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Abstract. We propose a subgradient-based method for finding the maximum feasible subsys-
tem in a collection of closed sets with respect to a given closed set C (MFSC). In this method,
we reformulate the MFSC problem as an `0 optimization problem and construct a sequence of con-
tinuous optimization problems to approximate it. The objective of each approximation problem
is the sum of the composition of a nonnegative nondecreasing continuously differentiable concave
function with the squared distance function to a closed set. Although this objective function is non-
smooth in general, a subgradient can be obtained in terms of the projections onto the closed sets.
Based on this observation, we adapt a subgradient projection method to solve these approximation
problems. Unlike classical subgradient methods, the convergence (clustering to stationary points)
of our subgradient method is guaranteed with a nondiminishing stepsize under mild assumptions.
This allows us to further study the sequential convergence of the subgradient method under suitable
Kurdyka- Lojasiewicz assumptions. Finally, we illustrate our algorithm numerically for solving the
MFSC problems on a collection of halfspaces and a collection of unions of halfspaces, respectively,
with respect to the set of s-sparse vectors.
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1. Introduction. Let {C,D1, . . . , Dm} be a collection of finitely many nonempty
(possibly nonconvex) closed sets in Rn. We consider the problem of finding the max-
imum feasible subsystem with respect to C (MFSC):

(1)
max #(I)
s.t. C ∩

⋂
i∈I Di 6= ∅,

I ⊆ {1, . . . ,m},

where #(I) stands for the cardinality of the index set I. The above problem is a
natural generalization of the widely studied problem of finding the maximum feasible
(linear) subsystem (MF`S), which is just (1) with C = Rn and Di being halfspaces
and is known to be NP hard; see [11]. The MF`S problem finds applications in many
different areas such as image and signal processing [3], operations research [1,2], ma-
chine learning [4] and linear programming [12–14], and various solution methods have
been proposed. Many of these methods are based on integer programming techniques
and exploit explicitly the fact that each Di is a halfspace and C = Rn; see, for
example, [19–22] and references therein. For instance, the recently proposed branch-
and-cut method in [22] builds on the classical branch-and-cut approach for integer
programming: it exploits the duality between MF`S and the problem of finding the
minimum irreducible infeasible subsystem (IIS) cover, and makes use of the structure
of a special kind of polytope to identify IIS covers; see Sections 3.1 and 3.2 of [22].
Thus, when it comes to the MFSC problem (1), it is not clear whether the method
in [22] and other existing methods for the MF`S problem can be readily generalized
to solve (1) for general sets C and Di, which are possibly nonconvex.
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In this paper, we develop a new approach for approximately solving the MFSC
problem (1). Our method takes advantage of the recent advancement in `0 mini-
mization such as [26], and is based on the observation that the MFSC problem (1) is
equivalent to the following nonlinear programming problem with an `0 objective:

min
x∈C

Φ0(x) :=

m∑
i=1

|d2
Di(x)|0(2)

where | · |0 is the `0 norm.1 In our approach, as in [26], we approximate the `0 norm in
Φ0 by a sequence of continuous functions. We show that if the sequence of continuous
functions {ϕεk} is chosen in such a way that it is both epi-convergent and pointwise
convergent to the `0 norm, then the sequence of functions

(3) Φεk(x) :=

m∑
i=1

ϕεk(d2
Di(x))

epi-converges and pointwise converges to Φ0. We then explore how to minimize Φεk
over C, under further differentiability and concavity assumptions on ϕεk (see Section 4
for the assumptions and concrete examples of {ϕεk}). Notice that the function Φεk ,
though continuous, is still possibly nonsmooth in general: this is because the function
x 7→ d2

Di
(x) is differentiable if and only if Di is convex. Fortunately, a subgradient of

the squared distance function to Di can be obtained in terms of the projections onto
Di. We thus propose a subgradient projection method for minimizing the Φεk in (3)
over C. Surprisingly, we are able to show that the projected subgradient direction is
indeed a descent direction. This enables us to incorporate the standard nonmonotone
line-search scheme to empirically accelerate the algorithm. Moreover, under mild
assumptions on the collection of closed sets, we show that the stepsizes used are
uniformly bounded away from zero and that any accumulation point of the sequence
generated by our subgradient projection method is a stationary point of Φεk + δC .2

Based on these and some suitable Kurdyka- Lojasiewicz (KL) assumptions, we further
show that the whole sequence generated by our method (with monotone linesearch)
for minimizing the Φεk in (3) over C is convergent to a stationary point of Φεk + δC
when each Di is convex or C = Rn. We also establish a relationship between the
different KL assumptions considered. Finally, we perform numerical experiments on
(1) under two different scenarios: we consider C being the set of s-sparse vectors,
and {D1, . . . , Dm} being either a collection of halfspaces or a collection of unions of
halfspaces. Our experiments on random instances show that our approach is able to
identify a reasonably large feasible subsystem with respect to C in a reasonable period
of time, even for large-scale problems.

