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ANALYSIS OF A DEGENERATE AND SINGULAR VOLUME-FILLING

CROSS-DIFFUSION SYSTEM MODELING BIOFILM GROWTH

ESTHER S. DAUS, JOSIPA-PINA MILIŠIĆ, AND NICOLA ZAMPONI

Abstract. We analyze the mathematical properties of a multi-species biofilm cross-
diffusion model together with very general reaction terms and mixed Dirichlet-Neumann
boundary conditions on a bounded domain. This model belongs to the class of volume-
filling type cross-diffusion systems which exhibit a porous medium-type degeneracy when
the total biomass vanishes as well as a superdiffusion-type singularity when the biomass
reaches its maximum cell capacity, which make the analysis extremely challenging. The
equations also admit a very interesting non-standard entropy structure. We prove the
existence of global-in-time weak solutions, study the asymptotic behavior and the unique-
ness of the solutions, and complement the analysis by numerical simulations that illustrate
the theoretically obtained results.

1. Introduction

In this paper we study the mathematical properties of a multi-species cross-diffusion
biofilm model recently proposed by Rahman, Sudarsan and Eberl [22], which describes
the local mixing effects between different components of multi-species biofilm colonies.
These effects are extremely useful in wastewater engineering, where different processes (like
aerobic and anoxic processes or simultaneous sulfate reduction and nitrogen removal) take
place simultaneously. It has been pointed out [22] that when two colonies of different species
merge, spatial biomass gradients can be observed, leading to a spatially heterogeneous
distribution of biomass. These phenomena can be described by cross diffusion, which
models how the diffusion of one species is influenced by the concentration gradient of the
other species in diffusive multi-species systems. Recently, a cross-diffusion biofilm model
(see (3)) was introduced by Rahman, Sudarsan and Eberl [22], which reflects the same
properties as the single-species nonlinear diffusion model [9] (see (6)) constructed from
experiments, namely a porous-medium type degeneracy when the local biomass vanishes,
which leads to a finite speed of propagation of the interface, and a singularity when the
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biomass reaches the maximum capacity, which guarantees the boundedness of the total
mass. It can be formally derived from a space-discrete random-walk lattice model [20, 22,
26] (see Appendix). Due to the cross-diffusion structure, standard techniques like maximum
principles and regularity theory cannot be used, and since the diffusion matrix is generally
neither symmetric nor positive definite, even the local-in-time existence and boundedness
of solutions is hard to prove. However, in recent years significant progress has been made
in the analysis of cross-diffusion equations by using the entropy methods. These techniques
are based on the identification of a structural condition, namely a formal gradient-flow or
entropy structure, allowing for a mathematical treatment, see e.g. [2, 3, 7, 13, 14, 26].

In this article we prove the global-in-time existence of weak solutions to the multi-
species cross-diffusion biofilm model [22], study its long-time behavior and prove uniqueness
of solutions, and we complement our results by some numerical simulations with finite
elements by using the free software DUNE [8]. For the analytical results, we significantly
extend the entropy method in [13], which is based upon the idea of transforming the system
into so called entropy variables such that the diffusion matrix in the new formulation is
positive definite. This approach was adapted to a class of degenerate volume-filling type
models1 in [26]. However, compared to [26], we have to deal with an additional singularity,
which significantly complicates the analysis, but surprisingly also helps to handle very
general (even singular) reaction terms. The model we study also admits a non-standard
entropy structure, which is an interesting mathematical issue by itself; see e.g. [6, 15, 16]
for other works in this direction.

We are interested in a reaction-cross-diffusion system with volume-filling of the form

∂tui −
n
∑

j=1

div(Aij(u)∇uj) = ri(u) (i = 1, . . . , n) on Ω, t > 0.(1)

Here, Ω ⊆ R
d (d ≥ 1) is a bounded domain with Lipschitz boundary, A(u) = (Aij(u)) ∈

R
n×n is the diffusion matrix, u = (u1, . . . , un) : Ω×(0,∞) → R

n is the vector of proportions
of the species within the biofilm, where ui = ui(t, x) depends on the time t and the spatial
variable x on Ω, and r = (r1, . . . , rn) is the vector of reactions. The diffusion coefficients
Aij are derived under suitable modeling assumptions in a (formal) diffusive limit from a
space-discrete lattice model [20, 21, 26, 22] (sketched in the Appendix). They have the
form

Aij(u) = αiδijp(M)q(M) + αiui(p(M)q′(M)− p′(M)q(M)).(2)

Here, M =
∑n

i=1 ui denotes the total biomass, δij is the Kronecker delta symbol, while the
functions p and q measure how favorable it is for species ui to leave or to arrive at a certain
cell in the underlying discrete model. The constants αi > 0 measure how fast biomass
moves between neighboring sites of the underlying discrete lattice model (see Appendix).

1Volume-filling models take into account the fact that concentration may saturate.
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We point out that eqs. (1)–(2) can be also written as

∂tui − αidiv

(

p2(M)∇
(

uiq(M)

p(M)

))

= ri(u), i = 1, . . . , n.(3)

For simplicity, we have assumed that p = p(M) and q = q(M) only depend on the total
biomass M and are the same for all species i = 1, . . . , n. The total biomass M cannot
exceed a saturation value (normalized to 1), which depends on the maximum cell capacity
(hence the denomination “volume filling”); i.e.M ≤ 1 must hold during the time evolution
of the system.

We supplement the model with initial conditions and mixed Dirichlet-Neumann bound-
ary conditions on the bounded domain Ω ⊂ R

d (d ≥ 1)

u(0, ·) = u0(·) > 0 in Ω,

u = uD > 0 on ΓD, ν · ∇u = 0 on ΓN , t > 0,(4)

where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ and |ΓD| > 0.
For simplicity we have assumed that uD = (uD,1, . . . , uD,n) ∈ (0,∞)n is a constant

vector with positive components, but also x−dependent boundary data can be treated; see
Remark 9 for details. For consistency with the constraint M ≤ 1, we have to assume

MD =

n
∑

i=1

uD,i < 1, sup
x∈Ω

M0(x) =

n
∑

i=1

sup
x∈Ω

ui,0(x) < 1.(5)

These boundary conditions describe well the behavior of the biofilm at its border, but also
homogeneous Neumann boundary conditions can be handled, see Remarks 10, 11, 12.

In order to close the model, the functions p and q need to be chosen appropriately.
Following the approach in [22], the idea is to derive p and q in (3) from the single-species
biofilm model [9, 17] (here without reaction)

∂tM − div

(

Ma

(1−M)b
∇M

)

= 0, a, b > 1(6)

under the natural assumption that the evolution of the multi-species model (3) reduces to
the single-species model (6) if all species except one vanish or if all species are identical.
Thus, we choose p and q such that

p2(M)∇
(

Mq(M)

p(M)

)

=
Ma

(1−M)b
∇M, a, b > 1,(7)

and consequently

q(M) =
p(M)

M

∫ M

0

sa

(1− s)b
ds

p(s)2
, M > 0.(8)

For p we assume that

p is decreasing, p(1) = 0, ∃κ, c > 0 : lim
M→1

−(1−M)1+κ p
′(M)

p(M)
= c.(9)
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These hypothesis are consistent with the modeling assumptions of the single-species model
(6) in [21]. The last assumption quantifies how fast p decreases to 0 for M → 1; in fact,
an integration yields the bound

p(M) ≤ C1 exp(−C2(1−M)−κ) 0 < M < 1.(10)

This hypothesis on p is not assumed in [22], and is needed here only for technical reasons
in Lemma 7.

As mentioned before, due to the cross-diffusion structure, standard techniques like max-
imum principles and regularity theory cannot be used, but still, in recent years lots of
progress has been made in the analysis of cross-diffusion equations by identifying a formal
gradient-flow or entropy structure [13, 14]. Following the approach therein, we assume that
there exists a convex function h : D → Ω called entropy density with D ⊆ R

n such that
the matrix B = A(u)h′′(u)−1 is positive semi-definite, and (1) can be written as

∂tu− div (B∇h′(u)) = r(u),

where h′ and h′′ are the Jacobian and the Hessian of h, respectively. This structural
assumption has two very useful consequences. First, H [u] =

∫

Ω
h(u) dx is a Lyapunov

functional along solutions to (1) and (2) if the reaction term vanishes, because

dH

dt
[u(t)] =

∫

Ω

h′(u) · ∂tu dx = −
∫

Ω

∇u : h′′(u)A(u)∇u dx = −
∫

Ω

∇w : B∇w dx ≤ 0,

were w = h′(u) are so called entropy variables. This often yields gradient-type estimates for
u if suitable lower bounds for the matrix h′′(u)A(u) are known. Second, if h′ is invertible
on D, then it holds that u = (h′)−1(w) ∈ D. Consequently we get that if D is a bounded
domain, then we obtain lower and upper bound for u without using a maximum principle.
In our case, we require that any solution u to (1)–(4) takes values in the set

(11) D =

{

u ∈ (0,∞)n :

n
∑

i=1

ui < 1

}

.

Moreover, we define the (relative) entropy functional H [u] of the system (1) as

(12) H [u] =

∫

Ω

h∗(u|uD)dx, h∗(u|uD) = h(u)− h(uD)− h′(uD) · (u− uD),

where the entropy density h(u) is given by

h(u) =

n
∑

i=1

(ui log ui − ui + 1) +

∫ M

0

log

(

q(s)

p(s)

)

ds,(13)

and thus the entropy variables for i = 1, . . . , n read as

wi =
∂

∂ui
h∗(u|uD) =

∂h

∂ui
(u)− ∂h

∂ui
(uD) = log

(

uiq(M)

p(M)

)

− log

(

uD,iq(MD)

p(MD)

)

.(14)
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We can show that the entropy dissipation leads to the following very interesting degenerate-
singular entropy estimate

∫ T

0

∫

Ω

Ma−1|∇M |2
(1−M)1+b+κ

dxdt+

n
∑

i=1

∫ T

0

∫

Ω

p(M)q(M)|∇√
ui|2 dxdt ≤ C t > 0,

which has the same kind of singular-degenerate type structure like the nonlinear diffusion
coefficients Ma/(1 −M)b in the single species model (6), i.e. a degeneracy when M → 0
and a singularity when M → 1. Moreover, it leads to the following uniform bound for the
singularity:

∫ T

0

∫

Ω

(1−M)1−b−κdxdt ≤ C.(15)

This estimate is essential in order to control the nonlinear terms in the equations; further-
more, it implies that M < 1 a.e. in QT , i.e. saturation of the biofilm is excluded.

1.1. State of the art. In the literature, several model classes for biofilms can be found.
The first class consists of deterministic continuous equations based on the one-dimensional
Wanner-Gujer model [25]. An important assumption of this model is that the volume
fractions occupied by the different species add up to unity. However, no mixing of initially
separated species can occur under this assumption, which contradicts results of microscopic
experiments, where spatially heterogeneous distributions of biomass could be observed. A
second model class are stochastic discrete multi-species biofilm models, which do not need
this problematic assumption for the volume fractions, and the amount of mixing can be
decided by the user by formulating local interaction rules. However, these models have the
drawback that mixing is often overemphasized and that the numerical solution is generally
very time-consuming.

