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Abstract. We study an optimization program over nonnegative Borel measures that encourages sparsity in its solution.
Efficient solvers for this program are in increasing demand, as it arises when learning from data generated by a “continuum-
of-subspaces” model, a recent trend with applications in signal processing, machine learning, and high-dimensional statistics.
We prove that the conditional gradient method (CGM) applied to this infinite-dimensional program, as proposed recently in
the literature, is equivalent to the exchange method (EM) applied to its Lagrangian dual, which is a semi-infinite program. In
doing so, we formally connect such infinite-dimensional programs to the well-established field of semi-infinite programming.

On the one hand, the equivalence established in this paper allows us to provide a rate of convergence for EM which is more
general than those existing in the literature. On the other hand, this connection and the resulting geometric insights might in
the future lead to the design of improved variants of CGM for infinite-dimensional programs, which has been an active research
topic. CGM is also known as the Frank-Wolfe algorithm.

1. Introduction. We consider the following affinely-constrained optimization over nonnegative Borel
measures:

(1.1)


min
x

L

(∫
I
Φ(t)x(dt)− y

)
subject to ‖x‖TV ≤ 1

x ∈ B+(I).

Here, I is a compact subset of Euclidean space, B+(I) denotes all nonnegative Borel measures supported on
I, and

(1.2) ‖x‖TV =

∫
I
x(dt)

is the total variation of measure x, see for example [1].1 We are particularly interested in the case where
L : Cm → R is a differentiable loss function and Φ : I→ Cm is a continuous function. Note that Program (1.1)
is an infinite-dimensional problem and that the constraints ensure that the problem is bounded. In words,
Program (1.1) searches for a nonnegative measure on I that minimizes the loss above, while controlling its
total variation. This problem and its variants have received significant attention [3, 4, 5, 6, 7, 8, 9] in signal
processing and machine learning, see Section 2 for more details.

It was recently proposed in [4] to solve Program (1.1) using the celebrated conditional gradient method
(CGM) [10], also known as the Frank-Wolfe algorithm, adapted to optimization over nonnegative Borel
measures. The CGM algorithm minimizes a differentiable, convex function over a compact convex set, and
proceeds by iteratively minimizing linearizations of the objective function over the feasible set, generating a
new descent direction in each iteration. The classical algorithm performs a descent step in each new direction
generated, while in the fully-corrective CGM, the objective is minimized over the subspace spanned by all
previous directions [11]. It is the fully-corrective version of the algorithm which we consider in this paper.

It was shown in [4] that, when applied to Program (1.1), CGM generates a sequence of finitely supported
measures, with a single parameter value tl ∈ I being added to the support in the lth iteration. Moreover,
[4] established that the convergence rate of CGM here is O

(
1
l

)
, where l is the number of iterations, thereby

extending the standard results for finite-dimensional CGM. A full description of CGM and its convergence
guarantees can be found in Section 3.

On the other hand, the (Lagrangian) dual of Program (1.1) is a finite-dimensional optimization problem
with infinitely many constraints, often referred to as a semi-infinite program (SIP), namely

(1.3)


max
λ,α

Re 〈λ, y〉 − L◦ (−λ)− α

subject to Re 〈λ,Φ(t)〉 ≤ α, t ∈ I
α ≥ 0,

∗AE and AT have contributed equally to this work. AE is with the Institute of Electrical Engineering at the École Poly-
technique Fédérale de Lausanne, Switzerland. AT is with the National Physical Laboratory, United Kingdom.

1 It is also common to define the TV norm as half of the right-hand side of (1.2), see [2].
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where 〈·, ·〉 denotes the standard Euclidean inner product over Cm. Above,

(1.4) L◦(λ) = sup
z∈Cm

Re〈λ, z〉 − L(z)

denotes the Fenchel conjugate of L. As an example, when L(·) = 1
2‖ · ‖

2
2, it is easy to verify that L◦ = L.

For the sake of completeness, we verify the duality of Programs (1.1) and (1.3) in Appendix B. Note that
the Slater’s condition for the finite-dimensional Program (1.3) is met and there is consequently no duality
gap between the two Programs (1.1) and (1.3).

There is a large body of research on SIPs such as Program (1.3), see for example [12, 13, 14], and we are
particularly interested in solving Program (1.3) with exchange methods. In one instantiation – which for ease
we will refer to as the exchange method (EM) – one forms a sequence of nested subsets of the constraints
in Program (1.3), adding in the lth iteration a single new constraint corresponding to the parameter value
tl ∈ I that maximally violates the constraints of Program (1.3). The finite-dimensional problem with
these constraints is then solved and the process repeated. Convergence of EM has been established under
somewhat general conditions, but results concerning rate of convergence are restricted to more specific SIPs,
see Section 4 for a full description of the EM.

Contribution. The main contribution of this paper is to establish that, for Program (1.1) and provided
the loss function L is both strongly smooth and strongly convex, CGM and EM are dual-equivalent. More
precisely, the iterates of the two algorithms produce the same objective value and the same finite set of
parameters in each iteration; for CGM, this set is the support of the current iterate of CGM and, for EM,
this set is the choice of constraints in the dual program.

The EM method can also be viewed as a bundle method for Program (1.3) as discussed in Section 6,
and the duality of CGM and bundle methods is well known for finite-dimensional problems. This paper
establishes dual-equivalence in the emerging context of optimization over measures on the one hand and the
well-established semi-infinite programming on the other hand.

On the one hand, the equivalence established in this paper allows us to provide a rate of convergence
for EM which is more general than those existing in the literature; see Section 6 for a thorough discussion
of the prior art. On the other hand, this connection and the resulting geometric insights might lead to the
design of improved variants to CGM, another active research topic [4].

Outline. We begin in Section 2 with some motivation, describing the key role of Program (1.1) in data
and computational sciences. Then in Sections 3 and 4, we give a more technical introduction to CGM
and EM, respectively. We present the main contributions of the paper in Section 5, establishing the dual-
equivalence of CGM and EM for Problems (1.1) and (1.3), and deriving the rate of convergence for EM.
Related work is reviewed in Section 6 and some geometric insights into the inner workings of CGM and EM
are provided in Section 7. We conclude this paper with a discussion of the future research directions.

