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Abstract. In this paper we consider the functional Itô calculus framework to find a path-
dependent version of the Hamilton-Jacobi-Bellman equation for stochastic control problems that
feature dynamics and running cost that depend on the path of the control. We also prove a Dynamic
Programming Principle for such problems. We apply our results to path-dependence of the delay
type. We further study Stochastic Differential Games in this context.
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1. Introduction. Stochastic control problems and differential games appear nat-
urally in various areas of applications. Portfolio allocation, investment-consumption
utility maximization, hedging in incomplete markets and real options are some impor-
tant examples in Finance and Economics. See, for instance, Pham [2009] and Carmona
[2016]. The standard case deals with a controlled diffusion

dxt,y,αs = b(s, xs, αs)ds+ σ(s, xs, αs)dws, if s > t,

xt,y,αt = y,

and a cost functional

J(t, y, α) = E

[
g(xt,y,αT ) +

∫ T

t

f(s, xt,y,αs , αs)ds

]
,

where α is a admissible control and g and f are suitable functions. The quantity of
interest here is the value function:

V (t, y) = inf
α∈A

J(t, y, α),

where A is the set of admissible controls.
Two very important results on Stochastic Control are the Dynamic Programming

Principle (DPP) and the Verification Theorem for the related Hamilton-Jacobi-Bellman
(HJB) equation. The main contribution of our paper is to extend the DPP and the HJB
to stochastic control problems that feature dynamics and running cost that depend
on the path of the control α. The main example to have in mind is the following
delayed-control diffusion

dxt,y,αs = (αs − αs−τ )dt+ σdws, xt,y,αt = y,(1)

for a non-random, fixed τ > 0. In this case, we say the control problem exhibits path-
dependence in the control. This is not to be confused with the Closed-Loop Perfect
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State (CLPS) controls, which means that the control α is progressively-measurable
with respect to the filtration generated by the process x.

Stochastic control has been already extended to consider path-dependence of
dynamics and running cost with respect to the state variable x, see, for example,
Fournié [2010], Xu [2013] and Ji et al. [2015]. We say the control problem in this case
exihbits path-depndence in the state variable. Functional Itô calculus was also applied
to the stochastic control problem of portfolio optimization with bounded memory in
Pang and Hussain [2015]. Furthermore, the theory was applied to zero-sum stochastic
differential games in Pham and Zhang [2014]. However, these references do not deal
with path-dependent influence of the control, only path-dependence in the state of the
system. This generalization is fundamentally different from the one pursued in our
paper, which will become clear in the sections to follow, see Remark 2.6.

General path-dependent effect of the control in the dynamics and the running
cost are still incipient in theory and applications of stochastic control and differential
games. This is very likely related to the lack of theoretical tools to deal with such
objects in an appropriate way. We hope this work will provide a useful framework.

For example, in Gozzi and Marinelli [2006] and Gozzi and Masiero [2017a,b],
the authors considered a class of problems that exhibit a particular type of path-
dependence in the control, namely delayed controls. The method implemented there
is a classical infinite-dimensional analysis and they derived an infinite-dimensional
HJB equation. However, their method is strongly related to the delay-type of path-
dependence. Additionally, we forward the reader to the following articles Alekal et al.
[1971], Chen and Wu [2011], Huang et al. [2012]. These results were recently applied
to stochastic games in Carmona et al. [2016].

Our approach uses the functional Itô calculus framework, introduced by Bruno
Dupire in the seminal paper Dupire [2009], which allows us to consider more general
path-dependent structures. Although our method could be also seen as an infinite-
dimensional analysis, it is rather different than the one applied in Gozzi and Marinelli
[2006] and Gozzi and Masiero [2017a,b]. Our method delivers an HJB equation that
can be applied to virtually any path-dependent structure in the control and it could
be formulated in the deterministic case as well. Our assumptions are mainly related
to the well-posedness of the optimal control problem (smoothness, measurability and
integrability). Additionally, our method could be applied to delay of the type of
Equation (1) with no additional difficulty, which is not the case of the method derived
in the aforesaid references. See Section 2.2.1 for more details.

The structure of the paper is as follows. We finish this introduction with the
main definitions and results of functional Itô calculus. In Section 2.1, we introduce
the problem we are considering and derive the main results of our work: the DPP in
Theorem 2.2 and the Verification Theorem for the path-dependent HJB equation in
Theorem 2.4. An example is analyzed in Section 2.2.1. Additionally, in Section 2.3, we
briefly study stochastic differential games with path-dependence effects of the control
in the dynamics and running cost.

1.1. A Crash Course in Functional Itô Calculus. The important notions
of the functional Itô calculus framework will be introduced in this section. For more
details and results, we forward the reader to Cont and Fournié [2010], Dupire [2009].

We start by fixing a time horizon T > 0. Denote Λnt the space of càdlàg paths in
[0, t] taking values in Rn and define Λn =

⋃
t∈[0,T ] Λnt and Λn×k =

⋃
t∈[0,T ] Λnt × Λkt .

