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DESIGN OF HIGH-ORDER DECOUPLED MULTIRATE GARK
SCHEMES∗

ARASH SARSHAR† , STEVEN ROBERTS† , AND ADRIAN SANDU†

Abstract. Multirate time integration methods apply different step sizes to resolve different
components of the system based on the local activity levels. This local selection of step sizes allows
increased computational efficiency while achieving the desired solution accuracy. While the multirate
idea is elegant and has been around for decades, multirate methods are not yet widely used in
applications. This is due, in part, to the difficulties raised by the construction of high order multirate
schemes.

Seeking to overcome these challenges, this work focuses on the design of practical high-order
multirate methods using the theoretical framework of generalized additive Runge–Kutta (MrGARK)
methods [19], which provides the generic order conditions and the linear and nonlinear stability
analyses. A set of design criteria for practical multirate methods is defined herein: method co-
efficients should be generic in the step size ratio, but should not depend strongly on this ratio;
unnecessary coupling between the fast and the slow components should be avoided; and the step size
controllers should adjust both the micro- and the macro-steps. Using these criteria, we develop Mr-
GARK schemes of up to order four that are explicit-explicit (both the fast and slow component are
treated explicitly), implicit-explicit (implicit in the fast component and explicit in the slow one), and
explicit-implicit (explicit in the fast component and implicit in the slow one). Numerical experiments
illustrate the performance of these new schemes.
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1. Introduction. Many applications in science and engineering require the sim-
ulation of dynamical systems where different components evolve at different character-
istic time scales. Clearly, these systems challenge traditional time discretizations that
use a single time step for the entire system: either the fast components are resolved
inaccurately, or the slow components are resolved with more accuracy than required,
therefore increasing computational costs. Multirate methods exploit the partitioning
of a system into components with different time scales, and use small step sizes to
discretize the fast components, and large step sizes to discretize the slow components.

A first approach to constructing multirate methods is to employ traditional inte-
grators with different time steps for different components, and to carefully orchestrate
the coupling between these components. Early efforts to develop multirate Runge-
Kutta methods are due to Rice [29] and Andrus [3, 4]. In the first discussion of
“multirate methods” Gear and Wells [14] propose pairing various linear multistep
methods. This fundamental contribution already points to a number of challenges
facing multirate methods such as coupling, automatic step size selection, and effi-
ciency of the overall computational process. Other work to construct multirate linear
multistep schemes includes [22]. Günther et al. [17, 18] developed multirate meth-
ods for partitioned Runge-Kutta schemes, as well as Rosenbrock-W methods [16] of
order three that are well-suited for treatment of systems with both stiff and non-
stiff variables. Similarly, Kværnø and Rentrop [24, 25] constructed explicit multirate
Runge-Kutta methods of order three. Bartel et al. [5] propose one-step methods
where internal stages are used to provide the coupling between the fast and slow
components. Constantinescu and Sandu developed strong stability preserving (SSP)
multirate methods of Runge-Kutta [7] and linear multistep [30] type that are suited
for solving hyperbolic partial differential equations (PDEs).

Another approach, tracing back to Engstler et al. [12], derives multirate meth-
ods using Richardson extrapolation. Here, the solution is recursively improved on
partitions of the system until required tolerances are satisfied. An important advan-
tage of such schemes is the naturally available dynamic partitioning of the system.
Constantinescu and Sandu [8, 9, 31] considered explicit and implicit base methods for
multirate extrapolation methods and study their stability properties. Other multirate
approaches include Galerkin [27], and combined multiscale [11] methodologies.

Günther and Sandu [19] built a class of multirate methods in based on the General
Additive Runge–Kutta framework (GARK) [32]. Bremicker-Trübelhorn and Ortleb
[6] developed third order multirate GARK (MrGARK) methods for fluid-structure
interaction, and allowed for non-uniform fast steps in the order conditions of the
methods.

This study develops a systematic design approach for constructing multirate
methods in the MrGARK framework of Günther and Sandu [19, 32]. Several high-
order schemes are constructed that combine implicit and explicit components for the
fast and slow subsystems.

The paper is organized as follows. Section 2 reviews the GARK framework and
multirate GARK family. We study order conditions for high order MrGARK methods
in section 3, and their scalar linear stability in section 4. Section 5 provides insight into
fast-slow coupling requirements. Section 6 discusses the design criteria for practical
methods, and section 7 studies error estimation and the adaptivity of both micro-
and macro-steps. Newly constructed methods are listed in section 8, and method
coefficients are detailed in Appendix A. Numerical tests are performed on different
test problems and the results are reported in section 9.
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2. Multirate generalized additive Runge–Kutta schemes (MrGARK).
In this section we review some background on MrGARK methods.

2.1. GARK methods. The generalized additive Runge–Kutta (GARK) meth-
ods introduced in [15, 32] allow derivation of advanced multi-methods for solving
additively partitioned systems of ordinary differential equations:

(1) y′ = f(y) =

N∑
m=1

f{m}(y), y(t0) = y0,

where the right-hand side function f : Rd → Rd is split into N different partitions
based on properties such as stiffness, non-linearity, dynamical behavior, and evaluation
cost. We note that additive partitioning includes the case of component partitioning
in which the state vector is split into a number subsets.

A GARK method advances the numerical solution as follows [32]:

Y
{q}
i = yn + h

N∑
m=1

s{m}∑
j=1

a
{q,m}
i,j f{m}

(
Y
{m}
j

)
q=1,...,N,

i=1,...,s{q}
,(2a)

yn+1 = yn + h

N∑
q=1

s{q}∑
i=1

b
{q}
i f{q}

(
Y
{q}
i

)
.(2b)

2.2. Multirate GARK methods. In the case of a two-way partitioned system
(1) with slow component {s}, and fast component {f} we have:

(3) y′ = f(y) = f{s}(y) + f{f}(y), y(t0) = y0.

A multirate GARK method [32] integrates the slow component with a Runge–Kutta
method (A{s,s}, b{s}) and a large step size H, and the fast component with another
Runge–Kutta method

(
A{f,f}, b{f}

)
and a small step size h = H/M . Here M ≥ 1

represents the (integer) number of fast steps that are executed for each of the slow
steps. MrGARK methods are formally derived in [19]. One step of the method utilizes

s{s} slow stages, denoted by Y
{s}
i , and M s{f} fast stages, denoted by Y

{f,λ}
i :

Y
{s}
i = yn +H

s{s}∑
j=1

a
{s,s}
i,j f{s}

(
Y
{s}
j

)

+ h

M∑
λ=1

s{f}∑
j=1

a
{s,f,λ}
i,j f{f}

(
Y
{f,λ}
j

)
, i = 1, . . . , s{s},

(4a)

Y
{f,λ}
i = ỹn+(λ−1)/M +H

s{s}∑
j=1

a
{f,s,λ}
i,j f{s}

(
Y
{s}
j

)
+ h

s{f}∑
j=1

a
{f,f}
i,j f{f}

(
Y
{f,λ}
j

)
, i=1,...,s{f}

λ=1,...,M
,

(4b)

ỹn+λ/M = ỹn+(λ−1)/M + h

s{f}∑
i=1

b
{f}
i f{f}

(
Y
{f,λ}
i

)
.(4c)
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The full step is then formed with:

(4d) yn+1 = ỹn+M/M +H

s{s}∑
i=1

b
{s}
i f{s}

(
Y
{s}
i

)
.

Let the coupling between the two methods be described by A{s,f,λ} and A{f,s,λ} for
λ ∈ {1, 2, · · · ,M}. The GARK Butcher tableau for the method (4) is [19]:

(5)

A{f,f} A{f,s}

A{s,f} A{s,s}

b{f} T b{s} T

:=

1
MA{f,f} 0 · · · 0 A{f,s,1}

1
M 1 b{f} T 1

MA{f,f} · · · 0 A{f,s,2}

...
. . .

...

1
M 1 b{f} T 1

M 1 b{f} T · · · 1
MA{f,f} A{f,s,M}

1
MA{s,f,1} 1

MA{s,f,2} · · · 1
MA{s,f,M} A{s,s}

1
M b{f} T 1

M b{f} T · · · 1
M b{f} T b{s} T

.

Remark 2.1 (Slow and fast stage numbers). The structure of the Butcher tableau
implies that the fast stage ` of the fast micro-step λ corresponds to row (λ− 1)s{f}+ `
in (5), and the slow stage j corresponds to row Ms{f} + j in (5).

Definition 2.1 (Telescopic MrGARK schemes). A telescopic MrGARK method
[19] uses the same base scheme for the slow and fast partitions:

(6) A{f,f} = A{s,s} = A, b{f} = b{s} = b.

In this paper we will focus on schemes with telescopic property since it allows a simple
extension of the MrGARK method to an arbitrary number of partitions (time scales)
using successively larger time steps, each an integer multiple of the previous one.