In order to compensate the disadvantages of the model classes described above, Rahman,
Sudarsan, and Eberl [22] introduced a two-species diffusion model which captures the
quantitative amount of local mixing effects between the species within a biofilm colony
with the help of cross-diffusion terms. The derivations of this system from mass balances
or from discrete lattice models do not (a priori) impose the condition that the volume
fractions must add up to unity. Besides the new cross-diffusion effects, it has two additional
difficulties: (i) a porous medium degeneracy when the total biomassM = 0 is vanishing; (ii)
a super-diffusion singularity when the total biomass equals oneM = 1. Due to property (i)
the interface between the aqueous phase and biofilm region propagates with a finite speed.
Property (ii) ensures that the solutions of (1) are bounded by the maximum cell density
M ≤ 1. Moreover, we are able to prove that similarly to the results in [10, 11] it holds that
M < 1 a.e. in QT for all t > 0 in the case of mixed Dirichlet-Neumann boundary conditions
(even for nonzero Dirichlet data; see Step 4 in the proof of Theorem 1 for details). On the
other hand, in the case of homogeneous Neumann boundary conditions on the whole ∂Ω we
need to make sure that the total mass M(t) = |Ω|−1

∫

Ω
M(x, t)dx remains strictly smaller

than one for any time in order to prevent blowup, see Remark 10, which is again similar to
the results in [10, 11]. While an existence analysis for the single-species biofilm model is



6 E. S. DAUS, J.-P. MILIŠIĆ, AND N. ZAMPONI

available in [11], the mathematical analysis of the multi-species model (3)–(4) has not been
carried out so far (up to our knowledge). We note that Laoshen Li studied traveling wave
solutions and instability conditions of a reaction-cross-diffusion biofilm model in [18], and
recently Schulz and Knabner analyzed an effective model for biofilm growth in [23, 24]. Our
technique is based on the boundedness-by-entropy method of A. Jüngel (see [13, Theorem
3] and [14]), which was refined for a general class of degenerate volume-filling type cross-
diffusion models in [26]. However, the model considered in this article does not only exhibit
a degeneracy at M = 0, but also a very interesting singularity at M = 1, which goes far
beyond the framework of [26]. We point out that the mentioned singularity significantly
complicates the analysis, but on the other hand it also yields an additional a priori bound of
(1−M) to a negative power (see (15)), which allows to handle very general (even singular)
reaction terms (see assumptions (16)–(19) for the reaction terms). Note that in [26] no
reaction terms were treated, and only no-flux boundary conditions were considered.

1.2. Mathematical assumptions on the reaction terms. We assume that

(16) r(u) = rD(u) + r̃(u),

with rD, r̃ continuous in the set {M < 1} satisfying the following conditions:

∃λr ≥ 0 :

n
∑

j=1

rDj (u)

(

∂h

∂uj
(u)− ∂h

∂uj
(uD)

)

≤ λr

(

1 + h∗(u|uD)
)

,(17)

∃Cr ≥ 0, 0 ≤ µ < b− 1, s > 0 : |r̃i(u)| ≤
Cru

s
i

(1−M)µ
(i = 1, . . . , n),(18)

∃C ′
r ≥ 0, 0 ≤ η < b+ κ− 1 : |rDi (u)| ≤

C ′
r

(1−M)η
(i = 1, . . . , n).(19)

Note that r(u) decomposes into a “dissipative” part rD (i.e. a part which can be controlled
by the entropy density, see [13, assumption (H3)]), and a remainder r̃ which can be con-
trolled by means of the entropy dissipation (see proof of Lemma 8). Let us point out that
these reaction terms are rather general, in fact, even singular reaction terms are allowed.

1.3. Structure of the paper. The main results are given in Section 2. Proofs of some
auxiliary results, like the asymptotic behavior of p and q, the convexity of h, the invertibility
of h′ and the lower bound for the entropy dissipation are given in Section 3. Sections 4, 5
and 6 are devoted to proofs of the existence, long-time behavior and the uniqueness result,
respectively. Finally, in Section 7 we discuss the formal derivation of the model and the
underlying modeling assumptions (Subsection 7.1), we show some numerical simulations
(Subsection 7.2), and we prove a non-standard version of the Poincaré inequality used
within this paper (Subsection 7.3).

2. Main results

The first result we prove is about the global-in-time existence of weak solutions to (3)–
(4). In the following, QT ≡ Ω× (0, T ) for every T > 0.
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Theorem 1 (Existence theorem). Under the assumptions (8), (9), (16)–(19), eqs. (3)–(4)
have a solution u : Ω× (0,∞) → R

n such that, for every T > 0 and 1 ≤ i ≤ n,

ui ≥ 0, M =
n
∑

j=1

uj < 1 a.e. in QT ,

M
a+1
2 ∈ L2(0, T ;H1(Ω)), M

a+1
2 ∇ui ∈ L2(QT ),

(1−M)1−κ ∈ L∞(0, T ;L1(Ω)), (1−M)1−b−κ ∈ L1(QT ),

∂tui ∈ (L
ρ+1
ρ (0, T ;W 1, ρ+1

ρ (Ω)) ∩ L b+κ−1
b+κ−1−η (QT ))

′,

where a, b, κ, η are as in (8), (9), (19), and ρ = min{1, κ/(b − 1)}. Moreover, for any

t > 0 the following entropy inequality holds:

d

dt

∫

Ω

h∗(u|uD) dx+ 2

n
∑

i=1

αi

∫

Ω

p(M)2

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

dx(20)

≤ C1

∫

Ω

h∗(u|uD) dx+ C2,

where C1 and C2 are some suitable nonnegative constants. Finally, C1 = C2 = 0 if λr =
Cr = 0 in (17) and (18).

The proof of Theorem 1 is based upon the semi-discretization in time of (1). The
resulting elliptic problem reads as

uji − uj−1
i

τ
+ div

(

p(M j)2∇
(

ujiq(M
j)

p(M j)

))

= ri(u
j), i = 1, . . . , n, x ∈ Ω.

A higher order regularizing term is also added, which is needed in order to prove the
well-posedness of the time-discretized equations. The key tool in the analysis is a discrete
entropy inequality:

1

τ

∫

Ω

(h∗(uj|uD)− h∗(uj−1|uD))dx+ 2
n
∑

i=1

αi

∫

Ω

p(M j)2

∣

∣

∣

∣

∣

∣

∇
√

ujiq(M
j)

p(M j)

∣

∣

∣

∣

∣

∣

2

dx

≤ C1

∫

Ω

h∗(uj|uD) dx+ C2,

which yields crucial gradient estimates for the solution uj to the time-discretized problem.
The entropy dissipation satisfies the bound (see Lemma 7)

∫ T

0

∫

Ω

p2(M)

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

dxdt

≥ C

∫ T

0

∫

Ω

Ma−1|∇M |2
(1−M)1+b+κ

dxdt+
n
∑

i=1

∫ T

0

∫

Ω

p(M)q(M)|∇√
ui|2 dxdt,
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which leads to (15). This estimate of the singularity is crucial to control the nonlinear
terms, and implies that no saturation occurs in the biofilm.

The second result we prove concerns the long-time behavior of the solutions to (1)–(4).

Theorem 2 (Convergence to steady state). Let all the assumptions from Theorem 1 be

fulfilled. In addition, assume that λr = Cr = 0 in (17) and (18) and b ≥ 2. Then there

exists a constant C > 0 such that for any t > 0 it holds

n
∑

i=1

‖ui(t)− uD,i‖2L2(Ω) ≤
C

1 + t
.

This means that the solutions to (3)–(4) converge to the constant steady state uD as
t→ ∞. The main idea of the large-time asymptotic analysis of ui(t) := ui(·, t) is to exploit
the entropy inequality (20) in the case when C1 = C2 = 0. We show that the entropy
dissipation dominates the square of the entropy functional, i.e.

n
∑

i=1

αi

∫

Ω

p(M)2

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

dx ≥ C

(
∫

Ω

h∗(u|uD) dx
)2

,

from where we deduce that the convergence is of order 1/t, as t → ∞. Finally, strict
convexity of the relative entropy density (see Lemma 5), gives the convergence in L2-norm.
We note that we were not able to prove an exponential decay rate due to the lack of suitable
convex Sobolev inequalities for (1). However, we point out that our numerical simulations
suggest that exponential decay should hold, see Subsection 7.2.

The third result we present is about the uniqueness of the solution to (1)–(4). Uniqueness
of solutions is achieved provided that additional assumptions on the reaction term are made.

Precisely, we assume that functions r
(0)
1 , . . . , r

(0)
n , r(1), R : [0, 1) → R exist such that

ri(u) = r
(0)
i (M) + r(1)(M)ui, i = 1, . . . , n, u ∈ D,(21)

∃ε0 > 0 : r
(0)
i (M) ≥ max{0, ε0r(1)(M)}, i = 1, . . . , n, M ∈ [0, 1),(22)

∃CR ∈ R :
n
∑

j=1

rj(u) = R(M) + CRM, u ∈ D,(23)

∃C ′
R > 0 :

|R(M)|
M

+ |R′(M)| ≤ C ′
RM

a/2, M ∈ (0, 1).(24)

An example of reaction term satisfying both sets of assumptions (16)–(19), (21)–(24) is

(25) ri(u) = uD,i − ui, i = 1, . . . , n, u ∈ D.
Furthermore, we assume that the parameters α1, . . . , αn are all the same (and therefore
without loss of generality we set αi = 1, i = 1, . . . , n).

Theorem 3 (Uniqueness of solutions). Let the assumptions of Theorem 1 hold. Further-

more, we assume that αi = 1 for all i = 1, . . . , n and that the reaction terms satisfy the

assumptions given by (21)–(24). Then there exists a unique weak solution to (3)–(4).
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We point out that the proof of uniqueness of weak solutions for strongly coupled cross-
diffusion systems is delicate. Similarly like in [4, 26], our uniqueness proof is based on a
combination of the H−1 method and the technique of Gajewski [12].

3. Auxiliary results

In this section we state technical results which are used for proving the main results of
this paper: asymptotic behavior of functions p(M) and q(M) when M → 0 and M → 1,
the convexity of the entropy density h, the invertibility of the gradient of the relative
entropy density h∗ with respect to the variable u and finally the lower bound for the
entropy dissipation.

Lemma 4 (Asymptotic behavior of p, q). Let a, b > 1, κ > 0 and 0 < M < 1. For

functions p and q defined by (8) and (9), there exist positive constants C1, C2 and C3 such

that

lim
M→1

p(M)q(M)

(1−M)1+κ−b
= C1,(26)

lim
M→1

log
(

q(M)/p(M)
)

(1−M)−κ
= C2,(27)

lim
M→0

M−aq(M) =
C3

p(0)
.(28)

Proof. The proof of limits given by formulas (26) and (27) directly follows using l’Hôpital’s
rule. In order to show (28) we perform the change of variable s = Mσ in the integral
appearing in the definition of q (8). �

Lemma 5 (Convexity of h). It holds that the matrix H(u) ≡
(

∂wi

∂uj
(u)

)n

i,j=1

is positive

definite and symmetric on D, where wi is defined in (14) and D is given by (11).

Proof. Direct calculation using (8) gives

Hij =
∂wi

∂uj
=

(

δij
ui

− 1

M

)

+
Ma(1−M)−bp(M)−2

∫M

0
sa(1− s)−bp(s)−2 ds

.(29)

Next, let us write the matrix H as the sum H = A+ B, with A, B ∈ R
n×n given by

A ≡ diag(
1

u1
, . . . ,

1

un
)− 1

M
C and B ≡ Ma(1−M)−bp(M)−2

∫M

0
sa(1− s)−bp(s)−2 ds

C,

and with C ∈ R
n×n, Cij := 1 for all i, j ∈ {1, . . . , n}. Clearly, the matrix B is positive

semidefinite, since for any v ∈ R
n one has

v · Bv =
Ma(1−M)−bp(M)−2

∫M

0
sa(1− s)−bp(s)−2 ds

(

n
∑

i=1

vi

)2

≥ 0.
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On the other side, matrix A is also positive semidefinite. Namely, for any v ∈ R
n we have

v · Av =
n
∑

i=1

v2i
ui

− 1

M

(

n
∑

i=1

vi

)2

≥
n
∑

i=1

z2i −
1

∑n
j=1 uj

(

n
∑

i=1

ui

)(

n
∑

i=1

z2i

)

= 0.

where we used the notation zi := vi/
√
ui and the Cauchy-Schwarz inequality. Consequently,

it follows that H = A + B is positive semidefinite. It remains to show the strict positive
definiteness of H. For this, we take a vector v ∈ R

n and show that if v · Hv = 0, then it
follows that vi = 0 for i = 1, . . . , n. Let be v · Hv = 0, then since matrices A and B are
positive semidefinite, it holds v · Bv = 0, and v · Av = 0. Now, from v · Bv = 0 follows
directly that

∑n
i=1 vi = 0. On the other side, from

0 = v · Av =
n
∑

i=1

v2i
ui

− 1

M

(

n
∑

i=1

vi

)2

=

n
∑

i=1

v2i
ui
,

we get directly that vi = 0 for all i = 1, . . . , n. Therefore H is positive definite in D. �

Lemma 6 (Invertibility of (h∗)′). The function (h∗)′ : D → R
n is invertible, where D is

defined in (11).

