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Analysis of a time-stepping scheme for time
fractional diffusion problems with nonsmooth
data *
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Abstract

This paper establishes the convergence of a time-steeping scheme for
time fractional diffusion problems with nonsmooth data. We first ana-
lyze the regularity of the model problem with nonsmooth data, and then
prove that the time-steeping scheme possesses optimal convergence rates
in L?(0,T; L*(Q))-norm and L?(0,T; Hj(Q))-norm with respect to the
regularity of the solution. Finally, numerical results are provided to ver-
ify the theoretical results.
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1 Introduction

This paper considers the following time fractional diffusion problem:

D, (u—ug) —Au=f inQx(0,7T),
u=0 ondQx(0,T), (1)
u(0) =wup in Q,

where 0 < a < 1, Dy, is a Riemann-Liouville fractional differential operator,
Q c R? (d = 1,2,3) is a convex polygonal domain, and ug and f are given
functions.

A considerable amount of numerical algorithms for time fractional diffusion

problems have been developed. Generally, these numerical algorithms can be
divided into three types. The first type uses finite difference methods to ap-
proximate the time fractional derivatives. Despite their ease of implementation,
the fractional difference methods are generally of temporal accuracy orders no
greater than two; see [39, 15, 38, 3, 20, 46, 8, 44, 2, 7, 21, 11, 43, 36, 12, 18] and
the references therein. The second type applies spectral methods to discretize
the time fractional derivatives; see [19, 45, 16, 42, 40, 41, 37, 17]. The main
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advantage of these algorithms is that they possess high-order accuracy, provided
the solution is sufficiently smooth. The third type adopts finite element meth-
ods to approximate the time fractional derivatives; see [22, 29, 26, 17, 28, 31,
30, 23, 32, 27]. These algorithms are easy to implement, like those in the first
type, and possess high-order accuracy.

The convergence analysis of the aforementioned algorithms is generally car-
ried out on the condition that the underlying solution is sufficiently smooth. So
far, the works on the numerical analysis for nonsmooth data are very limited.
By using the Laplace transformation, Mclean and Thomée [24] analyzed three
fully discretizations for fractional order evolution equations, where the initial
values are allowed to have only L?(2)-regularity. By using a growth estimation
of the Mittag-Leffler function, Jin et al. [14, 13] analyzed the convergence of a
spatial semi-discretization of problem (1). They derived the following results:
if f =0, then

lu(t) = un(®)ll 20y + 2 1u(t) = un(®)]l g1 @) < CR* At~ [luoll g 5
ifup =0and 0 < 8 < 1, then
lu=unll 20,0200 + P Ilu—vnll 20,113 () S Ch*~7 1l 20,7502 () -

u(t) = un() g2+ llu(t) —un(®) 173 (@) < CH* ™% A || 1| o 0,011 2y -

Recently, McLean and Mustapha [23] derived that
[u(tn) = UM L2y < Oty Atlluoll 12 (q)

for a piecewise constant DG scheme in temporal semi-discretization of fractional
diffusion problems with f = 0. For more related work, we refer the reader to
[6, 25].

In this paper, we present a rigorous analysis of the convergence of a time-
stepping scheme for problem (1), which uses a space of continuous piecewise
linear functions in the spatial discretization and a space of piecewise constant
functions in the temporal discretization. We first apply the Galerkin method to
investigate the regularity of problem (1) with non-smooth uy and f, and then
we derive the following error estimates: if 0 < @ < 1/2 and 0 < 8 < 1, then

(h+ 72" u = Ull 20,2020y + 1t = Ul g2 0,252 )
<C (hlfﬁ + Ta(lfﬁ)ﬂ) (Hf”Lz(O,T;H*B(Q)) + HUOHH*B(Q)) ;
ifl/2<a<land2—1/a < <1, then
(h+ 7)) lu — Ullpzo,r;p2(0)) + I1u = Ull 20,753 0
<C (hl’ﬁ + Ta(lfﬁm) (Hf”LZ(O,T;H*B(Q)) + HUOHLz(Q)) ’

if 1/2 < @ < 1 and ug = 0, then the above estimate also holds for all 0 < 8 < 1.
Furthermore, if 1/2 < o < 1 and ug = 0, then we derive the optimal error
estimate

flu— UHLZ(O,T;LZ(Q)) < C(h2 +7) ”f”Hl*a(O,T;LZ(Q)) :



By the techniques used in our analysis, we can also derive the error estimates
under other conditions; for instance, ug and f are smoother than the aforemen-
tioned cases.

The rest of this paper is organized as follows. Section 2 introduces some
Sobolev spaces, the Riemann-Liouville fractional calculus operators, the weak
solution to problem (1), and a time-stepping scheme. Section 3 investigates the
regularity of the weak solution, and Section 4 establishes the convergence of the
time-steeping scheme. Finally, Section 5 provides some numerical experiments
to verify the theoretical results.