3. Order conditions for multirate GARK methods. We consider the fol-
lowing internal consistency conditions [19, 32] to ensure that fast and slow right-hand
side evaluations are performed at the same points in time:

(7) A{s,f} 1{s} = A{s,s} 1{s} := c{s}, A{f,s} 1{f} = A{f,f} 1{f} := c{f},

where 1{σ} := [1, 1, · · · , 1]T ∈ Rs{σ} .
Assume that the internal consistency conditions (7) hold, and further assume that

each individual method
(
A{s,s}, b{s}

)
and

(
A{f,f}, b{f}

)
has at least order 4. Then the

MrGARK scheme (4)–(5) has order four if and only if the following coupling conditions
hold [19]:

1

6
= b{f} T A{f,s} c{s}, (order 3)(8a)

1

6
= b{s} T A{s,f} c{f}, (order 3)(8b)

1

8
= b{f} T

(
c{f} ×A{f,s} c{s}

)
, (order 4)(8c)

1

8
= b{s} T

(
c{s} ×A{s,f} c{f}

)
, (order 4)(8d)
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1

12
= b{f} T A{f,s}

(
c{s} × c{s}

)
, (order 4)(8e)

1

12
= b{s} T A{s,f}

(
c{f} × c{f}

)
, (order 4)(8f)

1

24
= b{s} T A{s,s}A{s,f} c{f}, (order 4)(8g)

1

24
= b{s} T A{s,f}A{f,s} c{s}, (order 4)(8h)

1

24
= b{s} T A{s,f}A{f,f} c{f}, (order 4)(8i)

1

24
= b{f} T A{f,f}A{f,s} c{s}, (order 4)(8j)

1

24
= b{f} T A{f,s}A{s,s} c{s}, (order 4)(8k)

1

24
= b{f} T A{f,s}A{s,f} c{f}. (order 4)(8l)

Here “×” denotes component-wise multiplication of two vectors.
Without imposing any special structure on coupling matrices, we can rewrite

(8) using the block structure shown in (5). Considering the following intermediate
simplifications:

c{f} =
1

M

[
c{f} + (λ− 1)1

]
λ=1,...,M

,(9a)

A{f,f} c{f} =

[
1

M2

(
(λ− 1)2

2
1 + (λ− 1)c{f} +A{f,f} c{f}

)]
λ=1,...,M

,(9b)

A{s,f} c{f} =
1

M2

M∑
λ=1

A{s,f,λ}
(

(λ− 1)1 + c{f}
)
,(9c)

A{f,f}A{f,s} c{s} =
1

M

[
λ−1∑
k=1

1 b{f} T A{f,s,k} c{s} +A{f,f}A{f,s,λ} c{s}

]
λ=1,...,M

.(9d)

The order conditions (8) can be written in terms of base methods and coupling coef-
ficients as follows:

M

6
=

M∑
λ=1

b{f} T A{f,s,λ} c{s}, (order 3)(10a)

M2

6
=

M∑
λ=1

b{s} TA{s,f,λ}
(

(λ− 1)1 + c{f}
)
, (order 3)(10b)

M2

8
=

M∑
λ=1

(λ− 1) b{f} T A{f,s,λ} c{s}

+

M∑
λ=1

b{f} T
(
c{f} ×A{f,s,λ} c{s}

)
,

(order 4)(10c)

M2

8
= b{s} T

M∑
λ=1

(
c{s} ×

(
A{s,fλ}

(
(λ− 1) 1 + c{f}

) ))
, (order 4)(10d)

M

12
=

M∑
λ=1

b{f} T A{f,s,λ}c{s}×2, (order 4)(10e)
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M3

12
=

M∑
λ=1

b{s} T A{s,f,λ} c{f}×2 +

M∑
λ=1

(λ− 1)2b{s} T A{s,f,λ} 1

+ 2

M∑
λ=1

(λ− 1)b{s} T A{s,f,λ} c{f},

(order 4)(10f)

M2

24
=

M∑
λ=1

b{s} T A{s,s}A{s,f,λ}
(

(λ− 1)1 + c{f}
)
, (order 4)(10g)

M

24
=

M∑
λ=1

b{s} T A{s,f,λ}A{f,s,λ} c{s}, (order 4)(10h)

M3

24
=

M∑
λ=1

(λ− 1)2

2
b{s} T A{s,f,λ} 1

+

M∑
λ=1

(λ− 1)b{s} T A{s,f,λ} c{f} +

M∑
λ=1

b{s} T A{s,f,λ}A{f,f} c{f},

(order 4)(10i)

M2

24
=

M∑
λ=1

λ−1∑
k=1

b{f} T A{f,s,k} c{s} +

M∑
λ=1

b{f} T A{f,f}A{f,s,λ} c{s}, (order 4)(10j)

M

24
=

M∑
λ=1

b{f} T A{f,s,λ}A{s,s} c{s}, (order 4)(10k)

M3

24
=

M∑
λ=1

M∑
k=1

b{f} T A{f,s,λ}A{s,f,k}
(

(k − 1)1 + c{f}
)
. (order 4)(10l)

Remark 3.1 (Design process). A practical design procedure for MrGARK schemes
is to first select the base slow and fast methods of desired order, and then solve the
order conditions (10) for the coupling coefficients A{f,s} and A{s,f}.

4. Linear stability analysis. Following [19, 32] we consider the following scalar
model problem:

(11) y′ = λ{f} y + λ{s} y.

where the ratio of the fast to the slow variable is M , the step size ratio. Denote
z{f} = H λ{f}, z{s} = H λ{s}, and

(12) s = Ms{f} + s{f}, Z =

[
z{f}IMs{f}×Ms{f} 0

0 z{s}Is{s}×s{s}

]
.

It was shown in [19, 32] that application of MrGARK method (5) to (11) leads to the
solution

yn+1 = R
(
z{f}, z{s}

)
yn,

with the stability function:

(13) R
(
z{f}, z{s}

)
= 1 + bTgark · Z · (Is×s −Agark · Z)

−1 · 1s×1.

In order to visualize the stability region of a method, we choose:

(14) z{f} = M ρe−i θ
{f}
, z{s} = ρ e−i θ

{s}
,

π

2
≤ θ{f}, θ{s} ≤ 3π

2
,
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such that the ratio of the variable magnitudes matches the ratio of the step sizes.
This reduces (13) to a function of three real variables by assuming the fast eigenvalue
is M times larger in magnitude than the slow eigenvalue. The stability region is the
volume in the {θ{f}, θ{s}, ρ} space where the magnitude of the stability function (13)
is less than or equal to one. Stability regions for each method developed here are
provided in Appendix A. For some of the methods the region decreases with increas-
ing M . The plots for different values of M correspond to different test problems:
when M increases, the scale separation of the test problem also increases (we apply
smaller micro-steps to faster problems). The increasing stiffness of the fast compo-
nent restricts the macro-step, a phenomenon known as stiffness leakage. Coupling
coefficients whose magnitude increases rapidly with M can lead to a degradation of
stability.

5. Decoupled MrGARK methods. We now discuss in detail the structure of
the coupling coefficient matrices, and how this structure defines the way the fast and
slow stage computations (4) are carried out, and therefore determines the practicality
of the MrGARK method. In order to construct practical MrGARK methods we need
to avoid complex couplings between multiple fast and slow stages. To this end we
define decoupled MrGARK methods.

Definition 5.1 (Decoupled MrGARK methods). An MrGARK method is decou-
pled if the computation of its stages proceeds in sequence, such that each slow stage
uses only information from other slow stages and the already computed fast stages,
and vice-versa. There is no coupling that requires fast and slow stages to be solved
together. Any form of implicitness is entirely within the fast or within the slow system.

5.1. Structure of the slow-fast coupling (including fast information into
the slow stage calculations). We first introduce a notation for the order of compu-
tation of the slow stages with respect to the fast stages. Consider the j-th slow stage

(4a) at abscissa c
{s}
j , i.e., the row M s{f} + j in the Butcher tableau (5). We denote

its order of computation by (Lj , Ij), i.e., the j-th slow stage is computed immedi-
ately after the Ij-th stage of the Lj-th micro-step is computed. This means that the
first Lj − 1 micro-steps have been completed, and the Lj-th micro-step has partially
progressed to compute stage Ij , when the j-th slow stage is evaluated.

When the slow stage c
{s}
j is evaluated after the last stage of micro-step λ−1, but

before the before the first stage of the λ-th micro-step, we have (Lj , Ij) = (λ−1, s{f}).
Equivalently, this situation can be represented by (Lj , Ij) = (λ, 0).

In order to construct practical MrGARK methods we require that the evaluation
of the j-th slow stage depends only on those fast stages that have been completed;
in the GARK Butcher tableau (5), the j-th slow stage depends only on the rows
1 : (Lj − 1)s{f} + Ij .

The j-th row of the slow-fast coupling matrix:

(15a) A{s,f} =
1

M

[
A{s,f,1} . . . A{s,f,λ} . . . A{s,f,M}

]
∈ Rs

{s}×Ms{f}

contains the coefficients that bring fast information into the computation of slow stage
j. A decoupled MrGARK scheme enjoys the following properties:

• The coupling matrices A{s,f,λ} with the completed microsteps λ = 1 : Lj − 1
can have full rows:

a
{s,f,λ}
j,k 6= 0, for λ = 1 : Lj − 1.
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• Rows of the coupling matrix A{s,f,Lj} can have non-zero entries only in the
first Ij positions:

a
{s,f,Lj}
j,k 6= 0, k = 1, · · · , Ij ,

a
{s,f,Lj}
j,k = 0, k = Ij + 1, · · · , s{f}.

• The coupling matrices A{s,f,λ} with the future microsteps λ = Lj + 1 : M are
zero:

a
{s,f,λ}
j,k = 0, for λ = Lj + 1 : M.

Consequently, for decoupled MrGARK schemes, the slow-fast coupling matrix is
lower block triangular:

(15b)
(
A{s,f}

)
j,k

= 0, for 1 ≤ j ≤ s{s}, (Lj − 1)s{f} + Ij + 1 ≤ k ≤Ms{f},

where we used the fact that the fast stage Ij of micro-step Lj has GARK stage number
(Lj − 1)s{f} + Ij in the Butcher tableau (5).

5.2. Structure of the fast-slow coupling (including slow information
into the fast stage calculations). We next introduce a notation for the order of
computation of the fast stages with respect to the slow stages. We denote by JL,i the
index of the last slow stage computed before starting the fast stage i of micro-step
L. Specifically, the fast stage i at micro-step L is computed after the slow stage JL,i,
but before the slow stage JL,i + 1. For a decoupled MrGARK this stage can only use
information from slow stages 1 to JL,i. Consequently, the i-th row of the coupling
matrix A{f,s,λ} can have nonzero entries only in the first JL,i columns:

a
{f,s,λ}
i,j = 0, for JL,i + 1 ≤ j ≤ s{s}.