2. Motivation. Program (1.1) has diverse applications in data and computational sciences. In signal
processing for example, each Φ(t) ∈ Cm is an atom and the set of all atoms {Φ(t)}t∈I is sometimes referred
to as the dictionary. In radar applications, for instance, Φ(t) is a copy of a known template, arriving at time
t. In this context, we are interested in signals that have a sparse representation in this dictionary, namely
signals that can be written as the superposition of a small number of atoms. Any such signal ẏ ∈ Cm can
be written as

(2.1) ẏ =

∫
I
Φ(t)ẋ(dt),

where ẋ is a sparse measure, selecting the atoms that form ẏ. More specifically,

(2.2) ẋ =

k∑
i=1

ȧi · δṫi ,

for an integer k, positive amplitudes {ȧi}ki=1, and parameters {ṫi}ki=1 ⊂ I. Here, δṫi is the Dirac measure

located at ṫi ∈ I. We can therefore rewrite (2.1) as

(2.3) ẏ =

∫
I
Φ(t)ẋ(dt) =

k∑
i=1

Φ
(
ṫi
)
· ȧi.
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In words, {ṫi}i are the parameters that construct the signal ẏ and I is the parameter space. We often receive
y ∈ Cm, a noisy copy of ẏ, and our objective in signal processing is to estimate the hidden parameters {ṫi}i,
given the noisy copy y. See Figure 2.1 for an example.

𝑡̇# 𝑡̇$ 𝑡̇%

𝑎̇#
𝑎̇$

𝑎̇%

0 1
(a)

0 1𝒔𝟏 𝒔𝟐𝑡̇( 𝑡̇) 𝑡̇*
(b)

Figure 2.1: In this numerical example, (a) depicts the measure ẋ, see (2.2). Let φ(t) = e−100t
2

be a Gaussian
window. With the choice of sampling locations {sj}mj=1 ⊂ [0, 1] and Φ(t) = [φ(t− sj)]mj=1 ∈ Rm, (b) depicts

ẏ ∈ Rm, see (2.3). Note that the entries of ẏ are in fact samples of (φ ? x)(s) =
∫
I φ(t− s)x(dt) at locations

s ∈ {sj}mj=1, which forms the red curve in (b). Our objective is to estimate the locations {ṫi}ki=1 from ẏ.

(Given an estimate of the locations, the amplitudes {ȧi}ki=1 can also be estimated with a simple least-squares
program.) This is indeed a difficult task: Even given the red curve φ ? ẋ (from which ẏ is sampled), it is
hard to see that there is an impulse located at ṫ3. Solving Program (1.1) with ‖x‖TV ≤ b for large enough
b uniquely recovers x, as proved in [1]. In this paper, we describe Algorithms 3.1 and 4.1 to solve Program
(1.1), and establish their equivalence.

To that end, Program (1.1) searches for a nonnegative measure x̂ supported on I that minimizes the
loss L(

∫
I Φ(t)x(dt) − y), while encouraging its sparsity through the total variation constraint ‖x‖TV ≤ 1.

Under certain conditions on Φ and when L = 1
2‖ · ‖

2
2, a minimizer x̂ of Program (1.1) is a robust estimate

of the true measure ẋ in the sense that d(x̂, ẋ) ≤ c · L(y − ẏ) for a known factor c and in a certain metric d
[1, 15, 7, 16].

The super-resolution problem outlined above is an example of learning under a “continuum-of-subspaces”
model, in which data belongs to the union of infinitely many subspaces. For super-resolution in particular,
each subspace corresponds to fixed locations {ti}Ki=1. This model is a natural generalization of the “union-of-
subspaces” model, which is a central object in compressive sensing [17], wavelets [18], and feature selection
in statistics [19], to name a few. The use of continuum-of-subspaces models is on the rise as it potentially
addresses the drawbacks of the union-of-subspaces models, see for example [20]. As another application
of Program (1.1), y might represent the training labels in a classification task or, in the classic moments
problem, y might collect the moments of an unknown distribution. Various other examples are given in [4].

Note that Program (1.1) is an infinite-dimensional problem as the search is over all nonnegative measures
supported on I. It is common in practice to restrict the support of x to a uniform grid on I, say {ti}ni=1 ⊂ I, so
that x =

∑n
i=1 aiδti for nonnegative amplitudes {ai}ni=1. Let a ∈ Rn+ be the vector formed by the amplitudes

and concatenate the vectors {Φ(ti)}ni=1 ⊂ Cm to form a (usually very flat) matrix Φ ∈ Cm×n. Then we may
rewrite Program (1.1) as

(2.4)


min
a

L (Φ · a− y)

subject to 〈1n, a〉 ≤ 1

a ≥ 0,
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where 1n ∈ Rn is the vector of all ones. When L(·) = 1
2‖ · ‖

2
2 in particular, Program (2.4) reduces to the

well-known nonnegative Lasso [21].
The first issue with the above “gridding” approach is that there is often a mismatch between the atoms

{Φ(ṫi)}ki=1 that are present in ẏ and the atoms listed in Φ, namely {Φ(ti)}ni=1. As a result, ẏ often does not
have a sufficiently sparse representation in Φ. In the context of signal processing, this problem is known
as the “frequency leakage”, see Figure 2.2. Countering the frequency leakage by excessively increasing the
grid size n leads to increased coherence, namely, increased similarity between the columns of Φ. In turn,
the statistical guarantees for finite-dimensional problems (such as Program (2.4)) often deteriorate as the
coherence grows [22, Section 1.2]. Loosely speaking, Program (2.4) does not decouple the optimization
error from the statistical error, and this pitfall can be avoided by directly studying the infinite-dimensional
Program (1.1), see [16]. Moreover, the gridding approach is only applicable when the parameter space I
is low-dimensional (see the numerical example in Section 3), often requires post-processing [23], and might
lead to numerical instability with larger grids, see Program (3.3). Lastly, the gridding approach ignores the
continuous structure of I which, as discussed in Section 8, plays a key role in developing new optimization
algorithms, see after (8.1). The moment technique [16, 24] is an alternative to gridding for a few special
choices of Φ in Program (1.1).

This discussion encourages us to directly study the infinite-dimensional Program (1.1); it is this direction
that is pursued in this work and in [4, 25, 26, 27, 28, 29]. Indeed, this direct approach provides a unified
and rigorous framework, independent of gridding or its alternatives. In particular, the direct approach
perfectly decouples the optimization error (caused by gridding, for instance) from the statistical error of
Program (1.1), and matches the growing trend in statistics and signal processing that aims at providing
theoretical guarantees for directly learning the underlying (continuous) parameter space I [30, 31, 6, 29, 24].