2 Preliminaries

Sobolev Spaces. For a Lebesgue measurable subset w of R! (I = 1,2,3), we
use HY(w) (—oo < v < o0) and H (w) (0 < v < 00) to denote two standard
Sobolev spaces [35]. Let X be a separable Hilbert space with an inner product
(+,-)x and an orthonormal basis {e; : i € N}. We use H7(0,7; X) (0 < v < 00)
to denote an usual vector valued Sobolev space, and for 0 < v < 1/2; we also
use the norm

o0

1/2
V] £+ (0,75x) = <Zl(v,ei)x|§p(w)> . Yve H(0,T;X).
1=0

Here, the norm || 7, 7) is given by

) 1/2
0l 0.7 = < / €7 | F (wx o)) (©)| dg) . Ywe 10, T),

where F : L?*(R) — L?(R) is the Fourier transform operator and x(o,r) is the
indicator function of (0, 7).

Fractional Calculus Operators. Let X be a Banach space and let —oo <
a < b< oo For 0 <7 < oo, define

(In v) (1) == ﬁ/{l (t—s)to(s)ds, t€(a,b),

b
(I_v) (t) = ﬁ/t (s — )" tu(s)ds, t€ (a,b),
for all v € L'(a,b; X), where I'(:) is the gamma function. For j —1 < v < j
with 7 € Ny, define
Dy, =D’ IZ:—W?
D] = (-1Y D7,
where D is the first-order differential operator in the distribution sense.

FEigenvectors of —A. It is well known that there exists an orthonormal basis

{¢; :i € N} C Hy(Q) N H*(Q)



of L?(Q) such that
—Api = Nidhi,

where {)\; : i € N} C Ry is a non-decreasing sequence. For any 0 < v < oo,

define
H’Y(Q) = {’U S L2 Z)\ ¢l L2(Q) < OO}

and equip this space with the norm

1/2
Il v 0y = (ZA  Pi L2(9> :

For v € [0,1] \ {0.5}, the space H7(Q) coincides with H{ () with equivalent
norms, and for 1 < v < 2, the space H7(2) is continuously embedded into
HY(Q).

Weak Solution. Define
W= HY2(0,T; L*()) N L*(0,T; H(Q))

and endow this space with the norm

-llw == | zrar20,mp200)) T Il 220,181 ) -

Assuming that
DY, ug + f € W, (2)

we call uw € W a weak solution to problem (1) if
(Do “v“>Ha/2(o,T;L2(Q)) +{Vu, Volas o) = (Dopwo + fro)y  (3)

for all v € W. Throughout the paper, if w is a Lebesgue measurable set of R!
(1 =1,2,3,4) then the symbol (p,q)_ means fw pq, and if X is a Banach space
then (-,-) y means the duality pairing between X* (the dual space of X') and X.

Remark 2.1. The above weak solution is first introduced by Li and Xu [19]. Ev-
idently, the well-known Laz-Milgram theorem indicates that problem (1) admits
a unique weak solution by Lemma A.2. Moreover,

[ully < C ||D8+ Uo + fHW* )

where C' is a positive constant that depends only on «.

Dziscretization. Let
O=to<ti<...<ty=T

be a partition of [0,T]. Set I; := (tj_1,t;) for each 1 < j < J, and we use
7 to denote the maximum length of these 1ntervals Let lCh be a conventional
conforming and shape regular triangulation of Q consisting of d-simplexes, and
we use h to denote the maximum diameter of the elements in ;. Define

Sh = {Uh < H&(Q) : ’Uh|K S Pl(K), VK € IC}L},
My :={V € L*(0,T;Sh) : V|1, € Po(I;;Sh), V1< j< J},



where P; (K) is the set of all linear polynomials defined on K, and Py(I;;Sp) is
the set of all constant Sp,-valued functions defined on I;.

Naturally, the discretization of problem (3) reads as follows: seek U € My, -
such that

<D8+ U, V>Ha/2(0 T;L2(Q)) + <VU vV>Q><(O T) — <D0+ up + f’ > (4)
for all Ve My, +.

Remark 2.2. Similarly to the stability estimate in Remark 2.1, we have
Ul < C1DG uo + £l »

where C is a positive constant depending only on . Therefore, problem (4) is
also stable under condition (2).

3 Regularity

Let us first consider the following problem: seek y € H/? (0,T) such that
<D8+ (y - yO)a Z>Ha/2(01T) +A <ya Z> 0,T) = <ga Z> 0,T) (5)

for all z € HO‘/Q(O,T), where g € L*(0,7T), and yp and A > 1 are two real
constants. By Lemma A.2, the Lax-Milgram theorem indicates that the above
problem admits a unique solution y € H*/2(0,T). Moreover, it is evident that

Dg.(y —y0) =g — Ay (6)

in L2(0,7).