The coupling matrix:

(16a) A{f,s} =
[
A{f,s,1} T . . . A{f,s,λ} T . . . A{f,s,M} T

]T ∈ RMs{f}×s{s}

has a block lower triangular structure:

(16b) A
{f,s}
(L−1)s{f}+i,j = 0 for JL,i + 1 ≤ j ≤ s{s},

where we used the fact that the fast stage i of micro-step L has GARK stage number
(L− 1)s{f} + i in the Butcher tableau (5).

5.3. Relation between the coupling matrices. From (15) and (16) we see
that the two coupling matrices A{f,s} and A{s,f} have related sparsity structures.
For decoupled MrGARK methods the sparsity structures are complementary, in the
sense that one must have zeros in the entries where the other matrix can has nonzero
elements:

(17) A{s,f} ×A{f,s} T = 0s{s}×Ms{f} ,

where × denotes element-by-element multiplication. This is schematically illustrated
in Figure 1a.
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For coupled MrGARK methods the sparsity structures can overlap, in the sense
that they both can have non-zeros entries in the same location:

(18) A{s,f} ×A{f,s} T 6= 0s{s}×Ms{f} .

This is illustrated in Figure 1c. The overlapping non-zero coupling coefficients, indi-
cated by dashed boxes in Figure 1c, imply that the corresponding fast and slow stages
need to be computed together, in a step that involves the entire non-partitioned sys-
tem. Coupled methods are not pursued further in this paper.

A{s,f}

A{f,f}

A{s,s}

A{f,s}

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

(a) Butcher tableau of a decoupled Mr-
GARK. The coupling matrices have comple-
mentary sparsity patterns.

A

7
1
2
8
3
4
9
5
6

7 1 2 8 3 4 9 5 6

(b) Permuted Butcher tableau of a decou-
pled MrGARK shows a lower diagonal struc-
ture.

A{s,f}

A{f,f}

A{s,s}

A{f,s}

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

(c) Butcher tableau of a coupled MrGARK.
The dashed entries of the coupling matrices
violate the sparsity complementarity.

A

7 1 2 8 3 4 9 5 6

7
1
2
8
3
4
9
5
6

(d) Permuted Butcher tableau of a coupled
MrGARK. The first slow and the first fast
steps, dashed, need to computed together in
a coupled manner.

Fig. 1: Example of decoupled and coupled MrGARK with M = 2 and s = 3. Blue is
the slow method, pink the first fast step, dark pink the second fast step, and green and
yellow are the couplings. The permuted versions of the tableaus reflect the sequential
order of stage computations. Note the entry above the diagonal for the coupled,
permuted tableau due to the non-complementary coupling structure.

5.4. Order of the slow and fast stage evaluation. The sparsity structure
of the coupling matrices A{s,f} and A{f,s} determines the order in which the fast and
slow stages can be evaluated such as to respect the data dependencies between them.
Using the notation defined in subsection 5.1 and subsection 5.2, the general order in
which stages are evaluated is follows:
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1. Start by evaluating the fast stages i for which a
{s,f}
1,i 6= 0; these are the fast

stages needed by the computation of the first slow stage c
{s}
1 . If the entire

first row a
{s,f}
1,: = 0 then proceed with evaluating the first slow stage c

{s}
1 .

2. After stage Ij of the Lj-th micro-step is computed, the j-th stage c
{s}
j of the

slow method is evaluated.
3. Continue with evaluating stages of the fast method, and stop after stage Ij+1

of the Lj+1-st micro-step to compute stage c
{s}
j+1 of the slow method.

4. Continue until all fast and slow stages are evaluated.

Remark 5.1 (Time ordering). Assuming that the slow stage abscissae are in-
creasing, and that fast stage abscissae are non-decreasing in time:

(19) c
{s}
1 < · · · < c

{s}
s{s}

, c
{f}
1 ≤ · · · ≤ c{f}

s{f}
,

a natural order to evaluate the MrGARK stages follows the time ordering of their
abscissae. Note that the j-th slow stage approximates the solution at time TMs{f}+j =

tn + c
{s}
j H, while the j-th fast stage of the L-th microstep approximates the solution

at time T(L−1)s{f}+j = tn + (L− 1 + c
{f}
j ) (H/M). The pairs (Lj , Ij) are chosen such

that the stages are evaluated in increasing order of their approximation times:

Lj − 1 + c
{f}
Ij

M
≤ c{s}j ≤

Lj − 1 + c
{f}
Ij+1

M
for 1 ≤ Ij < s{f},(20a)

Lj + c
{f}
s{f}

M
≤ c{s}j ≤ Lj + 1 + c

{f}
1

M
for Ij = s{f},(20b)

or
Lj − 1 + c

{f}
s{f}

M
≤ c{s}j ≤ Lj + c

{f}
1

M
for Ij = 0.

Remark 5.2 (Simpler time ordering). It is possible to simplify the time ordering
such that the slow stages are evaluated at the end of full micro-steps. The stage

c
{s}
j is evaluated after the end of micro-step λ − 1, but before micro-step λ, if (λ −

1)/M ≤ c
{s}
j < λ/M , in which case Lj := λ and Ij = 0. When c

{s}
j ≥ 1 we take

Lj = M, Ij = 0.

5.5. Reordering the GARK Butcher tableau. In the standard form of the
GARK Butcher tableau (5) the first Ms{f} stages are for the fast method, and stages
Ms{f} + 1 to Ms{f} + s{s} are for the slow method. Let ic be the vector of GARK
tableau stage indices sorted in the order of computations, as summarized in Figure 2.
A renumbering of stages leads to a row and column permutation of the Butcher tableau
(5). The reordered Butcher matrix is Agark(ic, ic). The reordering is illustrated in
Figure 1. We distinguish the following cases:

• If the reordered Butcher tableau is strictly lower triangular then the MrGARK
method is explicit, and each stage uses only previously computed information.

• If the reordered Butcher tableau is lower triangular, with some non-zero di-
agonal entries, then the MrGARK method is implicit, but decoupled. The
non-zero diagonal entries correspond to implicit fast or slow stages. This case
is illustrated in Figure 1b.

• Finally, if the reordered Butcher tableau has block-diagonal entries then the
MrGARK method is coupled, in the sense that several fast and slow stages
need to be solved together, in a coupled manner. This case is illustrated in
Figure 1d.
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Abscissae Evaluation order GARK stage index

Slow stage
Fast  stage

Fig. 2: An example of the order of computing stages in MrGARK with stage sequence
{(Lj , Ij)}.

As an example let us consider the GARK Butcher matrix for the explicit method
EX2-EX2 2(1)[A] introduced in Appendix A.1 for M = 3:

A =



0 0 0 0 0 0 0 0

2
9

0 0 0 0 0 2
9

0

1
4

3
4

0 0 0 0 11
60

3
20

1
4

3
4

2
9

0 0 0 − 19
180

9
20

1
4

3
4

1
4

3
4

0 0 31
60

3
20

1
4

3
4

1
4

3
4

2
9

0 − 79
180

9
20

0 0 0 0 0 0 0 0

2 0 0 0 0 0 2
3

0



, A(ic, ic) =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
9

2
9

0 0 0 0 0 0

2
3

2 0 0 0 0 0 0

11
60

1
4

3
4

3
20

0 0 0 0

− 19
180

1
4

3
4

9
20

2
9

0 0 0

31
60

1
4

3
4

3
20

1
4

3
4

0 0

− 79
180

1
4

3
4

9
20

1
4

3
4

2
9

0



,

where ic = [7, 1, 2, 8, 3, 4, 5, 6]. The permuted Butcher tableau verifies the explicit
nature of the method, and also provides a progression of stage computations that is
practically easy to implement.

6. Design of practical decoupled MrGARK methods. In this section we
discuss several desirable properties of practical MrGARK methods, and the design
methodologies to incorporate them in the construction of new high order schemes.

6.1. Design principles. The following set of design principles incorporates
properties that are important for ensuring the practicality of MrGARK schemes:

1. Practical MrGARK methods need to be high order (have an order of accuracy
larger than two), and generic in the multirate ratio (have the same order of
accuracy for any M .) This typically requires that the coupling coefficients
are functions of M . We have addressed these requirements via the order
conditions derived in section 3.

2. Methods where the fast and slow base schemes are both either explicit or
implicit should be telescopic (6) in order to be easily applicable to multi-
partitioned systems with multiple time scales. All explicit-explicit methods
proposed in this paper are telescopic.
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3. In order to maintain computational efficiency, a complex coupling between
multiple fast and slow stages needs to be avoided. In this paper, we focus on
decoupled multirate methods satisfying equation (17), as they are far less com-
putationally demanding than coupled methods. However, the overall stability
of the scheme may be affected by decoupling.

4. Methods should be optimized for general-purpose time integration, i.e. have
small principal error terms and large stability regions. Note that the principal
error for MrGARK methods is a function of M . If not properly controlled,
the coupling errors can grow with M , thereby reducing the overall efficiency
of the method. All schemes derived herein have coefficients optimized for
small principal error and large stability region.

5. Consider the case where one of the base methods q ∈ {f, s} is implicit. A
favorable property of the entire MrGARK method is stiff accuracy [19]:

(21) eTs{q} A{q,f} = b{f} T , eTs{q} A{q,s} = b{s} T .

This property implies that the base implicit Runge–Kutta method is stiffly
accurate, and that the MrGARK stability function approaches zero as the q-
th component of the system becomes infinitely stiff [19]. All schemes derived
herein having an implicit base method enjoy the property (21).

6. Practical use of MrGARK methods demands an error control mechanism
that is capable of adapting both the step size H and the multirate ratio M .
Therefore the error control problem in multirate integration is fundamentally
more complex than in traditional, single rate integration. We fully address
the error control issue in section 7.