Elements of Λn×k are two paths taking values in Rn and Rk, respectively, with the
same time interval as domain. When it is not necessary to distinguish the dimensions



STOCH. CONTROL AND DIFFER. GAMES WITH PATH-DEPEND. OF CONTROLS 3

of these spaces, we will use the notation Λ.
Moreover, when considering examples with delay, one could consider

⋃
t∈[−τ,T ] Λt,

where τ is the largest possible value for the delay. In the examples studied here, we
will assume that any path at negative time is zero. This does not increase the difficulty
in our calculations and could be easily relaxed.

Capital letters will denote elements of Λ (i.e. paths) and lower-case letters will
denote spot value of paths. In symbols, Yt ∈ Λ means Yt ∈ Λt and ys = Yt(s), for
s ≤ t.

A functional is any function f : Λ −→ R. For such objects, we define, when the
limits exist, the time and space functional derivatives, respectively, as

∆tf(Yt) = lim
δt→0+

f(Yt,δt)− f(Yt)

δt
,(2)

∆xf(Yt) = lim
h→0

f(Y ht )− f(Yt)

h
,(3)

where

Yt,δt(u) =

{
yu, if 0 ≤ u ≤ t,
yt, if t ≤ u ≤ t+ δt,

Y ht (u) =

{
yu, if 0 ≤ u < t,
yt + h, if u = t,

see Figures 1 and 2. In the case when the path Yt lies in a multidimensional space, the
path deformations above are understood as follows: the flat extension is applied to all
dimension jointly and equally and the bump is applied to each dimension individually.

b b

Fig. 1. Flat extension of a path.

b

b

b

Fig. 2. Bumped path.

We consider here continuity of functionals as the usual continuity in metric spaces
with respect to the metric:

dΛ(Yt, Zs) = ‖Yt,s−t − Zs‖∞ + |s− t|,

where, without loss of generality, we are assuming s ≥ t, and

‖Yt‖∞ = sup
u∈[0,t]

|yu|.

The norm |·| is the usual Euclidean norm in the appropriate Euclidian space, depending
on the dimension of the path being considered. This continuity notion could be relaxed,
see, for instance, Oberhauser [2016].

Moreover, we say a functional f is boundedness-preserving if, for every compact set
K ⊂ Rd, there exists a constant C such that |f(Yt)| ≤ C, for every path Yt satisfying
Yt([0, t]) = {y ∈ Rd ; Yt(s) = y for some s ∈ [0, t]} ⊂ K.
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A functional f : Λ −→ R is said to belong to C1,2 if it is Λ-continuous, bounded-
ness-preserving and it has Λ-continuous, boundedness-preserving derivatives ∆tf , ∆xf
and ∆xxf . Here, clearly, ∆xx = ∆x∆x.

The Itô formula can be generalized to this framework. The proof can be found in
Dupire [2009]. We start by fixing a probability space (Ω,F ,P).

Theorem 1.1 (Functional Itô Formula; Dupire [2009]). Let x be a continuous
semimartingale and f ∈ C1,2. Then, for any t ∈ [0, T ],

f(Xt) = f(X0) +

∫ t

0

∆tf(Xs)ds+

∫ t

0

∆xf(Xs)dxs +
1

2

∫ t

0

∆xxf(Xs)d〈x〉s P-a.s.

2. Main results.

2.1. Stochastic Control with Path-Dependent Controls. We suggest the
reader to always keep in mind this example:

dxt,y,αs = (αs − αs−τ )dt+ σdws, xt,y,αt = y.

Consider a d-dimensional Brownian motion (wt)t∈[0,T ] on (Ω,F ,P) and a filtration
(Ft)t∈[0,T ] in this space, satisfying the usual conditions, to which the Brownian motion
(wt)t∈[0,T ] is adapted. One could assume that (Ft)t∈[0,T ] is the augmented natural
filtration of w. The set of admissible controls A(Ft), or just A, is the space of Ft-
progressively measurable, càdlàg processes in L2(Ω × [0, T ]) taking value in some
subset A ⊂ Rk. Additional restrictions on A will be assumed.

We will consider the following path-dependent controlled diffusion dynamics for x:
dxYt,αs = b(XYt,α

s , As)ds+ σ(XYt,α
s , As)dws, if s > t,

XYt,α
t = Yt,

(4)

where As = (αt)t∈[0,s], i.e. the path of the control α ∈ A up to time s, b : Λn×k −→ Rn
and σ : Λn×k −→ Rn×d, with Rn×d denoting the space of n× d matrices. Notice that
we are allowing for path-dependence of b and σ on the state system, x, and on the
control, α.

