t) = w1(t,−t),
∂w0

∂ν
(t,−t) = ∂w1

∂ν
(t,−t) for t ∈ [t1, t2],

from the uniqueness in Proposition 3.9, we have

w0(x) = w1(x) for x ∈ Ξ1(β0, γ0) ∩ Ξ1(β1, γ1),

which yields the first identity in (4.46). A similar argument shows that the second identity

in (4.46) is true.

Finally, the estimate (4.31) follows from (4.36), (4.39), and (4.45). ✷

From a similar argument as for the proof of Lemma 4.4, we obtain the following.

Lemma 4.5 Let the assumptions in Theorem 4.2 hold. Then there is a 0 < ω ≤ b

such that problem (4.1) admits a unique solution w ∈ W 2,2(Ω(0, ω)) with the data (4.4)

where s ∈ (0, ω), and (4.5) to satisfy

‖w‖2W 2,2(Ω(0,ω)) ≤ C(‖q0‖2W 2,2(0,a) + ‖q1‖2W 1,2(0,a) + ‖p1‖2W 2,2(0,b)

+‖p2‖2W 2,2(0,b) + ‖f‖W 1,2(Ω)). (4.47)

We are now ready to prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1 Let ℵ be the set of all 0 < ω ≤ b such that the claims in

Lemma 4.4 hold. We shall prove

b ∈ ℵ.

Let ω0 = supω∈ℵ ω. Then 0 < ω0 ≤ b. Thus there is a unique solution w ∈ Cm,1(Ω(0, ω0))

to (4.1) with the data (4.4), where s ∈ [0, ω0), and (4.5).

Next we show that ω0 = b by contradiction. Let 0 < ω0 < b. By an argument

as for Lemma 4.4, the solution w ∈ Cm,1(Ω(0, ω0)) can be extended such that w ∈
Cm,1(Ω(0, ω0)). Then by Lemma 4.4 again, w can be extend outside Cm,1(Ω(0, ω0)),

which contradicts with the definition of ω0.

Let λ0 = α(0, ω0), σ0, t0 = 0, t1, t2, and t3 = a be given as in the proof of Lemma 4.4.

Let ψ0(p) = x : B(λ0, σ0) → IR2 be an asymptotic coordinate system with ψ0(λ0) =

(0, 0) such that

ψ0(α(t, ω0)) = (t,−t) for t ∈ [0, t2],

ζ ′1(s) > 0, ζ ′2(s) > 0 for s ∈ [ω0 − ε0, ω0],

where ψ0(α(0, s)) = (ζ1(s), ζ2(s)).

For ε > 0, let

β0(s) = ψ0(α(0, s+ ω0 − ε)) = (β01(s), β02(s)), γ0(t) = ψ(α(t, ω0 − ε)) = (γ01(t), γ02(t)),
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for s ∈ [0, 2ε], where β0i(s) = ζi(s+ ω0 − ε) for i = 1, 2. We fixed ε > 0 small such that

ω0 + ε ≤ b, β01(ε) ≤ γ01(t2), γ′01(t) > 0, γ′02(t) < 0.

Let Ξ1(β0, γ0) be given as in (4.33). Clearly,

{α(t, ω0) | t ∈ [0, t2] } ⊂ ψ−1
0 (Ξ1(β0, γ0)).

From Proposition 3.9, we can extend a solution w such that w is C k,1 on the segment

{α(t, ω0 + ε) | t ∈ [0, t2] }. Repeating Steps 2-4 in the proof of Lemma 4.4, the solution

w can be extended such that w is C k,1 on the segment {α(t, ω0 + ε) | t ∈ [0, a] }, which
contradicts the definition of ω0. The proof is complete. ✷

Proof of Theorem 4.2 A similar argument as in the proof of Theorem 4.1 completes

the proof. ✷

To prove Theorems 4.3 and 4.4, we need the following lemmas.