7. It is desirable to derive multirate methods with reduced coupling errors by
requiring that both the main and the embedded methods satisfy higher order
coupling conditions. This strategy isolates the dominant local truncation
errors to the solution of the slow and fast components and greatly simplifies
the task of adaptively choosing H and M , as discussed in section 7.

Definition 6.1 (Naturally adaptive schemes). A MrGARK scheme of or-
der p is naturally adaptive if the fast and slow local truncation error terms
(corresponding to N-trees with nodes of the same color) are O(hp+1), and the
coupling local truncation error terms (corresponding to N-trees with nodes of
different colors) are O(hp+2).

We construct naturally adaptive second and third order schemes in Appendix A.
8. Methods of type S are optimized for simplicity and stability. First, by design,

one seeks to maximize the sparsity of the coupling coefficient matrices, such
as to simplify the implementation and decrease data dependencies. Next,
the coupling coefficients can potentially become large in magnitude when
M increases, and this can lead to large cancellation errors in the context of
finite precision arithmetic, as well as to a degradation of numerical stability.
It is desirable that the coupling coefficients are optimized such that their
magnitude remains bounded for large values M .

6.2. Design process. The order conditions (8) and the additional constraints
associated with the design principles of subsection 6.1 lead to large, nonlinear systems
of equations that need to be solved for the method coefficients. The resulting coupling
coefficients A{s,f} and A{f,s} are functions of the micro-step number λ and the multi-
rate step size ratio M . Our proposed approach for designing MrGARK methods of
order p is a three-step process, as follows.
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1. The first step is to construct optimized base slow
(
A{s,s}, b{s}

)
and fast(

A{f,f}, b{f}
)

schemes of order p. Implicit base methods are selected to be
stiffly-accurate SDIRK schemes. Explicit base methods are chosen to have
small principal error components. When both the slow and the fast methods
are of the same type (explicit or implicit) we choose the same discretiza-
tion coefficients A{s,s} = A{f,f}, b{s} = b{f} such as to obtain a telescopic
MrGARK method.

2. The second step is to define the sparsity patterns of the coupling matrices
A{s,f} and A{f,s}. These patterns determine the computational flow of the
method and its implementation complexity, and influence the overall stabil-
ity and accuracy properties. We manually test various sparsity patterns to
balance all of these properties.

3. The third step computes the coupling coefficients A{s,f} and A{f,s} such as
to satisfy the coupling conditions (8) up to order p. Any free parameters in
the family are used to minimize the Euclidean norm of the residuals of the
order p+ 1 coupling conditions; for naturally adaptive MrGARK methods all
these residuals are cancelled. In this work the solution of order conditions and
the minimization of the error coefficients are carried out with Mathematica
Version 11.2.

An alternative to this derivation strategy is a monolithic constrained optimization
procedure that minimizes the residuals of the order p+ 1 coupling conditions, subject
to solving the conditions (8) up to order p, and subject to structural constraints such
as decoupling (17) and stiff accuracy (21).

The proposed three-step procedure is preferable for two reasons. First, we expect
MrGARK methods to be applied to problems with a rather weak coupling between
partitions, where the primary sources of error are the base methods and not the cou-
pling. Our approach gives precedence to the base errors first. Second, our procedure
is practical as it reduces the number of nonlinear equations that need to be solved
together during the design.

7. Error estimation and adaptive MrGARK methods. Adaptivity of tra-
ditional (single rate) methods adjusts the step size such as to ensure the desired accu-
racy of the solution at a minimal computational effort. In the context of Runge–Kutta
schemes a second “embedded” method is used to provide an aposteriori estimate of
the local truncation error [20, CH II.4]. The step size is adjusted to bring the local
error estimate to the user prescribed level using the asymptotic relation that this error
is proportional to ∝ Hp+1.

Adaptivity of multirate methods is more complex, as there are two independent
parameters that control the solution accuracy and efficiency: the macro-step size H
and the multirate ratio M (or, equivalently, the macro-step H and the micro-step
h.) In order to achieve adaptivity of both H and M we propose to construct error
estimates using not one, but several embedded methods, such as to obtain additional
information about the structure of the local truncation error. Analytical asymptotic
formulas are used to quantify the dependency of the local error terms on both H and
M . Armed with this information, we develop several criteria for adaptively selecting
both the macro-step size and the multirate ratio.

7.1. Local error structure for a second order MrGARK method. In
order to understand the structure of the local truncation error we first consider a
second order, internally consistent MrGARK scheme. The principal error terms of
order O

(
H3
)

are associated with the third order conditions, and are provided in
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Table 1.

Error Error Elementary Order condition Residuals for
type term differential IM2-EX2 2(1)[A]

Slow e
{s}
3,1 f

{s}
y,y

(
f{s}, f{s}

)
b{s} T c{s}×2 = 1

3 0

Slow e
{s}
3,2 f

{s}
y f

{s}
y f{s} b{s} T A{s,s} c{s} = 1

6
1
6

Fast e
{f}
3,1 f

{f}
y,y

(
f{f}, f{f}

)
b{f} T c{f}×2 = 1

3
4−3
√
2

12M2

Fast e
{f}
3,2 f

{f}
y f

{f}
y f{f} b{f} T A{f,f} c{f} = 1

6
4−3
√
2

6M2

Coupling e
{c}
3,1 f

{s}
y f

{f}
y f{f} b{s} T A{s,f} c{f} = 1

6
3
√
2−3−M
12M

Coupling e
{c}
3,2 f

{f}
y f

{s}
y f{s} b{f} T A{f,s} c{s} = 1

6
1
6

Table 1: Principal error terms of O
(
H3
)

for second order MrGARK schemes.

As an example, consider the second order MrGARK method IM2-EX2 2(1)[A]
from Appendix A.4. We note from Table 1 that the third order residuals for this
method are all asymptotically bounded as M increases, and the local truncation error
behaves like:

lte =
(

0 · f{s}y,y

(
f{s}, f{s}

)
+

1

6
· f{s}y f{s}y f{s}

)
H3

+
(4− 3

√
2

12M2
· f{f}y,y

(
f{f}, f{f}

)
+

4− 3
√

2

6M2
· f{f}y f{f}y f{f}

)
H3

+
(3
√

2− 3−M
12M

· f{s}y f{f}y f{f} +
1

6
· f{f}y f{s}y f{s}

)
H3 +O

(
H4
)
,∥∥lte

∥∥ ≈ (K1 +K2
1

M
+K3

1

M2

)
H3 +O

(
H4
)
.

(22)

In some cases, when there are sufficient degrees of freedom left after solving the
order conditions, it is possible for a method of order p to either cancel out coupling
errors of order O

(
Hp+1

)
(Figure 3a) or to minimize them to assure better coupling

behavior (Figure 3b). Figure 3 shows how leading error coefficients change with M
for two optimized MrGARK methods.

7.2. General structure of the MrGARK local truncation error. As the
analysis in subsection 7.1 reveals, the local truncation error of the MrGARK method
(4) has three components associated with the slow integration, the fast integration,
and with the coupling:

(23) lte = lte{s} + lte{f} + lte{c}.

For a method of order p the slow truncation error is that of applying one step with
the base slow Runge–Kutta method with a step size H:

(24a)
∥∥lte{s}

∥∥ ≈ C{s} ·Hp+1 +O
(
Hp+2

)
.

The fast truncation error is that of applying M consecutive steps with the base fast
Runge–Kutta method with a step size H/M . We use the global error estimate [20,
CH II.3]:∥∥lte{f}

∥∥ ≤ (H
M

)p
C ′

L

(
exp (LH)− 1

)
=

(
H

M

)p
C ′

L

(
LH +O

(
H2
))
,
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(a) EX2-EX2 2(1)[A]. The base error is
O
(
H3
)
, but the coupling is O

(
H4
)

since
the method is naturally adaptive.
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(b) EX3-EX3 3(2)[A]. Both the base and
coupling errors are O

(
H4
)
.

Fig. 3: Behavior of the local truncation error components for two MrGARK schemes
as the multirate ratio M increases.

where
∥∥∂f{f}/∂y∥∥ ≤ L and C ′ is a constant, to obtain:

(24b)
∥∥lte{f}

∥∥ ≤ C{f}

Mp
·Hp+1 +O

(
Hp+2

)
.

The principal terms of the coupling errors correspond to N-trees having p + 1 nodes
of two colors. A tree with k fast nodes and p + 1 − k slow nodes corresponds to
a residual term constructed from multiplying k fast matrix blocks in the Butcher
tableau (5) and p + 1 − k slow matrix blocks. Note that each of the fast matrix
blocks (b{f} T ,A{s,f},A{f,f}) in (5) carries a scaling factor of 1/M . Assuming that
the coupling coefficients remain bounded for large M , a product of k fast blocks is
O
(
1/Mk

)
. Since we have coupling trees with p ≥ k ≥ 1 fast nodes, the corresponding

products of fast blocks have scalings ranging from 1/M to 1/Mp. Residuals contain
sums of M elementary coupling blocks as seen in (10); sums of M fast blocks have
scaling factors ranging from 1 to 1/Mp−1, but some of the sums can have a small,
fixed number of terms. In addition, the magnitude of the coupling coefficients, as
resulted from the solution of order conditions, can scale as M ` (for some ` ≥ 0).
Consequently, a generic expression for the local coupling error is:

(24c)
∥∥lte{c}

∥∥ ≈ ( p∑
i=−`

C
{c}
i M−i

)
·Hp+1 +O

(
Hp+2

)
,

While the slow and fast errors are simple functions of H and M , the dependency of
the coupling error on M is more difficult to describe even with access to the residuals
of each of the p + 1 order conditions. These residuals can be positive or negative.
Moreover, the evolution of the coupling error as a function of M depends not only

on residuals, but also on elementary differentials, since the constants C
{c}
i in (24c)

are linear combinations of products of method residuals and norms of elementary
differentials. Therefore, in an adaptive method, the effect of changing M on the
coupling error is more difficult to quantify.