𝑡"
(a)

𝑡"
(b)

(c)

Figure 2.2: (a) depicts a translated Gaussian window, namely, φ(t − t1) = e−100(t−t1)
2

for translation
t1 ∈ [0, 1]. Equivalently, φ(t − t1) = (φ ? δt1)(t), as represented in (b). On the other hand, (c) shows
the coefficients of the least-squares approximation of the translated window φ(t − t1) in the dictionary
{φ(t−i/N)}Ni=1 for N = 66. By comparing (b) and (c), we observe that φ(t−t1) loses its sparse representation
after gridding. See the discussion at the end of Section 2 for more details.
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3. Conditional Gradient Method. In this section and the next one, we review two algorithms for
solving Program (1.1). The first one is the conditional gradient method [10], a popular first-order algorithm
for constrained optimization. The popularity of CGM partly stems from the fact that it is projection free,
unlike projected gradient descent, for example, which requires projection onto the feasible set in every
iteration.

More specifically, CGM solves the general constrained optimization problem

min
x∈F

f(x)

where f(x) is a differentiable function and F is a compact convex set. Given the current iterate xl−1, CGM
finds a search direction sl which minimizes the linearized objective function, namely, sl is a solution to

(3.1) min
s∈F

f(xl−1) + 〈s− xl−1,∇f(xl−1)〉

Note that we may remove the additive terms independent of s without changing the minimizers of Program
(3.1). The classical CGM algorithm then takes a step along the direction sl − xl−1, namely

xl = xl−1 + γl · (sl − xl−1),

for some step size γl ∈ (0, 1]. In a similar spirit, fully-corrective CGM chooses xl within the convex hull of
all previous update directions [11]. To be specific, fully-corrective CGM (which we simply refer to as CGM
henceforth) sets xl to be a minimizer of{

min f(x)

subject to x ∈ conv(s1, . . . , sl).

In the context of sparse regression and classification, CGM is particularly appealing because it produces
sparse iterates. Indeed, because the objective function in Program (3.1) is linear in s, there always exist a
minimizer of Program (3.1) that is an extreme point of the feasible set F . In our case, we have that

F = {x ∈ B+(I) : ‖x‖TV ≤ 1} ,

and any extreme point of F is therefore of the form δt with t ∈ I. It follows that each iterate xl of CGM is
at most l-sparse, namely, supported on a subset of I of size at most l.

In light of the discussion above, CGM applied to (1.1) is summarized in Algorithm 3.1. Note that we
might interpret Algorithm 3.1 as follows. Let xp be a minimizer of Program (1.1), supported on the index
set Tp ⊂ I. If an oracle gave us the correct support Tp, we could have recovered xp by solving Program (1.1)
restricted to the support Tp rather than I. Since we do not have access to such an oracle, at iteration l,
Algorithm 3.1

1. finds an atom Φ(tl) that reduces the objective of Program (1.1) the most, namely an atom that is
least correlated with the gradient at the current residual

∫
I Φ(τ)xl−1(dτ)− y, and then

2. adds tl to the support.
When L(·) = 1

2‖ · ‖
2
2 in particular, Algorithm 3.1 reduces to the well-known orthogonal matching pursuit

(OMP) for sparse regression [32], adapted to measures.
The convergence rate of CGM has been established in [4], relying heavily upon [33], and is reviewed next

for the sake of completeness. We first note that the infinite dimensional Program (1.1) has the same optimal
value as the finite dimensional program

(3.4) min
z∈CI

L(z − y),

where CI ⊂ Cm is the convex hull of {Φ(t)}t∈I ∪ {0}, namely

(3.5) CI :=

{∫
I
Φ(t)x(dt) : x ∈ B+(I), ‖x‖TV ≤ 1

}
.

5



Algorithm 3.1 CGM for solving Program (1.1)

Input: Compact set I, continuous function Φ : I→ Cm, differentiable function L : Cm → R, vector y ∈ Cm,
and tolerance η ≥ 0.

Output: Nonnegative measure x̂ supported on I.

Initialize: Set l = 1, T 0 = ∅, and x0 ≡ 0.

While ‖∇L(
∫
I Φ(τ)xl−1(dτ)− y)‖2 > η, do

1. Let tl be a minimizer of

(3.2) min
t∈I

〈
Φ(t),∇L

(∫
I
Φ(τ)xl−1(dτ)− y

)〉
.

2. Set T l = T l−1 ∪ {tl}.
3. Let xl be a minimizer of

(3.3)


min
x

L

(∫
I
Φ(t)x(dt)− y

)
subject to ‖x‖TV ≤ 1

supp(x) ⊆ T l

x ∈ B+(I).

Return: x̂ = xl.

Indeed, both problems share the same objective value and their respective solutions ẑ and x̂ satisfy

ẑ =

∫
I
Φ(t)x̂(dt).

It should be emphasized that, while the problems are in this sense equivalent, solving Program (3.4) does
not recover the underlying sparse measure but only its projection into the measurement space Cm. As
described in Section 2, in many applications it is precisely the underlying sparse measure which is of interest.
A convergence result for CGM applied to Program 1.1 may be obtained by first establishing that its iterates
xi are related to the iterates zi of CGM applied to the finite-dimensional Program (3.4) by zl =

∫
I Φ(t)xl(dt).

The convergence proof from [33] can then be followed to obtain the convergence rate. Let us now turn to
the details.

For the rest of this paper, we assume that L is both strongly smooth and strongly convex, namely, there
exists γ ≥ 1 such that

(3.6)
‖x− x′‖22

2γ
≤ L(x)− L(x′)− 〈x− x′,∇L(x′)〉 ≤ γ

2
‖x− x′‖22 ,

for every x, x′ ∈ Cm. In words, L can be approximated by quadratic functions at any point of its domain.
For example, L(·) = 1

2‖ · ‖
2
2 satisfies (3.6) with γ = 1. Let us also define

(3.7) r := max
t∈I
‖Φ(t)‖2.

The convergence rate of Algorithm 3.1 is given by the following result, which is similar to the result originally
given in [4], except that we replace the curvature condition in [4] with the strongly smooth and convex
assumption in (3.6), see Appendix A for the proof.

Proposition 1. (Convergence rate of Algorithm 3.1) For γ ≥ 1, suppose that L satisfies (3.6).2

Suppose that Program (3.2) is solved to within an accuracy of 2γr2ε in every iteration of Algorithm 3.1. Let

2Strictly speaking, strong convexity is not required for Proposition 1. That is, the far left term in (3.6) can be replaced
with zero.