For convenience, we use the following convention: if the symbol C has sub-
script(s), then it means a positive constant that depends only on its subscript(s),
and its value may differ at each of its occurrence(s). Additionally, in this section
we assume that v and y are the solutions to problems (3) and (5), respectively.

Lemma 3.1. If0<a<1/2 and 0 < 8 < 1, then

AP/ |y|Ha<1—B/2>(o,t) + AR/ |y|H(lfﬂ)a/2(07t) + A ||yHLz(o,t)

< Ca (lglz0) + £/~ lyol)
forallO<t<T.

Proof. Let us first prove that y € H*(0,7"). By the definition of Dg, , equality
(6) implies

—a /
(I(l)Jr (y — yo)) =g9-— My,
so that using integration by parts gives
7% —v0) = (15 (¥ — %0)) (0) + ot (g — Ay).
In addition, since

1 S172a¢
-«
|(I (y yO)) (S)‘ g F(l—a) 1— 2 HyfyOHLZ(O,S)a 0< S<Ta




we have

(17" (y = 0)) (0) = lim (I7"(y — 5o)) (s) = 0.

Consequently,
107"y — o) =Toy (g — M),

and hence a simple computation gives that

y =yo + 151 (g — Ay).

Therefore, Lemma A.4 indicates that y € H*(0,T).
Then let us prove that

2 2 2 2 oo 2
Y3 (0. + A Wl3rar2 0. + X 10320,y < Ca (91320 + 7 Iwol) - (8)
Multiplying both sides of (6) by y and integrating over (0,t) yields
« A 2 _ DY
<Do+ y7y>(07t) + Hy||L2(0,t) = <97y>(o7t) + < 0+ y07y>(07t) .
Since
1 2 A 2
<9ay>(0,t) < b ||9||L2(0,t) + 1 ||y||L2(0,t) J
a 1 a 2 A 2
<DO+ yan>(07t) < X HDOJ,- yOHL2(07t) + Z ||y||L2(O7t) )
we have
o 2 - 2 1,120, |2
<D0+ yay>(07t) +A ||y||L2(0,t) < Cao ()‘ ! ||9||L2(0,t) H AT [y ) :
From Lemma A.2 it follows that
2 2 2 oy |2
MylSrer20 + X 1913200 < Ca (I9ll720. + ¢ luol*)

Analogously, multiplying both sides of (6) by Dg, y and integrating over (0,t),
we obtain

2 2 2 a2
Yl e 0,0y T MYl Her2(0,0) < Ca (||9||L2(o,t) + 1172 Jyo ) :

Therefore, combining the above two estimates yields (8).
Now, let us prove that

2 2 2 20| |2
A7 |?J|Ha<1—6/2>(o,t) + A |y|Ha(17B)/2(07t) < Co (||9||L2(o,t) +17? |yol ) - (9)
Since
a(l-p/2)=Ba/2+(1-p)a,
applying [1, Proposition 1.32] yields

1—
|y|HQ(1,g/2) (Ovt) < |y|€1a/2(0,t) |y|HaB(07t) .



Therefore, by (8) we obtain

B 1-p
2 2 2
A? Yl Eraa-8/2(0.4) < (/\|y|Ha/2(o,T)) (|y|Ha(o,t))
2 2
S AMYlgorz 0, + 19l 0.1

2 — 2
< Ca (913204 + 12 0l*)

by the Young’s inequality. Analogously, we have

NPy mara oy < Ca (9132000 + 672 w0l )
and using the above two estimates then proves (9).
Finally, combing (8) and (9) yields (7) and thus concludes the proof. |
Lemma 3.2. If1/2<a<1and0< 0 < 1/a—1, then
XOD2 oo+ lellecsosom + 3 Wlgarsom + 372 18l asrz o

+ )\(1+9)/2 )\(971)/2

HyHL? 0,T < Caor ||g||L2 0,T + |y0| .
(0,7) (0,T)

Proof. Proceeding as in the proof of Lemma 3.1 yields

c

L4 TI8 (g — A
F(Oé) + O+(g y)a

Y="Yo+
where
¢ = (Io3%(y — o)) (0).

Since y € H*/?(0,T) and Lemma A.4 implies 10, (g — Ay) € H*(0,T), it is
evident that ¢ = 0, and hence

y=1y0+15,. (9 —Ay) € H*(0,T).
Furthermore, Lemma A.4 indicates that
1ll7e 0.y < Cout (Il + 1l = Mlz20.7)) - (11)
Now, we proceed to prove (10), and since the techniques used below are

similar to that used in the proof of Lemma 3.1, the forthcoming proof will be
brief. Firstly, let us prove that

2 2 — 2 — 2
W3 ar200,) + MlEa0m) < Caor (A lll3amy + A~ 0l?) . (12)

Using the standard estimate that ([35, Lemma 16.3])
T 2 2
|00 @ dt < Cos lufio-mersom
0

by the Cauchy-Schwarz inequality we obtain

a Yo —a
<D0+ yan>Ha/2(07T) = m <t ay>(07T) < Coyo,7 Yol |y|H<1—9)a/2(o,T) .