7.3. Use of multiple embedded methods to estimate the local trunca-
tion error. Following the traditional Runge–Kutta strategy, we look to use embed-
ded methods to obtain estimates of the local truncation error. Specifically, we design
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pairs of main weight vectors (b{f}, b{s}) and embedded weight vectors (̂b{f}, b̂{s}) that
produce solutions of different orders when paired with (A{f,f},A{f,s},A{s,f}, A{s,s}).
The choice of the embedded weights is made such that additional function evaluations
are avoided.

In the traditional Runge–Kutta approach, a single embedded method is used to
provide a single estimate of the error, and a step size scaling factor is computed (for
the next step) such that the corresponding scaled error estimate satisfies the accuracy
requirements at hand. In multirate integration the solution accuracy depends on
two parameters, H and M , that can be adjusted independently. We have seen in
subsection 7.2 that changes in these parameters affect differently the slow, fast, and
coupling components of the local truncation error.

Our proposed strategy to select H and M adaptively relies on multiple embedded
methods to independently estimate different parts of the error. Specifically, consider
an MrGARK scheme that produces a main solution yn+1 of order p, i.e., cancels all
residuals for two-trees with up to p nodes. We seek to build an embedded solution

ŷ
{s}
n+1 that cancels all residuals up to order p − 1, as well as all fast and all coupling

residuals of order p. Similarly, we seek to build a second embedded solution ŷ
{f}
n+1 that

cancels all residuals up to order p− 1, as well as all slow and all coupling residuals of
order p. The three components of the local truncation error can then be estimated as
follows:

lten+1 ≈ yn+1 − ŷn+1, lte
{s}
n+1 ≈ yn+1 − ŷ{s}n+1, lte

{f}
n+1 ≈ yn+1 − ŷ{f}n+1,

lte
{c}
n+1 = lten+1 − lte

{s}
n+1 − lte

{f}
n+1 ≈ ŷ

{s}
n+1 + ŷ

{f}
n+1 − ŷn+1 − yn+1.

(25)

The construction of three different embedded methods that capture precisely some
components of the error can be very difficult to achieve for high order schemes. For
this reason we now discuss a simplified error estimation strategy that utilizes only two
embedded methods. Consider an MrGARK scheme with primary weights (b{f}, b{s})
that produces a main solution yn+1 of order p. The residuals corresponding to two-
trees with up to p nodes are zero. We construct three different embedded solutions,
as follows:

• A generic embedded solution ŷn+1 of order p − 1, obtained with weights

(̂b{f}, b̂{s}), that captures all the error terms and is used to approximate the
overall local truncation error. The residuals associated with two-trees with
up to p− 1 nodes are zero, while the residuals of two-trees with p nodes can
be nonzero.

• An embedded solution ŷ
{s}
n+1, generated with the weights (b{f}, b̂{s}), captures

all of the slow error, part of the coupling error, and none of the fast error.
The weight vector b{f} cancels the residuals for all two-trees with up to p
nodes with a fast-colored root. The weight vector b̂{s} cancels the residuals
for all two-trees with up to p − 1 nodes with a slow-colored root. However,
the residuals of the two-trees with p nodes and a slow-colored root, and the
associated O(Hp) error terms, can be nonzero. Trees with a slow-colored
root correspond to either slow or to coupling trees, and the solution difference

yn+1 − ŷ{s}n+1 captures the sum of the corresponding errors terms.

• Similarly, an embedded solution ŷ
{f}
n+1, generated with (̂b{f}, b{s}), captures

all of the fast error, part of the coupling error, and none of the slow error.
In general, these mixed embeddings do not exactly isolate the slow, fast, and cou-
pling error, but they can serve as approximations in (25). Note that the resulting
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approximate lte{s} and lte{f} contain the parts of the coupling error corresponding
to trees of order p with slow-colored roots and with fast colored-roots, respectively.
Consequently the lte{c} estimated by the solution difference in (25) is zero.

However, for naturally adaptive methods (Definition 6.1), the simplified error
estimation strategy does separate the main components of the fast and slow errors, as
explained next. For a naturally adaptive method of order p with weights (b{f}, b{s})
the residuals corresponding to all two-trees with up to p nodes are zero, and the
coupling residuals for two-trees with p+ 1 nodes are also zero. The non-zero residuals
of order p correspond to either fast or low trees with p nodes.

A naturally adaptive embedded solution ŷn+1 of order p−1, obtained with weights

(̂b{f}, b̂{s}), cancels all residuals of order up to p−1; it also cancels the coupling resid-

uals for two-trees of up to p nodes. Consequently, the difference yn+1− ŷ{s}n+1 contains

only O(Hp) terms corresponding to slow-colored trees, and yn+1− ŷ{f}n+1 contains only
O(Hp) terms corresponding to fast-colored trees. Consequently, naturally adaptive
embedded methods do isolate the slow and the fast errors. This property allows to
construct more accurate adaptivity mechanisms.

7.4. Controlling errors by adapting both the macro-step and the micro-
step. Based on our understanding of the structure of errors in the MrGARK frame-
work, we now look into practical approaches to adaptivity of multirate methods. The
following error estimates are available via the set of embedded methods:

ε̂n+1 :=
∥∥yn+1 − ŷn+1

∥∥
err
, ε̂

{s}
n+1 :=

∥∥yn+1 − ŷ{s}n+1

∥∥
err
, ε̂

{f}
n+1 :=

∥∥yn+1 − ŷ{f}n+1

∥∥
err
,

where the error is measured by the following relative error norm [20, CH II.4]:

∥∥x− y∥∥
err

:=

√√√√1

d

d∑
i=1

(
xi − yi

AbsToli + RelToli ·max (|(xi|, |yi|)

)2

.

Several heuristic strategies that use these error estimates to adapt both H and M are
discussed below.

7.4.1. Balancing error strategy. In this approach, we first use the estimated
total truncation error ε̂n+1 to control the macro-step size using the traditional mech-
anism based on the asymptotic error behavior [20, CH II.4]:

ε̂n+2 ≤ 1 ⇒ Hnew = fac ·H · (ε̂n+1)
− 1
p ,

where fac < 1 is a safety factor.
Next, the multirate ratio M is adjusted such that the estimated slow and fast error

components over the next step are equal to each other, i.e., the slow and fast contri-
butions to the error are balanced. Assuming q = min (p, p̂) and using the asymptotic
formulas (24) we have that:

ε̂
{s}
n+2 = ε̂

{f}
n+2,

C{s} ·Hq+1
new ≈

C{f}

Mq
new
·Hq+1

new ,

ε̂
{s}
n+1 ·

Hq+1
new

Hq+1
≈ ε̂{f}n+1 ·

Mq

Mq
new
· H

q+1
new

Hq+1
,

⇒ Mnew ≈M ·

(
ε̂
{f}
n+1

ε̂
{s}
n+1

) 1
q

.(26)
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In this strategy, as well as the others, M can be rounded up, down, or to the nearest
integer. Also in practice, the re-scaling of H and M for the next step can be bounded
up and down in order to avoid large jumps and oscillations. This adaptivity strategy
serves as a very simple heuristic. However, the choices of the new H and of the new
M are made independently of each other, and the approach does not account for how
their interaction impacts the error; the only mechanism for controlling the coupling
error is the change in H.

7.4.2. Efficiency optimization strategy. This approach focuses on the im-
portant aspect of the overall cost of multirate integration. Evaluation of the slow
and fast partitions can have very different computational costs in some applications.
Moreover, an implicit method (e.g., applied to solve the fast component) is likely to be
much more expensive than an explicit method (e.g., applied to the slow component).
We require the adaptive selection of H and M to satisfy the error tolerance criteria
at a minimal overall computational cost.

Let t{s} and t{f} represent the computational costs of a slow macro-step and
a fast micro-step, respectively. We define the computational efficiency of a step as
the progress made during the step (H) divided by the total cost of executing step
(t{s} +Mnewt

{f}).
The new values of H and M are selected such as to achieve the desired accuracy

while maximizing the computational efficiency. This requires solving the following
constrained optimization problem to minimize the inverse of efficiency:

min
Hnew,Mnew

t{s} +Mnew t
{f}

Hnew
,

subject to ε̂n+2 = 1.

(27)

Expanding the constraint yields:

1 = ε̂n+2 ≈ ε̂{s}n+1 ·
Hq+1

new

Hq+1
+ ε̂
{f}
n+1 ·

Mq

Mq
new
· H

q+1
new

Hq+1
,

where we have used the fact that, for naturally adaptive methods, the coupling com-
ponent of the local truncation error is negligible in the asymptotic regime. The
constraint equation can be solved explicitly for Hnew:

(28) Hnew = H ·
(
ε̂
{s}
n+1 + ε̂

{f}
n+1 ·

Mq

Mq
new

)− 1
q+1

.

After eliminating the constraint the optimization problem (27) simplifies to:

(29) min
Mnew

t{s} +Mnew t
{f}

H

(
ε̂
{s}
n+1 + ε̂

{f}
n+1 ·

Mq

Mq
new

) 1
q+1

.

Note this is an integer minimization problem. One can solve it as a continuous
optimization problem, then round the result to an integer to find the optimal Mnew.
Afterwards Hnew is computed from (28).