The rest of this paper is organized as follows. We introduce notation and pre-
liminary materials in Section 2. An approximation scheme for solving (1) based on
approximately minimizing a bunch of Φεk in (3) over C is introduced in Section 3.
We then propose and study in Section 4 a subgradient method for minimizing Φεk
in (3) over C and show that the sequence generated clusters at a stationary point of

1This equivalence can be easily deduced by noting that if I∗ solves (1), then the solution set
of (2) is C ∩

⋂
i∈I∗ Di, and that if x∗ solves (2), then a solution I∗ of (1) is given by I∗ = {i :

dist(x∗, Di) = 0}.
2As a corollary, under mild assumptions on the collection of closed sets, we establish that the

sequence generated by the averaged projection method clusters at stationary points of a suitable
potential function; see Corollary 4.5.
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Φεk + δC under mild assumptions on the collection of closed sets and some further
differentiability and concavity assumptions on ϕεk . Sequential convergence is studied
in Section 5 under additional KL assumptions. Finally, numerical experiments are
presented in Section 6.

2. Notation and preliminaries. We let Rn denote the n-dimensional Eu-
clidean space and let 〈·, ·〉 and ‖·‖ denote the standard inner product and the induced
norm, respectively. The nonnegative orthant and positive orthant are denoted by Rn+
and Rn++, respectively. For an x ∈ Rn, we let ‖x‖0 denote the `0 norm of x, and let
B(x, r) denote the closed ball centered at x with radius r. Moreover, for an s ∈ R,
we use |s|0 to denote its `0 norm and [s]+ := max{s, 0} to denote its positive part.

Let C ⊆ Rn be a nonempty closed set. We let PC(x) denote the set of projections
of a vector x ∈ Rn onto C: this set is always nonempty, and is a singleton when C is
in addition convex. The distance to C from x is denoted by dist(x,C) or dC(x), and
we use C∞ to denote the horizon cone of C, which is defined as C∞ := {x : ∃ xt ∈
C, λt ↓ 0 with λtx

t → x}.3 Finally, we let δC denote the indicator function of C,
which is defined as

δC(x) =

{
0 if x ∈ C,
+∞ otherwise.

For an extended-real-valued function f : Rn → [−∞,∞], we let dom f := {x ∈
Rn : f(x) < ∞}. Such a function is said to be proper if dom f 6= ∅ and f is never
−∞, and is said to be closed if f is lower semicontinuous. For a proper closed function
f , the regular subgradient and (limiting) subgradient [24, Definition 8.3] at a point
x̄ ∈ dom f are defined respectively as

∂̂f(x̄) :=

{
v : lim inf

x→x̄, x 6=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0

}
,

∂f(x̄) :=
{
v : ∃xt f−→ x̄ and vt ∈ ∂̂f(xt) with vt → v

}
,

where xt
f−→ x̄ means both xt → x̄ and f(xt) → f(x̄). We define ∂f(x) = ∂̂f(x) = ∅

whenever x /∈ dom f by convention, and write dom∂f := {x ∈ Rn : ∂f(x) 6=
∅}. Clearly, we have ∂̂f(x̄) ⊆ ∂f(x̄). It is known that ∂f reduces to the classical
subdifferential in convex analysis if f is in addition convex [24, Proposition 8.12], and
we have ∂f(x) = {∇f(x)} if f is continuously differentiable at x. We also define
the normal cone of a nonempty closed set C at x ∈ C as NC(x) = ∂δC(x). Finally,
for a positive number ν, we denote the set of ν-minimizers of f by ν-arg min f , i.e.,
ν-arg min f := {x : f(x) ≤ inf f + ν}. The set of minimizers of f is denoted by
arg min f .

We next recall the Kurdyka- Lojasiewicz (KL) property, which is an important
property for analyzing convergence of first-order methods; see, for example, [5–7].
For notational simplicity, for any ν ∈ (0,∞], we let Ξν denote the set of continuous
concave functions φ : [0, ν) → R+ that are continuously differentiable on (0, ν) with
positive derivatives and satisfy φ(0) = 0.

Definition 2.1 (KL property & KL function). Let f be a proper closed
function. We say that f satisfies the Kurdyka- Lojasiewicz (KL) property at x̂ ∈

3We recall from [24, Theorem 3.5] that C∞ = {0} if and only if C is bounded.
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dom ∂f if there exist a neighborhood N of x̂, ν ∈ (0,∞] and a φ ∈ Ξν such that

(4) φ′(f(x)− f(x̂)) dist(0, ∂f(x)) ≥ 1

whenever x ∈ N and f(x̂) < f(x) < f(x̂) + ν. If f satisfies the KL property at
x̂ ∈ dom ∂f and the φ in (4) can be chosen as φ(s) = cs1−θ for some θ ∈ [0, 1) and
c > 0, then f is said to satisfy the KL property at x̂ with exponent θ.