Since
|y|H(179)a/2(07T) ”y”LZ(o T) |y|Ha/2(o T) >
it follows that

<D3+ Yo, y>Ha/2(O7T) Ca,0,1 Yo ||y||L2(0 T) |y|Ha/2 0,T)

< Capr bl X2 (N2 gl paomy ) Wollidaomy  (13)

)\1/2

< Cao2 190l X2 (19l srar20,) + N2 Il 20, ) -

In addition, inserting z = y into (5) yields
2 2
Yl zrar20,m) + AMYllz20.7)
—1 2 (e
< Co ()‘ ||g||L2(0,T) + <D0+ Yo, y>Ha/2(o,T)) :
Consequently, inserting (13) into the above inequality and applying the Young’s

inequality with €, we obtain (12).
Secondly, let us prove that

2 2 — 2
1913e0.) < Caor (93 20,m) + A7 Iyol?) - (14)

Multiplying both sides of (6) by Dg, (y — yo) and integrating over (0,7), we
obtain , ,
HD8+ (y - yO)HL2(01T) +A |y|Ha/2(07T)

2 «
< Car (||9||L2(0,T) +A(Dgs yo’y>Ha/2(0,T)) ’

so that from (13) and (12) it follows that

D8+ (v = 50) | 320, + M Yl3rer2 0,1y

< Carr (lgl3207) + Iwol X772 (A2 lgll a0,y + A7/ ol ))
< Cao,r (190207 + 190l X272 gl 20,y + A Lyl
< Cap,r (||g||L2(O Ty + AT * lyol )

Therefore, combing (6) and (11) yields (14).
Finally, using the same technique as that used to derive (9), by (12) and (14)
we conclude that

2 2
||?J||Ha<1+e>/2(o,T) + A ||?J||Ha9/2(o,T)

- 2 2
< Copr ()‘9 ' ||9||L2(0,T) + [vol ) )

which, together with (12) and (14), yields inequality (10). This theorem is thus
proved. |

Lemma 3.3. Assume that 1/2 < a < 1. Ifyo =0 and g € H'=*(0,T), then

||y||H1(0,T) +A2 ||y||Hlfa/2(o,T) + A ||y||L2(0,T) < Car ||g||Hlfa(o,T) - (15)



Proof. Let us first prove that

=Dy (g — My). (16)
Since we have already proved

y =15, (9 — M)

in the proof of Lemma 3.2, by Lemma A.4 we obtain y € H*(0,7). Moreover,
because

ozl/2
0<s<T,

‘Io+(9 Ay)(s )‘ (o )\/—Hg )\yHL? 0,s) *

we have

81_1}51+ 155 (9 — Ay)(s) = 0.

Consequently, we obtain y(0) = 0 and hence

D8‘+ Y= D8‘+ o+ y = Iéjra Y,
which, together with (6), yields

1%y =g— )y
Therefore,
y =DIory =DIF, i7"y =Dy i1y =Dy %(g — \y).

This proves equality (16).

5)

Then, let us prove (1
over (0,7) yields

. Multiplying both sides of (16) by y’ and integrating

v ||L2(0T +)‘<D(1)+ Y.y >(0 T) <Dé+ 9Y >(01T)’

so that
2
1y’ HL2(0 T+t A <D0+ Y.y >(0,T) S Car ||9HH1*C*(07T) ’

by the Cauchy-Schwarz inequality, Lemma A.2 and the Young’s inequality with
€. Additionally, using the fact that y € H'(0,T) with y(0) = 0 gives

Do %y =DIg, y =15y,
so that
2
<DO+ Yy >(O,T) 2 CDQT ||y||H1*C‘/2(O,T) ’
by Lemmas A.3 and A.5. Therefore,
2 2 2
||y/HL2(0,T) +A HyHHlfa/?(o,T) < Cor HgHHlfa(o,T) )
and hence, as Lemma 3.2 implies
A HyHLQ(O,T) < Cor ||g||L2(0,T) )

we readily obtain (15). This completes the proof. |



It is clear that we can represent u in the following form

u(t) =Y yit)gi, 0<t<T,

=0

where y; solves problem (5) with A, g and yo replaced by A;, f; and ug ;, respec-
tively. Here, note that f; and ug; are the coordinates of f and wug respectively
under the orthonormal basis {¢; : i € N}. Therefore, by the above three lemmas
we readily conclude the following regularity estimates for problem (3).