Proof. First, note that due to (14) we have (slight change)

uD,i

MD
ewi =

ui
MD

q(M)/p(M)

q(MD)/p(MD)
.(30)

Now we define the auxiliary function

Φ(M) :=
Mq(M)

p(M)
.(31)

After summing the relation (30) for i = 1, . . . n, one gets

Φ(M) = Φ(MD)

n
∑

i=1

uD,i

MD
ewi .(32)

Note that function Φ(M) is strictly increasing with Φ(0) = 0 and limM→1Φ(M) = +∞.
Thus, there exists a unique solution M = M [w] ∈ (0, 1) to the nonlinear equation (32).
Replacing M = M [w] into relation (30) and then solving the resulting equation for ui
yields the statement. �

Lemma 7 (Lower bound for the entropy dissipation). For any sufficiently smooth function

u : QT → D it holds that

∫ T

0

∫

Ω

p2(M)

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

dxdt

≥ C

∫ T

0

∫

Ω

Ma−1|∇M |2
(1−M)1+b+κ

dxdt+
n
∑

i=1

∫ T

0

∫

Ω

p(M)q(M)|∇√
ui|2 dxdt,

where κ > 0 is defined in (9).
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Proof. Let us define f(M) :=
√

q(M)/p(M). Direct calculation gives:

p2(M)

n
∑

i=1

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

= p(M)q(M)

n
∑

i=1

|∇
√
ui|2 + p(M)2f ′(M) (Mf ′(M) + f(M)) |∇M |2.

Let us first show that for 0 < M < 1 the function f ′(M) is strictly positive. Note that

2
f ′(M)

f(M)
=

d

dM
log
(q(M)

p(M)

)

.

Using the definition (8) we have

2
f ′(M)

f(M)
=

Ma(1−M)−bp−2(M)
∫M

0
sa(1− s)−bp−2(s)ds

− 1

M
.(33)

Since p is decreasing it holds (1−s)−bp−2(s) ≤ (1−M)−bp−2(M) for 0 ≤ s ≤M . Therefore

2
f ′(M)

f(M)
≥ Ma

∫M

0
sads

− 1

M
=

a

M
> 0, 0 < M < 1,

from where it follows that f ′(M) > 0 for 0 < M < 1. Using this result, we get

p2(M)f ′(M) (Mf ′(M) + f(M)) ≥ p2(M)M(f ′(M))2 ≥ a2p2(M)

4M
(f(M))2 =

a2q(M)p(M)

4M
.

Since p(s) ≤ p(0) and p(0) > 0 for s > 0, one has

p(M)q(M) =
p2(M)

M

∫ M

0

sa

(1− s)b
ds

p(s)2
≥ p2(M)

p2(0)

1

M

∫ M

0

sa

(1− s)b
ds.

Since p(M) ≥ p(1/2) for 0 ≤M ≤ 1/2 and (1− s)−b ≥ 1 we have

p(M)q(M) ≥ p2(1/2)

p2(0)

Ma

a+ 1
.

Therefore we get

(34) p2(M)f ′(M) (Mf ′(M) + f(M)) ≥ CMa−1, 0 ≤M ≤ 1

2
.

On the other side, let us find the lower bound of term p2(M)f ′(M) (Mf ′(M) + f(M)) for
1/2 ≤M < 1. For that purpose, we can make the following estimate:

p(M)2f ′(M) (Mf ′(M) + f(M)) ≥ 1

2
p2(M)(f ′(M))2 =

1

2
p(M)q(M)

(

f ′(M)

f(M)

)2

.

It remains to bound the term f ′(M)/f(M) from below for 1/2 ≤M < 1. For the moment,
we go back to (33). Note that for s ≤M it holds sa ≤Ma, so the following estimate holds:

2
f ′(M)

f(M)
≥ (1−M)−bp−2(M)
∫M

0
(1− s)−bp−2(s)ds

− 1

M
.
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We want to find a lower bound for the right-hand side of the above inequality for M close
to 1. Thanks to (10) we have

lim
M→1

(1−M)1+κ−bp−2(M) = +∞.

Applying the l’Hôpital’s rule and using (9), one gets

lim
M→1

(1−M)1+κ−bp−2(M)
∫M

0
(1− s)−bp−2(s)ds

= lim
M→1

(

(1 + κ− b)(1 −M)κ − 2(1−M)1+κp
′(M)

p(M)

)

= 2c.

It follows that there exists a constant c1 > 0 such that

f ′(M)

f(M)
≥ c1(1−M)−(1+κ), for

1

2
≤M < 1.

From the above estimate and (26) we deduce

p(M)2f ′(M) (Mf ′(M) + f(M)) ≥ C(1−M)−1−b−κ,
1

2
≤M < 1.(35)

Putting (34), (35) together yields that there exists a constant C > 0 such that

p(M)2f ′(M) (Mf ′(M) + f(M)) ≥ CMa−1

(1−M)1+b+κ
, 0 ≤ M < 1,

which finishes the proof of this Lemma. �

4. Proof of Theorem 1

For m ∈ Z, m ≥ 1 we define the space

Hm
D (Ω) = {u ∈ Hm(Ω) : u ≡ 0 on ΓD} .

The proof is divided into several steps.

Step 1: discretization. Fix T > 0. For N ∈ N we define τ = T/N , tj = τj (j =
0, . . . , N), u0i = ui,0 (i = 1, . . . , n). In order to have a compact embedding Hm(Ω) →֒
L∞(Ω) we choose m to be the smallest integer such that m > d/2. For j ≥ 1 consider the
problem:

given wj−1 ∈ Hm
D (Ω), find wj ∈ Hm

D (Ω) such that

n
∑

i=1

∫

Ω

(

uji − uj−1
i

τ
φi + αip(M

j)2∇
(

ujiq(M
j)

p(M j)

)

· ∇φi − ri(u
j)φi

)

dx(36)

= −τ
n
∑

i=1

(wj
i , φi)Hm(Ω), ∀φ = (φ1, . . . , φn) ∈ Hm

D (Ω)n,

where uj−1, uj : Ω× (0, T ) → R
n are defined by

h′(uj−1)− h′(uD) = wj−1, h′(uj)− h′(uD) = wj,

and M j ≡ ∑n
i=1 u

j
i , while (·, ·)Hm(Ω) denotes the standard scalar product in Hm(Ω). We

point out that, since h′ : D → R
n is invertible, then uj−1, uj are well defined.
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Step 2: fixed point. We solve (36) via Leray-Schauder fixed point theorem. Let us
define the mapping

F : L∞(Ω)× [0, 1] → L∞(Ω)
(w∗, σ) 7→ w

where w is the solution of the linearized approximated problem

τ

n
∑

i=1

(wi, φi)Hm(Ω)(37)

= −σ
n
∑

i=1

∫

Ω

(

u∗i − uj−1
i

τ
φi + αip(M

∗)2∇
(

u∗i q(M
∗)

p(M∗)

)

· ∇φi − ri(u
∗)φi

)

dx

∀φ ∈ Hm
D (Ω;Rn),

with u∗ : Ω× (0, T ) → R
n defined by h′(u∗)− h′(uD) = w∗ and M∗ ≡∑n

i=1 u
∗
i .

We first point out that F is well defined. In fact, assumption m > d/2 implies that
Hm(Ω) →֒ L∞(Ω). Since w∗ ∈ Hm(Ω;Rn), this means that infΩM

∗ > 0, supΩM
∗ < 1,

and u∗i ,M
∗ ∈ Hm(Ω). These properties ensure that the right-hand side of (37) defines a

continuous linear functional f : φ ∈ Hm(Ω;Rn) 7→ f(φ) ∈ R. Therefore we can deduce by
Lax-Milgram Lemma the existence of a unique solution w ∈ Hm

D (Ω;Rn) ⊂ L∞(Ω;Rn) to
(37).

Next, we observe that F (·, 0) ≡ 0 (trivial). Choosing φ = w in (37) allows us to easily
deduce that ‖w‖Hm(Ω) ≤ C for some constant C = C[w∗, uj−1] > 0. This bound and the
compact embedding Hm

D (Ω) →֒ L∞(Ω) imply that F is compact. By standard arguments
we can prove that F is continuous.

Let us now assume that w ∈ Hm(Ω;Rn) is a fixed point of F (·, σ) for some σ ∈ [0, 1],
and rename u ≡ u∗, M ≡ M∗ for better readability. Define qD ≡ q(

∑n
i=1 uD,i), pD ≡

p(
∑n

i=1 uD,i). By choosing φi = wi in (37) and exploiting (14) we obtain

σ

n
∑

i=1

∫

Ω





ui − uj−1
i

τ
wi + 4αip(M)2

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

− ri(u)wi



 dx+ τ

n
∑

i=1

‖wi‖2Hm(Ω) = 0.

However, since w = h′(u)− h′(uD) and h is convex, it follows

n
∑

i=1

(ui − uj−1
i )wi ≥ h∗(u|uD)− h∗(uj−1|uD),

and therefore

σ

τ

∫

Ω

h∗(u|uD)dx+ 4σ
n
∑

i=1

αi

∫

Ω

p(M)2

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

dx

+ τ
n
∑

i=1

‖wi‖2Hm(Ω) ≤
σ

τ

∫

Ω

h∗(uj−1|uD)dx+ σ
n
∑

i=1

∫

Ω

ri(u)widx.
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By applying Lemma 7 we deduce

σ

τ

∫

Ω

h∗(u|uD)dx+ 2σ

n
∑

i=1

αi

∫

Ω

p(M)2

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

dx+ τ

n
∑

i=1

‖wi‖2Hm(Ω)(38)

≤ σ

τ

∫

Ω

h∗(uj−1|uD)dx+ σ

n
∑

i=1

∫

Ω

ri(u)widx− C0σ

∫

Ω

Ma−1|∇M |2
(1−M)1+b+κ

dx.

We are going to show that the right-hand side of the above inequality can be bound by
the entropy. Let MD =

∑n
i=1 uD,i ∈ (0, 1). It holds that

∫ T

0

∫

Ω

Ma−1

(1−M)1+b+κ
|∇M |2 dxdt

≥
∫

{M≥MD}

Ma−1

(1−M)1+b+κ
|∇M |2 dxdt

≥Ma−1
D

∫ T

0

∫

Ω

χ{M≥MD}
(1−M)1+b+κ

|∇M |2 dxdt

= C

∫ T

0

∫

Ω

∣

∣

∣
∇
(

(1−M)
1−b−κ

2 − (1−MD)
1−b−κ

2

)

+

∣

∣

∣

2

dxdt

≥ CP

∫ T

0

∫

Ω

(

(1−M)
1−b−κ

2 − (1−MD)
1−b−κ

2

)2

+
dxdt,

where we used the Poincaré inequality in the last line. Thus we obtain
∫ T

0

∫

Ω

Ma−1|∇M |2
(1−M)1+b+κ

dxdt ≥ c

∫ T

0

∫

Ω

(1−M)1−b−κdxdt− C.(39)

Thanks to (16)–(18) the reaction term can be bounded as follows:

n
∑

i=1

∫

Ω

ri(u)widx ≤ λr

∫

Ω

(1 + h∗(u|uD))dx

+ Cr

n
∑

i=1

∫

Ω

usi
(1−M)µ

∣

∣

∣

∣

log

(

uiq(M)

p(M)

)

− log

(

uD,iqD
pD

)∣

∣

∣

∣

dx

≤ λr

∫

Ω

(1 + h∗(u|uD))dx+ Crc1

∫

Ω

(1−M)−µdx

+ Crc2

∫

Ω

Ms| log(q(M)/p(M))|
(1−M)µ

dx.