Lemma 4.6 Let the assumptions in Theorem 4.3 hold. Then there are 0 < ω ≤ b and

C > 0 such that for all solutions w ∈ W 2,2(Ω) to problem (4.1)

‖w‖2W 2,2(Ω(0,ω)) ≤ C[‖f‖2W 1,2(Ω) + Γ(Ω, w)], (4.48)

where Ω(0, ω) and Γ(Ω, w) is given in (4.30) and (4.13), respectively.

Proof We keep all the notion in the proof of Lemma 4.4. Let ω > 0 be given in Step

4. Then

w0(x) = w ◦ ψ−1
0 (x)

is a solution to problem (3.1) on the region Ξ1(β0, γ0), where Ξ1(β0, γ0) is given in (4.33)

and

β0(s) = ψ0(α(0, s)) = (β01(s), β02(s)) for s ∈ (0, s0), γ0(t) = ψ0(α(t, 0)) = (t,−t)

for t ∈ [0, t2].

It follows from (4.34) and (4.35) that

∣

∣

∣|D2w(T1αt(t, 0),T1αt(t, 0))| − |w0x1x1 ◦ γ0(t)|
∣

∣

∣ ≤ C|∇w0 ◦ γ0(t)|,

Similarly, we have

∣

∣

∣|D2w(T2αt(t, 0),T2αt(t, 0))| − |w0x2x2 ◦ γ0(t)|
∣

∣

∣ ≤ C|∇w0 ◦ γ0(t)|,
∣

∣

∣|D2w(T1αs(0, s),T1αs(0, s))| − |w0x1x1 ◦ β0(s)|β′201(s)
∣

∣

∣ ≤ C|∇w0 ◦ β0(s)|,
∣

∣

∣|D2w(T2αs(0, s),T2αs(0, s))| − |w0x2x2 ◦ β0(s)|β′202(s)
∣

∣

∣ ≤ C|∇w0 ◦ β0(s)|.
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Using the above relations, we obtain

Γ(γ0, w0) + Γ2(β0, w0) ≤ CΓ(Ω, w), (4.49)

where Γ(γ0, w0) and Γ2(β0, w0) are given in (3.18) and (3.49), respectively.

Applying Proposition 3.11 to Ξ1(β0, γ0) and using (4.49), we have

‖w‖2W 2,2(Ω0)
≤ C‖w0‖2W 2,2(Ξ1(β0,γ0))

≤ C(‖f‖2W 1,2 + Γ(Ω, w)).

Using (3.16) by a similar argument as for the above estimates, we obtain

‖w‖2W 2,2(Ωi)
≤ C(‖f‖2W 1,2 + Γ(Ω, w)), for i = 1, 2.

Thus the estimate (4.48) follows. ✷

Lemma 4.7 Let the assumptions in Theorem 4.3 hold. Then there is C > 0 such that

for all solutions w ∈ W 2,2(Ω) to problem (4.1)

Γ(Ω, w) ≤ C(‖w‖2W 2,2(Ω) + ‖f‖2W 1,2(Ω)). (4.50)

Proof Step 1 We claim that for each ε > 0 small, there is Cε > 0 such that

2
∑

j=0

∫ a−ε

ε
|Djw ◦ α(t, 0)|2dt ≤ Cε(‖w‖2W 2,2(Ω) + ‖f‖2W 1,2(Ω)). (4.51)

Let t0 ∈ (0, a) be fixed and let p0 = α(t0, 0). Let ζ : (0, ǫ) → Ω be such that

ζ(0) = p0, ζ ′(0) = −µ(p0),

where µ(p0) is the noncharacteristic normal at the boundary point p0 outside Ω. From

Lemma 4.3, there are 0 < σ0 < min{t0, a − t0} and an an asymptotic coordinate system

ψ : B(p0, σ0) → IR2 with ψ(p0) = (0, 0) such that

ψ(α(t + t0, 0)) = (t,−t) for t ∈ (−σ0, σ0), ζ ′1(s) > 0, ζ ′2(s) > 0 for s ∈ (0, ε),

where ψ(ζ(s)) = (ζ1(s), ζ2(s)). Set

Ωp0 = Ω ∩ ψ−1[E(γ)],

where

γ(t) = (t,−t), E(γ) = {x | − x2 < x1 < σ1, −σ2 < x2 < σ1 }.