To guarantee existence and uniqueness of strong solutions, we assume there exists
a constant K > 0 such that |b(Ys, Zs)− b(Y

′
s , Zs)|+ |σ(Ys, Zs)− σ(Y ′s , Zs)| ≤ K‖Ys − Y ′s‖∞,

|b(Ys, Zs)|+ |σ(Ys, Zs)| ≤ K (1 + |s|+ ‖Ys‖∞) ,

for all s ≥ t, (Ys, Zs), (Y
′
s , Zs) ∈ Λn×k. These assumptions could be weaken, but it is

outside the scope of this work.
Moreover, we consider the following class of cost functionals J : Λn × A −→ R:

J(Yt, α) = E

[
g(XYt,α

T ) +

∫ T

t

f(XYt,α
s , As)ds

]
,(5)

where g : ΛnT −→ R and f : Λn×k −→ R satisfy certain measurability and integrability
conditions. Notice that J(YT , α) = g(YT ). We additionally assume that the admis-
sible controls in A satisfy straightforward integrability conditions depending on the
functionals b, σ and f so that Equations (4) and (5) are well-defined.
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We will use the following notation:

(Zt ⊗ α)(s) =

 zs, if s < t,

αs, if s ≥ t.
(6)

The path Zt ⊗ α is equal Z up to time t (excluding it) and then follows the control α.
Notice that, for any α ∈ A and Zt ∈ Λ, the control Zt ⊗ α is admissible.

We then define the value functional V : Λn×k −→ R:

V (Yt, Zt) = inf
α∈A

J(Yt, Zt ⊗ α).

Remark 2.1 (Càdlàg Controls). The framework we are considering requires the
additional assumption that the control is càdlàg, as it was stated above in the definition
of A. This is inherent of the functional Itô calculus theory and it allows us to use this
technique to analyze these complex stochastic control problems we are considering
here. From an application point-of-view, this restriction is not very strong as one
would usually restrict even further the space of admissible controls. Although outside
the scope of this paper, one could analyze whether the value function considered here
is the same as the one for the more general class of progressively-measurable controls.

We now state and prove the Dynamic Programming Principle for the control
problem being considering.

Theorem 2.2 (Dynamic Programming Principle (DPP)). For any u ∈ [t, T ],

V (Yt, Zt) = inf
α∈A

E
[
V (XYt,Zt⊗α

u , (Zt ⊗ α)u) +

∫ u

t

f(XYt,Zt⊗α
s , (Zt ⊗ α)s)ds

]
.

Proof. The proof follows the same steps as in the path-independent case, since all
the coefficients are still adapted. We follow the structure of the proof in Pham [2009].

Firstly, notice that, for any α ∈ A and t ≤ u ≤ s ≤ T , we have the following
equivalence of paths

XYt,α
s = X

XYt,αu ,α
s .

Then,

J(Yt, α) = E

[
g(X

XYt,αu ,α
T ) +

∫ u

t

f(XYt,α
s , As)ds+

∫ T

u

f(X
XYt,αu ,α
s , As)ds

]
,

and conditioning on the path XYt,α
u , we find

J(Yt, α) = E
[
J(XYt,α

u , α) +

∫ u

t

f(XYt,α
s , As)ds

]
.(7)

From this and choosing the control α to be Zt ⊗ α, it is clear that

J(Yt, Zt ⊗ α) ≥ E
[
V (XYt,Zt⊗α

u , (Zt ⊗ α)u) +

∫ u

t

f(XYt,Zt⊗α
s , (Zt ⊗ α)s)ds

]
.

Taking the infimum with respect to α ∈ A, we find

V (Yt, Zt) ≥ inf
α∈A

E
[
V (XYt,Zt⊗α

u , (Zt ⊗ α)u) +

∫ u

t

f(XYt,Zt⊗α
s , (Zt ⊗ α)s)ds

]
.
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To prove the opposite inequality, fix α ∈ A and u ∈ [t, T ]. Then, for any ε > 0,
there exists αε ∈ A such that

V (XYt,Zt⊗α
u , (Zt ⊗ α)u) + ε ≥ J(XYt,Zt⊗α

u , (Zt ⊗ α)u ⊗ αε).

It can be shown by the Measurable Selection Theorem (see, for example, Soner and
Touzi [2002]) that α∗ = Au ⊗ αε belongs to A (i.e. it is progressively measurable).
Since Zt ⊗ α∗ = (Zt ⊗ α)u ⊗ αε, by Equation (7), and XYt,Zt⊗α∗

u = XYt,Zt⊗α
u , we find

V (Yt, Zt) ≤ J(Yt, Zt ⊗ α∗)

= E
[∫ u

t

f(XYt,Zt⊗α
s , (Zt ⊗ α)s)ds+ J(XYt,Zt⊗α

u , Zt ⊗ α∗)
]

≤ E
[∫ u

t

f(XYt,Zt⊗α
s , (Zt ⊗ α)s)ds+ V (XYt,Zt⊗α

u , (Zt ⊗ α)u)

]
+ ε,

which implies, by the fact α ∈ A and ε > 0 are arbitrary, that

V (Yt, Zt) ≤ inf
α∈A

E
[
V (XYt,Zt⊗α

u , (Zt ⊗ α)u) +

∫ u

t

f(XYt,Zt⊗α
s , (Zt ⊗ α)s)ds

]
,

from where the final result follows.