By using (27) we deduce

n
∑

i=1

∫

Ω

ri(u)widx ≤ λr

∫

Ω

(1 + h∗(u|uD))dx+ CrC

∫

Ω

(1−M)−κ−µdx.
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Due to assumption (18) we have µ < b − 1, so we can apply Young inequality to the
right-hand side of the above estimate and conclude

n
∑

i=1

∫

Ω

ri(u)widx ≤ λr

∫

Ω

(1 + h(u))dx+ Crε

∫

Ω

(1−M)1−b−κ dx+ CrC(ε).

By choosing ε > 0 small enough in the above estimate and exploiting (39), from (38) we
get

σ

τ

∫

Ω

h∗(u|uD)dx+ 2σ

n
∑

i=1

αi

∫

Ω

p(M)2

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

dx(40)

+ τ
n
∑

i=1

‖wi‖2Hm(Ω) ≤
(σ

τ
+ C1

)

∫

Ω

h∗(uj−1|uD)dx+ C2

for some suitable constants C1, C2 ≥ 0, which are independent of both σ and τ . Moreover,
the constants C1, C2 can be chosen to be equal to zero in the case that λr = Cr = 0 in
(17), (18). In particular, (40) yields a σ−uniform bound for w in Hm(Ω), and a fortiori in
L∞(Ω).

Thanks to Leray-Schauder’s fixed point theorem we infer the existence of a fixed point
wj ∈ Hm(Ω;Rn) for F (·, 1), that is, a solution to (36).

Step 3: uniform in τ a-priori estimates. Let us define the piecewise constant-in-time
functions

u(τ)(t) = u0χ{0}(t) +

N
∑

j=1

ujχ(tj−1,tj ](t), w(τ)(t) = w0χ{0}(t) +

N
∑

j=1

wjχ(tj−1,tj ](t),

and let M (τ) =
∑n

i=1 u
(τ)
i . We also define the discrete backward time derivative operator

Dτ as follows: for every function f : QT → R,

Dτf(x, t) =
f(x, t)− f(x, t− τ)

τ
x ∈ Ω, t ∈ [τ, T ].

Now (40) can be written in the form of the discrete entropy inequality given by following:

Lemma 8 (Discrete entropy inequality). For all t ∈ [0, T ] it holds

Dτ

∫

Ω

h∗(u(τ)|uD)dx+ 2

n
∑

i=1

αi

∫

Ω

p(M (τ))2

∣

∣

∣

∣

∣

∣

∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∣

∣

∣

∣

∣

∣

2

dx(41)

+ τ

n
∑

i=1

‖w(τ)
i ‖2Hm(Ω) ≤ C1

∫

Ω

h∗(u(τ)|uD)dx+ C2,

for some suitable constants C1, C2 ≥ 0. Moreover, the constants C1, C2 can be chosen to

be equal to zero in the case that λr = Cr = 0 in (17) and (18).
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From Lemma 7, the entropy inequality (41) and estimate (39) we deduce (via a discrete
Gronwall argument) the following bounds, which are uniform with respect to τ :

∥

∥h(u(τ))
∥

∥

L∞(0,T ;L1(Ω))
≤ C,(42)

∥

∥

∥

∥

∥

∥

p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∥

∥

∥

∥

∥

∥

L2(0,T ;L2(Ω))

≤ C (i = 1, . . . , n),(43)

∥

∥

∥

∥

√

p(M (τ))q(M (τ))∇
√

u
(τ)
i

∥

∥

∥

∥

L2(0,T ;L2(Ω))

≤ C (i = 1, . . . , n),(44)

∥

∥

∥
∇(M (τ))

a+1
2

∥

∥

∥

L2(0,T ;L2(Ω))
≤ C,(45)

∥

∥(1−M (τ))1−b−κ
∥

∥

L1(0,T ;L1(Ω))
≤ C,(46)

τ 1/2
∥

∥w(τ)
∥

∥

L2(0,T ;Hm(Ω))
≤ C.(47)

Moreover we recall that (by construction) u(τ)(x, t) ∈ D a.e. (x, t) ∈ Ω × (0, T ), where D
is defined by (11). Therefore

(48) ‖u(τ)i ‖L∞(0,T ;L∞(Ω)) ≤ C (i = 1, . . . , n).

Furthermore, from (28), (44) we get

(49) ‖(M (τ))
a−1
2 ∇u(τ)i ‖L2(QT ) ≤ C (i = 1, . . . , n).

We also point out that (27), (42) imply

(50) (1−M (τ))1−κ ∈ L∞(0, T ;L1(Ω)).

The discretized-regularized system (36) can be rewritten, in the new notation, as

n
∑

i=1

∫ T

0

∫

Ω

(

(Dτu
(τ)
i )φi + αip

2(M (τ))∇
(

u
(τ)
i q(M (τ))

p(M (τ))

)

· ∇φi − ri(u
(τ))φi

)

dxdt(51)

+ τ

n
∑

i=1

∫ T

0

(w
(τ)
i , φi)Hmdt = 0,

for piecewise constant-in-time functions φ : [0, T ] → Hm
D (Ω;Rn). However, thanks to a

standard density argument, (51) holds for all φ ∈ L2(0, T ;Hm
D (Ω;Rn)).

Next, we wish to find a τ−uniform bound for Dτu
(τ). We first estimate the term

p2(M (τ))∇
(

u
(τ)
i q(M (τ))/p(M (τ))

)

. We distinguish two cases.

Case 1: when κ ≥ b − 1, then p(M (τ))q(M (τ)) is bounded in L∞(QT ) thanks to (26). It
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follows
∥

∥

∥

∥

∥

p2(M (τ))∇
(

u
(τ)
i q(M (τ))

p(M (τ))

)∥

∥

∥

∥

∥

L2(QT )

≤ 2

∥

∥

∥

∥

√

u
(τ)
i p(M (τ))q(M (τ))

∥

∥

∥

∥

L∞(QT )

∥

∥

∥

∥

∥

∥

p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∥

∥

∥

∥

∥

∥

L2(QT )

≤ 2
∥

∥p(M (τ))q(M (τ))
∥

∥

1/2

L∞(QT )

∥

∥

∥

∥

∥

∥

p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∥

∥

∥

∥

∥

∥

L2(QT )

.

Case 2: if κ < b− 1, then p(M (τ))q(M (τ)) is bounded in L
b+κ−1
b−κ−1 (QT ) due to (26) and (46).

This leads to
∥

∥

∥

∥

∥

p2(M (τ))∇
(

u
(τ)
i q(M (τ))

p(M (τ))

)∥

∥

∥

∥

∥

L
1+ κ

b−1 (QT )

≤ 2

∥

∥

∥

∥

√

u
(τ)
i p(M (τ))q(M (τ))

∥

∥

∥

∥

L
2(b+κ−1)
b−κ−1 (QT )

∥

∥

∥

∥

∥

∥

p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∥

∥

∥

∥

∥

∥

L2(QT )

≤ 2
∥

∥p(M (τ))q(M (τ))
∥

∥

1/2

L
b+κ−1
b−κ−1 (QT )

∥

∥

∥

∥

∥

∥

p(M (τ))∇

√

u
(τ)
i q(M (τ))

p(M (τ))

∥

∥

∥

∥

∥

∥

L2(QT )

.

The above estimates and (43) allow us to deduce

(52)

∥

∥

∥

∥

∥

p2(M (τ))∇
(

u
(τ)
i q(M (τ))

p(M (τ))

)∥

∥

∥

∥

∥

L1+ρ(QT )

≤ C (i = 1, . . . , n), ρ = min

{

1,
κ

b− 1

}

.

As a byproduct of the above calculations we also get the following uniform bound:

(53)



























∥

∥

∥

∥

√

u
(τ)
i p(M (τ))q(M (τ))

∥

∥

∥

∥

L∞(QT )

≤ C, κ ≥ b− 1,

∥

∥

∥

∥

√

u
(τ)
i p(M (τ))q(M (τ))

∥

∥

∥

∥

L
2(b+κ−1)
b−κ−1 (QT )

≤ C, κ < b− 1.

Let us now deal with the reaction term. From (18), (19) we deduce in particular that
|ri(u(τ))| ≤ C(1−M (τ))−η with η < b+ κ− 1. Therefore (46) leads to

‖ri(u(τ))‖
L

b+κ−1
η (QT )

≤ C.(54)
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From (47), (52), (54) it follows
∫ T

0

∫

Ω

(Dτu
(τ)
i )φdxdt(55)

≤ C

(

‖φ‖
L

1+ρ
ρ (0,T ;W

1,
1+ρ
ρ (Ω))

+ ‖φ‖
L

b+κ−1
b+κ−1−η (QT )

+ τ 1/2‖φ‖L2(0,T ;Hm(Ω))

)

,

for i = 1, . . . , n. This estimate, together with the Sobolev embedding Hm(Ω) →֒ L∞(Ω)

and the trivial relation L∞(Ω) →֒ L
b+κ−1

b+κ−1−η (Ω), implies that Dτu
(τ)
i (and also DτM

(τ)) is

uniformly bounded in L1+ε(0, T ; (W 1, 1+ρ
ρ (Ω)∩Hm(Ω))′), for i = 1, . . . , n and some ε > 0.

Step 4: Limit τ → 0. The uniform bound for DτM
(τ) in L2(0, T ;Hm(Ω)′), together with

(45) and (48), allows us to apply [5, Theorem 3] with Q(s) = s
a+3
2 and deduce

M (τ) → M strongly in Ls(Ω× (0, T )), for all s <∞.(56)

The strong convergence ofM (τ) and bound (46) yield via Fatou’s lemma that (1−M)1−b−κ ∈
L1(QT ), and therefore

M < 1 a.e. in QT .

Moreover, thanks to the uniform bound for Dτu
(τ)
i in L1+ε(0, T ; (W 1, 1+ρ

ρ (Ω) ∩ Hm(Ω))′)
and estimates (45), (48), (49), we can apply [26, Lemma 7] to deduce that

(M (τ))
a+1
2 u

(τ)
i →M

a+1
2 ui strongly in Ls(QT ), for every s <∞, i = 1, . . . , n.(57)

In particular, (M (τ))
a+1
2 u

(τ)
i → M

a+1
2 ui a.e. in QT , which implies

u
(τ)
i =

(M (τ))
a+1
2 u

(τ)
i

(M (τ))
a+1
2

→ M
a+1
2 ui

M
a+1
2

= ui a.e. in QT ∩ {M > 0}.

Moreover, since 0 ≤ u
(τ)
i ≤M (τ) for 1 ≤ i ≤ n, clearly

u
(τ)
i → 0 a.e. in QT ∩ {M = 0} (1 ≤ i ≤ n).

However, ui = 0 on QT ∩ {M = 0}. In fact, given any nonnegative φ ∈ L2(QT ) having
support contained in {M = 0}, it holds

0 ≤
∫

QT

u
(τ)
i φ dxdt ≤

∫

QT

M (τ)φ dxdt→
∫

QT

Mφdxdt = 0,

implying that the weak limit ui of u
(τ)
i vanishes on QT ∩ {M = 0}. Summarizing up, by

dominated convergence,

u
(τ)
i → ui strongly in Ls(QT ) ∀s <∞, 1 ≤ i ≤ n.(58)

From (52) it follows that p(M (τ))2∇(u
(τ)
i q(M (τ))/p(M (τ))) is weakly convergent in L1+ρ(QT ),

where ρ = min{1, κ/(b− 1)}. However,

(59) p2(M (τ))∇
(

u
(τ)
i q(M (τ))

p(M (τ))

)

= 2

√

u
(τ)
i p(M (τ))q(M (τ)) p(M (τ))∇

√

u
(τ)
i q(M (τ))

p(M (τ))
.
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Let us consider the first factor on the right-hand side of (59), i.e.

√

u
(τ)
i p(M (τ))q(M (τ)).

The a.e. convergence of u
(τ)
i , M (τ) and the fact that M < 1 a.e. in QT imply that

√

u
(τ)
i p(M (τ))q(M (τ)) →

√

uip(M)q(M) a.e. in QT . Bound (53) allows us to conclude

that

(60)

√

u
(τ)
i p(M (τ))q(M (τ)) →

√

uip(M)q(M) strongly in L2(QT ).