Using (4.26) for the region Ωp0 , we obtain

T1αt(t+ t0, 0)) = ∂x1, T2αt(t+ t0, 0) = −∂x2 for t ∈ (−σ0, σ0),
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where the operators Ti are given in (4.2).

Observe that w0(x) = w ◦ ψ−1(x) is a solution to problem (3.1) on the region E(γ).

Applying Proposition 3.4, we have

2
∑

j=0

∫ σ1/2

−σ1/2
|Djw ◦ α(t+ t0, s)|2dt ≤ C

2
∑

j=0

∫ σ1/2

−σ1/2
|∇jw0(t,−t)|2dt

≤ C(‖w0‖2W 2,2(E(γ)) + ‖f ◦ ψ−1‖2W 1,2(E(γ))) ≤ C(‖w‖2W 2,2(Ω) + ‖f‖2W 1,2(Ω)).

Thus the estimates (4.51) follows from the finitely covering theorem. By a similar

argument, we have

2
∑

j=0

∫ b−ε

ε
|Djw ◦ α(tk, s)|2ds ≤ Cε(‖w‖2W 2,2(Ω) + ‖f‖2W 1,2(Ω)), k = 1, 2,

where t1 = 0 and t2 = a, which particularly imply that

∫ b−ε

ε
|p′k(s)|2(b− s)ds ≤ Cε(‖w‖2W 2,2(Ω) + ‖f‖2W 1,2(Ω)), k = 1, 2, . (4.52)

Step 2 We treat the estimates at the angular points α(0, 0), α(0, b), α(a, 0), and

α(a, b), respectively.

Consider the angular α(0, b) first. Let ε > 0 be given small. From Lemma 4.3, there

is an asymptotic coordinate system ψ : B(α(0, b), σ0) → IR2 with ψ(α(0, b)) = (0, 0) such

that

γ(t) = ψ(α(t, b)) = (t,−t) for t ∈ [0, ε],

β(s) = ψ(α(0, b − s)) = (β1(s), β2(s)), β′1(s) > 0, β′2(s) > 0 for s ∈ [0, ε].

Consider the region Ωα(0,b) = Ω ∩ ψ−1[Ξ1(β, γ)]. From (4.26), we have

T2αs(0, b− s) = −β′2(s)∂x2 for s ∈ (0, ε).

It follows from Proposition 3.11 that

∫ b

b−ε1
|p′1(s)|2(b− s)ds ≤ C(‖f ◦ ψ−1‖2W 1,2(Ξ1(β,γ))

+ ‖w ◦ ψ−1
1 ‖2W 1,2(Ξ1(β,γ))

)

≤ C(‖f‖2W 1,2 + ‖w‖2W 2,2).

Similarly, we can treat the estimates at the other angular points. Thus estimate (4.50)

follows by combing the above estimates with those in Step 1. ✷

Proof of Theorem 4.3 Let R be the set of all 0 < ω ≤ b such that estimate (4.48)

is true. Set ω0 = supω∈R ω. By Lemmas 4.6 and 4.7, it is sufficient to prove

ω0 ∈ R.
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By following the proof of Theorem 4.1, we obtain a ε > 0 small such that

‖w‖2W 2,2(Ω(ω0−ε,ω0))
≤ C[

∫ ω0

ω0−ε
(|p′1(s)|2+ |p′2(s)|2)(ω0−s)ds+Γ(α(·, ω0−ε), w)+‖f‖2W 1,2 ],

where Γ(α(·, ω0− ε), w) is given in (4.14). On the other hand, we fix 0 < ε1 < ε and apply

Lemma 4.7 to the region Ω(ω0 − ε, ω0 − ε1) to obtain

Γ(α(·, ω0 − ε), w) ≤ C[‖w‖2W 2,2(Ω(ω0−ε,ω0−ε1))
+ ‖f‖2W 2,2(Ω(ω0−ε,ω0−ε1))

]

≤ C[‖w‖2W 2,2(Ω(0,ω0−ε1))
+ ‖f‖2W 2,2(Ω(0,ω0−ε1))

] ( by (4.48))

≤ C[‖f‖2W 1,2(Ω) + Γ(Ω, w)].