2.2. The Path-Dependent Hamilton-Jacobi-Bellman Equation. In this
section we will state the HJB equation related to our control problem and also prove a
verification theorem for such equation. In the framework of the functional Itô calculus,
this type of equation is called path-dependent Partial Differential Equation, PPDE.
See for example, Ekren et al. [2014, 2016a,b].

We start by defining the Hamiltonian H : Λn×k × Rn × Sn ×A −→ R:

H(Yt, Zt, p, γ, a) =
1

2
σσT (Yt, Z

a−zt
t ) : γ + b(Yt, Z

a−zt
t ) · p+ f(Yt, Z

a−zt
t ),

and the modified Hamiltonian Ĥ : Λn×k × RΛk × Rn × Sn −→ R:

Ĥ(Yt, Zt, q, p, γ) = inf
a∈A

{
q(Za−ztt ) +H(Yt, Zt, p, γ, a)

}
(8)

The symbol RΛk denotes the space of functionals Λk −→ R and Sn is the space of
n× n symmetric matrices. Notice that Za−ztt is changing the last value of the control
Zt to a.

The notation · and : mean

p · q =

d∑
i=1

piqi and γ : φ = trace(γφ),

where p, q ∈ Rn and γ, φ ∈ Sn.
As we will conclude, the HJB equation in this case is given by the following PPDE: Ĥ(Yt, Zt,∆tV (Yt, ·),∆xV (Yt, Zt),∆xxV (Yt, Zt)) = 0,

V (YT , ZT ) = g(YT ),

(9)

for any (YT , ZT ) ∈ Λn,kT .
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Here, the time derivative ∆t is with respect to both variable Y and Z:

∆tV (Yt, Zt) = lim
δt→0+

V (Yt,δt, Zt,δt)− V (Yt, Zt)

δt
,

and the space derivative ∆x is with respect to Y :

∆xV (Yt, Zt) = lim
h→0

V (Y ht , Zt)− V (Yt, Zt)

h
.

In a less compact notation, we could write the path-dependent HJB equation (9)
as 

inf
a∈A

{
∆tV (Yt, Z

a−zt
t ) +H(Yt, Zt,∆xV (Yt, Zt),∆xxV (Yt, Zt), a)

}
= 0,

V (YT , ZT ) = g(YT ).

Remark 2.3. This remark will be the cornerstone of the proof of the Verification
Theorem presented below. Notice that V (Yt, Z

h
t ) = V (Yt, Zt), by the definition of the

operator ⊗ given in (6). Denoting the functional derivatives with respect to the control
Z by ∆α, we conclude ∆αV (Yt, Zt) = 0, ∆ααV (Yt, Zt) = 0 and ∆xαV (Yt, Zt) = 0.
Hence, the dynamics of the control α will not impact the computations in the proof
of the following theorem. This is similar to what Cont and Fournié [2010] assumed
in order to consider functionals depending on the quadratic variation. These authors
called such property predictability.

Moreover, if a smooth functional is predictable in a variable, then any space
functional derivative will be predictable in that variable. However, the time functional
derivative might not be predictable, in general. For example, the running integral
functional f(Yt) =

∫ t
0
yudu is predictable, but ∆tf(Yt) = yt is not.

Theorem 2.4 (Verification Theorem).
Suppose V ∈ C1,2 solves the HJB equation (9). Under mild integrability conditions,

V (Yt, Zt) ≤ J(Yt, Zt ⊗ α),

for any α ∈ A. Moreover, if there exists α̂ ∈ A such that, for any u ∈ [t, T ],

Ĥ(XYt,Zt⊗α̂
u , (Zt ⊗ α̂)u,∆tV (XYt,Zt⊗α̂

u , ·),∆xV,∆xxV )(10)

= ∆tV (XYt,Zt⊗α̂
u , (Zt ⊗ α̂)u) +H(XYt,Zt⊗α̂

u , (Zt ⊗ α̂)u,∆xV,∆xxV, α̂u),

then V (Yt, Zt) = J(Yt, Zt ⊗ α̂). All the functional derivatives in (10) are computed at
(XYt,Zt⊗α̂

u , (Zt ⊗ α̂)u).