From (43) it follows

(61) p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))
⇀ ψi weakly in L2(QT ), i = 1, . . . , n,

for some function ψ ∈ L2(QT ;R
n). From (43), (60), (61) we deduce

p(M (τ))2∇
(

u
(τ)
i q(M (τ))

p(M (τ))

)

⇀ 2
√

uip(M)q(M)ψi weakly in L1(QT ).(62)

We wish to identify the function ψi. For an arbitrary φ ∈ C∞
c (QT ) let us consider

−
∫

QT

φ p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))
dxdt = J

(τ)
1 + J

(τ)
2 ,(63)

J
(τ)
1 =

∫

QT

√

u
(τ)
i p(M (τ))q(M (τ))∇φ dxdt,

J
(τ)
2 =

∫

QT

φp′(M (τ))

√

u
(τ)
i q(M (τ))

p(M (τ))
∇M (τ) dxdt.

From (60) it follows immediately that

(64) J
(τ)
1 →

∫

QT

√

uip(M)q(M)∇φ dxdt.

Let us now consider J
(τ)
2 :

J
(τ)
2 =

∫

QT

φp′(M (τ))

√

u
(τ)
i q(M (τ))

p(M (τ))
∇M (τ) dxdt

=

∫

QT

φ

√

u
(τ)
i g(M (τ))

(M (τ))
a−1
2 ∇M (τ)

(1−M (τ))
1+b+κ

2

dxdt,

g(M) ≡M− a−1
2 (1−M)

1+b+κ
2

p′(M)

p(M)

√

p(M)q(M) 0 < M < 1.

From (28) it follows that g in continuous in [0, 1). From the a.e. convergence of M (τ) and
the fact that M < 1 a.e. in QT it follows that g(M (τ)) → g(M) a.e. in QT . On the other
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hand, by exploiting (9), (26) the function g can be estimated for M → 1 as follows

|g(M)| ≤ C
√

q(M)p(M)
|p′(M)|
p(M)

(1−M)
1+b+κ

2

≤ C(1−M)
1+κ−b

2 (1−M)−1−κ(1−M)
1+b+κ

2

≤ C as M → 1.

This means that g is bounded in [0, 1]. This fact, together with the a.e. convergence of
g(M (τ)), implies that g(M (τ)) → g(M) strongly in Ls(QT ) for every s <∞.

Let us now consider the term

(M (τ))
a−1
2 ∇M (τ)

(1−M (τ))
1+b+κ

2

= ∇Φ(M (τ)), Φ(M) ≡
∫ M

0

s
a−1
2

(1− s)
1+b+κ

2

ds.

Lemma 7 and the entropy inequality (41) ensure that ∇Φ(M (τ)) is uniformly bounded in
L2(QT ). Moreover we know that Φ(M (τ)) → Φ(M) a.e. in QT . Furthermore,

Φ(M) ≤
∫ M

0

ds

(1− s)
1+b+κ

2

=
(1−M)

1−b−κ
2 − 1

(b+ κ− 1)/2
,

which, thanks to (46), implies that Φ(M (τ)) is uniformly bounded in L2(QT ). This means
that Φ(M (τ)) → Φ(M) strongly in L2−δ(QT ) for every δ > 0. As a consequence, we get
that ∇Φ(M (τ)) ⇀ ∇Φ(M) weakly in L2(QT ). The weak convergence of ∇Φ(M (τ)), the
strong convergence of g(M (τ)), and the strong convergence of u(τ) (58) allow us to conclude

(65) J
(τ)
2 →

∫

QT

φp′(M)

√

uiq(M)

p(M)
∇M dxdt.

By putting (61)–(65) together we conclude

p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))
⇀ p(M)∇

√

uiq(M)

p(M)
weakly in L2(QT ),(66)

p(M (τ))2∇
(

u
(τ)
i q(M (τ))

p(M (τ))

)

⇀ p(M)2∇
(

uiq(M)

p(M)

)

weakly in L1(QT ),(67)

for i = 1, . . . , n. Estimate (55) yields

(68) Dτu
(τ)
i ⇀ ∂tui weakly in L1+ε(0, T ; (W 1, 1+ρ

ρ (Ω) ∩Hm(Ω))′), i = 1, . . . , n.

Let us now study the convergence of the reaction term. From (54) and the fact that
(b + κ − 1)/η > 1 (by assumption (19)), if we can prove the a.e. convergence of ri(u

(τ))
in QT then strong convergence in a suitable space will follow. However, we know that
u(τ) → u a.e. in QT and r is continuous in {M < 1}; therefore r(u(τ)) → r(u) a.e. in QT .
We conclude that r(u(τ)) → r(u) strongly in L1(QT ).
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Finally, τw(τ) → 0 strongly in L2(0, T ;Hm(Ω)) thanks to (47). We conclude that we can
take the limit τ → 0 in (51) and obtain

n
∑

i=1

〈∂tui, φi〉+
n
∑

i=1

∫

Ω

(

αip
2(M)∇

(

uiq(M)

p(M)

)

· ∇φi − ri(u)φi

)

dx = 0,(69)

for every φ = (φ1, . . . , φn) ∈ C∞
c (QT ;R

n). However, (52) and (54) allow us to deduce via

a density argument that (69) holds for all φ ∈ L
ρ+1
ρ (0, T ;W 1, ρ+1

ρ (Ω)) ∩ L b+κ−1
b+κ−1−η (QT ).

Step 5: Entropy inequality. Testing (41) against an arbitrary test function φ ∈ C1
c (0, T )

(and performing a “discrete integration by parts”) leads to

∫ T

0

∫

Ω

h∗(u(τ)|uD)D−τφ dxdt+ 2

n
∑

i=1

αi

∫ T

0

∫

Ω

p(M (τ))2

∣

∣

∣

∣

∣

∣

∇

√

u
(τ)
i q(M (τ))

p(M (τ))

∣

∣

∣

∣

∣

∣

2

φdxdt(70)

≤
∫ T

0

(

C1

∫

Ω

h∗(u(τ)|uD)dx+ C2

)

φ dt.

From (66) and the weakly lower semicontinuity of the L2 norm it follows

lim inf
τ→0

n
∑

i=1

∫ T

0

∫

Ω

p(M (τ))2

∣

∣

∣

∣

∣

∣

∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∣

∣

∣

∣

∣

∣

2

φdxdt

≥
n
∑

i=1

∫ T

0

∫

Ω

p(M)2

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

φdxdt

On the other hand, (27) and the definition of h implies (via l’Hôpital’s rule) that h(u) ≤
C(1 −M)1−κ. Since (46) holds, we deduce that h(u(τ)) is bounded in L1+δ(QT ) for some
δ > 0. The a.e. convergence of u(τ), the fact that M < 1 a.e. in QT , and the continuity of
h in {M < 1} implies the a.e. convergence of h(u(τ)) towards h(u). We conclude that

(71) h∗(u(τ)|uD) → h∗(u|uD) strongly in L1+δ/2(QT ).

Since D−τφ = −τ−1(φ(·+τ)−φ) → −∂tφ strongly in Ls(0, T ) for all s <∞, from (70)–(71)
we get

−
∫ T

0

∫

Ω

h∗(u|uD)∂tφ dxdt+ 2αi

n
∑

i=1

∫ T

0

∫

Ω

p(M)2

∣

∣

∣

∣

∣

∇
√

uiq(M)

p(M)

∣

∣

∣

∣

∣

2

φdxdt(72)

≤
∫ T

0

(

C1

∫

Ω

h∗(u|uD)dx+ C2

)

φ dt, ∀φ ∈ C1
c (0, T ) : φ ≥ 0.

Therefore (20) holds. This finishes the proof of the existence Theorem. �

Remark 9. Theorem 1 can be proved also in the case of nonconstant, x−dependent
Dirichlet boundary data uD,i = uD,i(x) (i = 1, . . . , n). We can assume for the sake of
simplicity that uD,i ∈ W 1,∞(Ω), i = 1, . . . , n, and supΩMD < 1. The only relevant
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difference with the case uD =constant lies in the proof of Lemma 8 (i.e. the discrete
entropy inequality). In fact, the following additional term appears on the right-hand side
of (38):

Ξ =
n
∑

i=1

αi

∫ T

0

∫

Ω

∇ log

(

uD,iq(MD)

p(MD)

)

· p2(M (τ))∇
(

u
(τ)
i q(M (τ))

p(M (τ))

)

dxdt.

This term can be estimated as follows:

Ξ = 2
n
∑

i=1

αi

∫ T

0

∫

Ω

∇ log

(

uD,iq(MD)

p(MD)

)

·
√

u
(τ)
i p(M (τ))q(M (τ)) p(M (τ))∇

√

u
(τ)
i q(M (τ))

p(M (τ))
dxdt

≤ 2

n
∑

i=1

αi

∥

∥

∥

∥

∇ log

(

uD,iq(MD)

p(MD)

)∥

∥

∥

∥

L∞(QT )

∥

∥

∥

∥

√

u
(τ)
i p(M (τ))q(M (τ))

∥

∥

∥

∥

L2(QT )

×

∥

∥

∥

∥

∥

∥

p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∥

∥

∥

∥

∥

∥

L2(QT )

≤ C

ε

∥

∥

∥

∥

√

u
(τ)
i p(M (τ))q(M (τ))

∥

∥

∥

∥

2

L2(QT )

+ Cε

∥

∥

∥

∥

∥

∥

p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∥

∥

∥

∥

∥

∥

2

L2(QT )

,

for some ε > 0. However, thanks to (26), it holds

∥

∥

∥

∥

√

u
(τ)
i p(M (τ))q(M (τ))

∥

∥

∥

∥

2

L2(QT )

≤ C
∥

∥(1−M (τ))(1+κ−b)/2
∥

∥

2

L2(QT )

= C

∫ T

0

∫

Ω

(1−M (τ))1+κ−bdxdt.

We wish to estimate the last integral in the above inequality. It holds

∫ T

0

∫

Ω

(1−M (τ))1+κ−bdxdt

=

∫∫

{1−M (τ)≥ε
1
κ }
(1−M (τ))1+κ−bdxdt+

∫∫

{1−M (τ)<ε
1
κ }
(1−M (τ))1+κ−bdxdt

≤ C(ε) + ε2
∫∫

{1−M (τ)<ε
1
κ }
(1−M (τ))1−κ−bdxdt

≤ C(ε) + ε2
∫ T

0

∫

Ω

(1−M (τ))1−κ−bdxdt.
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Thus, we deduce that

Ξ ≤ C(ε) + Cε

∫ T

0

∫

Ω

(1−M (τ))1−κ−bdxdt + Cε

∥

∥

∥

∥

∥

∥

p(M (τ))∇
√

u
(τ)
i q(M (τ))

p(M (τ))

∥

∥

∥

∥

∥

∥

2

L2(QT )

.

Lemma 7 allows us to bound Ξ by means of the entropy dissipation by choosing ε > 0
small enough, thereby yielding Lemma 8. The rest of the proof is analogue to the case
uD =constant.

Remark 10. The existence proof works also in the case (4) is replaced by homogeneous
Neumann boundary conditions on the whole ∂Ω. In this case the relative entropy (12)
cannot be employed (as uD is obviously not defined), and the absolute entropy H [u] =
∫

Ω
h(u)dx can be used instead. However, the assumptions on the reaction term need to be

modified, as the total mass

M(t) = |Ω|−1

∫

Ω

M(x, t)dx(73)

needs to remain strictly smaller then 1 for any finite time in order to prevent blowup. A
sufficient condition for this reads as

∃C ∈ R :
n
∑

i=1

ri(u) ≤ C(1−M) ∀u ∈ D.(74)

By integrating (1) in Ω, summing from i = 1, . . . , n, and exploiting (74), one can easily
show that

1−M(t) ≥ e−λt(1−M(0)) t > 0, λ ≡ max{C, 0},
where M(t) is the total mass defined in (73). This control on the total mass M(t) allows
us to apply Lemma 13 with M = M (τ) and obtain bound (46) for the singularity, which
is the only delicate point in the existence proof for the case of homogeneous Neumann
boundary conditions; the rest of the argument works in a completely analogue way to the
case of mixed Dirichlet-Neumann boundary conditions.