By Lemma 4.6, we have ω0 ∈ R. By Lemma 4.7, we obtain ω0 = b. ✷

Proof of Theorem 4.4 Let w ∈ Υ(Ω) and ε > 0 be given. We shall find a ŵ ∈ H2(Ω)

such that

‖w − ŵ‖2W 2,2(Ω) < ε.

Let p1, p2, and q0, q1 be given in (4.4) and (4.5), respectively. Towards approximating

w by H(Ω) functions, we first approximate its traces q0, q1, p1, and p2. From Theorem 4.3,

those traces are regular except for the angular points α(0, 0), α(0, b), α(a, 0), and α(a, b).

Next, we change their values near those angular points to make them regular and to let

the 1th order compatibility conditions hold at α(0, 0) and α(a, 0).

Step 1 Consider the point α(0, 0). Let σ > 0 be given small by Lemma 4.3 such that

there is an asymptotic coordinate system ψ : B(α(0, 0), σ) → IR2 with ψ(α(0, 0)) = (0, 0)

such that

ψ(α(t, 0)) = (t,−t) for t ∈ [0, t0),

β(s) = ψ(α(0, s)) = (β1(s), β2(s)), β′1(0) = β′2(0), β′1(s) > 0, β′2(s) > 0 for s ∈ [0, t0),

for some 0 < t0 < min{a, b}/4 small.

From Lemma 4.3, we have

p1(s) = wx2 ◦ β(s)β′2(s) for s ∈ [0, t0],

q′0(t) = wx1(t,−t)− wx2(t,−t), −
√
2q1(t) = wx1(t,−t) + wx2(t,−t) (4.53)

for t ∈ (0, t0). where w(x) = w ◦ ψ−1(x). Moreover, we have

D2w(T1αt,T1αt) = D2w(∂x1, ∂x1) = wx1x1(t,−t)−D∂x1∂x1(w)(t,−t) = ϕ11 + φ1,

and

D2w(T2αt,T2αt) = ϕ22 + φ2.

By differential the equations in (4.53) in t ∈ (0, t0) and using the formulas (4.1) and (4.18),

we obtain

ϕ11 =
1

2
[q′′0(t)−

√
2q′1(t)], ϕ22 =

1

2
[q′′0 (t) +

√
2q′1(t)] for t ∈ (0, t0),
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φ1 = some frist order terms of w, φ2 = some frist order terms of w.

By Theorem 4.3

p1 ∈ W 1,2(0, t0), q0 ∈ W 1,2(0, t0), q1, ϕ11t
1/2, ϕ22, φ1, φ2 ∈ L2(0, t0).

Thus

q′′0t
1/2 = (ϕ11 + ϕ22)t

1/2 ∈ L2(0, t0), q′1t
1/2 =

1√
2
(ϕ22 − ϕ11)t

1/2 ∈ L2(0, t0).

We also need the following.

Lemma 4.8 Let

z(t) =
1

2
[q′0(t) +

√
2q1(t)] for t ∈ (0, t0).

Then z ∈ C [0, t0] and

p1(0) + z(0)β′2(0) = 0. (4.54)

Proof of Lemma 4.8 It follows from z′ = ϕ22 ∈ L2(0, t0) that z ∈ C [0, t0].

We have

wx2 ◦ β ◦ β−1
1 (t)−wx2(t,−t) =

∫ β2◦β−1
1 (t)

−t
wx2x2(t, s)ds,

from which we obtain

|wx2 ◦ β ◦ β−1
1 (t)− wx2(t,−t)|2 ≤ [β2 ◦ β−1

1 (t) + t]]

∫ β2◦β−1
1 (t)

−t
|wx2x2(t, s)|2ds.