Remark 7.1 (Timing). The CPU times t{s} and t{f} can be evaluated online by
timing the slow macro-steps and the fast micro-steps during their execution. The
algorithm adjusts automatically if these compute times vary during the application
lifetime.
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8. New high-order MrGARK methods. Using the design process outlined
above we construct several MrGARK methods for use in practical applications. We
use the naming convention FASTf -SLOWs p(p̂)[type], where p is the method order,
p̂ is the embedded order, f is the number of stages in the fast base method, and s
is the number of stages in the slow base method. Each component method is either
explicit or implicit: FAST, SLOW ∈ {EX,IM}. We distinguish between methods of
type A (optimized for accuracy and for better step size control) and methods of type
S (optimized for simplicity and for stability), therefore type ∈ {A,S}. The newly
developed methods are as follows:

• EX2-EX2 2(1)[A], EX2-EX2 2(1)[S], EX3-EX3 3(2)[A], EX4-EX4 3(2)[A],
EX3-EX3 3(2)[S], and EX5-EX5 4(3)[A] are explicit-explicit, schemes of order
two, three, three and four respectively.

• EX2-IM2 2(1)[A], EX3-IM3 3(2)[A], and EX6-IM5 4(3)[A] are methods with
an explicit fast part and an implicit slow part of order two, three, and four
respectively.

• IM2-EX2 2(1)[A], IM3-EX3 3(2)[A], and IM6-EX5 4(3)[A] are methods with
an implicit fast part and an explicit slow part of order two, three, and four,
respectively.

The coefficients of these methods are given in Appendix A.

9. Numerical experiments. In this section we carry out numerical experi-
ments to validate and test the newly derived MrGARK methods.

9.1. Additive partitioning tests. The first experiment is carried out using a
two-dimensional unsteady convection-diffusion equation [10, Ch. 3] in a square spatial
domain Ω = {0 ≤ x, y ≤ 1} and with a circular wind profile:

ut − ε∇2u+ w · ∇u = 0 in Ω, u = 0 on ∂Ω, w =

[
2y(1− x2)
−2x(1− y2)

]
.(30a)

A Streamline Upwind Petrov-Galerkin (SUPG) spatial discretization is used, which
leads to a semi-discrete system of linear ODEs:

Mhuht = Auh + (~n+ ~nstab)uh,(30b)

where Mh and A are mass and stiffness matrices and ~n+~nstab represent linear forms
of the convective term and SUPG stabilization.

In the multirate experiments we designate the first term in (30b) as the slow
component, f{s} = (Mh)−1 Auh, and the second term as the fast component, f{f} =
(Mh)−1 (~n + ~nstab)uh. In practice the splitting choice is informed by inspecting the
spectral radius of the right hand side operators. The weak form of the PDE and the
corresponding MrGARK schemes are implemented in the FEniCS package [2], which
is used to carry out the convergence experiments.

The convergence diagrams for this test are shown in Figure 4. The numerical
orders of convergence for all schemes match their theoretical orders for the multirate
step ratios tested. Figure 5 shows the evolution of the model solution over time.

9.2. Timing experiments. Timing experiments are performed in MATLAB
using the Gray-Scott model [26]. Here, we are interested in the application of Mr-
GARK methods to additive splittings of the right hand side into linear and nonlinear
terms. This reaction-diffusion PDE is:

(31)

{
ut = ∇ · (εu∇u)− u v2 + f(1− u),

vt = ∇ · (εv∇v) + u v2 − (f + k) v.
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Fig. 4: Convergence plots for the unsteady convection-diffusion test (30) over the
time span T = [0, 10] seconds. A fixed macro-step time integration is carried out with
varying multirate step ratios M using MrGARK type A methods.

Fig. 5: Evolution of the unsteady convection-diffusion problem (30) solution in time.

The domain is the unit square discretized with second order finite differences. The
reaction parameters are k = 0.0520 and f = 0.0180.

In the following experiments the nonlinear reaction terms on the right hand side
are considered the fast system, and the diffusion terms are regarded as the slow one.

A first version of the model, used to test explicit MrGARK methods, includes
nonlinear diffusion terms:

εu = 0.0625 e−
u

100 sin(πx) sin(πy), εv = 0.0312 e−
v

100 sin(πx) sin(πy).(32)

Figure 6 presents the evolution of quantity u over time. Figures 7a and 7b present
performance diagrams for a fixed-step time integration of Gray-Scott model with
nonlinear diffusion. The MrGARK method EX3-EX3 3(2)[A] from Appendix A.5
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Fig. 6: Evolution of Gray-Scott model (31) solution u in time. A nonlinear diffusion
is used, and integration is performed with explicit MrGARK methods.

with different multirate step ratios is used. Notice that as M increases, it is possible
to increase the macro-step size without violating the CFL conditions. The results
shown in Figure 7a indicate that, for a fixed error level, the multirate method shows
better performance than single rate one for M = 2 and 3.

A second version of the model, used to test EX-IM MrGARK methods, includes
linear diffusive terms with parameters εu = 0.0625 and εv = 0.0312. The diffu-
sion is considered the slow process and is treated implicitly; the constant diffusion
operator is leveraged in the solution of linear stage equations. Figures 7c and 7d
show the performance diagrams for the MrGARK method EX3-IM3 3(2)[A] from Ap-
pendix A.8 compared to single rate implicit method of the same order. In Figure 7d
we note the reduced order of convergence for the single rate implicit method. Being a
DIRK scheme, this method has a Newton-Krylov iteration for each stage that involves
Jacobian-vector products of the full right hand side. Here, as in many practical cases,
these are approximated by finite differences. Therefore, the quality of the approxi-
mation and the Krylov solver affect the convergence rate and efficiency of the SR-IM
method [33]. On the other hand, the stages for multirate methods use only the Jaco-
bian of the linear term, and show full order of convergence and faster computations
than both single rate implicit and explicit methods. As M increases the performance
of the multirate method improves incurring negligible increase in error.

9.3. Numerical experiments for H and M adaptivity. We experiment with
different adaptivity strategies described in subsection 7.4 using the Gray-Scott model
(31) with nonlinear diffusion term (32). All experiments in this section are performed
for a time span of T = [0, 2] seconds.

Figure 8 shows the automatically selected macro-step size (H) and multirate
step ratio (M) for the naturally adaptive method EX4-EX4 3(2)[A]. The efficiency
optimization strategy (subsection 7.4.2) is used to select both H and M . As the
relative cost of evaluating the fast and slow right hand side functions changes in
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Fig. 7: Results for MrGARK schemes applied to Gray-Scott model (31).

Figures 8a to 8c, the choice of M varies to keep the overall efficiency high. The
costs of slow and fast system are computed by timing their respective right hand side
evaluations. The one-dimensional integer optimization in (29) is then approximated
by limiting the possible increase or decrease of Mnew to

max(1,M − 1) ≤Mnew ≤M + 2,

which reduces the computational cost of the optimization and increases the robustness
of the algorithm.

In Figure 9 the adaptivity strategy based on balancing the fast and slow errors
(subsection 7.4.1) is tested. By interchanging the roles of the fast and slow partitions
the choice of multirate step ratio M changes from the maximum allowed value of ten
to its minimum allowed value of two, in an attempt to keep the fast and slow errors
balanced. The macro-step size selection by the traditional error controller is the same
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Fig. 8: Automatically selected macro-step size and multirate step ratio for the Gray-
Scott model (31) integrated over the time span T = [0, 2] using EX4-EX4 3(2)[[]A]
method. The efficiency optimization strategy (subsection 7.4.2) is used with AbsTol =
RelTol = 10−4.
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Fig. 9: Automatically selected macro-step size and multirate step ratio for the Gray-
Scott model (31) integrated over the time span T = [0, 2] seconds using EX4-EX4
3(2)[A] method. The strategy of balancing the slow and fast errors (subsection 7.4.1)
is used with AbsTol = RelTol = 10−2.

Finally, it is instructive to see how different H-M adaptivity strategies developed
in subsection 7.4 compare against the conventional H adaptivity. We carry out this
experiment using the Gray-Scott model. Figure 10a shows the error in the final
solution scaled by the computation time when the EX2-EX2 2(1)[A] method from
Appendix A.1 is used. Figure 10a repeats the experiment using the EX5-EX5 4(3)[A]
method from Appendix A.10. In these experiments the efficient single rate base
method is employed when the adaptive strategy selects M = 1. The parameters of the
adaptivity algorithm such as macro-step rejection factor are optimized for maximum
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efficiency. The results indicate that the H-M adaptivity strategies are perform better
than the classical H error control.
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Fig. 10: Efficiency of different adaptivity strategies for explicit-explicit methods
applied to Gray-Scott model with a compute time ratio t{s}/t{f} = 2.

9.4. Component partitioning experiment. We consider the BSVD reaction-
diffusion problem on the unit square Ω [21] with boundary ∂Ω and outward boundary
normal vector ~n:

ut = ∇ · (D(x, y)∇u) + 10(1− u2)(u+ 0.6),(33a)

u(x, y, 0) = 2 exp
(
−10(x− 0.5)2 − 10(y + 0.1)2

)
, x, y ∈ Ω,(33b)

D(x, y) = 0.1

3∑
i=1

e−100(x−0.5)
2+(y−yi)2 ,(33c)

D(x, y)∇u · ~n = 0, x, y ∈ ∂Ω, t ∈ [0, tF ].(33d)

The parameters values are y1 = 0.6, y2 = 0.75, y3 = 0.9 as prescribed in [21]. The
domain is partitioned into two sub-domains:

Ω1 = {(x, y) ∈ Ω : |x− 0.5| ≤ 0.125, y ≤ 0.125}, Ω2 = Ω\Ω1.

A continuous finite element semi-discretization in space with Lagrange polynomial
basis of order four leads to a two-way partitioned system of ODEs. We discretized
this model using the FEniCS package [2] and the evolution of its solution over the
time span of T = [0, 5] seconds is shown in Figure 11. The subsystem with fewer
degrees of freedom (DOFs) is designated as the fast one, and the remaining variables
are considered to be the slow system. In this experiment the ratio of slow to fast
DOFs is 28. Figure 12 shows the error for fixed macro-step time integration using
explicit-explicit multirate methods of orders 2, 3 and 4. The largest macro-steps are
chosen close to the maximum stable step size for the method. Results reported in
Figure 12 show that, although the numerical order of convergence of the methods
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fluctuate slightly, they follow their theoretical values closely. Note that the errors
are reported only for stable macro-step sizes for different methods and multirate step
ratios.