Theorem 3.1. Assume that 0 < o < 1/2. If f € L*(0,T; H?(Q)) and ug €
H=P(Q) with 0 < B < 1, then

|U|er(175/2)(0,t;L2(Q)) + |y|Ha/2(0,t;H1*B(Q)) + |U|Ha<1—ﬂ>/2(o,t;H1(ﬂ))

+ lull 20,4552 (0)) < Ca (”fHL?(O,t;H*B(Q)) + /2 ||uo||H—ﬂ(Q))
forallO<t<T.
Theorem 3.2. Assume that 1/2 < o < 1. If f € L*(0,T; HA(Q)) with
2—1/a< B <1 andug € L?(QQ), then

lull graci-s/2 0,02 (0)) + [Ulmerz ooy + Ul gaa-s/20 1.8 (@)

Hlull s poir-scay < Capro (oo + lwolla)
Moreover, if ug = 0 and f € L*(0,T; H-5(Q)) with 0 < B < 1, then the above
estimate also holds.

Theorem 3.3. Assume that1/2 < a < 1. Ifug =0 and f € H'=%(0,T; L?(2)),
then
ull 1. 0,7; 2202y Nl ra-ar2 0,201 )y F 10l 20,812 02

< Co10 ||fHH1*O‘(O,T;L2(Q)) )

4 Convergence

We assume that u and U are respectively the solutions to problems (3) and
(4), and by a < b we mean that there exists a generic positive constant C,
independent of h, 7 and u, such that a < Cb. The main task of this section is
to prove the following a priori error estimates.

Theorem 4.1. Assume that 0 < a < 1/2 and 0 < < 1. If ug € H=?(Q) and
f€L*0,T; HA(Q)), then

lu = Ull 20,751 ()

< (hlfﬁ + Ta(lfﬁ)/Q) (”f”LZ(O,T;H*B(Q)) + ||UO||H*5(Q)) ) (17)
flu— UHLz(o,T;LZ(Q))
< (hQ—B +Ta(1—ﬂ/2)) (||f||L2(01T;H,B(Q)) - ||'U/O||H*ﬂ(g))- (18)

10



Theorem 4.2. Assume that 1/2<a <1 and2—1/a< B < 1. Ifuy € L*(Q)
and f € L*(0,T; H=?(Q)), then
flu— U||L2(0,T;H1(Q))
S (07 +7202) (15 oz + ol zqey )
lw—=Ull20,7;02(02))

< (hQ’ﬁ + Ta(lfﬁm)) (Hf”LZ(O,T;H*B(Q)) + HUOHN(Q)) :

Moreover, if ug = 0 and f € L*(0,T; H-?(Q)), then the above two estimates
also hold for all0 < B < 1.

Theorem 4.3. Assume that1/2 < a < 1. Ifug =0 and f € H'=%(0,T; L*(2)),
then

[u U”L2 0,T;L2()) ~ (h2 + T) £l - (0,T;L2()) »
lw—=Ull 20,78 @) S (h‘*‘Tl a/Q) 11l 1= 0,722 (02)) -

Since the proofs of Theorems 4.2 and 4.3 are similar to that of Theorem 4.1,
below we only show the latter. To this end, we start by introducing two inter-
polation operators. For any v € L'(0,T; X) with X being a separable Hilbert
space, define P;v by

(Pro) | = — [ v(t)dt, 1<j<J
Tj I;

Let P, : L*(Q) — Si be the well-known Clément interpolation operator. For
the above two operators, we have the following standard estimates [5, 4]: if
0<pB<land S <v<2, then

(I = Pa)vll s o) S h =P vl vy, Vv € HY(9);
if0< B <1/2and <y <1, then
1T = Powls o 77 Il oy Voo € HY(0,T).

For clarity, below we shall use the above two estimates implicitly.

Proof of Theorem 4.1. Let us first prove (17). By Lemma A.2, a standard
procedure yields that

lu=Ully < llu— PrPuully, ,
then using the triangle inequality gives
lu—=Ully < 1(— Ph>u|Ha/2(0,T;L2(Q)) + (I = PT)Phu|Ha/2(0,T;L2(Q))
+ 1 = Pu)ullpeo,r.mm0)) + 1 = Pr)Prull 2o 111 02)) -

Since

(I — Pr )PhU|Ha/2(o Ti02(Q) S (- P’F>u|Hﬂ/2(O,T;L2(Q)) )
<

|
(I = P; )PhU”L?(o T;H(Q)) (I - Pr)“”m(oj;gl(g)) ’

11



it follows that
lu=Ully S (I = Pr)ulgor2 0,020y + 1 = Pr)ulgaszo,r2 ) (19)
+ (I = Pa)ull 207,51 0)) + 1 = Pr)ull 2o, ) -

Therefore, (17) is a direct consequence of Theorem 3.1 and the following esti-
mates:

17 = Pyl 2o o o) S 07 Nl oo o500 »
(I = Pu)ulgraszo,r,02(0)) S P77 1l grasz o, oini-s ay)

a(1-6)/2 |U|Ha(lfﬂ/2) (O.T:L2()) -

[(I — PT)U|Ha/2(0,T;L2(Q)) ST
1T = Pryull 2o i @y S 707D ul o2 0. s -

Then let us prove (18). By Lemma A.2, the well known Lax-Milgram theo-
rem implies that there exists a unique z € W such that

<D%— 2 ”>Ha/2(0,T;L2(Q)) +(Vz, V”>Qx(o,T) =(u-U, U>szx(o,T)
for all v € W. Substituting v = u — U into the above equation yields
2 a
||u - U”LZ(O,T;LZ(Q)) = <DT— 2, U= U>H“/2(O,T;L2(Q)) + <V’Zﬂ V(u - U)>Q><(O,T)
= <D8‘+(u — U), Z>H‘1/2(O,T;L2(Q)) + <V(’U, - U)v VZ>Q><(O,T) )
by Lemma A.2. Setting Z = P, Pz, as combining (3) and (4) gives
<D3+ (U - U)a Z>Ha/2(O7T;L2(Q)) + (V(u - U)’ vZ>Q><(O,T) =0,

we obtain

2
lu = Ullz2g0,75L2 (52

= <Dg+(u — U), z— Z>HO‘/2(O,T;L2(Q)) + <V(U - U)’ V(Z - Z))QX(O,T) :

Then Lemma A.2 implies that

2
lw = Ull20,7;0200)) < 1w = Ulgerzorir2@)) 12 = Zlgarzor;2@)
+llu = Ull gz, ) 12 = Zl 2018y (20)
<llu=Ullw Iz = Zlly -

Similarly to the regularity estimate in Theorem 3.1, we have
120 e 0,75 22009) + 12l mer2 o, @) + 12l 20,72 () S e = Ull 2,720
so that proceeding as in the proof of (17) yields
Iz = Zlyw < (h+7) Jlu— UllL2(0,7:12(0) -
Collecting the above estimate, (19) and (20) gives

lw = Ull 20,7120

< (h+ T”‘/Q) (hl*ﬁ + Ta(liﬂ)ﬂ) (HfHL?(O,T;H*ﬂ(Q)) + ||u0||H*B(Q)) :

12



Therefore, (18) is a direct consequence of the following two estimates:

hToz(l—ﬂ)/Q (h2 B 1/(2— B)( a(l— ﬂ/2))171/(2—ﬁ)

)
SHP/2 =)+ (1 - 1/(2 - B))r*t=0/2,
)"

hl_ﬂ a/2 _ (h2 B B)/(2 ( a(l- 5/2))1 (1- B)/(Q_B)

<(1-B)/2=-pR* P +(1-(1-p)/(@2-B)rF.

This completes the proof. |

5 Numerical Results

This section performs some numerical experiments to verify our theoretical re-
sults in one-dimensional space. We set Q = (0,1), T =1 and

v = [[u = Ullz .m0

€2 = [[u = Ull 20,7220 -

where u is a reference solution.

Experiment 1. This experiment verifies Theorem 4.1 under the condition that

uo(x) :==z", 0<z<l,
flz,t) =2t "% 0<z<1, 0<t<T.

We first summarize the numerical results in Table 1 as follows.

e If r = —0.8, then
w € H Q) and fe L*0,T; HP(Q))

for all 8 > 0.3. Therefore, Theorem 4.1 indicates that the spatial conver-
gence orders of & and & are close to O(h%7) and O(h!'"), respectively.
This is confirmed by the numerical results.

o If r = —0.99, then
up € HA(Q) and feL2(0,T;HA(Q))

for all B > 0.49. Therefore, Theorem 4.1 indicates that the spatial conver-
gence orders of & and &; are close to O(h51) and O(h!?!), respectively.
This agrees well with the numerical results.

In the case of @« = 0.4 and » = —0.49, Theorem 4.1 indicates that the
temporal convergence orders of £ and & are close to O(7%2) and O(7%4),
respectively. In the case of @ = 0.4 and r = 0.99, Theorem 4.1 indicates that
the temporal convergence orders of & and & are close to O(7%1) and O(7%3),
respectively. These theoretical results coincide with the numerical results in
Table 2.
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a=0.2 a=0.4
h &1 Order &3 Order &1 Order &3 Order

273 756e-1 - 1.15e-2 — 8.12-1 — 2872 -—
274 4.78¢-1 0.66 3.64e-3 1.66 5.23e-1 0.64 9.42¢-3 1.61
r=—0.8 27° 299-1 0.68 1.14e-3 1.68 3.30e-1 0.66 3.02¢-3 1.64
276 1.85¢-1 0.69 3.53e-4 1.69 2.06e-1 0.68 9.5le-4 1.67