For ε > 0 given, let ϑ ∈ [ε/2, ε] be fixed such that

|wx2 ◦ β ◦ β−1
1 (ϑ)−wx2(ϑ,−ϑ)|2 = inf

t∈[ε/2,ε]
|wx2 ◦ β ◦ β−1

1 (t)− wx2(t,−t)|2.

Then

|wx2 ◦ β ◦ β−1
1 (ϑ)− wx2(ϑ,−ϑ)|2 ≤ 2

ε
[β2 ◦ β−1

1 (ε) + ε]

∫ ε

ε/2

∫ β2◦β−1
1 (t)

−t
|wx2x2(t, s)|2ds

≤ σ

∫ ε

0

∫ β2◦β−1
1 (t)

−t
|wx2x2(t, s)|2ds for t ∈ [ε/2, ε].

Thus, w ∈ W 2,2(Ω) implies, by (4.53), that (4.54) holds.

Let 0 < ε < t0 given small. We shall construct q̂0 and q̂1 to satisfy the following.

(1) q̂0(t) = q0(t), q̂1(t) = q1(t) for t ∈ [ε, a);

(2) q̂0 ∈ W 2,2(0, a) and q̂1 ∈ W 1,2(0, a);

(3) The following 1th order compatibility conditions hold at the point α(0, 0),

2p1(0) + [q̂′0(0) +
√
2q̂1(0)]β

′
2(0) = 0;
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(4) If ŵ ∈ Υ(Ω) is such that

ŵ ◦ α(t, 0) = q̂0(t),
1

2
〈Dŵ, (T2 − T1)αt〉 ◦ α(t, 0) = q̂1(t) for t ∈ (0, a),

〈Dŵ,T1αs〉 ◦ α(0, s) = p1(s), 〈Dŵ,T2αs〉 ◦ α(0, s) = p2(s) for s ∈ (0, b),

then

Γ(Ω, ŵ − w) → 0 as ε→ 0.

For the above purposes, we define

q̂0(t) =

{

σ0(ε) + [q′0(t0)−
∫ t0
ε ϕ11ds−

∫ t0
0 ϕ22ds]t+

∫ t
0 (t− s)ϕ22(s)ds, t ∈ [0, ε),

q0(t) t ∈ [ε, a],

and

q̂1(t) =







q1(t0) +
1√
2

∫ t0
ε ϕ11ds− 1√

2

∫ t0
t ϕ22ds, t ∈ (0, ε),

q1(t), t ∈ [ε, a],

where

σ0(ε) = q0(ε) − q′0(ε)ε+
∫ ε

0
sϕ22(s)ds.

Clearly, (1) and (2) hold for the above q̂0 and q̂1. Since

q′0(t0)−
∫ t0

ε
ϕ11ds−

∫ t0

0
ϕ22ds = q′0(ε)−

∫ ε

0
ϕ22(s)ds = q′0(ε)−z(ε)+z(0), for t ∈ (0, ε),

1√
2

∫ t0

ε
ϕ11ds−

1√
2

∫ t0

t
ϕ22ds = q1(ε)− q1(t0) +

1√
2
[z(t)− z(ε)],

using (4.54), we have

2p1(0) + [q̂′0(0) +
√
2q̂1(0)]β

′
2(0) = q′0(ε) +

√
2q1(ε)− 2z(ε) = 0.

Next, we check (4). It follows that

|q0(t)− q̂0(t)|2 = |
∫ ε

t

∫ ε

s
q′′0 (τ)dτds +

∫ ε

t
(t− s)ϕ22(s)ds|2

≤ 2(ε− t+ t ln
t

ε
)

∫ ε

0
|q′′0(τ)|2τdτ +

2

3
ε3

∫ ε

0
|ϕ22(s)|2ds for t ∈ (0, ε).

In addition,

|q′0(t)− q̂′0(t)|2 = |
∫ ε

t
ϕ11(s)ds|2 ≤ (ln

ε

t
)

∫ ε

0
|ϕ11(s)|2sds for t ∈ (0, ε).