A proper closed function f is called a KL function if it satisfies the KL property
at every point in dom ∂f , and is called a KL function with exponent θ ∈ [0, 1) if it
satisfies the KL property with exponent θ at every point in dom ∂f .

It can be shown that the KL property is satisfied by a large class of functions,
including all proper closed semialgebraic functions. Indeed, it is known that proper
closed semialgebraic functions are KL functions with exponent θ for some θ ∈ [0, 1);
see, for example, [6, Section 4] and references therein. We next recall the following
lemma concerning a uniformized KL property, first proved in [10, Lemma 6]. It
was used there for establishing convergence of first-order methods for level-bounded
objective functions.

Lemma 2.2 (Uniformized KL property). Let Ω be a compact set and f be
a proper closed function that satisfies the KL property at every point in Ω and is
constant on Ω, say, equals l∗. Then there exist ε > 0, ν ∈ (0,∞] and a φ ∈ Ξν such
that

φ′(f(x)− l∗) dist(0, ∂f(x)) ≥ 1

whenever dΩ(x) < ε and l∗ < f(x) < l∗ + ν.

Finally, we prove that a certain sequence of function is equi-lsc. This will be used
in Section 3 to construct an explicit example of sequence {Φεt} (as in (3)) that epi-
converges and pointwise converges to Φ0 in (2). We first recall the following definition;
see [24, Page 248].

Definition 2.3. Let {ft} be a sequence of functions. We say that {ft} is equi-lsc
at x0 if for every ε > 0 and ρ > 0 there exists δ > 0 such that

ft(x) ≥ min{ft(x0)− ε, ρ} for all t and ‖x− x0‖ ≤ δ.

We say that {ft} is equi-lsc on Rn if {ft} is equi-lsc at every point x0 ∈ Rn.

Lemma 2.4. Let {εt} be a decreasing positive sequence with εt ↓ 0 and define

ϕεt(s) = 1− log(|s|+εt)
log εt

. Then the sequence of functions {ϕεt} is equi-lsc on R.

Proof. We prove by contradiction. Let s0 ∈ R. Suppose that {ϕεt} is not equi-lsc
at s0. Then we see from Definition 2.3 that there exist ε0 > 0, ρ0 > 0, a sequence
{tj}, and a sequence sj → s0 such that

ϕεtj (sj) < min{ϕεtj (s0)− ε0, ρ0} for all j.(5)

If there exists N such that tj ≤ N infinitely often, by passing to a further sub-
sequence if necessary, we may assume that tj ≡ N0 for some integer N0. But this
together with (5) contradicts the continuity of ϕεN0

at s0.
Thus, we must have tj →∞. We then consider the following two cases:

(a) Suppose that s0 6= 0. Then clearly limj→∞ ϕεtj (sj) = 1 and limj→∞ ϕεtj (s0) = 1.

Hence, we have limj→∞ ϕεtj (sj) > limj→∞ ϕεtj (s0)− ε0. This contradicts (5).
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(b) Suppose that s0 = 0. Using the facts that εtj ↓ 0 and sj → s0 = 0, we conclude
that there exists a positive integer N such that 0 < εtj ≤ εtj + |sj | < 1 for all
j ≥ N , which further implies log(εtj ) ≤ log(εtj + |sj |) < 0 for all j ≥ N . Thus,

we have 1 ≥ log(εtj+|sj |)
log(εtj ) for all j ≥ N , and hence lim infj→∞ ϕεtj (sj) ≥ 0. On

the other hand, we have ϕεtj (s0)− ε0 = −ε0 < 0 for all j. This contradicts (5).

This completes the proof.

3. An algorithmic framework for the MFSC problem. In this section, we
introduce an algorithmic framework for solving the MFSC problem (1). Our approach
is to solve the equivalent reformulation (2). We construct a sequence of approximation
problems with continuous objectives, and solve those approximate problems succes-
sively to approximate the original `0 optimization problem in (2). A similar approach
was previously used in [26] for solving `0 minimization problems to find sparse solu-
tions of linear systems.

Our algorithm, which is an epigraphical approximation scheme for the MFSC
problem (EASMFSC

), is presented below as Algorithm 1.

Algorithm 1 Epigraphical approximation scheme for MFSC (EASMFSC
)

Step 0. Choose a sequence of continuous functions {Φεk} that is epi-convergent and
pointwise convergent to Φ0. Choose x̃0 ∈ Rn. Let k = 1.

Step 1. (a) Find an approximate minimizer x̃k of Φεk + δC by an iterative algorithm
initialized at x̃k−1.

(b) If a termination criterion is not met, set k ← k + 1 and go to Step 1(a).