6



vp be the optimal value of Program (1.1). Let also vlCGM be the optimal value of Program (3.3). Then, at
iteration l ≥ 1, it holds that

(3.8) vlCGM − vp ≤
4γr2(1 + ε)

l + 2
.

Assuming that L satisfies (3.6), it is not difficult to verify that Program (1.1) is a convex and strongly
smooth problem. Therefore CGM achieves the same convergence rate of 1/l that the projected gradient
descent achieves for such problems [34]. We note that, under stronger assumptions, CGM can achieves
linear convergence rate [35, 36].

A benefit of directly working with the infinite-dimensional Program (1.1) is that it provides a unified
framework for various finite-dimensional approximations, such as the moments method [6]. In the context
of CGM, following our discussion at the end of Section 2, a common approach to solve Program (3.2) is to
search for an O(ε)-approximate global solution over a finite grid on I, as indicated in Proposition 1. The
tractability of this gridding approach largely depends on how smooth Φ(t) is as a function of t, measured by
its Lipschitz constant, which we denote by φ. Roughly speaking, to find an O(ε)-approximate global solution
of Program (3.2), one needs to search over a uniform grid of size O(φ/ε)dim(I). As the dimension grows,
the Lipsichtz constant φ must be smaller and smaller for this brute force search to be tractable. In some
important applications, the dimension dim(I) is in fact small. In radar, array signal processing, or imaging
applications, for example, dim(I) ≤ 2.

As a numerical example with dim(I) = 1, let us revisit the setup in Section 2 with the choice of

ẋ =
1

4
(δ0.1π + δ0.2π + δ0.3π + δ0.31π),

Φ(t) = [ e−π i(m−1)t · · · eπ i(m−1)t ]> ∈ Cm,

where m = 33. This Φ might be considered as a generic model for a sensing device and the resulting
loss of low-frequency details [6]. Here, > stands for vector transpose. We solve Program (1.1) by applying
Algorithm 3.1, where Program (3.2) therein is solved on uniform grids with sizes {102, 103, 104}. The recovery
error in 1-Wasserstein metric, namely, dW (xl, ẋ), is shown in Figure 4.1a. The same experiment is repeated
in Figure 4.1b after adding additive white Gaussian noise with variance of 0.01 to each coordinate of ẏ,
see (2.3). Not surprisingly, the gains obtained from finer grids are somewhat diminished by the large noise.
Both experiments were performed on a MacBook Pro (15-inch, 2017) with standard configurations. Section 8
outlines a few ideas for incorporating the continuous nature of I to develop new variants of CGM that would
replace the naive gridding approach above.

4. Exchange Method. EM is a well-known algorithm to solve SIPs and, in particular, Program (1.3).
In every iteration, EM adds a new constraint out of the infinitely many in Program (1.3), thereby forming
an increasingly finer discretisation of I as the algorithm proceeds. The new constraints are added where
needed most, namely, at t ∈ I that maximally violates the constraints in Program (1.3). In other words, a
new constraint is added at t ∈ I that maximizes Re〈λl,Φ(t)〉, where (λl, αl) is the current iterate. EM is
summarized in Algorithm 4.1.

Let (λd, αd) be a maximizer of Program (1.3). Also assume that Td ⊂ I is the set of active constraints in
Program (1.3), namely Re〈λd,Φ(t)〉 = αd for every t ∈ Td. If an oracle tells us what the active constraints
Td are in advance, we can simply find the optimal pair (λd, αd) by solving Program (1.3) with Td instead of
I. Alas, such an oracle is not at hand. Instead, at iteration l, Algorithm 4.1

1. solves Program (1.3) restricted to the current constraints T l−1 to find (λl, αl), and then
2. if (λl, αl) does not violate the constraints of Program (1.3) on I\T l−1, the algorithm terminates

because it has found a maximizer of Program (1.3), namely (λl, αl). Otherwise, EM adds to its
support a point tl ∈ I that maximally violates the constraints of Program (1.3).

7
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Figure 4.1: Recovery error in 1-Wasserstein metric using Algorithm 3.1 for the numerical example detailed
at the end of Section 3. Grid sizes are given in the legends.

Having reviewed both CGM and EM for solving Program (1.1) in the past two sections, we next establish
their equivalence.

5. Equivalence of CGM and EM. CGM solves Program (1.1) and adds a new atom in every iteration
whereas EM solves the dual problem (namely Program (1.3)) and adds a new active constraint in every
iteration, and both algorithms do so “greedily”. Their connection goes deeper: Consider Program (1.1)
restricted to a finite support T ⊂ I, namely, the program

(5.1)


min
x

L
(∫

I Φ(t)x(dt)− y
)

subject to ‖x‖TV ≤ 1

supp(x) ⊆ T
x ∈ B+(I).

8



Algorithm 4.1 EM for solving Program (1.3).

Input: Compact set I, continuous functions Φ : I → Cm and w : I → R++, differentiable function
L : Cm → R, y ∈ Cm and tolerance η ≥ 0.

Output: Vector λ̂ ∈ Cm and α̂ ≥ 0.

Initialize: l = 1 and T 0 = ∅.

While max
t∈I

Re
〈
λl,Φ(t)

〉
> αl + η , do

1. Let (λl, αl) be a maximizer of

(4.1)


max
λ,α

Re 〈λ, y〉 − L◦ (−λ)− α

subject to Re 〈λ,Φ(t)〉 ≤ α t ∈ T l−1

α ≥ 0,

where L◦ is the Fenchel conjugate of L, see (1.4).
2. Let tl be the solution to

(4.2) max
t∈I

Re
〈
λl,Φ(t)

〉
.

3. Set T l = T l−1 ∪ tl.
Return: (λ̂, α̂) = (λl, αl).

The dual of Program (5.1) is

(5.2)


max
λ,α

Re 〈λ, y〉 − L◦ (−λ)− α

subject to Re 〈λ,Φ(t)〉 ≤ α t ∈ T
α ≥ 0.

Indeed, Program (5.2) is the restriction of Program (1.3) to T . Note that the complementary slackness forces
any minimizer of Program (5.1) to be supported on the set of active constraints of Program (5.2). Note
also that Programs (5.1) and (5.2) appear respectively in CGM and EM but with different support sets.
The following result states that CGM and EM are in fact equivalent algorithms to solve Program (1.1), see
Appendix C for the proof.