Similarly, we have

|q1(t)− q̂1(t)|2 ≤ (ln
ε

t
)

∫ ε

0
|ϕ11(s)|2sds for t ∈ (0, ε).
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Using (4.14) and the above estimates, we have

Γ(α(·, 0), w − ŵ) =
1

∑

j=0

‖D(w − ŵ) ◦ α(·, 0)‖2L2(0,ε) +

∫ ε

0
[|D2(w − ŵ)(T1αt,T1αt)|2t

+|D2(w − ŵ)(T2αt,T2αt)|2(a− t)]dt

≤ C

∫ ε

0
(|q0(s)− q̂0(s)|2 + |q′0(t)− q̂′0(t)|2 + |q1(t)− q̂1(t)|2

+|ϕ11 − ϕ̂11|2t+ |ϕ22 − ϕ̂22|2)dt

≤ C

∫ ε

0
[(|q′′0 (t)|2 + |ϕ11(t)|2)t+ |ϕ22(t)|2]dt, (4.55)

where

ϕ̂11 =
1

2
[q̂′′0 (t)−

√
2q̂′1(t)] = 0, ϕ̂22 =

1

2
[q̂′′0 (t) +

√
2q̂′1(t)] = ϕ22.

Thus (4) follows.

Step 2 As in Step 1, we change the values of q0 and q1 near the point α(a, 0) to get q̂0

and q̂1 in W 2,2(0, a) and in W 1,2(0, a), respectively, such that the 1th order compatibility

conditions at α(a, 0) hold to approximate q0 and q1. Then we change the values of p1 and p2

near the points α(0, b) and α(a, b), respectively, such that p̂1, p̂2 ∈ W 1,2(0, b) approximate

p1 and p2, respectively. Thus the proof completes from Theorem 4.2. ✷

5 Proofs of Main Results in Section 1

Proof of Theorem 1.1 Let Ω ⊂ M be a noncharacterisic region of class C 2,1. For

U ∈ C 1,1(Ω, T 2
sym ) given, we consider problem

sym∇y = U on Ω. (5.1)

(1) Consider problem

〈D2v,Q∗Π〉 = P (U)− 2vκ tr gΠ+X(v) for x ∈ Ω, (5.2)

where P (U) and X are given in (2.26) and (2.27), respectively, with the boundary data

〈Dv,T2αs〉 ◦ α(0, s) = 〈Dv,T2αs〉 ◦ α(a, s) = 0 for s ∈ (0, b), (5.3)

v ◦ α(t, 0) = 1√
2
〈Dv, (T2 − T1)αt〉 ◦ α(t, 0) = 0 for t ∈ (0, a), (5.4)

where T1 and T2 are given in (4.2).

Since

P (U) ∈ L∞(Ω), X ∈ L∞(Ω),

it follows from Theorem 4.1 that problem (5.2) with the data (5.3) and (5.4) has a unique

solution v ∈ C 0,1(Ω) with the bounds

‖v‖C 0,1(Ω) ≤ C‖U‖C 1,1(Ω,T 2
sym ). (5.5)
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From Theorem 2.1, there is a solution y ∈ C 0,1(Ω, IR3) to (5.1). Let

w = 〈y, ~n〉, W = y − w~n.

Then w ∈ C 0,1(Ω). It follows from [12, lemma 4.3] that W ∈ C 1,1(Ω, T ) and (1.2) holds.

(2) Let Ω ∈ Cm+2,1 and U ∈ Cm+1,1(Ω, T 2
sym ) be given for some m ≥ 1. Let

q0(t) = q1(t) = 0 for t ∈ [0, a].