Proof. Let us apply the Functional Itô Formula, Theorem 1.1, to V (XYt,Zt⊗α
s ,

(Zt⊗α)s), for fixed α ∈ A. Notice that the path Z is frozen and that we are considering
the control Zt ⊗ α, which means we follow the path Zt as the control up to time t
(excluding it) and then α from t to T . Moreover, since the functional derivatives of
V with respect to the control α are zero, it is not required to consider the dynamics
of the control α, see Remark 2.3. Furthermore, the time derivative is with respect
to both variables. In the computation that follows we suppress the superscript of
XYt,Zt⊗α
s for a cleaner exposition:

g(XT ) = V (XT , Zt ⊗ α) = V (Yt, Zt) +

∫ T

t

∆tV (Xu, (Zt ⊗ α)u)du
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+

∫ T

t

∆xV (Xu, (Zt ⊗ α)u) · b(Xu, (Zt ⊗ α)u)du

+

∫ T

t

∆xV (Xu, (Zt ⊗ α)u) · σ(Xu, (Zt ⊗ α)u)dwu

+
1

2

∫ T

t

∆xxV (Xu, (Zt ⊗ α)u) : σσT (Xu, (Zt ⊗ α)u)du

= V (Yt, Zt) +

∫ T

t

(∆tV (Xu, (Zt ⊗ α)u) +H(Xu, (Zt ⊗ α)u,∆xV,∆xxV, αu)) du

+

∫ T

t

∆xV (Xu, (Zt ⊗ α)u) · σ(Xu, (Zt ⊗ α)u)dwu −
∫ T

t

f(Xu, (Zt ⊗ α)u)du

≥ V (Yt, Zt) +

∫ T

t

Ĥ(Xu, (Zt ⊗ α)u,∆tV (Xu, ·),∆xV,∆xxV )du

+

∫ T

t

∆xV (Xu, (Zt ⊗ α)u) · σ(Xu, (Zt ⊗ α)u)dwu −
∫ T

t

f(Xu, (Zt ⊗ α)u)du

= V (Yt, Zt) +

∫ T

t

∆xV (Xu, (Zt ⊗ α)u) · σ(Xu, (Zt ⊗ α)u)dwu

−
∫ T

t

f(Xu, (Zt ⊗ α)u)du.

Under integrability conditions and applying localization techniques, we might assume,
without loss of generality, that the Itô integral above is a martingale. Therefore, taking
expectation on both sides, we conclude:

V (Yt, Zt) ≤ E

[
g(XYt,Zt⊗α

T ) +

∫ T

t

f(XYt,Zt⊗α
u , (Zt ⊗ α)u)du

]
= J(Yt, Zt ⊗ α).

Taking the control α̂ satisfying Equation (10), we find

V (Yt, Zt) = E

[
g(XYt,Zt⊗α̂

T ) +

∫ T

t

f(XYt,Zt⊗α̂
u , (Zt ⊗ α̂)u)du

]
= J(Yt, Zt ⊗ α̂).

as desired.

Remark 2.5. We will see an interesting application of the Verification Theorem
above in Section 2.2.1, where we study the case of control with delay.

Remark 2.6. We would like to stress the difference between the case where the
stochastic control problem exhibits a path-dependent effect of control and state
variables, which we are dealing with in this paper, and the case where there is only
path-dependent effect of state variables. In this case, it is not necessary to consider as
variable of V the path of the control, Zt. It is enough to define

J(Yt, α) = E

[
g(XYt,α

T ) +

∫ T

t

f(XYt,α
s , αs)ds

]
,

V (Yt) = inf
α∈A[t,T ]

J(Yt, α),

where A[t, T ] is the space of admissible controls on [t, T ]. The HJB equation in this



STOCH. CONTROL AND DIFFER. GAMES WITH PATH-DEPEND. OF CONTROLS 9

becomes
∆tV (Yt) + inf

a∈A

{1

2
σσT (Yt, a) : ∆xxV (Yt) + b(Yt, a) ·∆xV (Yt) + f(Yt, a)

}
= 0,

V (YT ) = g(YT ).

See, for example, Fournié [2010], Xu [2013] or Ji et al. [2015].

Remark 2.7. It is obvious that if the dynamics of x and the functionals g and
f are path-independent in the state variable and control, we find the classical HJB
equation. Moreover, if the path-dependence is only in the control, meaning that, for
h = b, σ, f ,

h(Yt, Zt) = h(t, yt, Zt) and g(YT ) = g(yT ),

the path-dependent HJB Equation (9) becomes Ĥ(t, y, Zt,∆tV (t, y, ·), ∂xV (t, y, Zt), ∂xxV (t, y, Zt)) = 0,

V (T, y, ZT ) = g(y),

(11)

where ∂x is the usual derivative with respect to the state variable and

Ĥ(t, y, Zt, q, p, γ) = inf
a∈A

{
q(Za−ztt ) +

1

2
σσT (t, y, Za−ztt ) : γ + b(t, y, Za−ztt ) · p

+ f(t, y, Za−ztt )
}
.

It is worth noticing that ∆t is still a functional derivative. More precisely,

∆tV (t, y, Zt) = lim
δt→0+

V (t+ δt, y, Zt,δt)− V (t, y, Zt)

δt
.