Proposition 2. (Equivalence of Algorithms 3.1 and 4.1) For γ ≥ 1, suppose that L satisfies
(3.6). Assume also that CGM and EM update their supports according to the same rule, e.g., selecting the
smallest solutions if I ⊂ R. Then CGM and EM are equivalent in the sense that T lCGM = T lEM for every
iteration l ≥ 0. Here, T lCGM and T lEM (both subsets of I) are the support sets of CGM and EM at iteration
l, respectively.

Furthermore, vlCGM = vl+1
EM , where vlCGM and vlEM denote the optimal values of Programs (3.3) and

(4.1) in CGM and EM, respectively.

The above equivalence allows us to carry convergence results from one algorithm to another. In particular,
the convergence rate of CGM in Proposition 1 determines the convergence rate of EM, as the following result
indicates, see Appendix D for the proof.

Proposition 3. (Convergence of Algorithm 4.1) For γ ≥ 1, suppose that L satisfies (3.6). Recall
the definition of r in (3.7) and, for ε ≥ 0, suppose that Program (4.2) is solved to within an accuracy of
2γr2ε in every iteration. Let vd be the optimal value of Program (1.3) and (λd, αd) be its unique maximizer.
Likewise, let vlEM be the optimal value of Program (4.1). At iteration l ≥ 1, it then holds that

(5.3) vlEM − vd ≤
4γr2(1 + ε)

l + 2
,
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‖λl − λd‖2 ≤
√

8γ2r2(1 + ε)

l + 2
,

(5.4) |αl − αd| ≤
√

8γ2r4(1 + ε)

l + 2
.

Furthermore, it holds that

max
t∈I
〈λl,Φ(t)〉 ≤ αd +

√
8γ2r4(1 + ε)

l + 2
.(5.5)

That is, the iterates {λl}l of Algorithm 4.1 gradually become feasible for Program (1.3).

Proposition 3 states that Program (1.3), which has infinitely many constraints, can be solved as fast as a
smooth convex program with finitely many constraints. More specifically, it is not difficult to verify that the
objective function of Program (1.3) is convex and strongly smooth, see Section 7. Then, (5.3) states that
EM solves Program (1.3) at the rate of 1/l, the same rate at which the projected gradient descent solves a
finite-dimensional problem under the assumptions of convexity and strong smoothness [34]. This is perhaps
remarkable given that Program (1.3) has infinitely many constraints. Note however that the convergence of
the iterates {(λl, αl)}l of EM to the unique maximizer (λd, αd) of Program (1.3) is much slower as given in
(5.4), namely, at the rate of 1/

√
l.

We remark that Proposition 3 is novel in providing a rate of convergence for EM for a general class
of nonlinear SIPs, whereas the literature on SIP only gives rates of convergence for specific problems. See
Section 6 for a more detailed literature review.

6. Related Work. The conditional gradient method (CGM), also known as the Frank-Wolfe algorithm,
is one of the earliest algorithms for constrained optimization [10]. The version of the algorithm considered
in this paper is the fully-corrective Frank-Wolfe algorithm, also known as the simplicial decomposition algo-
rithm, in which the objective is optimized over the convex hull of all previous atoms [11, 37]. The algorithm
was proposed for optimization over measures, the context considered in this paper, in [4].

Semi-infinite programs (SIPs) have been much studied, both theoretically in terms of optimality condi-
tions and duality theory, and algorithmically in terms of design and analysis of numerical methods for their
solution. We refer the reader to the review articles [12] and [13] for further background.

Exchange methods are one of the three families of popular methods for the numerical solution of SIPs,
with the other two being discretisation methods and localization methods. In discretisation methods, the
infinitely many constraints are replaced by a finite subset thereof and the resulting finite dimensional problem
is solved as an approximation of the SIP. In localization methods, a sequence of local (usually quadratic)
approximations to the problem are solved.

Global convergence of discretisation methods has been proved for linear SIPs [38], but no general con-
vergence result exists for nonlinear SIPs [12]. Global convergence of exchange methods has been proved for
general SIPs [12], but to the authors’ best knowledge there is no general proof of rate of convergence, except
for more specific problems. For localization methods, local superlinear convergence has been proved assum-
ing strong sufficient second-order optimality conditions, which do not hold for all SIPs [39]. The guarantees
extend to global convergence of more sophisticated algorithms which combine localization methods with
global search, see [13, Section 7.3] and references therein. We refer the reader to [12, 13] for more details on
existing convergence analysis of SIPs. Against this background, the convergence rate of the EM, established
here in Proposition 3 for a wide class of nonlinear SIPs, represents a new contribution.

The exchange method described in this paper can also be viewed as the cutting plane method, also known
as Kelley’s method [40, 41] applied to Program (1.3). Dual equivalence of conditional gradient methods and
cutting plane methods is well known for finite-dimensional problems, see for example [42, 37, 43], and these
results agree with the dual equivalence established in this paper.

EM may also be viewed as a bundle method for unconstrained optimization [44, 45]. Bundle methods
construct piecewise linear approximations to an objective function using a “bundle” of subgradients from
previous iterations. As a special case, given a convex and smooth function u and convex (but not necessarily
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smooth) function v, the function u + v may be minimized by constructing piecewise linear approximations
to v, generating the sequence of iterates {λl}l specified as

(6.1) λl ∈ arg min
λ

(
u(λ) + max

1≤i≤l−1
Re〈λ, ∂v(λi)〉

)
,

where ∂v(λi) is a subgradient of v at λi. To establish the connection with EM, note that Program (1.3) can
be rewritten as the unconstrained problem

(6.2) max
λ∈Cm

Re 〈λ, y〉 − L◦ (−λ)−max
t∈I
〈λ,Φ(t)〉.

Setting u(λ) = −Re〈λ, y〉 + L◦(−λ) and v(λ) = maxt∈I〈λ,Φ(t)〉, and then applying the bundle method
produces the iterates

(6.3) λl ∈ arg max Re 〈λ, y〉 − L◦ (−λ)−max
t∈T l
〈λ,Φ(t)〉 ≡ Program (4.1).

That is, EM applied to Program (1.3) and the bundle method described above applied to Program (6.2)
produce the same iterates. The dual equivalence of CGM and the bundle method has previously been noted
for various finite dimensional problems, see for example [45, Chapter 7]. However, we are not aware of
any extension of these finite-dimensional results to SIPs and their dual problem of optimization over Borel
measures. In this sense, the equivalence established in Proposition 2 is novel.