5. Proof of Theorem 2

From the definition (12), (13) of the relative entropy density it follows

h∗(u|uD) =
n
∑

i=1

(

ui log
ui
uD,i

+ uD,i − ui
)

+

∫ M

MD

log
( q(s)/p(s)

q(MD)/p(MD)

)

ds.

Now we split the above written relative entropy density in two parts,

h∗(u|uD) =
n
∑

i=1

h∗1(ui|uD,i) + h∗2(M |MD),
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where

h∗1(u|uD) = u log
u

uD
+ uD − u,

h∗2(M |MD) =

∫ M

MD

log
( q(s)/p(s)

q(MD)/p(MD)

)

ds.

The entropy inequality (20) and Lemma 7 yield, since λr = Cr = 0,

d

dt

∫

Ω

h∗(u|uD)dx+ C1

n
∑

i=1

∫

Ω

p(M)q(M)|∇√
ui|2dx

+ C2

∫

Ω

Ma−1

(1−M)1+b+κ
|∇M |2dx ≤ 0.(75)

We want to estimate the integral
∫

Ω

p(M)q(M)|∇√
ui|2dx

from below using the term
∫

Ω
h∗1(ui|uD,i)dx. We start by observing that, thanks to (26)

and (28), it holds
p(M)q(M) ≥ CMa(1−M)1+κ−b.

It follows
∫

Ω

p(M)q(M)|∇√
ui|2dx ≥ C

∫

Ω

Ma(1−M)1+κ−b|∇√
ui|2dx

≥ C

∫

Ω

uai (1−M)1+κ−b|∇√
ui|2dx

≥ C

∫

Ω

ua−1
i (1−M)1+κ−b|∇ui|2dx

= C

∫

Ω

(1−M)1+κ−b|∇
(

u
a+1
2

i

)

|2dx.(76)

On the other side, we notice that the term
∫

Ω
|∇
(

u
a+1
2

i

)

|dx can be estimated through the
Cauchy-Schwarz inequality as follows

∫

Ω

|∇
(

u
a+1
2

i

)

|dx =

∫

Ω

(1−M)(1+κ−b)/2|∇u(a+1)/2
i |

(1−M)(1+κ−b)/2
dx

≤
(

∫

Ω

(1−M)−1−κ+bdx
)1/2(

∫

Ω

(1−M)1+κ−b|∇u(a+1)/2
i |2dx

)1/2

.(77)

The first integral in the last row of (77) can be controlled by means of the L∞(L1) bound
on (1−M)1−κ:

∫

Ω

(1−M)−1−κ+bdx ≤
∫

Ω

(1−M)1−κdx ≤ C,
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where we used the fact that −1− κ+ b ≥ 1− κ which holds true for b ≥ 2. In this way we
get

∫

Ω

p(M)q(M)|∇√
ui|2dx ≥ C

(

∫

Ω

|∇u(a+1)/2
i |dx

)2

.(78)

Finally, by using the Poincaré inequality we get
∫

Ω

p(M)q(M)|∇√
ui|2dx ≥ C

(

∫

Ω

|u(a+1)/2
i − (uD,i)

(a+1)/2| dx
)2

.(79)

Next step is to bound term |u(a+1)/2
i − (uD,i)

(a+1)/2| from below by h∗1(ui|uD,i). For ui ≤
uD,i/2 it holds

|u(a+1)/2
i − (uD,i)

(a+1)/2| = (uD,i)
(a+1)/2 − u

(a+1)/2
i ≥ C ≥ C|ui − uD,i|.

Moreover,

h∗1(ui|uD,i) = ui log
ui
uD,i

+ uD,i − ui ≤ uD,i − ui ≤ |ui − uD,i|.

On the other hand, for ui ≥ uD,i/2, by the mean-value theorem and the Taylor’s formula,

there exist ξ
(1)
i , ξ

(2)
i intermediate between ui and uD,i such that,

|u(a+1)/2
i − (uD,i)

(a+1)/2| = a+ 1

2

(

ξ
(1)
i

)(a−1)/2

|ui − uD,i| ≥ C|ui − uD,i|,

h∗1(ui|uD,i) =
1

2ξ
(2)
i

(ui − uD,i)
2 ≤ C|ui − uD,i|.

So in both cases

(80) |u(a+1)/2
i − (uD,i)

(a+1)/2| ≥ C|ui − uD,i| ≥ Ch∗1(ui|uD,i) (i = 1, . . . , n).

From (79), (80) we deduce
∫

Ω

p(M)q(M)|∇√
ui|2dx ≥ C

(

∫

Ω

h∗1(u|uD)dx
)2

(81)

Next step is to estimate the third integral in (75) from below by the integral
∫

Ω

h∗2(M |MD)dx.

For that purpose we define

Φ(M) :=

∫ M

MD

s(a−1)/2

(1− s)(1+b+κ)/2
ds, 0 ≤ M < 1.(82)

Now, one gets
∫

Ω

Ma−1

(1−M)1+b+κ
|∇M |2dx =

∫

Ω

|∇Φ(M)|2dx ≥ C

∫

Ω

|Φ(M)|2dx,(83)

where we used the Poincaré inequality in order to make the last estimate.
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Further, we claim that

h∗2(M |MD) ≤ CΦ(M)2(84)

i.e.
∫ M

MD

log
( q(s)/p(s)

q(MD)/p(MD)

)

ds ≤ C
(

∫ M

MD

s(a−1)/2

(1− s)(1+b+κ)/2
ds
)2

.(85)

For checking the claim (84) we need to show that the function

F (M) :=
h∗2(M |MD)

Φ(M)2
(86)

is bounded. Note that for 0 ≤M < 1 and M 6=MD it is clear that F ∈ C
(

[0, 1) \ {MD}
)

.
It remains to check the behavior of function F near M = 1 and M = MD. By using the

estimate s(a−1)/2 ≥ M
(a−1)/2
D inside the integral defining Φ and noticing that Φ′(MD) 6= 0

we deduce

Φ(M) ∼ |M −MD| (M → MD), Φ(M) ∼ (1−M)
1−b−κ

2 (M → 1).

These relations, estimate (27) and the fact that h∗2(MD|MD) =
∂

∂M
h∗2(M |MD)|M=MD

= 0
allow us to obtain

F (M) ∼ (1−M)1−κ

(1−M)1−κ−b
∼ (1−M)b → 0 (M → 1),

and that F is bounded as M → MD. It follows that function F is bounded which proves
our claim (84).

In this way we get
∫

Ω

Ma−1

(1−M)1+b+κ
|∇M |2dx ≥ C

∫

Ω

h∗2(M |MD)dx.(87)

On the other side, one has
∫

Ω

h∗2(M |MD)dx ≤
∫

Ω

h∗(u|uD)dx ≤
∫

Ω

h∗(u0|uD)dx = C > 0,(88)

so (87) implies a fortiori that
∫

Ω

Ma−1

(1−M)1+b+κ
|∇M |2dx ≥ C

(

∫

Ω

h∗2(M |MD)dx
)2

.(89)

Finally, we collect estimates (81) and (89) and we combine them with the entropy inequality
(75). We get

d

dt

∫

Ω

h∗(u|uD)dx+ C
(

∫

Ω

h∗(u|uD)dx
)2 ≤ 0.(90)

Let us denote

w(t) =

∫

Ω

h∗(u|uD)dx.
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Now, equation (90) can be written as

d

dt
w(t) + Cw(t)2 ≤ 0.(91)

By integrating (91) with respect to time, from 0 to t (t > 0), one gets

1

H0

− 1

w(t)
≤ −Ct,

where H0 =
∫

Ω
h∗(u0|uD)dx. Now, direct calculations give

∫

Ω

h∗(u|uD)dx ≤ H0

1 + tCH0
.(92)

Since h∗(u|uD) ≥
∑n

i=1 h
∗
1(ui|uD,i) and the Hessian of u 7→ h∗1(u|uD) is uniformly positive

definite for 0 < u ≤ 1, by Taylor-expanding h∗1(ui|uD,i) around uD,i we conclude
∫

Ω

h∗(u|uD)dx ≥
n
∑

i=1

∫

Ω

h∗1(ui|uD,i)dx ≥ C

n
∑

i=1

∫

Ω

|ui − uD,i|2dx.

This finishes the proof of Theorem 2. �

Remark 11. A similar (albeit weaker) result on the long-time behavior of the solutions
to (3) holds in the case of homogeneous Neumann boundary conditions with vanishing
reactions. Indeed, one can show that, if a ≤ 1, κ < 1, b ≥ 2, and r(u) ≡ 0, then C > 0,
θ ∈ (0, 1) exist such that

‖u− 〈u〉‖2L2(Ω) ≤
C

(1 + t)θ
t > 0,

where 〈u〉 = |Ω|−1
∫

Ω
udx = |Ω|−1

∫

Ω
u0dx is the steady state of the system. The assumption

r = 0 is made for the sake of simplicity; as a matter of fact, the result could be generalized
to the case of nonzero reaction terms with zero space average and suitable dissipative
properties (like e.g. r(u) · ∂

∂u
h(u|〈u〉) ≤ 0). However, such a case seems quite artificial.

The main differences with the case of mixed Dirichlet-Neumann boundary conditions
appear in two points. The first one is the proof that the right-hand side of (78) dominates
∫

Ω
h∗1(u|〈u〉)dx. In the case of homogeneous Neumann boundary conditions, Poincaré in-

equality yields (thanks to the assumption a ≤ 1): 2

∫

Ω

|∇u(a+1)/2
i |dx ≥ c

∫

Ω

|∇ui|dx ≥ c′
∫

Ω

|ui − 〈ui〉|dx.

The above inequality, together with (78), (80), implies (81) with uD replaced by 〈u〉.
The other delicate point in the proof is to relate the second integral on the right-hand

side of (75) with
∫

Ω
h∗2(M |〈M〉)dx. We start by noticing that the relation a ≤ 1 and

2We point out that, if a > 1, the term 〈u(a+1)/2
i 〉 would be present in the inequality in place of 〈ui〉; it

is not clear how the argument would work in this case.
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Poincaré inequality yield

(93)

∫

Ω

Ma−1

(1−M)1+b+κ
|∇M |2dx ≥

∫

Ω

|∇M |2dx ≥ C

∫

Ω

|M − 〈M〉|2dx.

Furthermore, since κ < 1, then (thanks to (27)) s 7→ log(q(s)/p(s)) is integrable in [0, 1].
A straightforward consequence of this fact is the property

h∗2(M |〈M〉) ≤ C|M − 〈M〉|1−κ,

for some constant C > 0. By Jensen’s inequality it follows

(94)

(
∫

Ω

h∗2(M |〈M〉)dx
)

2
1−κ

≤ C

(
∫

Ω

|M − 〈M〉|1−κdx

)
2

1−κ

≤ C‖M − 〈M〉‖2L2(Ω).

Putting (93), (94) together yields

∫

Ω

Ma−1

(1−M)1+b+κ
|∇M |2dx ≥ C

(
∫

Ω

h∗2(M |〈M〉)dx
)

2
1−κ

.

The rest of the proof is completely analogue to the case of mixed Dirichlet-Neumann
boundary conditions.

6. Proof of Theorem 3

The uniqueness proof is organized in two parts. First, using the H−1-method, we prove
the uniqueness of the total mass M . Consequently, in order to show the uniqueness of
the solution u = (u1, . . . , un)) we apply the E-monotonicity technique of Gajewski [12].
By summing equations (3), taking into account the assumption that αi = 1, and denoting
f(M) =Mq(M)/p(M), one gets

∂tM = div
(

p2(M)∇f(M)
)

+
n
∑

i=1

ri(u).(95)

Direct calculation gives

p2(M)∇f(M) =
(

p(M)q(M) +Mp(M)q′(M)−Mq(M)p′(M)
)

∇M.