In EASMFSC
, we first construct a sequence of continuous functions {Φεk}. How-

ever, different from the literature, we require the sequence of functions to be both
epi-convergent and pointwise convergent to Φ0 in (2); see [24, Chapter 7] for the defi-
nition of epi-convergence. Then, in each iteration of our algorithm, we approximately
minimize Φεk + δC and use the approximate minimizer x̃k as an initial point for min-
imizing Φεk+1

+ δC . It can be shown that if x̃k ∈ νk-arg min(Φεk + δC) with νk ↓ 0,
then any accumulation point of {x̃k} is a minimizer of (2); see [24, Theorem 7.46(a)]
and [24, Theorem 7.31(b)].

In order to make use of EASMFSC
, we need to specify how to construct the sequence

of continuous functions {Φεk} and how to solve the corresponding subproblem. We
postpone the discussion of the subproblem to the next section. In the remainder
of this section, we discuss how the sequence of continuous functions {Φεk} can be
constructed. We start with the following theorem, which suggests a simple way of
constructing such a sequence.

Theorem 3.1. Let {ϕεk(·)} be a sequence of continuous functions on R that
is both epi-convergent and pointwise convergent to | · |0 on R. Define Φεk(x) :=∑m
i=1 ϕεk(d2

Di
(x)). Then {Φεk} is both epi-convergent and pointwise convergent to Φ0

in (2).

Proof. We start by showing that for each i, the sequence of functions {ϕεk(d2
Di

(·))}
epi-converges to |d2

Di
(·)|0. In view of [24, Proposition 7.2], it suffices to show that, for

each i and x ∈ Rn, it holds that

(6)


lim inf
k→∞

ϕεk(d2
Di(x

k)) ≥ |d2
Di(x)|0 for every sequence xk → x,

lim sup
k→∞

ϕεk(d2
Di(x

k)) ≤ |d2
Di(x)|0 for some sequence xk → x.



6 MINGLU YE AND TING KEI PONG

Since {ϕεk(·)} converges pointwise to | · |0, the second relation above holds trivially
for the constant sequence xk ≡ x. On the other hand, consider any sequence xk → x.
Then we have d2

Di
(xk) → d2

Di
(x). Using this together with [24, Proposition 7.2] and

the fact that {ϕεk(·)} epi-converges to | · |0, we conclude that the first relation in (6)
also holds. Thus, we have shown that {ϕεk(d2

Di
(·))} epi-converges to |d2

Di
(·)|0.

Now, notice that {ϕεk(d2
Di

(·))} also pointwise converges to |d2
Di

(·)|0 since {ϕεk(·)}
pointwise converges to | · |0. The desired conclusion now follows from these and [24,
Theorem 7.46]. This completes the proof.

Based on the above theorem, in order to construct the desired sequence {Φεk}
as required in EASMFSC

, it suffices to construct a sequence of continuous functions
{ϕεk(·)} that is both epi-convergent and pointwise convergent to | · |0 on R and define
Φεk accordingly. We now present some concrete examples of such {ϕεk}.

Example 1. Let {εk} be a decreasing positive sequence with εk ↓ 0.

(a) Consider ϕε(s) = 1− log(|s|+ε)
log ε , which appeared in [26, Example 2.3(i)]. We claim

that the sequence {ϕεk(·)} is both epi-convergent and pointwise convergent to | · |0.
First, it is routine to show the pointwise convergence. Also, we know from
Lemma 2.4 that the sequence {ϕεk} is equi-lsc on R. This together with the point-
wise convergence and [24, Theorem 7.10] shows that {ϕεk(·)} also epi-converges
to | · |0.

(b) Consider ϕε(s) = |s|
|s|+ε + ε|s|, which is a modification of the function in [26,

Example 2.6]. We claim that the sequence {ϕεk(·)} is both epi-convergent and
pointwise convergent to | · |0.
Again, it is routine to show the pointwise convergence. Next, define ϕεk,1(s) :=
|s|
|s|+εk and ϕεk,2(s) := εk|s|. Then the sequence {ϕεk,1(·)} is nondecreasing and

converges pointwise to | · |0, and the sequence {ϕεk,2} is nonincreasing and con-
verges pointwise to 0. Thus, according to Proposition 7.4(c) and (d) of [24], we
see that {ϕεk,1(·)} epi-converges to | · |0, and {ϕεk,2} epi-converges to 0. Since
ϕεk = ϕεk,1 + ϕεt,2, using the above observations and [24, Theorem 7.46], we
conclude further that {ϕε(·)} epiconverges to | · |0.

Suppose a sequence {Φεk} satisfying the requirement of EASMFSC
is constructed

as described in Theorem 3.1. Then subproblems in the following form have to be
approximately solved to obtain x̃k:

(7) min
x∈C

m∑
i=1

ϕεk(d2
Di(x)).

This optimization problem is hard to solve in general. Indeed, even when ϕεk is
chosen to be a smooth function, the objective function in (7) is still nonsmooth and
nonconvex in general if some Di’s are nonconvex. Thus, in the next section, we
will restrict our attention to a special class of {ϕεk} and discuss how to solve the
corresponding problem (7) efficiently.