7. Geometric Insights. This section collects a number of useful insights about CGM/EM and Pro-
gram (1.1) in the special case where I ⊂ R is a compact subset of the real line and the function Φ : I→ Cm
is a Chebyshev system [46], see Section 1.

Definition 7.1. (Chebyshev system) Consider a compact interval I ⊂ R and a continuous function
Φ : I → Cm. Then Φ is a Chebyshev system if {Φ(ti)}mi=1 ⊂ Cm are linearly independent vectors for any
choice of distinct {ti}mi=1 ⊂ I.3

Chebyshev systems are widely used in classical approximation theory and generalize the notion of ordi-
nary polynomials. Many functions form Chebyshev systems, for example sinusoids or translated copies of
the Gaussian window, and we refer the interested reader to [46, 47, 1] for more on their properties and
applications. Let CI ⊂ Cm be the convex hull of {Φ(t)}t∈I ∪ {0}, namely

(7.1) CI :=

{∫
I
Φ(t)x(dt) : x ∈ B+(I), ‖x‖TV ≤ 1

}
.

Note that {x ∈ B+(I) : ‖x‖TV ≤ 1} is a compact set. Then, by the continuity of Φ and with an application
of the dominated convergence theorem, it follows that CI is a compact set too. Since Φ is by assumption a
Chebyshev system, CI ⊂ Cm is in fact a convex body, namely a compact convex set with non-empty interior.
Introducing z =

∫
I Φ(t)x(dt), we note that Program (1.1) is equivalent to the program

(7.2) min
z∈CI

L(z − y).

The compactness of CI and the strong convexity of L in (3.6) together imply that Program (7.2) has a unique
minimizer yp ∈ CI, which can be written as yp =

∫
I Φ(t)xp(dt), where xp itself is a minimizer of Program

(1.1). For example, when L(·) = 1
2‖ · ‖

2
2, Program (7.2) projects y onto CI. That is, yp is the orthogonal

projection of y onto the convex set CI.
Given the equivalence of Programs (1.1) and (7.2), we might say that solving Program (1.1) “denoises”

the signal y from a signal processing viewpoint, in the sense that it finds a nearby signal yp =
∫
I Φ(t)xp(dt)

that has a sparse representation in the dictionary {Φ(t)}t∈I (because xp is a sparse measure). To be more
specific, by Carathéodory’s theorem [48], every yp ∈ CI can be written as a convex combination of at most m
atoms of the dictionary {Φ(t)}t∈I. On the other hand, the Chebyshev assumption on Φ implies that {Φ(t)}t∈I
are the extreme points of CI [46, Chapter II]. Here, an extreme point of CI is a point in CI that cannot be

3Note that Definition 7.1 is slightly different from the standard one in [46] which requires Φ to be real-valued.
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written as a convex combination of other points in CI. It then follows that this atomic decomposition of yp
is unique, and xp is necessarily m-sparse. We may note the analogous result in the finite-dimensional case.
Indeed, the Lasso problem is known to have a unique solution whose sparsity is no greater than the rank of
the measurement matrix, provided the columns of the measurement matrix are in general position [49].

At iteration l of CGM, let Cl ⊂ Cm be the convex hull of {Φ(t)}t∈T l ∪ {0}, namely

(7.3) Cl :=

∑
t∈T l

Φ(t) · at :
∑
t∈T l

at ≤ 1, at ≥ 0, ∀t ∈ T l
 .

Similar to the argument above, we observe that Program (3.3) is equivalent to

(7.4) min
z∈Cl

L(z − y).

As with Program (7.2), Program (7.4) has a unique minimizer yl ∈ Cl that satisfies yl =
∫
T l Φ(t)xl(dt) and

xl is a minimizer of Program (3.3). By Carathéodory’s theorem again, xl is at most m-sparse. In other
words, there always exists an m-sparse minimizer xl to Program (3.3); iterates of CGM are always sparse
and so are the iterates of EM by their equivalence in Proposition 2.

In addition, note that the chain C1 ⊆ C2 ⊆ · · · ⊆ CI provides a sequence of increasingly better approxi-
mations to CI. CGM eventually terminates when yp = yl ∈ Cl ⊆ CI, which happens as soon as Cl contains
the face of CI to which yp belongs. It is however common to use different stopping criteria to terminate
CGM when yl is sufficiently close to yp.

Let us now rewrite Program (1.3) in a similar way. First let CI,◦ ⊂ Cm be the polar of CI, namely

CI,◦ = {λ : Re 〈λ, z〉 ≤ 1, ∀z ∈ CI} = {λ : Re 〈λ,Φ(t)〉 ≤ 1, ∀t ∈ I} ,

where the second identity follows from the definition of CI. Let also gCI,◦ = γCI denote the gauge function
associated with CI,◦ and the support function associated with CI, respectively [50]. That is, for λ ∈ Cm, we
define

(7.5) gCI,◦(λ) :=


min
α

α

subject to λ ∈ α · CI,◦

α ≥ 0

= max
t∈I

Re〈λ,Φ(t)〉 = max
z∈CI

Re〈λ, z〉 =: γCI(λ),

where α · CI,◦ = {αλ : λ ∈ CI,◦}. In words, gCI,o(λ) = γCI(λ) is the smallest α at which the inflated “ball”
α · CI,◦ first reaches λ. By usual convention, the optimal value above is set to infinity when the problem is
infeasible, namely when the ray that passes through λ does not intersect CI,◦. It is also not difficult to verify
that gCI,◦ = γCI is a positively-homogeneous convex function. Using (7.5), we may rewrite Program (1.3) as

(7.6)


max
λ,α

L◦ (−λ) + Re 〈λ, y〉 − α

subject to λ ∈ α · CI,◦

α ≥ 0

≡ max
λ∈Cm

Re 〈λ, y〉 − L◦ (−λ)− gCI,◦(λ).

By the assumption in (3.6), L is strongly smooth and consequenly L◦ is strongly convex [34]. Therefore Pro-
gram (1.3) has a unique maximizer, which we denote by (λd, αd). The optimality of (λd, αd) also immediately
implies that

(7.7) αd = gCI,◦(λd).

Thanks to Proposition 2, we likewise define the polar of Cl−1 and the corresponding gauge function to
rewrite the main step of EM in Algorithm 4.1, namely

(7.8)


max
λ,α

L◦ (−λ) + Re 〈λ, y〉 − α

subject to λ ∈ α · Cl−1◦
λ ≥ 0

≡ max
λ∈Cm

Re 〈λ, y〉 − L◦ (−λ)− gCl−1
◦

(λ)
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and the unique minimizer of the above three programs is (λl, αl), where the uniqueness again comes from
the strong convexity of L◦. Similar to (7.7), the optimality of (λl, αl) immediately implies that

(7.9) αl = gCl
◦
(λl).