Let us define the function Q as follows:

Q(M) =

∫ M

0

(

p(s)q(s) + p(s)q′(s)s− p′(s)q(s)s
)

ds.(96)

In this way, equation (95) can be written as

∂tM = ∆Q(M) +
n
∑

i=1

ri(u).(97)
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Let us assume that equation (97) has two different solutions M1 and M2. By substracting
equations, one gets

∂t(M1 −M2) = ∆
(

Q(M1)−Q(M2)
)

+

n
∑

i=1

(

ri(u1)− ri(u2)
)

.(98)

We test equation (98) using the test-function ϕ(t) which we choose in a special way. More
precisely, let ϕ(t) ∈ H1(Ω) be the unique solution to the following initial-boundary value
problem:

−∆ϕ(t) = (M1 −M2)(t) in Ω,

ϕ = 0 on ΓD,

∂ϕ

∂ν
= 0 on ΓN ,

ϕ(0) = ϕ0 in Ω.

(99)

By exploiting (98) and the fact that ∇ϕ(0) = 0 we deduce

1

2
‖∇ϕ(t)‖2L2(Ω) =

∫ t

0

1

2

d

dt
‖∇ϕ(s)‖2L2(Ω)ds = −

∫ t

0

〈∂t∆ϕ, ϕ〉ds =
∫ t

0

〈∂t(M1 −M2), ϕ〉ds

=

∫ t

0

〈∆
(

Q(M1)−Q(M2)
)

, ϕ〉ds+
∫ t

0

〈
n
∑

i=1

(ri(u1)− ri(u2), ϕ〉ds.

By integrating by parts and applying (99) we get

1

2
‖∇ϕ(t)‖2L2(Ω) = −

∫ t

0

∫

Ω

(

Q(M1)−Q(M2)
)

(M1 −M2)dxds

+

∫ t

0

∫

Ω

n
∑

i=1

(

ri(u1)− ri(u2)
)

ϕdxds.(100)

Let us first consider the second integral on the right-hand side of (100). Using the assump-
tion (23) we have

∫ t

0

∫

Ω

n
∑

i=1

(

ri(u1)− ri(u2)
)

ϕdxds = CJ1 + J2,(101)

J1 =

∫ t

0

∫

Ω

(M1 −M2)ϕdxds, J2 =

∫ t

0

∫

Ω

(

R(M1)−R(M2)
)

ϕdxds.

We calculate:

J1 = −
∫ t

0

∫

Ω

(∆ϕ)ϕdxds =

∫ t

0

∫

Ω

|∇ϕ|2dxds,

and using the mean-value theorem and assumption (24) we get

J2 ≤
∫ t

0

∫

Ω

|R′(M)||M1 −M2||ϕ|dxds ≤ C

∫ t

0

∫

Ω

M
a/2|M1 −M2||ϕ|dxds,



30 E. S. DAUS, J.-P. MILIŠIĆ, AND N. ZAMPONI

where M = ΘM1 + (1−Θ)M2, for some Θ ∈ [0, 1]. Next, Young inequality gives

J2 ≤ C(ε)

∫ t

0

∫

Ω

ϕ2(s)dxds+ ε

∫ t

0

∫

Ω

M
a
(M1 −M2)

2dxds.(102)

Further on, using the Poincaré inequality in the first integral of (102) and the estimate
M ≤ max{M1,M2}, one has

J2 ≤ C(ε)

∫ t

0

∫

Ω

|∇ϕ|2dxds+ ε

∫ t

0

∫

Ω

(

max{M1,M2}
)a
(M1 −M2)

2dxds.(103)

At this point we go back to the equation (100) where we consider the first integral on the
right-hand side. We claim that there exists a constant D > 0 such that

D
(

Q(M1)−Q(M2)
)

(M1 −M2) ≥
(

max{M1,M2}
)a
(M1 −M2)

2.(104)

In order to show (104), first we note that from (8), (96) follows that

Q′(M) = p2(M)
(Mq(M)

p(M)

)′
=

Ma

(1−M)b
.

Now, after integrating the previous expression from 0 to M we get

Q(M) =

∫ M

0

sa

(1− s)b
ds+Q(0).(105)

Using (105), we calculate the term on the left-hand side of (104). In this way we have

(

Q(M1)−Q(M2)
)

(M1 −M2) = (M1 −M2)

∫ M1

M2

sa

(1− s)b
ds

≥ (M1 −M2)

∫ M1

M2

sads =
(M1 −M2)

2

a+ 1
Ma

1

1− (M2/M1)
a+1

1− (M2/M1)
.(106)

A straightforward computation yields

1− xa+1

1− x
≥ Cmax{1, xa} = C

(

max{1, x}
)a
, x ≥ 0, x 6= 1,

therefore (106) leads to

(

Q(M1)−Q(M2)
)

(M1 −M2) ≥ C(M1 −M2)
2Ma

1

(

max
{

1,
M2

M1

})a

= C(M1 −M2)
2
(

max{M1,M2}
)a
,(107)

proving in this way the claim (104). Inserting estimate (107) in (103), we get

J2 ≤ C(ε)

∫ t

0

∫

Ω

|∇ϕ|2dxds

+ εD

∫ t

0

∫

Ω

(

Q(M1)−Q(M2)
)

(M1 −M2)dxds.(108)
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Now we go back to (100). Using the estimate (108) in (101) we get

1

2
‖∇ϕ(t)‖2L2(Ω) ≤ (εD − 1)

∫ t

0

∫

Ω

(

Q(M1)−Q(M2)
)

(M1 −M2)dxds

+ C(ε)

∫ t

0

∫

Ω

|∇ϕ|2dxds.(109)

Let us take ε = 1/D in (109). By applying Gronwall’s inequality and using the fact that
∇ϕ(0) = 0, one gets ∇ϕ(t) = 0 for all t > 0. Finally, from M1(t) −M2(t) = −∆ϕ(t) = 0
it follows directly that ∀t ∈ [0, T ] one has M1(t) = M2(t). In this way the uniqueness of
the total mass M is proven.

In the second part of the proof, in order to prove the uniqueness of solution, we will
follow the approach from [26] where the E-monotonicity technique of Gajewski [12] has
been applied. This method is based on the convexity of the logarithmic entropy. For this
purpose let us define the distance

d(u, v) =

n
∑

i=1

∫

Ω

(

ξ(ui) + ξ(vi)− 2ξ
(ui + vi

2

)

)

dx,(110)

where ξ(s) = s log s. Notice that d(u, v) ≥ 0 due to the convexity of the function ξ.
Since ui and vi are only nonnegative and expressions like log ui, log vi or log((ui + vi)/2

may be undefined, we need the regularization of distance given by (110). For that purpose
let 0 < ε < 1. We introduce the regularized distance

dε(u, v) =
n
∑

i=1

∫

Ω

(

ξε(ui) + ξε(vi)− 2ξε
(ui + vi

2

)

)

dx,(111)

where ξε(s) = (s+ ε) log(s+ ε).
Next, we observe that dε(u(0), v(0)) = 0 as u and v have the same initial data. Using

equation (1) written in the form

∂tui = div
(

pq∇ui + uip
2∇
(q

p

)

)

+ ri(u),(112)

we compute

d

dt
dε(u, v) =

n
∑

i=1

(

I1,i + I2,i − I3,i

)

, I1,i = 〈∂tui, log(ui + ε)〉,

I2,i = 〈∂tvi, log(vi + ε)〉, I3,i =
〈

∂t(ui + vi), log
(ui + vi

2
+ ε
)〉

.
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Taking into account the equation (112) and performing partial integration gives

I1,i = −
∫

Ω

∇ui
ui + ε

(

pq∇ui + uip
2∇
(q

p

)

)

dx+

∫

Ω

ri(u) log(ui + ε)dx,

I2,i = −
∫

Ω

∇vi
vi + ε

(

pq∇vi + vip
2∇
(q

p

)

)

dx+

∫

Ω

ri(v) log(vi + ε)dx,

I3,i = −
∫

Ω

∇(ui + vi)

ui + vi + 2ε

(

pq∇(ui + vi) + (ui + vi)p
2∇
(q

p

)

)

dx

+

∫

Ω

(

ri(u) + ri(v)
)

log
(ui + vi

2
+ ε
)

dx.

By rearranging the terms we get

d

dt
dε(u, v) = F + S + Sr,(113)

F = −
n
∑

i=1

4

∫

Ω

(

|∇√
ui + ε|2 + |∇√

vi + ε|2 − |∇
√
ui + vi + 2ε|2

)

pq dx,

S = −
n
∑

i=1

∫

Ω

( ui
ui + ε

− ui + vi
ui + vi + 2ε

)

p2∇ui · ∇
(q

p

)

dx

−
n
∑

i=1

∫

Ω

( vi
vi + ε

− ui + vi
ui + vi + 2ε

)

p2∇vi · ∇
(q

p

)

dx,

Sr =
n
∑

i=1

∫

Ω

ri(u) log(ui + ε)dx+
n
∑

i=1

∫

Ω

ri(v) log(vi + ε)dx

−
n
∑

i=1

∫

Ω

(

ri(u) + ri(v)
)

log
(ui + vi

2
+ ε
)

dx.

Using the fact that the Fisher information
∫

Ω
|∇u1/2|2dx is subadditive (see [26], Lemma

9), we get that F ≤ 0. Therefore, integrating (113) in time leads to

dε(u(t), v(t)) ≤
∫ t

0

S(s)ds+

∫ t

0

Sr(s)ds.(114)

Firstly, we treat the second integral in (114). We want to prove that

∫ t

0

Sr(s)ds ≤ C

∫ t

0

dε(u(s), v(s))ds(115)
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By taking into account the assumptions on the reaction terms given by (21)–(24) and the
fact that M1 =M2, the left-hand side of (115) can be rewritten as

∫ t

0

Sr(s)ds =

n
∑

i=1

∫ t

0

∫

Ω

r
(0)
i (M)

(

log(ui + ε) + log(vi + ε)− 2 log

(

ui + vi
2

+ ε

))

dxds

+

n
∑

i=1

∫ t

0

∫

Ω

r(1)(M)

(

ui log(ui + ε) + vi log(vi + ε)− (ui + vi) log

(

ui + vi
2

+ ε

))

dxds.

Furthermore, from the definition of dε(u, v) it follows

∫ t

0

Sr(s)ds

=
n
∑

i=1

∫ t

0

∫

Ω

(r
(0)
i (M)− εr(1)(M))

(

log(ui + ε) + log(vi + ε)− 2 log

(

ui + vi
2

+ ε

))

dxds

+
n
∑

i=1

∫ t

0

∫

Ω

r(1)(M)

(

ξε(ui) + ξε(vi)− 2ξε

(

ui + vi
2

))

dxds

≤
n
∑

i=1

∫ t

0

∫

Ω

(r
(0)
i (M)− εr(1)(M))

(

log(ui + ε) + log(vi + ε)− 2 log

(

ui + vi
2

+ ε

))

dxds

+ C

n
∑

i=1

∫ t

0

dε(u(s), v(s))ds,

where the last inequality comes from the fact that r(1) is upper bounded, which is a
straightforward consequence of (21)–(24). The convexity of x 7→ − log(x) implies that

log(ui + ε) + log(vi + ε)− 2 log

(

ui + vi
2

+ ε

)

≤ 0.

Together with the assumptions on the reaction terms, we deduce that (115) holds.
From (114), (115) it follows

dε(u(t), v(t)) ≤
∫ t

0

S(s)ds+ C
n
∑

i=1

∫ t

0

dε(u(s), v(s))ds.

Using Gronwall’s Lemma yields

dε(u(t), v(t)) ≤ eCt
n
∑

i=1

∫ t

0

∫

Ω

∣

∣

∣

ui
ui + ε

− ui + vi
ui + vi + 2ε

∣

∣

∣
p2|∇ui|

∣

∣

∣

∣

∇
(

q

p

)∣

∣

∣

∣

dxds

+ eCt
n
∑

i=1

∫ t

0

∫

Ω

∣

∣

∣

vi
vi + ε

− ui + vi
ui + vi + 2ε

∣

∣

∣
p2|∇vi|

∣

∣

∣

∣

∇
(

q

p

)∣

∣

∣

∣

dxds.(116)



34 E. S. DAUS, J.-P. MILIŠIĆ, AND N. ZAMPONI

Next, we want to apply the dominated convergence theorem to show that the right-hand
side of (116) converges to zero as ε→ 0. Let g ∈ {ui, vi}. It is obvious that

g

g + ε
− ui + vi
ui + vi + 2ε

→ 0 a.e. in {g > 0} as ε→ 0,

∣

∣

g

g + ε
− ui + vi
ui + vi + 2ε

∣

∣ ≤ 2 a.e. in Ω× (0,∞).