4. A subgradient method for subproblems in EASMFSC
. In this section,

we propose an algorithm for solving the subproblem in Step 1(a) of EASMFSC
in the

form of (7) for a large class of choices of ϕε. Specifically, let Θ denote the set of
level-bounded continuous concave functions ψ : R+ → R+ that satisfy the following
properties:

1. ψ is continuously differentiable on R++ with positive derivative and ψ(0) = 0;
2. lims↓0 ψ

′(s) exists and is positive, and ψ′+ is Lipschitz continuous on R+.
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We consider problems of the following form, for a function ψ ∈ Θ:

min
x∈C

Ψ(x) :=

m∑
i=1

ψ(d2
Di(x)).(8)

We would like to point out that the assumption ψ ∈ Θ in (8) is general enough to
cover the subproblems that arise in Step 1(a) of Algorithm 1 for the two classes of

functions studied in Example 1: ϕε(s) = |s|
|s|+ε + ε|s|, ε > 0, and ϕε(s) = 1− log(|s|+ε)

log ε ,

ε ∈ (0, 1). Indeed, for ϕε(s) = |s|
|s|+ε + ε|s|, ε > 0, the corresponding subproblem (7)

takes the form of (8) with ψ(s) = s
s+ε + εs; clearly, ψ ∈ Θ. On the other hand, for

ϕε(s) = 1− log(|s|+ε)
log ε , ε ∈ (0, 1), the subproblem (7) becomes

min
x∈C

m∑
i=1

[
1−

log(d2
Di

(x) + ε)

log ε

]
.

Since ε ∈ (0, 1) so that − log ε > 0, the above problem is equivalent to

min
x∈C

m∑
i=1

[log(d2
Di(x) + ε)− log ε],

which takes the form of (8) with ψ(s) = log(s+ ε)− log ε; it is routine to check that
ψ ∈ Θ.

Notice that (8) is a nonconvex nonsmooth problem in general, and it is not ob-
vious at first glance what algorithm should be applied for solving such a problem.
However, in the special case when Di’s are all convex, the functions x 7→ d2

Di
(x),

i = 1, . . . ,m, are smooth, and (8) can be solved by the classical gradient projection
algorithm. This method can be applied efficiently when the projections onto C and
Di’s can be computed efficiently, because the gradient of Ψ can be computed in terms
of projections onto Di’s:

∇Ψ(x) = 2

m∑
i=1

ψ′+(d2
Di(x))[x− PDi(x)].(9)

In the general case when Di’s are possibly nonconvex, the function Ψ is not everywhere
differentiable in general. Nevertheless, we still have 2ψ′+(d2

Di
(x))[x−ξ] ∈ ∂(ψ◦d2

Di
)(x)

whenever ξ ∈ PDi(x),4 and the element 2ψ′+(d2
Di

(x))[x−ξ] can be computed efficiently
if a projection onto Di can be obtained efficiently. Thus, mimicking the framework
of gradient projection algorithm, we propose a subgradient projection algorithm with
nonmonotone linesearch for solving (8), in which ∇Ψ(x) is replaced by an element in∑m
i=1 ∂(ψ ◦ d2

Di
)(x). Our algorithm, known as subgradient projection algorithm with

nonmonotone linesearch (sGPls), is presented below as Algorithm 2. Even though this
is a subgradient type algorithm, surprisingly, we can show that the linesearch can be
terminated after finitely many inner iterations (i.e., the linesearch is well defined), and
that the stepsize sequence {αt} in the algorithm has a uniform lower bound (under an
additional assumption on the collection of closed sets; see Theorem 4.3 below), unlike
classical subgradient methods (see, for example, [9]).

We first establish the well-definedness of the linesearch procedure in sGPls, which
is an immediate consequence of the following proposition. For notational convenience,

4This can be proved using the definition of subdifferential, [24, Example 8.53] and ψ ∈ Θ.
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Algorithm 2 Subgradient projection algorithm with nonmonotone linesearch (sGPls)
for (8)

Step 0. Choose αmax > αmin > 0, η ∈ (0, 1), σ > 0 and an integer M ≥ 0. Set t = 0
and pick an x0 ∈ C.

Step 1. (a) Choose α0
t ∈ [αmin, αmax] and set α = α0

t . Pick any ξti ∈ PDi(x
t) for

i = 1, . . . ,m. Set

gt := 2

m∑
i=1

ψ′+(d2
Di(x

t))(xt − ξti).(10)

(b) Choose any

ũ ∈ arg min
u∈C

{
〈gt, u− xt〉+

1

2α
‖u− xt‖2

}
.(11)

(c) If

Ψ(ũ)− max
[t−M ]+≤i≤t

Ψ(xi) ≤ −σ
2
‖ũ− xt‖2,(12)

go to Step 2. Otherwise, update α← ηα and go to Step 1(b).
Step 2. Let αt := α, xt+1 := ũ and go to Step 1.

given x ∈ C and ξi ∈ PDi(x) for all i, for each α > 0, let ũ(α) denote a minimizer of
the problem

(13) min
u∈C
〈g, u− x〉+

1

2α
‖u− x‖2,

where g := 2
∑m
i=1 ψ

′
+(d2

Di
(x))(x− ξi).