Let Qk

(

0, 0, P (U)
)

(t) be given in the formula (4.8) for t ∈ [0, a] and 1 ≤ k ≤ m − 1. We

define

φj(s) =







0, m = 1,
∑m−1

l=1

p
(l)
j

(tj )

l! sl, m ≥ 2,
for s ∈ [0, b], j = 1, 2, (5.6)

where p
(l)
j (tj) are given by the right hand sides of (4.10) for 1 ≤ l ≤ m− 1 and 1 ≤ j ≤ 2,

where q0 = q1 = 0 and f = P (U). Clearly, the mth compatibility conditions hold true for

the above q0, q1, φ1, φ2, and P (U). From Theorem 4.1, there is a solution v ∈ Cm,1(Ω)

to problem (5.2) with the data

〈Dv,T2αs〉 ◦ α(0, s) = φ1(s), 〈Dv,T2αs〉 ◦ α(a, s) = φ2(s) for s ∈ (0, b),

v ◦ α(t, 0) = 1√
2
〈Dv, (T2 − T1)αt〉 ◦ α(t, 0) = 0 for t ∈ (0, a).

Moreover, it follows from (4.11) and (2.26) that

‖v‖Cm,1(Ω) ≤ C‖U‖Cm+1,1(Ω,T 2),

which implies the estimate (1.3) is true. ✷

Proof of Theorem 1.2 Let

V =W + w~n, w = 〈V, ~n〉.

The regularity of

symDW = −wΠ ∈ W 2,2(Ω, IR3)

implies

W ∈ W 3,2(Ω, T ).

Let E1, E2 be a frame field on Ω with the positive orientation and let

v =
1

2
[∇V (E2, E1)−∇V (E1, E2)].

From Theorem 2.1 v is a solution to problem

〈D2v,Q∗Π〉 = −2vκ tr gΠ+X(v) for x ∈ Ω, (5.7)
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where κ tr gΠ ∈ Cm,1(Ω) and X = (∇~n)−1Dκ ∈ Cm−1,1(Ω, T ), where C−1,1(Ω, T ) =

L∞(Ω, T ).

It is easy to check that

∇Ei
V = DEi

W + w∇Ei
~n+ [Ei(w)−Π(W,Ei)]~n for i = 1, 2.

Thus

v = DW (E2, E1)−DW (E1, E2) ∈ W 2,2(Ω).

From Theorems 4.4, 4.1, and 4.2, there are solutions vn ∈ Cm,1(Ω) to problem (5.7) such

that

lim
n→∞ ‖vn − v‖W 2,2(Ω) = 0.

Let

un = −Q(∇~n)−1Dvn, u = −Q(∇~n)−1Dv.

Then un ∈ Cm−1,1(Ω).

From Theorem 2.1 (see (2.11)), there exist V̂n ∈ Cm,1(Ω, IR3) such that

{

∇E1V̂n = vnE2 + 〈un, E1〉~n,
∇E2V̂n = −vnE1 + 〈un, E2〉~n,

for n = 1, 2, · · · . (5.8)

Define

Vn(α(t, s)) = V̂n(α(0, s)) − V̂n(α(0, 0)) + V (α(0, 0)) +

∫ t

0
∇αt V̂ndt for n = 1, 2, · · · .

Thus Vn ∈ V(Ω, IR3) ∩ Cm,1(Ω, IR3)) satisfy (1.4). ✷

Proof of Theorem 1.3 As in [5] we conduct in 2 ≤ i ≤ m. Let

uε =
i−1
∑

j=0

εjwj

be an (i− 1)th order isometry of class C 2(m−i+1)+1,1(Ω, IR3), where w0 = id and w1 = V

for some i ≥ 2. Then

k
∑

j=0

∇Twj∇wk−j = 0 for 0 ≤ k ≤ i− 1.

Next, we shall find out wi ∈ C 2(m−i)+1,1(Ω, IR3) such that

φε = uε + εiwi

is an ith order isometry. From Theorem 1.1 there exists a solution wi ∈ C 2(m−i)+1,1(Ω, IR3)

to problem

sym∇wi = −1

2
sym

i−1
∑

j=1

sym∇Twj∇wi−j
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which satisfies

‖wi‖C 2(m−i)+1,1(Ω,IR3) ≤ C‖
i−1
∑

j=1

sym∇Twj∇wi−j‖C 2(m−i+1),1(Ω,IR3)

≤ C
i−1
∑

j=1

‖wj‖C 2(m−i+1)+1,1(Ω,IR3)‖wi−j‖C 2(m−i+1)+1,1(Ω,IR3).