It is not difficult to verify that

(7.10) C1
◦ ⊇ C2

◦ ⊇ · · · ⊇ CI,◦.

That is, as EM progresses, Cl gradually “zooms into” CI,◦. As with CGM, EM eventually terminates as
soon as Cl◦ includes the face of CI,◦ to which λd/αd belongs, at which point (λl, αl) = (λd, αd). In light of
the argument in Appendix C, in every iteration, we also have that

(7.11)
〈
yl, λl/αl

〉
= 1,

namely the pair (yl, λl/αl) ∈ Cl×Cl◦ satisfies the generalized Holder inequality gCl ·gCl
◦
≤ 1 with equality [50].

Here, gCl and gCl
◦

are the gauge functions of Cl and Cl◦, respectively. It is worth pointing out that, with the

choice of L(·) = L◦(·) = 1
2‖ · ‖

2
2, the maximizer of (7.8) is the same as the (unique) minimizer of

min
λ∈Cm

‖λ− y‖22
2

+ gCl−1
◦

(λ),

which might be interpreted as a generalization of Lasso and other standard tools for sparse denoising [19].
That is, each iteration of CGM/EM can be interpreted as a simple denoising procedure.

8. Future Directions. Even though, by Proposition 1, CGM reduces the objective function of Program
(1.1) at the rate of O(1/l), the behavior of {xl}l, namely, the sequence of measures generated by Algorithm
3.1, is often less than satisfactory. Indeed, in practice, the greedy nature of CGM leads to adding clusters of
spikes to the support, many of which are spurious.

In this sense, all applications reviewed in Section 2 will benefit from improving the performance of CGM.
In particular, a variant suggested in [4] follows each step of CGM with a heuristic local search. Intuitively,
this modification makes the algorithm less greedy and helps avoid the clustering of spikes, described above.

The equivalence of CGM and EM discussed in this paper might offer a new and perhaps less heuristic
approach to improving CGM. From the perspective of EM, a natural improvement to Algorithm 4.1 (and
consequently Algorithm 3.1) might be obtained by replacing Program (4.1) with

(8.1)


max
λ,α

Re 〈λ, y〉 − L◦ (−λ)− α

subject to Re 〈λ,Φ(t)〉 ≤ α t ∈ T l−1δ

α ≥ 0,

where T l−1δ ⊆ I is the δ-neighborhood of the current support T l−1, namely, all the points in I that are within
δ distance of the set T l−1.

At the first glance, Program (8.1) is itself a semi-infinite program and not any easier to solve than
Program (1.3). However, if δ is sufficiently small compared to the Lipschitz constant of Φ, then one might
use a local approximation for Φ to approximate Program (8.1) with a finite-dimensional problem. For
instance, if Φ is differentiable, one could use the first order Taylor expansion of Φ around each impulse in
T l−1. As another example, suppose that Φ : I = [0, 1)→ Cm and specified as

(8.2) Φ(t) = [ e−π i(m−1)t · · · eπ i(m−1)t ]> ∈ Cm,

see the numerical test at the end of Section 3. It is easy to verify that {Φ(j/m)}m−1j=0 form an orthonormal
basis for Cm. Even though we may represent Φ(t) in Program (8.1) within this basis for any t ∈ I, this
representation is not “local” [29, 20]. A better local representation of Φ(t) within a δ-neighborhood is
obtained through the machinery of discrete prolate spheroidal wave functions [51].

In light of this discussion, an interesting future research direction might be to study variants of Program
(8.1) and their potential impact in various applications.
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Ongie, Stéphane Chrétien, and Martin Jaggi for their helpful feedback and comments. The authors are
grateful to the anonymous referees for their valuable suggestions. For this project, AE was supported by
the Alan Turing Institute under the EPSRC grant EP/N510129/1 and also by the Turing Seed Funding
grant SF019.

REFERENCES

[1] A. Eftekhari, J. Tanner, A. Thompson, B. Toader, and H. Tyagi. Sparse non-negative super-resolution — simplified and
stabilised. arXiv preprint arXiv:1804.01490, 2018.

[2] Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics. International statistical review,
70(3):419–435, 2002.

[3] G. Schiebinger, E. Robeva, and B. Recht. Superresolution without separation. Information and Inference, page iax006,
2017.

[4] N. Boyd, G. Schiebinger, and B. Recht. The alternating descent conditional gradient method for sparse inverse problems.
SIAM Journal on Optimization, 27(2):616–639, 2017.

[5] E. Candès and C. Fernandez-Granda. Super-resolution from noisy data. Journal of Fourier Analysis and Applications,
19(6):1229–1254, 2013.

[6] E. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Communications on Pure and
Applied Mathematics, 67(6):906–956, 2014.

[7] Y. De Castro and F. Gamboa. Exact reconstruction using Beurling minimal extrapolation. Journal of Mathematical
Analysis and applications, 395(1):336–354, 2012.

[8] C. Fernandez-Granda. Support detection in super-resolution. In Proceedings of the 10th International Conference on
Sampling Theory and Applications, 2013.
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Appendix A. Proof of Proposition 1.
Recall the equivalent form of Program (1.1) given by Program (7.2), and let vp be the optimal value

of both these programs. We first establish that the iterates xi of CGM applied to (1.1) are related to the
iterates zi of CGM applied to (3.4) by zi =

∫
I Φ(t)xi(dt). In this regard, suppose that zi =

∫
I Φ(t)xi(dt)

and let ti+1 be the solution to Program (3.2). Let si be the output of the linear minimization step of CGM
applied to Program (7.2). Then

si = arg min
s∈CI
〈s,∇L(zi − y)〉 = Φ(ti+1),

which shows that the linear steps of CGM for both formulations coincide.
Now suppose that Program (3.2) is solved to an accuracy of θ · ε in every iteration, where

(A.1) θ =


sup
ρ,z,s

2
ρ2 (L(z′ − y)− L(z − y)− 〈z′ − z,∇L(z − y)〉)

z′ = z + ρ(s− z)
z, s ∈ CI

ρ ∈ [0, 1].

Then we may invoke Theorem 1 in [33] to obtain that

vlCGM − vp ≤
2θ(1 + ε)

l + 2
.