Proposition 4.1 (Sufficient descent). Let Ψ be defined in (8) with ψ ∈ Θ,
x ∈ C and ξi ∈ PDi(x) for all i. Let α > 0 and ũ(α) be defined in (13). Then there
exists β > 0 so that

Ψ(ũ(α))−Ψ(x) ≤

(
− 1

β
+

m∑
i=1

ψ′+(d2
Di(x))

)
‖ũ(α)− x‖2.(14)

Indeed, one can take β = α when C is in addition convex and set β = 2α otherwise.

Proof. Since ψ is concave and ψ′+ is continuous on R+, we see that

Ψ(ũ(α)) ≤
m∑
i=1

{
ψ(d2

Di(x)) + ψ′+(d2
Di(x))[d2

Di(ũ(α))− d2
Di(x)]

}
= Ψ(x) +

m∑
i=1

ψ′+(d2
Di(x))[d2

Di(ũ(α))− d2
Di(x)].

(15)

Next, from the definition of distance function, we see that, for each fixed i,

d2
Di(x) = ‖x‖2 − 2hi(x),
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where hi(x) := sup{〈x, y〉 − 1
2‖y‖

2 : y ∈ Di}. Notice that hi is finite everywhere and
is the pointwise supreme of affine functions. Thus, hi is a continuous convex function
and one can check directly from definition that PDi(x) ⊆ ∂hi(x). Then we have

m∑
i=1

ψ′+(d2
Di(x))[d2

Di(ũ(α))− d2
Di(x)]

=

m∑
i=1

ψ′+(d2
Di(x)){‖ũ(α)‖2 − ‖x‖2 − 2[hi(ũ(α))− hi(x)]}

≤
m∑
i=1

ψ′+(d2
Di(x))[‖ũ(α)‖2 − ‖x‖2 − 2〈ξi, ũ(α)− x〉]

= 〈g, ũ(α)− x〉+

m∑
i=1

ψ′+(d2
Di(x))‖ũ(α)− x‖2,

(16)

where the first inequality holds because ψ′+ > 0, hi is convex and ξi ∈ PDi(x) ⊆ ∂hi(x)
and the last equality holds because of the relation ‖ũ(α)‖2−‖x‖2− 2〈ξi, ũ(α)− x〉 =
‖ũ(α)− x‖2 + 2〈x− ξi, ũ(α)− x〉 and the definition of g in (13).

Now, using the definition of ũ(α) as a minimizer of (13) and the fact that x ∈ C,
we see that 〈g, ũ(α) − x〉 + 1

2α‖ũ(α) − x‖2 ≤ 0. Combining this with (15) and (16),
we see that (14) holds with β = 2α.

Finally, suppose C is in addition convex. Then the function f(u) := 〈g, u− x〉+
1

2α‖u−x‖
2+δC(u) is strongly convex with modulus 1

α . Using this and the definition of
ũ(α) as a minimizer of (13), we see that f(x)−f(ũ(α)) ≥ 1

2α‖ũ(α)−x‖2. Rearranging
terms, we have

〈g, ũ(α)− x〉 ≤ − 1

α
‖ũ(α)− x‖2.

This together with (15) and (16) implies that (14) holds with β = α. This completes
the proof.

Using Proposition 4.1, it is then routine to show the well-definedness of the line-
search procedure in sGPls.

Corollary 4.2 (Well-definedness of linesearch). Let Ψ be defined in (8)
with ψ ∈ Θ and suppose that the sGPls is applied for solving (8). Then, in each
iteration, the linesearch criterion in Step 1(c) is satisfied after finitely many inner
iterations.

We next show that the stepsize sequence {αt} generated in sGPls for solving (8)
has a uniform lower bound under the additional assumption that C∞ ∩ (

⋂m
i=1D

∞
i ) =

{0}.5 We will also show that the sequence {xt} generated by sGPls is bounded and
any accumulation point is a stationary point of the function Ψ + δC in (8). Here, we
say that x̄ is a stationary point of Ψ + δC if

0 ∈
m∑
i=1

[2ψ′+(d2
Di(x̄))(x̄− PDi(x̄))] +NC(x̄).(17)

Note that if x̄ is a local minimizer of Ψ + δC , then in view of [24, Theorem 10.1], [24,
Corollary 10.9], [18, Theorem 1.110(ii)] and [24, Example 8.53], one can show that x̄
is a stationary point of Ψ + δC .

5This assumption is satisfied if C or any Di is bounded.
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Theorem 4.3. Suppose that C∞ ∩ (
⋂m
i=1D

∞
i ) = {0} and let Ψ be defined in (8)

with ψ ∈ Θ. Let {xt}, {αt} and {ξti}, i = 1, . . . ,m, be the sequences generated by
sGPls. Then the following statements hold.
(a) The sequences {xt} and {ξti}, i = 1, . . . ,m, are all bounded, and inf

t≥0
αt > 0.