273 1.5le-0 - 5.10e-2 - 1.64e-0 — 5.45e-2 -

271 1.07e-0 0.49 1.84e-2 1.47 1.19e-0 0.47 2.0le-2 1.44
r=-0.99 27° 7.54e-1 0.41 6.53¢-3 1.49 8.42e-1 0.49 7.25e-3 1.47

276 527e-1 0.52 2.31e-3 1.50 5.91e-1 0.51 2.58e-3 1.49

Table 1: Convergence history with T = 27'° (% is the numerical solution at h = 27*1).

r=-—0.49 r=—0.99
T &1 Order &3 Order 7 & Order &3 Order
275 4.54e-1 — 1.20e-2 — 273180 — 349-1 -

276 377e-1 0.27 9.53e-2 0.33 274162 0.15 2.93e-1 0.25
277 3.11e-1 0.28 7.39¢-2 0.37 275145 0.16 2.42e-1 0.28
278 2.56e-1 0.28 5.63e-2 0.39 2761.30 0.16 1.96e-1 0.30

Table 2: Convergence history with o = 0.4 and h = 27° (4 is the numerical solution
at T =2717).

Experiment 2. This experiment verifies Theorem 4.2 under the condition that

ug(z) = ca™ %19, 0<z<l,

flz,t) =298 09 o<z <l, 0<t<T.
For a = 0.7, Theorem 4.2 implies the following results: if ¢ = 0, then
E1~OM*T) and & =~ O(h'7T);

if ¢ =1, then
1~ OMR*3) and & ~ O(h!13).

These theoretical results are confirmed by the numerical results in Table 3.

For a = 0.8, Theorem 4.2 implies the following results: if ¢ = 0, then the
temporal convergence orders of £; and & are close to O(7928) and O(7%-68),
respectively; if ¢ = 1, then the temporal convergence orders of £ and &, are
close to O(7%1) and O(79-%), respectively. These theoretical results are verified
by Table 4.
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c=0 c=1
h &1 Order & Order &1 Order & Order

272 7.50e-1 — 5.07e-2 -— 1.76e-0 — 1.0de-1 —
273 5.12e-1 0.55 1.77¢-2 1.52 1.37¢-0 0.36 4.19¢-2 1.32
274 3.42%-1 0.58 6.03¢-3 1.55 1.04e-0 0.40 1.67e-2 1.33
275 2.93e-1 0.62 2.00e-3 1.59 7.56e-1 0.46 6.35e-3 1.39
276 1.4%-1 0.65 6.49¢-4 1.63 5.18¢-1 0.55 2.26e-3 1.49

Table 3: Convergence history with a = 0.7 and 7 = 27 (4 is the numerical solution
at h=271).

& &
7 ¢=0 Order ¢=1 Order 7 ¢=0 Order ¢=1 Order

274 3.08-1 - 8.32-1 - 277 1.53¢-2 — 2.69¢-2 —
275 2.55e-1 0.27 7.34e-1 0.18 278 1.05e-2 0.55 1.88e-2 0.52
276 2.09e-1 0.29 6.50e-1 0.18 279 6.91e-3 0.60 1.31e-2 0.53
277 1.69e-1 0.30 5.75e-1 0.18 2710 4 47¢-3 0.63 9.00e-2 0.54
278 1.37e-1 0.31 5.06e-1 0.18 271 2.84e-3 0.65 6.17e-2 0.55
279 1.10e-1 0.31 4.44e-1 0.19 2712 1.78¢-3 0.68 4.19¢-2 0.56

Table 4: Convergence history with o = 0.8, r = —0.8, and h = 27° (4 is the numerical
solution at T =2717).

Experiment 3. This experiment verifies Theorem 4.3. Here we set o = 0.8
and

up(x) :=0, 0<z<1,
flz,t) =2 0197029 0<pr <1, 0<t<T.

Theorem 4.3 implies that the convergence orders of & and &; are O(h + TO'G)
and O(h? + 1), respectively, which is confirmed by Tables 5 and 6.

h €1 Order E>  Order T €1 Order €y Order
273 1.09e-2 - 4.08¢-3 - 276 23%-2 -  6.75¢-3 -

2=% 5.87e-2 0.89 1.11e-3 1.88 277 1.52e-2 0.62 4.19e-3 0.69
275 3.13e-2 0.91 2.98e-4 1.90 278 9.73¢-3 0.64 2.47e-3 0.76
276 1.66e-2 0.92 7.92¢-5 1.91 279 6.22¢-3 0.65 1.41e-3 0.81
277 8.71e-3 0.93 2.09¢e-5 1.92 2710 397e-3 0.65 7.8le-4 0.85
278 455e-3 0.94 5.47e-6 1.93 2711 254e-3 0.65 4.27e-4 0.87

Table 5: Convergence history with T = Table 6: Convergence history with h =
2715 (@ is the numerical solution at h = 2719 (4 is the numerical solution at T =
2712), 2717).