Fig. 11: Evolution of the BSVD problem (33) solution in time.
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Fig. 12: Convergence results for BSVD test (33) over the time span T = [0, 0.2]
seconds. A fixed macro-step time integration is carried out with varying multirate
step ratios M using explicit MrGARK type A methods.

10. Conclusions. This work develops a coherent design strategy for high or-
der MrGARK, and constructs several particular schemes of explicit-explicit, explicit-
implicit and implicit-explicit types up to order four. Adopting a two-way split system
for simplicity, we identify coupling structures for the fast and slow components that
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strike a balance between stability and computational efficiency of MrGARK methods.
Furthermore, in the process of designing schemes we explore a variety of optimiza-
tions such as local truncation error minimization, FSAL, and stiff accuracy of base and
overall implicit methods. When possible, our methods are endowed with telescopic
properties to facilitate their application to multi-scale, multi-domain problems. Dif-
ferent design criteria lead to different types of methods, e.g., the A-type is optimized
for accuracy, and the S-type is optimized for simplicity and stability. A novel concept
of H-M adaptivity, based on multiple error estimators and the property of natural
adaptivity, is presented.

Our numerical experiments demonstrate several applications of these methods
with finite element and finite difference discretized PDEs, where different time-scales
in system variables (component partitioning), or in various physical processes of the
problem (additive partitioning) are treated with different time steps. In all cases,
the proposed methods converge at their theoretical orders. In all cases, speedups are
obtained from the multirate approach when compared to the single rate integration.
Since the multirate performance depends critically on the efficiency of the implemen-
tation, and a high quality implementation is not within the scope of this work, we
do not report these speedups, as they are likely considerably smaller than what can
realistically be achieved. The future work plans of the authors include the develop-
ment of high quality implementations of MrGARK schemes. Moreover, for many of
the new schemes derived here the stability region decreases with increasing step size
ratio; future work will focus on the development of S-type schemes where the stability
region remains large for any M .

This contribution focuses on decoupled multirate methods satisfying (17), as they
are far less computationally demanding than coupled methods. However, the overall
stability of the scheme may be affected by this choice. In future work the authors plan
to explore coupled implicit-implicit MrGARK methods, and to study their stability
via an extended, two-dimensional test problem [9].
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Appendix A. Decoupled multirate GARK schemes.
We use the naming convention FASTf -SLOWs p(p̂)[type], where p is the method

order, p̂ is the embedded order, f is the number of stages in the fast base method, and
s is the number of stages in the slow base method. Each component method is either
explicit or implicit: FAST, SLOW ∈ {EX,IM}. We distinguish between methods of
type A (optimized for accuracy and for better step size control) and methods of type
S (optimized for simplicity and for stability), therefore type ∈ {A,S}.

A.1. MrGARK EX2-EX2 2(1)[A]. This explicit method uses a base method
from [28] and has telescopic (6) and naturally adaptive (Definition 6.1) properties.

A{f,f} =

0 0

2
3 0

 , A{s,s} =

0 0

2
3 0

 , A{f,s,1} =

 0 0

2
3M 0

 ,
A{f,s,λ} =

 3M3−11M2+20λM−20M−20λ+20
20(M−1)M −M(3M−11)

20(M−1)
−3M3−9M2+60λM−20M−60λ+20

60(M−1)M
M(M+3)
20(M−1)

 , λ = 2, . . . ,M,

A{s,f,1} =

 0 0

− 1
3 (M − 2)M M2

3

 , A{s,f,λ} =

0 0

0 0

 , λ = 2, . . . ,M,

b{f} = b{s} =
[
1
4

3
4

]T
, b̂{f} = b̂{s} =

[
1 0

]T
.

(a) M = 2. (b) M = 4.

Fig. 13: EX2-EX2 2(1)[A] stability regions.
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A.2. MrGARK EX2-EX2 2(1)[S]. This explicit method uses a two stage base
method and has telescopic (6) and naturally adaptive (Definition 6.1) properties. The
scheme computes the first slow stage, followed by L2 fast steps, then the second slow
stage, followed by M − L2 fast steps. For example, we can take L2 = floor(c2M).

A{f,f} =

 0 0

c2 0

 , A{s,s} =

 0 0

c2 0

 ,
A{f,s,λ} =

 λ−1
M 0

λ+c2−1
M 0

 , λ = 1, . . . , L2,

A{f,s,λ} =

 (λ−1)(2c2−1)
2Mc2

λ−1
2Mc2

M
3(L2−M) + −λ+2c2(2λ+c2−2)+1

2Mc2
M

3M−3L2
+ λ−1

2Mc2
+ 1−λ

M

 , λ = L2 + 1, . . . ,M,

A{s,f,λ} =

 0 0
M(−2M+6c2+3L2−3)

6L2

M(2M−3L2+3)
6L2

 , λ = 1, . . . , L2,

A{s,f,λ} =

0 0

0 0

 , λ = L2 + 1, . . . ,M,

b{f} = b{s} =
[
2c2−1
2c2

1
2c2

]T
, b̂{f} = b̂{s} =

[
1 0

]T
.

(a) M = 2. (b) M = 4.

Fig. 14: EX2-EX2 2(1)[S] stability regions with c2 = 2
3 .
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A.3. MrGARK EX2-IM2 2(1)[A]. This explicit-implicit method uses the
fast method from [28] and slow method from [1]. The multirate scheme is stiffly
accurate (21) in the slow partition and the coupling error is independent of M .

A{f,f} =

0 0

2
3 0

 , A{s,s} =

1− 1√
2

0

1√
2

1− 1√
2

 , A{s,f,1} =

M − M√
2

0

1
4

3
4

 ,
A{f,s,λ} =

 λ−1
M 0

3λ−1
3M 0

 , λ = 1, . . . ,M,

A{s,f,λ} =

0 0

1
4

3
4

 , λ = 2, . . . ,M,

b{f} =
[
1
4

3
4

]T
, b{s} =

[
1√
2

1− 1√
2

]T
,

b̂{f} =
[
1 0

]T
, b̂{s} =

[
3
5

2
5

]T
.

(a) M = 2. (b) M = 4.

Fig. 15: EX2-IM2 2(1)[A] stability regions.
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A.4. MrGARK IM2-EX2 2(1)[A]. This implicit-explicit method uses the
fast method from [1] and the slow method from [28]. The multirate scheme is stiffly
accurate (21) in the fast partition.

A{f,f} =

1− 1√
2

0

1√
2

1− 1√
2

 , A{s,s} =

0 0

2
3 0

 , A{f,s,M} =

 2M−
√
2

2M 0

1
4

3
4

 ,
A{f,s,λ} =

 2λ−
√
2

2M 0

λ
M 0

 , λ = 1, . . . ,M − 1,

A{s,f,λ} =

0 0

2
3 0

 , λ = 1, . . . ,M,

b{f} =
[

1√
2

1− 1√
2

]T
, b{s} =

[
1
4

3
4

]T
,

b̂{f} =
[
3
5

2
5

]T
. b̂{s} =

[
1 0

]T
,

(a) M = 2. (b) M = 4.

Fig. 16: IM2-EX2 2(1)[A] stability regions.
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A.5. MrGARK EX3-EX3 3(2)[A]. This explicit method uses a base method
from [28] and has telescopic (6) properties. The coupling error is independent of M .

A{f,f} =


0 0 0

1
2 0 0

0 3
4 0

 , A{s,s} =


0 0 0

1
2 0 0

0 3
4 0

 , A{f,s,1} =


0 0 0

1
2M 0 0

0 3
4M 0

 ,

A{f,s,λ} =


3M3−8M2+6λM−6λ+6

6(M−1)M
−3M2+8M−6

6(M−1) 0

−2M2+6λM−3M−6λ+3
6(M−1)M

M
3(M−1) 0

−3M3+2M2+12λM−9M−12λ+12
12(M−1)M

3M3−2M2+6M−9
12(M−1)M 0

 , λ = 2, . . . ,M,

A{s,f,1} =


0 0 0

− 1
66M(16M − 33) 8M2

33 0

1
264

(
11M4 − 22M3 + 26M2 + 11M + 44

)
1
88

(
−11M4 + 22M3 − 16M2 − 11M + 22

)
1
12

(
M4 − 2M3 +M2 +M + 4

)
 ,

A{s,f,λ} =


0 0 0

0 0 0

−M4+2M3+2M2+3M−4
24(M−1)

1
8

(
M3 −M2 −M + 2

) −M4+2M3−M2+3M−4
12(M−1)

 , λ = 2, . . . ,M,

b{f} = b{s} =
[
2
9

1
3

4
9

]T
, b̂{f} = b̂{s} =

[
1
40

37
40

1
20

]T
.

(a) M = 2. (b) M = 4.

Fig. 17: EX3-EX3 3(2)[A] stability regions.
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A.6. MrGARK EX4-EX4 3(2)[A]. This explicit method is telescopic (6) and
naturally adaptive (Definition 6.1).