(b) It holds that lim
t→∞

‖xt+1 − xt‖ = 0 and the limit lim
t→∞

Ψ(xt) exists.

(c) (Global subsequential convergence) Any cluster point of {xt} is a stationary
point of Ψ + δC .

Proof. (a) We first note from (12) and a simple induction argument that Ψ(xt) ≤
Ψ(x0) for all t ≥ 1. This together with the nonnegativity and level-boundedness of ψ
implies that the sequence {d2

Di
(xt)} is bounded for each i = 1, . . . ,m. Hence, there

exists M1 > 0 such that

‖xt − ξti‖ = dDi(x
t) ≤M1 for all t and all i,(18)

where the first equality holds because ξti ∈ PDi(xt).
Now, we claim that the sequence {xt} is bounded. Suppose to the contrary that

{xt} is unbounded. Then there exists a subsequence {xtj} such that lim
j→∞

‖xtj‖ = +∞.

By passing to a further subsequence if necessary, we may assume without loss of

generality that ‖xtj‖ 6= 0 for all j and limj→∞
xtj

‖xtj ‖ = d for some d. Then ‖d‖ = 1

and we also have from the definition of horizon cone that d ∈ C∞. Next, dividing
‖xtj‖ from both sides of (18), we see that

0 ≤

∥∥∥∥∥ ξ
tj
i

‖xtj‖
− xtj

‖xtj‖

∥∥∥∥∥ =
‖ξtji − xtj‖
‖xtj‖

≤ M1

‖xtj‖
.

Passing to the limit in the above inequality, we see that limk→∞
ξ
tj
i

‖xtj ‖ = d for each i.

Using this together with the definition of horizon cone of D∞i and the fact ξ
tj
i ∈ Di

for all i and j, we conclude further that d ∈
⋂m
i=1D

∞
i . Since we also have ‖d‖ = 1

and d ∈ C∞, this contradicts the assumption that C∞ ∩
⋂m
i=1D

∞
i = {0}. Thus, the

sequence {xt} is bounded. In view of (18), we see that {ξti} is also bounded for all i.
Next, we show that inft≥0 αt > 0. We first note from (18) and the positivity and

continuity of ψ′+ on R+ that there exists M2 > 0 so that 0 ≤ ψ′+(d2
Di

(xt)) ≤ M2 for
all t and i. Using this fact and applying Proposition 4.1 with x = xt and ξi = ξti , we
see that

Ψ(ũ(α))−Ψ(xt) ≤
(
− 1

2α
+mM2

)
‖ũ(α)− xt‖2,

where ũ(α) is defined as in (13) with x = xt and g = gt defined in (10), i.e., ũ(α)
is a minimizer of (11) in the t-th iteration. Thus, the linesearch criterion (12) is
satisfied if α ≤ (2mM2 +σ)−1. Hence, using the definition of αt, we must have either
αt = α0

t ≥ αmin (if α0
t ≤ (2mM2 + σ)−1) or αt > η(2mM2 + σ)−1. Consequently, it

holds that inft≥0 αt ≥ min{αmin, η(2mM2 + σ)−1} > 0.
(b) This can be proved similarly as in [25, Lemma 4].
(c) Let x∗ be a cluster point of the bounded sequence {xt} and let {xtj} be a

convergent subsequence with limit x∗. Since {ξti} is also bounded for all i, by passing
to a further subsequence if necessary, we may assume without loss of generality that,
for each i = 1, . . . ,m, ξ

tj
i → ξ∗i for some ξ∗i . Next, using the definition of xtj+1 as a
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minimizer of (11) when α = αtj , we see that

0 ∈ 2

m∑
i=1

ψ′+(d2
Di(x

tj ))(xtj − ξtji ) +
1

αtj
(xtj+1 − xtj ) +NC(xtj+1).(19)

Notice that ψ′+(d2
Di

(·)) is continuous, lim
t→∞

‖xt+1− xt‖ = 0 according to (b) and { 1
αt
}

is bounded according to (a). Then, passing to the limit as j →∞ in (19), we have

0 ∈
m∑
i=1

[2ψ′+(d2
Di(x

∗))(x∗ − ξ∗i )] +NC(x∗).

To complete the proof, it now remains to show that, for each i, ξ∗i ∈ PDi(x∗). To this

end, we first note that ξ∗i ∈ Di because Di is closed and {ξtji } ⊆ Di. In addition, we

we have dDi(x
∗) = ‖x∗−ξ∗i ‖ because dDi(x

tj ) = ‖xtj−ξtji ‖ (thanks to ξ
tj
i ∈ PDi(xtj )).

Thus, we conclude that ξ∗i ∈ PDi(x∗) and this completes the proof.