Therefore, in order to apply the dominated convergence theorem we need to show that

p2∇g · ∇
(q

p

)

∈ L1(Ω× (0, T )).

We make the calculation for g = ui. For g = vi the calculation is completely the same.
The term of interest can be rewritten as follows

p2∇ui · ∇
(

q

p

)

= 2
√
pq∇√

ui ·
√
ui√
pq
p2∇

(

q

p

)

.(117)

Since 2
√
pq∇√

ui ∈ L2(Ω × (0, T )) due to (44), it remains to show that
√
ui√
pq
p2∇

(

q
p

)

∈
L2(Ω× (0, T )). For ui > 0 (and vi > 0 respectively), we have

√
ui√
pq
p2∇

(q

p

)

= 2
√
uip∇

√

q

p
= 2p∇

√

uiq

p
− 2p

√

q

p
∇√

ui.(118)

From Lemma 7 and (20) we conclude that
√
ui√
pq
p2∇

(q

p

)

∈ L2(Ω× (0, T )),

obtaining in this way finally that for ui, vi > 0

p2∇ui · ∇
(q

p

)

∈ L1(Ω× (0, T )).

It remains to treat the case when ui = 0 (or respectively vi = 0). We want to show that

p2∇ui · ∇
(q

p

)

= 0 a.e. in the set {ui = 0}.

For this, we make the following estimate

p2|∇ui|
∣

∣

∣

∣

∇
(

q

p

)∣

∣

∣

∣

≤ 4 (|∇√
uipq|+ |√ui∇

√
pq|)

(∣

∣

∣

∣

p∇
√

uiq

p

∣

∣

∣

∣

+
√
pq|∇√

ui|
)

.

Now, due to [19, p.153, 6.18 Corollary], it holds that

∇√
uipq = 0 where

√
uipq = 0.

It follows that ∇√
uipq =

√
ui∇

√
pq = 0 (and a fortiori p2|∇ui| |∇ (q/p)| = 0) a.e. in the

set {ui = 0}. In this way, since dε is nonnegative, we get that dε(u(t), v(t)) → 0 as ε→ 0,
which implies that

ξε(ui) + ξε(vi)− 2ξε

(ui + vi
2

)

→ 0 as ε→ 0 a.e. in Ω× (0,∞).(119)
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Same calculation like in [26, p.26] gives the estimate

ξε(ui) + ξε(vi)− 2ξε

(ui + vi
2

)

≥ 1

8
(ui − vi)

2.(120)

Finally, (119) and (120) give that ui = vi in Ω × (0,∞) for i = 1, . . . , n. This concludes
the proof of Theorem 3. �

Remark 12. The uniqueness result holds trivially (under the same assumptions) also if
nonconstant Dirichlet data or homogeneous Neumann boundary conditions are considered.

7. Appendix

7.1. Formal derivation of the multi-species biofilm model from a spatially dis-

crete lattice model. Here we discuss the modeling assumptions, which are strongly con-
nected to the derivation of the multi-species biofilm model from a spatially discrete lattice
ODE. More details on the derivation can be found in [21, 26, 22]. For simplicity, we sketch
the derivation in 1D. Given a one-dimensional spatial lattice containing equidistant cells xj
with cell distance h = xj − xj−1 of a finite interval, we consider the variables uji := ui(xj),
which model the density of the ith species at the jth grid cell. Moreover, transition rates
T j±
i describe how species ui moves from cell xj to the neighboring cells xj±1. Biofilm

movement into neighboring cells is driven by two principles: volume filling and quenching

[17]. Volume filling means that the movement depends on the available space in the local
site, and since the site’s capacity of accommodation mass is limited, we can normalize the
population densities with respect to their maximum densities, which means that uji ≤ 1.

Thus we can interpret uji as the volume fraction of site j occupied by the species ui. The
discrete master equation, which describes the balance between the density of populations
which leave the site to move into the neighboring sites, and the density of populations
which arrive from neighboring sites, reads as

∂tu
j
i = T

(j−1)+
i uj−1

i + T
(j+1)−
i uj+1

i −
(

T j+
i + T j−

i

)

+ rji(121)

where rji = rji (u
j) is the net growth rate of the ith species, and the transition rates have

the form

T j±
i = αiqi(u

j
1, . . . , u

j
n)pi(u

j±1
1 , . . . , uj±1

n ),

where αi = αi(h) measure how fast populations move between neighboring cells, and the
nonnegative continuous transition functions qi and pi describe the local movement of the
species from one cell to the other. The transition function qi(u) measures the incentive of
the density of species i at grid cell xj to leave the cell xj , and pi(u

j±1
1 , . . . , uj±1

n ) models the

attractivity of the cell population uji for the incoming individuals uj±1
i from the neighboring

sites j ± 1. The second principle for biofilm movement is that as long as there is capacity
to accommodate new biomass locally in that cell, the incentive to move to a neighboring
cell is small, which is called quenching. The transition from the spatially discretized to the
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continuous model is now performed in a formal diffusive limit. First, we interpolate the
grid functions by setting

ui(t, x) = uji (t), for xj ≤ x ≤ xj+1.

Now, assuming sufficient smoothness of the functions u1, . . . , un, we can approximate
ui(t, x

j±1), q(u(t, xj±1)), p(u(t, xj±1)) by second order Taylor polynomials around u(t, xj).
By substituting all these expressions into the master equation (121) and performing the
(formal) diffusive limit h → 0 under the assumption that limh→0 αih

2 = αi0 > 0, we get
for u = (u1, . . . , un) the equation

∂tui = αi0
∂

∂x

(

n
∑

j=1

Aij(u)
∂uj
∂x

)

+ ri(u), i = 1, . . . , n,

where the diffusion coefficients have the form

Aij(u) = δijpi(u)qi(u) + ui

(

pi(u)
∂qi
∂uj

(u)− qi(u)
∂pi
∂uj

(u)

)

.(122)

In more than one dimension, the same procedure can be applied, leading to the system

∂tui = αi0div

(

n
∑

j=1

Aij(u)∇uj
)

+ ri(u), i = 1, . . . , n,

where A is defined in (122).

7.2. Numerical illustration of the relative entropy. In this subsection we present
numerical simulations of the relative entropy given by (12) with the respect to time. We
take a three-species model (1) on the rectangular domain Ω = [0, 1]× [0, 1]. The solution is
calculated using the Distributed and Unified Numerics Environment is a modular toolbox
for solving partial differential equations (PDEs) with grid-based methods DUNE [1]. For
calculating the solution we use standard FEM on the rectangular grid with Q1-elements.
More precisely, we used the following Dune modules: 1. Core modules (dune-grid, dune-
geometry, dune-localfunctions, dune-common, dune-istl); 2. Discretization modules (dune-
fem, dune-pdelab). The initial conditions are:

u1(x, y; 0) =

{

uD,1 + ε, 0.2 ≤ x ≤ 0.5 and 0 ≤ y ≤ 0.2,

uD,1, otherwise,

u2(x, y; 0) =

{

uD,2 + ε, 0.5 ≤ x ≤ 0.8 and 0 ≤ y ≤ 0.2,

uD,2, otherwise,

u3(x, y; 0) =

{

uD,3 + ε, 0.2 ≤ x ≤ 0.8 and 0 ≤ y ≤ 0.2,

uD,3, otherwise,
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Figure 1. Logarithm of the relative entropy vs time

Here, uD,i = ε, i = 1, 2, 3 where ε = 0.1, the time-step is dt = 10−4 and the final time
Tfin = 10. For the function p(M) we chose:

p(M) = exp
(

− 1

(1 −M)κ

)

, M = u1 + u2 + u3.(123)

Concerning different choices of parameters a, b from (7) and κ in (123) as well as different
boundary conditions (mixed Dirichlet-Neumann or homogeneous Neumann), we performed
the following two tests.

Test 1. With this test we wanted to illustrate numerically our analytical result given
by Theorem 2. For that purpose here we considered our model with mixed Dirichlet-
Neumann boundary conditions. More precisely, we took the Dirichlet boundary conditions
uDi

, i = 1, 2, 3 on the upper-side of the rectangle and homogeneous Neumann on other
three sides. For parameters we took a = 2, b = 2, and κ = 1 and we used rDi = uD,i − ui
as the reaction terms. We note that Figure 7.2 (left) shows the exponential convergence
of the solution to the steady state, which we were not able to obtain with our analytical
tools.

Test 2. This test corresponds to Remark 11. Here we considered the homogeneous Neu-
mann boundary conditions without any reaction terms. For parameters we took a = 1,
b = 2 and κ = 0.9. In Figure 7.2 (right), we observe very fast stabilization of the solution
to the constant steady-state.

Summarizing up, it seems that in the situation described by Theorem 2 the convergence
to the steady state is actually exponential. The algebraic decay result proved in the
Theorem might be not optimal, most likely due to limitations in the analytical methods
employed in the proof. Furthermore, convergence to the steady state appears to be helped
by a reaction term with a suitable (dissipative) structure (as it is to be expected): the rate
of convergence is higher in Test 1 than in Test 2, and the relative entropy reaches much
smaller values in Test 1 than in Test 2. In fact, the relative entropy seems to stabilize
around 10−6 in Test 2, which might be a symptom of numerical instability.
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7.3. Additional auxiliary result.

Lemma 13 (Variant of the Poincaré Inequality). Let Ω ⊂ R
d bounded open and connected.

Let λ ∈ (0, 1), α > 0. There exists a constant C > 0 such that

‖(1−M)−α‖L2(Ω) ≤ C
(

1 + ‖∇(1−M)−α‖L2(Ω)

)

for every function M ∈ H1(Ω) such that 0 ≤M < 1 a.e. in Ω and |Ω|−1
∫

Ω
Mdx ≤ λ.

Proof. By contradiction. Assume ∀k ≥ 1 there exists Mk ∈ H1(Ω) such that 0 ≤ Mk < 1
a.e. in Ω, |Ω|−1

∫

Ω
Mkdx ≤ λ, and

‖(1−Mk)
−α‖L2(Ω) > k

(

1 + ‖∇(1−Mk)
−α‖L2(Ω)

)

for all k ≥ 1. Let us define fk = (1−Mk)
−α

‖(1−Mk)−α‖
L2(Ω)

. It follows that ‖fk‖L2(Ω) = 1,

‖∇fk‖L2(Ω) <
1

k
− 1

‖(1−Mk)−α‖L2(Ω)

.

Clearly ‖(1−Mk)
−α‖L2(Ω) → ∞ as k → ∞, which in particular implies that ‖∇fk‖L2(Ω) → 0

as k → ∞. Moreover fk is bounded inH1(Ω), which by compact Sobolev embedding implies
that, up to subsequences, fk → f strongly in L2(Ω). Since ‖∇fk‖L2(Ω) → 0 as k → ∞ it
follows that

∫

Ω

f∂xi
φdx = lim

k→∞

∫

Ω

fk∂xi
φdx = − lim

k→∞

∫

Ω

∂xi
fk φdx = 0 ∀φ ∈ H1

0 (Ω).

This means that f is constant. Moreover, the fact that ‖fk‖L2(Ω) = 1 for all k, together
with the strong convergence of fk, implies that f > 0. However, up to subsequences,
fk → f a.e. in Ω, i.e.

(1−Mk)
−α

‖(1−Mk)−α‖L2(Ω)

→ f a.e. in Ω.

Since ‖(1−Mk)
−α‖L2(Ω) → ∞ as k → ∞, we deduce that Mk → 1 a.e. in Ω, and therefore

(by dominated convergence) also strongly in L1(Ω). As a consequence |Ω|−1
∫

Ω
Mkdx→ 1.

This is a contradiction to the fact that |Ω|−1
∫

Ω
Mkdx ≤ λ < 1 for all k ≥ 1. This finishes

the proof. �
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