2.2.1. Delayed Control. We will exemplify the results derived in the section
above, mainly the path-dependent HJB equation, by considering the delay type of
path-dependence in the control as in Gozzi and Marinelli [2006], see also Alekal et al.
[1971], Chen and Wu [2011], Gozzi and Masiero [2017a,b], Huang et al. [2012]. Namely,
we will assume that the drift and the volatility are given by

b(t, y, Zt) = c0y + b0zt +

∫ 0

−τ
b1(u)zt+udu, σ(t, y, Zt) = σ,

where b1 ∈ L2([−τ, 0];R) or, the more complicated case, dealt in Gozzi and Masiero
[2017a,b], where b1 is a measure. A very important example being the Dirac mass at
−τ , denoted by δ−τ . In the measure case, we assume, without loss of generality, there
is no Dirac mass at 0. As we will see below, differently than the aforesaid references,
the framework proposed here can deal with both these situations without additional
difficulty.

The Hamiltonian becomes

H(t, y, Zt, p, γ, a) =
σ2

2
γ + (c0y + b0a+

∫ 0

−τ
b1(u)zt+udu) p+ f(t, y, Za−ztt ).



10 Y. F. SAPORITO

In order to get a complete characterization of the value functional (up to computing
the solution of a system of PDEs), we consider the following linear-quadratic example:

c0 = 0, b0 = 1, b1 = δ−τ , f(t, y, Zt) =
z2
t

2
+ βzty +

ε

2
y2 and g(y) = c

y2

2
.

Hence

H(t, y, Zt, p, γ, a) =
σ2

2
γ + (a− zt−τ )p+

a2

2
+ βay +

ε

2
y2.

Remark 2.8. Notice that even though b is not a smooth functional (since the
delayed functional is not time functional differentiable), one would expect (as it is the
case) that the value function is indeed smooth in the functional sense. The idea behind
this fact is that the spot delayed dependence of b generates a continuum delayed
dependence on the value function, see Equation (12) below.

We consider the following ansatz for the value functional, as it was examined, for
instance, in Huang et al. [2012]:

V (t, y, Zt) =
1

2
F0(t)y2 + y

∫ t

t−τ
F1(t, θ − t)zθdθ(12)

+

∫ t

t−τ

∫ t

t−τ
F2(t, θ1 − t, θ2 − t)zθ1zθ2dθ1dθ2 + F3(t),

where we assume that F2 is symmetric in the last two variables as it is usually done in
these problems:

F2(t, θ1, θ2) = F2(t, θ2, θ1).

We can compute the derivatives of V explicitly and see that V ∈ C1,2. The time
functional derivative ∆t would be more complicated, but for this ansatz, it may be
verified that it is equivalent to taking derivative with respect to t:

∂xV = F0(t)y +

∫ t

t−τ
F1(t, θ − t)zθdθ,(13)

∂xxV = F0(t),(14)

∆tV = F ′0(t)
y2

2
+ y
(
F1(t, 0)zt − F1(t,−τ)zt−τ )(15)

+

∫ t

t−τ

(
∂F1

∂t
− ∂F1

∂θ

)
(t, θ − t)zθdθ

)
+ 2zt

∫ t

t−τ
F2(t, θ − t, 0)zθdθ − 2zt−τ

∫ t

t−τ
F2(t, θ − t,−τ)zθdθ

+

∫ t

t−τ

∫ t

t−τ

(
∂F2

∂t
− ∂F2

∂θ1
− ∂F2

∂θ2

)
(t, θ1 − t, θ2 − t)zθ1zθ2dθ1dθ2 + F ′3(t).

Combining all derivatives into the modified Hamiltonian (8), we find that the terms
that depend on the current control a are:

yF1(t, 0)a+ 2a

∫ t

t−τ
F2(t, θ − t, 0)zθdθ + ap+

a2

2
+ βya.(16)
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The infimum is then attained at

â(t, y, Zt, p) = −βy − p− yF1(t, 0)− 2

∫ t

t−τ
F2(t, θ − t, 0)zθdθ,

and the minimum value of the expression (16) is given by −â(t, y, Zt, p)
2/2. The HJB

equation in this example becomes:

∆tV (t, y, Z−ztt ) +
σ2

2
∂xxV (t, y, Zt)− zt−τ∂xV (t, y, Zt)

−1

2
â2(t, y, Zt, ∂xV (t, y, Zt)) +

ε

2
y2 = 0,

V (T, y, ZT ) = c
y2

2
.

(17)

Notice that ∆tV (t, y, Z−ztt ) removes the terms that depend on zt in Equation (15).
Additionally, the optimal control is given by

â(t, y, Zt, ∂xV (t, y, Zt)) = −(F0(t) + F1(t, 0) + β)y

−
∫ t

t−τ
(F1(t, θ − t) + 2F2(t, θ − t, 0)) zθdθ.