The conduction completes. ✷

Theorem 1.4 will follow from the density of the Sobolev space and Proposition 5.1

below.

Proposition 5.1 Let Ω ⊂ M be a noncharacteristic region of class C 2,1. Then for

U ∈ W 3,2(Ω, T 2
sym ) there exits a solution w ∈ W 2,2(Ω, IR3) to problem

sym∇w = U.

Proof Consider problem (5.2) with the data (5.3) and (5.4). By (4.9) the first or-

der compatibility conditions hold. Since P (U) ∈ W 1,2(Ω), the proposition follows from

Theorems 4.2 and 2.1. ✷

Proof of Theorem 1.7 A recovery sequence can be constructed, based on Theorems

1.2 and 1.3, as in the proof of [5, Theorem 6.2]. We present a skeleton of the proof. For

the further details, see [5].

From the density of Theorem 1.2 and the continuity of the functional I with respect

to the strong topology of W 2,2, we can assume V ∈ V(Ω, IR3) ∩ C 2m−1,1(Ω, IR3).

Step 1 Let ε =
√
eh

h so ε→ 0, as h→ 0, by assumption (1.6). Therefore, by Theorem

1.3, there exists a sequence wε : Ω → IR3, equibounded in C 1,1(Ω, IR3), for all h > 0,

uε = id + εV + ε2wε

is a mth isometry of class C 1,1. Then

εm+1 = o (
√
eh).

Consider the sequence of deformations uh ∈ W 1,2(Ωh, IR
3) defined by

uh(x+ t~n) = uε(x) + t~nε(x) +
t2

2
εdh(x) for x+ t~n(x) ∈ Ωh,

where ~nε(x) denotes the unit normal to uε(Ω) at uε(x) and dh ∈ W 1,∞(Ω, IR3) is such

that limh→0 h
1/2‖dh‖W 1,∞ = 0 and

lim
h→0

dh(x) = 2c(x, sym (∇(A~n)−AΠ)tan) for x ∈ Ω,
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where c(x, Ftan) denotes the unique vector satisfying Q2(x, Ftan) = Q3(Ftan + c ⊗ ~n(x) +

~n(x)⊗ c). We have

~nε(x) = ~n(x) + εA~n +O(ε2).

Step 2 We have

Eh(uh)

eh
=

1

ehh0

∫ h0/2

−h0/2

∫

Ω
W (∇hy

h(x+ t~n(x)))(1 +
th

h0
tr gΠ+

t2h2

h20
κ)dgdt,

where ∇hy
h(x+ t~n(x)) = ∇uh(x+ th

h0
~n). Let

Kh(x+ t~n(x)) = (∇hy
h)T∇hy

h − Id .

Using the formulas ∇Tuε∇uε = Id +O(εm+1) = Id + o (
√
eh) and hε =

√
eh, we have

Kh
tan = 2

t
√
eh

h0
( Id +

th

h0
Π)−1 sym (∇(A~n)−AΠ)( Id +

th

h0
Π)−1 + o (

√
eh),

〈Kh~n, ~n〉 = 2
t
√
eh

h0
〈~nε, dh〉+ o (

√
eh),

〈Khα,~n〉 = t
√
eh

h0
〈∇uε( Id +

th

h0
Π)−1α, dh〉+ o (

√
eh) for α ∈ TxΩ.

Then

lim
h→0

Kh
tan

2
√
eh

=
t

h0
sym (∇(A~n)−AΠ) in L∞(Ωh0),

lim
h→0

Kh~n

2
√
eh

=
2t

h0
c(x, sym (∇(A~n)−AΠ)tan) in L∞(Ωh0).

Step 3 We have

W (∇yyh)

eh
=

1

2
Q3(

Kh

2
√
eh

+
1√
eh

O(|Kh|2) + 1

eh
o (|Kh|2).

Then the limit (1.8) follows from Step 2. ✷
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