Let us next bound θ in terms of the known quantities. Due to the assumption (3.6), for any feasible pair
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(z, z′) in (A.1), we have that

L(z′ − y)− L(z − y)− 〈z′ − z,∇L(z − y)〉 ≤ γ

2
‖z′ − z‖22

≤ γρ2

2
‖s− z‖22 (z′ = z + ρ(s− z))

≤ γ

2
(‖s‖22 + ‖z‖22)

≤ γρ2r2, (see (A.1))(A.2)

which immediately implies that θ ≤ 2γr2, and (3.8) now follows.

Appendix B. Duality of Programs (1.1) and (1.3).
We show here that the dual of Program (1.1) is Program (1.3). We first observe that Program (1.1) is

equivalent to

(B.1)



min
z,x

L(z − y)

subject to z =

∫
I
Φ(t)x(dt)

‖x‖TV ≤ 1

x ∈ B+(I).

Introducing Lagrange multipliers λ ∈ Cm and α ≥ 0 for the two respective constraints, the Lagrangian
L(x, λ, α) for Program (B.1) is

L(x, λ, α) = L(z − y)− Re

〈
λ,

(
z −

∫
I
Φ(t)x(dt)

)〉
+ α (‖x‖TV − 1)

= L(z − y) + Re〈λ, z〉+

∫
I
(α− Re〈λ,Φ(t)〉)x(dt),

and so the dual of Program (B.1) is

max
λ∈Cm,α≥0

{
inf
z∈Cm

[L(z − y) + Re〈λ, z − y〉] + inf
µ∈B+(I)

[∫
I
(α− Re〈λ,Φ(t)〉)x(dt)

]
+ Re〈λ, y〉 − α

}
where B+(I) is the set of all nonnegative Borel measures supported on I. Using the definition of the Fenchel
conjugate in (1.4), the above problem is equivalent to

max
λ,α

−L0(−λ) + Re〈λ, y〉 − α

subject to Re〈λ,Φ(t)〉 ≤ α t ∈ I
α ≥ 0,

which is Program (1.3).

Appendix C. Proof of Proposition 2.
By construction, T 0

CGM = T 0
EM = ∅. Fix iteration l ≥ 1 and assume that T l−1CGM = T l−1EM = T l−1. We

next show that T lCGM = T lEM = T l = T l−1 ∪ {tl}, namely the two algorithms add the same point tl to their
support sets in iteration l. We opt for a geometric argument here that relies heavily on Section 7.

Recall that Program (3.3) is equivalent to Program (7.4). Recall also that yl =
∫
T l Φ(t)xl(dt) is the

unique minimizer of Program (7.4), where xl is a minimizer of Program (3.3). On the other hand, recall
that Program (4.1) is equivalent to Program (7.8), and both programs have the unique minimizer (λl, αl).
Since Program (4.1) only has linear constraints, Slater’s condition is met and there is no duality gap between
Programs (7.4) and (7.8). Furthermore, the tuple (yl, λl, αl) satisfies the KKT conditions, namely

yl ∈ Cl−1, λl ∈ αl · Cl−1◦ , αl ≥ 0,

λl = −∇L(yl − y), 〈yl, λl〉 = αl,
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From the above expression for λl, it follows immediately that the same point is added to the support in both
Programs (3.3) and (4.1), which implies that T lCGM = T lEM = T l−1 ∪ {tl}. Finally, the above argument
reveals that vlCGM = vl+1

EM , which completes the proof of Proposition 2.

Appendix D. Proof of Proposition 3.
Note that

vlEM − vd = vl−1CGM − vd (see Proposition 2)

= vl−1CGM − vp (strong duality between Programs (1.1) and (1.3))

≤ 4γr2(1 + ε)

l + 2
, (see Proposition 1)(D.1)

which proves the first claim in Proposition 3. To prove the second claim there, first recall the setup in
Section 7. Let us first show that the minimizer of Program (4.1), namely (λl, αl), converge to the minimizer
of Program (1.3), namely (λd, αd). To that end, recall the equivalent formulation of Programs (1.3,4.1) given
in (7.6,7.8), and let

hCI,o(λ) := Re〈λ, y〉 − L◦(−λ)− gCI,o(λ),

(D.2) hCl
o
(λ) := Re〈λ, y〉 − L◦(−λ)− gCl−1

o
(λ),

denote their objective functions, respectively. In particular, note that

(D.3) hCI,◦(λd) = vd, hCl
◦
(λl) = vlEM .

By assumption in (3.6), L is γ-strongly smooth and therefore L◦ is (γ−1)-strongly convex [34]. Consequently,
−hCI,◦ is also (γ−1)-strongly convex, which in turn implies that

1

2γ
‖λl − λd‖22 ≤ −hCl

◦
(λd) + hCl

◦
(λl) + 〈λd − λl,∇hCl

◦
(λl)〉

= −hCl
◦
(λd) + vlEM , (see (D.3))(D.4)

where the inner product above disappears by optimality of λl in Program (7.8). Let us next control hCl
◦
(λd)

in the last line above by noting that

hCl
◦
(λd) = Re〈λd, y〉 − L◦(−λd)− gCl

o
(λd) (see (D.2))

≥ Re〈λd, y〉 − L◦(−λd)− gCI,o(λd)
(
Cl◦ ⊇ CI,◦ in (7.10)

)
= hCI,◦(λd)

= vd. (see (D.3))(D.5)

By substituting the bound above back into (D.4), we find that

‖λl − λd‖22 ≤ 2γ(vlEM − vd)

≤ 8γ2r2(1 + ε)

l + 2
. (see (D.1))(D.6)

The above bound also allows us to find the convergence rate of αl to αd. Indeed, note that

|αl − αd| =
∣∣gCl

◦
(λl)− gCI,◦(λd)

∣∣ (see (7.9,7.7))

=

∣∣∣∣max
t∈T l
〈λl,Φ(t)〉 −max

t∈I
〈λd,Φ(t)〉

∣∣∣∣ (see (7.5))

≤ max
t∈I

∣∣〈λl − λd,Φ(t)〉
∣∣

≤ ‖λl − λd‖2 max
t∈I
‖Φ(t)‖2

≤
√

8γ2r2(1 + ε)

l + 2
· r. (see (D.6,3.7))(D.7)
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With an argument similar to (D.7), we also find that∣∣∣∣max
t∈I
〈λl,Φ(t)〉 − αd〉

∣∣∣∣ ≤
√

8γ2r2(1 + ε)

l + 2
· r,(D.8)

which completes the proof of Proposition 3.
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