Combining all derivatives into HJB Equation (17), we find

1

2
y2
(
F ′0(t)− (F0(t) + F1(t, 0) + β)2 + ε

)
+ y (−(F1(t,−τ)− F0(t))zt−τ

− 1

2
(F0(t) + F1(t, 0) + β)

∫ t

t−τ
(F1(t, θ − t) + 2F2(t, θ − t, 0)) zθdθ

+

∫ t

t−τ

(
∂F1

∂t
− ∂F1

∂θ

)
(t, θ − t)zθdθ

)
+ F ′3(t) +

σ2

2
F0(t)− zt−τ

∫ t

t−τ
(2F2(t, θ − t,−τ)− F1(t, θ − t))zθdθ

+

∫ t

t−τ

∫ t

t−τ

(
∂F2

∂t
− ∂F2

∂θ1
− ∂F2

∂θ2

)
(t, θ1 − t, θ2 − t)zθ1zθ2dθ1dθ2

− 1

2

∫ t

t−τ

∫ t

t−τ
(F1(t, θ1 − t) + 2F2(t, θ1 − t, 0))

(F1(t, θ2 − t) + 2F2(t, θ2 − t, 0)) zθ1zθ2dθ1dθ2 = 0,

with the following final conditions:

F0(T ) = c,

F1(T, θ − T ) = 0, ∀ θ ∈ (T − τ, T ),

F2(T, θ1 − T, θ2 − T ) = 0, ∀ θ1, θ2 ∈ (T − τ, T ),

F3(T ) = 0.
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Therefore, we find that, for any t ∈ [0, T ] and θ, θ1, θ2 ∈ (−τ, 0), F ′0(t)− (F0(t) + F1(t, 0) + β)2 + ε = 0,

F0(T ) = c,
(18)



(
∂F1

∂t
− ∂F1

∂θ

)
(t, θ)

−1

2
(F0(t) + F1(t, 0) + β) (F1(t, θ) + 2F2(t, θ, 0)) = 0,

F1(t,−τ) = −F0(t),
F1(T, θ) = 0,

(19)



(
∂F2

∂t
− ∂F2

∂θ1
− ∂F2

∂θ2

)
(t, θ1, θ2)

−1

2
(F1(t, θ1) + 2F2(t, θ1, 0))(F1(t, θ2) + 2F2(t, θ2, 0)) = 0,

F2(T, θ1, θ2) = 0,

F2(t, θ,−τ) = F2(t,−τ, θ) = −1

2
F1(t, θ),

(20)


F ′3(t) +

σ2

2
F0(t) = 0,

F3(T ) = 0.

(21)

In Figure 3, we show the numerical solution of the PDE system above for the
following parameters: β = 1, ε = 2, c = 0, T = 1, τ = 0.05 and σ = 1.

2.3. Stochastic Differential Games. In this section, we will briefly analyze
Stochastic Differential Games. Firstly, we present the general theory relating the game
value function and a version of the HJB equation when there is path-dependence in
the control. Then, we exemplify the theory using the delayed stochastic differential
game proposed in Carmona et al. [2016].

Consider N agents indexed by i = 1, . . . , N . These agents will act on a system
whose state is described below:

dxYt,αs = b(XYt,α
s , As)ds+ σ(XYt,α

s , As)dws, if s > t,

XYt,α
t = Yt,

where Yt ∈ Λmt , m ∈ N, w is a d-dimensional standard Brownian motion, α =
(α1, . . . , αN ) with αi being the ki-dimensional control chosen by agent i taking values
in Ai. Moreover,

(b, σ) : Λm×k −→ Rm × Rm×d,
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Fig. 3. Numerical solution of the system PDEs (18)-(21)

with k = k1 × · · · × kN . The set of admissible controls of agent i is denoted by Ai and
A = A1 × · · · × AN . The agent i chooses its own control αi to minimize its own cost
functional:

J i(Yt, α) = E

[
gi(XYt,α

T ) +

∫ T

t

f i(XYt,α
s , As)ds

]
,

where gi : ΛmT −→ R and f i : Λm×k −→ R are his/hers terminal and running
costs. We will define now the concept of equilibrium we will consider. The following
notation will be used: for any α ∈ A: α−i = (α1, . . . , αi−1, αi+1, . . . , αN ) and
(α−i, α̃) = (α1, . . . , αi−1, α̃, αi+1, . . . , αN ).

Definition 2.9 (Nash Equilibrium). An admissible strategy α∗ is called a Nash
equilibrium if, for any i ∈ {1, . . . , N} and α̃ ∈ Ai, we have

J i(Yt, α
∗) ≤ J i(Yt, (α∗

−i
, α̃)).

Moreover, the Nash equilibrium can be further classified as
• Open Loop: α∗

i

t = φi(Wt, x0);

• Closed Loop: α∗
i

t = φi(Xt),
for some functional φi. See Carmona [2016].

In what follows, since we will use the HJB approach, we will be seeking a closed-
loop Nash equilibrium.

Assuming that the other N−1 agents have already optimized their actions, denoted

by α∗
−i

= (α∗
1

, . . . , α∗
i−1

, α∗
i+1

, . . . , α∗
N

), the value functional for agent i will be
then given by

V i(Yt, Zt) = inf
αi∈Ai

J i(Yt, Zt ⊗ (α∗
−i
, αi)).