A{f,f} =


0 0 0 0

1
3 0 0 0

0 5
9 0 0

833
7680

833
9216

3213
5120 0

 , A{s,s} =


0 0 0 0

1
3 0 0 0

0 5
9 0 0

833
7680

833
9216

3213
5120 0

 , A{s,f,λ} =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , λ = 2, . . . ,M,

A{f,s,1} =


0 0 0 0

1
3M 0 0 0

5(518M3−2140M2+2399M−777)
2331M(3M−4) − 5(518M3−2140M2+1622M+259)

2331M(3M−4) 0 0
17(141932M3−445231M2+481160M−178710)

852480M(3M−4) − 17(94535M3−228442M2+142736M−5180)
340992M(3M−4)

3213M
5120 0

 ,

A{f,s,λ} =


λ−1
M 0 0 0

3λ−2
3M 0 0 0

777(12λ−7)+(6993λ+12092)M2−5965M3−3(5439λ+286)M
2331M(3M2−7M+4)

5(1193M3−3040M2+1622M+259)
2331M(3M2−7M+4) 0 0

222(3072λ−335)+(511488λ+1937719)M2−867119M3−72(16576λ+13973)M
170496M(3M2−7M+4)

17(51007M3−119207M2+71368M−2590)
170496M(3M2−7M+4) 0 0

 , λ = 2, . . . ,M,

A{s,f,1} =


0 0 0 0

M
3 −

34M2

361
34M2

361 0 0

0 5(1805−981M)M
6498

5M(327M−361)
2166 0

M(1480461M2−3944118M+3007130)
2772480 − 119M(3249M2−20358M+18050)

3326976 − 119M(66063M2−78954M−18050)
5544960 (M − 1)M2

 ,

b{f} = b{s} =
[
101
714

1
3

1
6

128
357

]T
, b̂{f} = b̂{s} =

[
7
40 − 425

8784
100037
131760

188
1647

]T
.

(a) M = 2. (b) M = 4.

Fig. 18: EX4-EX4 3(2)[A] stability regions.
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A.7. MrGARK EX3-EX3 3(2)[S]. This explicit method uses a three stage
base method and has telescopic (6) property. Once again, we can take L2 = floor(c2M).

A{f,f} = A{s,s} =


0 0 0

c2 0 0

(3c22−3c2+1)
c2(3c2−2)

(c2−1)
c2(3c2−2) 0

,

A{f,s,λ} =


λ−1
M 0 0

c2+λ−1
M 0 0

λ
M 0 0

 , λ = 1, . . . , L2,

A{f,s,λ} =


2λ−1

12c2(L2−M) + 1−2λ
12c2(L2+M) + 2λ−1

2M
2λ−1

12c2(L2+M) + 1−2λ
12c2(L2−M) −

1
2M 0

2λ−1
12c2(L2−M) + 1−2λ

12c2(L2+M) + 2λ−1
2M

2λ−1
12c2(L2+M) + 1−2λ

12c2(L2−M) + 2c2−1
2M 0

2λ−1
12c2(L2−M) + 1−2λ

12c2(L2+M) + 2λ−1
2M

2λ−1
12c2(L2+M) + 1−2λ

12c2(L2−M) + 1
2M 0

 , λ = L2 + 1, . . . ,M,

A{s,f,λ} =


0 0 0

c2

(
2λ(c2(4L2−3)−3L2+3)

(c2−1)(3c22+4c2+1)(L2+1)
+ M

L2

)
− c2λ(c2(4L2−3)−3L2+3)

(c2−1)(3c22+4c2+1)(L2+1)
− c2λ(c2(4L2−3)−3L2+3)

(c2−1)(3c22+4c2+1)(L2+1)

2c2λ(c2(4L2−3)−3L2+3)

(c2−1)(3c22+4c2+1)(L2+1)
− c2λ(c2(4L2−3)−3L2+3)

(c2−1)(3c22+4c2+1)(L2+1)
− c2λ(c2(4L2−3)−3L2+3)

(c2−1)(3c22+4c2+1)(L2+1)

 , λ = 1, . . . , L2,

A{s,f,λ} =


0 0 0

0 0 0

λ
3c2−2 + c2(3L2−4)−3L2+3

6c2−4 + M
M−L2

λ
2−3c2

c2(4−3L2)+3(L2−1)
6c2−4

 , λ = L2 + 1, . . . ,M,

b{f} = b{s} =
[
3c2−1
6c2

− 1
6(c2−1)c2

3c2−2
6(c2−1)

]T
, b̂{f} = b̂{s} =

[
b̂2 (c2 − 1) + 1

2 b̂2
1−2b̂2c2

2

]T
.

(a) M = 2. (b) M = 4.

Fig. 19: Stability plots for MrGARK EX3-EX3 3(2)[S] method with c2 = 1
2 .
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A.8. MrGARK EX3-IM3 3(2)[A]. This explcit method uses a fast method
from [28] and a slow method from [1] and is stiffly accurate (21) in the slow partition.

A{f,f} =


0 0 0

1
2 0 0

0 3
4 0

 , A{s,s} =


γ 0 0

− 2(3γ3−9γ2+6γ−1)
3(2γ2−4γ+1) γ 0

4γ−1
4(3γ3−9γ2+6γ−1) − 3(2γ2−4γ+1)

2

4(3γ3−9γ2+6γ−1) γ

 ,

A{f,s,λ} =


λ−1
M 0 0

2λ−1
2M 0 0

−60λγ3+42γ3+18Mγ2+72λγ2−72γ2−36Mγ+42λγ+3γ+9M−16λ+4
16M(3γ3−9γ2+6γ−1) − 9(2γ2−4γ+1)(M+3γ−6γλ)

16M(3γ3−9γ2+6γ−1) 0

 , λ = 1, . . . ,M,

A{s,f,1} =


Mγ 0 0

−M(36Mγ4−36γ4−120Mγ3+126γ3+108Mγ2−138γ2−36Mγ+51γ+4M−6)
9(2γ2−4γ+1)2

4M2(9γ4−30γ3+27γ2−9γ+1)
9(2γ2−4γ+1)2

0

2
9

1
3

4
9

 ,

A{s,f,λ} =


0 0 0

0 0 0

2
9

1
3

4
9

 , λ = 2, . . . ,M,

b{f} =
[
2
9

1
3

4
9

]T
, b{s} =

[
4γ−1

4(3γ3−9γ2+6γ−1) − 3(2γ2−4γ+1)
2

4(3γ3−9γ2+6γ−1) γ

]T
,

b̂{f} =
[

1
40

37
40

1
20

]T
, b̂{s} =

[
−6γ2+6γ−1

4(3γ3−9γ2+6γ−1)
3(4γ3−10γ2+6γ−1)
4(3γ3−9γ2+6γ−1) 0

]T
,

γ = 1
2

(
2 +
√

6 sin
(
1
3 cot−1 2

√
2
)
−
√

2 cos
(
1
3 cot−1 2

√
2
))
≈ 0.43586652150845899942.

(a) M = 2. (b) M = 4.

Fig. 20: EX3-IM3 3(2)[A] stability regions.
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A.9. MrGARK IM3-EX3 3(2)[A]. This implicit-explicit method uses a fast
method from [1] and a slow method from [28] and is stiffly accurate (21) in the fast
partition.

A{f,f} =


γ 0 0

− 2(3γ3−9γ2+6γ−1)
3(2γ2−4γ+1) γ 0

4γ−1
4(3γ3−9γ2+6γ−1) − 3(2γ2−4γ+1)

2

4(3γ3−9γ2+6γ−1) γ

 , A{s,s} =


0 0 0

1
2 0 0

0 3
4 0

 ,

A{f,s,λ} =


γ+λ−1
M 0 0

6λγ2−12λγ+3γ+3λ−1
3M(2γ2−4γ+1) 0 0

λ
M 0 0

 , λ = 1, . . . ,M − 1,

A{f,s,M} =


M+γ−1
M 0 0

12M2γ3−36Mγ3+18γ3−36M2γ2+108Mγ2−42γ2+24M2γ−60Mγ+21γ−4M2+9M−3
9M(2γ2−4γ+1)2

− 4(M−3γ)(3γ3−9γ2+6γ−1)
9(2γ2−4γ+1)2

0

2
9

1
3

4
9

 ,

A{s,f,λ} =


0 0 0

1
2 0 0

− 3(12γ3+6Mγ2−18γ2−12Mγ+6γ+3M−1)
32(3γ3−9γ2+6γ−1)

9(M+6γ−3)(2γ2−4γ+1)
32(3γ3−9γ2+6γ−1) 0

 , λ = 1, . . . ,M,

b{f} =
[

4γ−1
4(3γ3−9γ2+6γ−1) − 3(2γ2−4γ+1)

2

4(3γ3−9γ2+6γ−1) γ

]T
, b{s} =

[
2
9

1
3

4
9

]T
,

b̂{f} =
[

−6γ2+6γ−1
4(3γ3−9γ2+6γ−1)

3(4γ3−10γ2+6γ−1)
4(3γ3−9γ2+6γ−1) 0

]T
, b̂{s} =

[
1
40

37
40

1
20

]T
.

γ = 1
2

(
2 +
√

6 sin
(
1
3 cot−1 2

√
2
)
−
√

2 cos
(
1
3 cot−1 2

√
2
))
≈ 0.43586652150845899942.

(a) M = 2. (b) M = 4.

Fig. 21: IM3-EX3 3(2)[A] stability regions.



38 ARASH SARSHAR , AND STEVEN ROBERTS , AND ADRIAN SANDU

A.10. MrGARK EX5-EX5 4(3)[A]. This explicit method uses a base method
from [34], is telescopic (6) and has the First same as last (FSAL) property.

A
{f
,f
}

=

         0
0

0
0

0

2 5
0
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(a) M = 2. (b) M = 4.

Fig. 22: EX5-EX5 4(3)[A] stability regions.

A.11. MrGARK EX6-IM5 4(3)[A]. This explicit-implicit method uses a fast
method from [13] and a slow method from [23]. The multirate scheme is stiffly accurate
(21) in the slow partition.
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(a) M = 2. (b) M = 4.

Fig. 23: EX6-IM5 4(3)[A] stability regions.

A.12. MrGARK IM6-EX4 4(2)[A]. This implicit-explicit method uses a
slow method from [34] and is stiffly accurate (21) in the fast partition.
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(a) M = 2. (b) M = 4.

Fig. 24: IM6-EX4 4(2)[A] stability regions.
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