A Properties of Fractional Calculus Operators
Lemma A.1 ([34, 9, 33]). Let —co <a<b<oo. If0< fB,7 < o0, then

B _ 8+ B _ 18+
LTy =17 LT =T,77,

15



and

Ig v,w> = <v,1ﬂ_ w>
< + (a,b) b (a,b)

Lemma A.2 ([10]). Assume that —co < a < b < 00 and 0 < v < 1/2. If
v € H7(a,b), then

for all v,w € L*(a,b).

HDZ+“HL2(a,b) < [0l g apy »
|D5— “HLz(a,b) < [0l g apy »
2
<DZ+ v, sz U>(a7b) = cos(ym) |U|H7(a,b) .
Moreover, if v,w € HV(a,b), then
<DZ+ v,Dy_ w>(a7b) < |’U|H7(a,b) |w|H7(a,b) )

<D31 v, W = (D], v,Dj_ w>(a b = <D§1 w, v>

Lemma A.3. If0 < < 1/2 and v € L*(0,1), then

>H’Y(a,b) H7(ab)

2 2
C1 |13, UHL2(O,1) < (T4 v, Tp U)L2(0,1) < G213, UHLZ(O,l) ’ (21)
where C1 and Cy are two positive constants that depend only on .

Proof. Extending v to R\(0,1) by zero, we define

wy(t) := ﬁ Lm(t —8)"lu(s)ds, —oo<t< oo,
w_(t) := ﬁ /too(s — )" lu(s)ds, —oo<t< 0.

Since 0 < v < 1/2, a routine calculation yields wi,w_ € L2*(R), and [34,
Theorem 7.1] implies that

Fwi(§) = (1) 7Fv(§), —oo<E<oo,
Fw_(§) = (—i§) " Fu(§), —o0 << o0

By the Plancherel Theorem and the same technique as that used to prove [10,
Lemma 2.4], it follows that

(IgJr v, I]_ ’U)L2(071) = (wi,w_)r2m) = (Fwy, Fw_)2(r)
cos (v) [ 167 1ol ag

= cos(ym) ||w+||iz(]R) = cos(y) ||w*||iz(]R) :

Therefore, by the Cauchy-Schwarz inequality, (21) follows from the following
two estimates:

||I(’)Y+U||L2(O,1) < ||w+||L2(]R)ﬂ ||I’Yf v||L2(0,1) < ||w*||L2(]R) :
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Lemma A.4. If 3 € (0,1)\ {0.5} and 0 < v < oo, then

1504 0[] g5+ 0.1y < Coox 1Vl 15 0,1

(22)

for all v € H(0,1). Furthermore, if 0 < v < 1/2 and v € H'=7(0,1) with

v(0) =0, then
||Ig+“HH1(0,1) <Oy |vllgr-vvo,y -

(23)

Proof. For the proof of (22), we refer the reader to [17] (Lemma A.4). Let us

prove (23) as follows. Define v := v — g, where
g(t):==tv(l), 0<t<1.
It is clear that & € Hy 7(0,1), and hence (22) implies
ng+ 5”1{1(0,1) <G ||5||H;*”(o,1) :
Therefore, from the evident estimate
190101y + (s 90y < C (D]

it follows that

153+ UHHl(O,l) L 5||H1(0,1) +T3¢ 9||H1(0,1)

NN

Cy 191l 2= 0,1y + 113+ 9HHl(o,1)

N

N

Cy (Nl 0.1y + (1))
As 0 < v < 1/2 implies
||U||c[0,1] <G HU”Hl*‘V(O,l) J
this indicates (23) and thus proves the lemma.
Lemma A.5. If0 < < 1/2 and v € H*(0,1), then
Ch ||U||H1*7(0,1) < [v(0)] + ng+ UIHLZ(O,l) <G ||U||H1*7(0,1) )
where Cy and Cs are two positive constants that depend only on 7.

Proof. Since a simple calculation gives
DI}, (v —v(0)) =DIj, Top v =1, 0/,
using Lemma A.4 yields
1T+ UIHL2(0,1) <14 (v - ”(0))HH1(0,1)
<Oy o= 0Ol o) < Cs (10O + [0l o)
which, together with the estimate

[w(0)] < Cy[lvllgr-v 0,1y (since 1 —v>0.5),

17

Cy (||v||H1*”f(0,1) + ||g||H1*’Y(O,1)) + |13 gHHl(O,l)

(24)



indicates

[w(0)] + ||T34 U/HLQ(O,I) <SGyl 0,1 -

Conversely, by

v=1."13, v +v(0),

using Lemma A.4 again yields

ol 1) < G (10O + B4 v o) -

This lemma is thus proved. |
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