The DPP in this case (see Theorem 2.2) becomes

V i(Yt, Zt) = inf
αi∈Ai

E
[
V

(
XYt,Zt⊗(α∗−i ,αi)
u , (Zt ⊗ (α∗

−i
, αi))u

)
+
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+

∫ u

t

f

(
XYt,Zt⊗(α∗−i ,αi)
s , (Zt ⊗ (α∗

−i
, αi))s

)
ds

]
Furthermore, under the assumptions of Theorem 2.4, we have a verification theorem

for the following HJB Equation Ĥi(Yt, Zt,∆tV
i(Yt, ·),∆xV

i(Yt, Zt),∆xxV
i(Yt, Zt)) = 0,

V i(YT , ZT ) = gi(YT ),

where

Ĥi(Yt, Zt, q, p, γ) = inf
a∈Ai

{
q(Z

(α∗−i
t ,a)−zt

t ) +
1

2
σσT (Yt, Z

(α∗−i
t ,a)−zt

t ) : γ

+ b(Yt, Z
(α∗−i
t ,a)−zt

t ) · p+ f i(Yt, Z
(α∗−i
t ,a)−zt

t )
}
.

Notice that Z
(α∗−i
t ,a)−zt

t changes the control at time t to (α∗
−i

t , a).

2.3.1. Delayed Games. We will now study the model introduced in Carmona
et al. [2016], where the authors proposes a stochastic differential game with delay in
the control to analyze the systemic risk within a bank system.

Fix m = d = N , ki = 1 and

b(t, y, Zt) = (z1
t − z1

t−τ , . . . , z
N
t − zNt−τ ),

σ(t, y, Zt) = σIN ,

f i(t, y, Zt) =
(zit)

2

2
− βzit(ȳ − yi) +

ε

2
(ȳ − yi)2,

gi(y) =
c

2
(ȳ − yi)2,

where ȳ =
1

N

∑N
i=1 yi and IN is the identity matrix in RN . Let us consider the same

ansatz for the value functional as in Carmona et al. [2016],

V i(t, y, Zt) =
1

2
E0(t)(ȳ − yi)2 + (ȳ − yi)

∫ t

t−τ
E1(t, θ − t)(z̄θ − ziθ)dθ

+

∫ t

t−τ

∫ t

t−τ
E2(t, θ1 − t, θ2 − t)(z̄θ1 − ziθ1)(z̄θ2 − ziθ2)dθ1dθ2 + E3(t).

Assuming that αj has been chosen, for j 6= i, by the reasoning outlined in Section
2.2.1, the optimal control for the player i is given by

âi(t, y, Zt, p) = β(ȳ − yi)− pi − (ȳ − yi)F1(t, 0)− 2

∫ t

t−τ
F2(t, θ − t, 0)(z̄θ − ziθ)dθ.

This is the same optimal control found in the aforesaid reference.
Assuming each player is following this strategy and noticing that pj in the formula

for âj should be replaced by ∂xjV
j (and not ∂xjV

i), we find that the HJB equation
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turns into

∆tV
i(t, y, Z−ztt ) +

N∑
j=1

(
σ2

2
∂xjxjV

i + (âj(t, y, Zt, ∂xjV
i)− zjt−τ )∂xjV

i

)

+
1

2
âi(t, y, Zt, ∂xiV

i)2 − β âi(t, y, Zt, ∂xiV i)(ȳ − yit) +
ε

2
(ȳ − yi)2 = 0,

V (T, y, ZT ) =
c

2
(ȳ − yi)2.

(22)

Following the same arguments as in Section 2.2.1, it is straightforward to find the
same system of PDEs as in Carmona et al. [2016].

3. Conclusions. In this paper, we have studied stochastic control and differential
games when there exists path-dependence effect of the control of the agent in the
dynamics of the state and in the running cost. We have analyzed the important
example of delayed dependence. The framework used was the functional Itô calculus,
which has been proven to be an excellent tool to deal with complicated path-dependence
structures, see Jazaerli and Saporito [2017]. Although we have focused on delayed
dependence, because of practical importance, there are no major impediments to
examine more interesting structures. We hope this work will allow the consideration
of different path-dependent structures in other applications.

Compared to the theory of Gozzi and Marinelli [2006] and Gozzi and Masiero
[2017a,b], that deals with the delayed case, the method proposed here allows in
principle very general path-dependence in the controls. Moreover, it could be directly
applied to (Dirac) measures, as it was done in Section 2.2.1.

Future research will be conducted to analyze viscosity solutions (existence and
uniqueness) of the path-dependent HJB derived here. Viscosity solution of similar
PPDEs have been extensively studied in recent years, see for example Ekren et al.
[2014, 2016a,b]. Moreover, it would be interesting to apply the theory developed here
to Stackelberg games, see for instance Bensoussan et al. [2015].
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