Before ending this section, as a little digression and an immediate application
of Theorem 4.3, we discuss global convergence of the averaged projection algorithm.
Averaged projection algorithm is a popular algorithm for finding a point of intersection
of several nonempty closed sets D1, . . . , Dm. In this algorithm, we initialize at an
x0 ∈ Rn and update

(20) xt+1 ∈ 1

m

m∑
i=1

PDi(x
t).

When each Di is convex, the above algorithm is just the proximal gradient algorithm
applied to 1

2m

∑m
i=1 d

2
Di

(x) with constant stepsize 1, and its convergence is well known.
However, the global convergence of the above algorithm is unknown if Di’s are non-
convex: only local convergence was proved recently in [15] under suitable regularity
assumptions.

We next show that the averaged projection algorithm (20) is a special case of
sGPls when C = Rn and ψ(s) = s

m , which clearly belongs to Θ. Hence, we obtain as
an immediate corollary of Theorem 4.3 that the averaged projection algorithm (20)
is globally subsequentially convergent when

⋂m
i=1D

∞
i = {0}.

Proposition 4.4. Suppose that C = Rn, ψ(s) = s
m and let Ψ be defined in (8).

Let α0
t = 1

2 for all t and 0 < σ ≤ 2 in sGPls. Then the sGPls reduces to the averaged
projection algorithm.

Proof. It suffices to show that xt+1 = 1
m

∑m
i=1 ξ

t
i in every iteration of sGPls under

the assumptions. To this end, we first apply Proposition 4.1 with x = xt and ξi = ξti ,
and invoke ψ′+ ≡ 1

m to obtain

Ψ(ũ(0.5))−Ψ(xt) ≤ (−2 + 1)‖ũ(0.5)− xt‖2 ≤ −σ
2
‖ũ(0.5)− xt‖2,

where ũ(α) is defined as in (13) with x = xt and g = gt defined in (10) (i.e., ũ(α)
is a minimizer of (11) in the t-th iteration.), and the last inequality holds because
0 < σ ≤ 2. This implies that ũ(0.5) satisfies (12) and hence xt+1 = ũ(0.5). Using
this, the first-order optimality condition of the subproblem (11) with α = 0.5 and the
fact that C = Rn, we see further that 0 = gt + 2(xt+1 − xt). Thus

xt+1 = xt − 1

2
gt = xt −

(
1

m

m∑
i=1

[xt − ξti ]

)
=

1

m

m∑
i=1

ξti ,
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where the second equality follows from (10) and the fact that ψ′+ ≡ 1
m on R+. This

completes the proof.

Corollary 4.5. Suppose that
⋂m
i=1D

∞
i = {0} and let {xt} be the sequence gen-

erated by the averaged projection algorithm (20). Then the sequence {xt} is bounded,
limt→∞ ‖xt+1 − xt‖ = 0 and any cluster point of {xt} is a stationary point of Ψ + δC
in (8) with ψ(s) = s

m and C = Rn.

5. Global sequential convergence of sGPls with M = 0. In this section,
we study convergence of the whole sequence generated by sGPls with M = 0 for
solving (8). We consider two cases in Sections 5.1 and 5.2, respectively: (1) each Di

is convex; (2) some Di’s are possibly nonconvex and C = Rn. We establish global
convergence of the whole sequence generated by sGPls with M = 0 in these two cases
by assuming KL properties of suitable potential functions. Then, in Section 5.3, we
discuss a relationship between the KL properties used in Section 5.1 and Section 5.2.

5.1. Global sequential convergence of sGPls with M = 0 for convex
Di. In this subsection, we assume that each Di is convex, but C can still be possibly
nonconvex. We show in the next theorem the global convergence of the whole sequence
generated by sGPls with M = 0 under the assumption that Ψ + δC is a KL function.

Theorem 5.1. Suppose that each Di is convex, C∞∩
⋂m
i=1D

∞
i = {0} and Ψ+δC

is a KL function, where Ψ is defined in (8) with ψ ∈ Θ. Let {xt} be the sequence
generated by sGPls with M = 0. Then {xt} is globally convergent to a stationary
point of Ψ + δC .

Proof. In view of Theorem 4.3, it suffices to show that the sequence {xt} is con-
vergent. Since dom∂(Ψ + δC) = C thanks to the smoothness of Ψ, and Ψ + δC is
a KL function by assumption, according to [7, Theorem 2.9], we only need to check
that {xt} satisfies the conditions H1, H2 and H3 there.

H1: Since M = 0 and {xt} ⊆ C, we see from (12) that Ψ(xt+1)+ σ
2 ‖x

t+1−xt‖2 ≤
Ψ(xt).

H2: We need to check that for each t there exists ωt+1 ∈ ∂(Ψ+ δC)(xt+1) so that
‖ωt+1‖ ≤ b‖xt+1 − xt‖ for some b > 0 independent of t.

To this end, we note first that xt+1 is a minimizer of (11) when α = αt. Hence,
we have −∇Ψ(xt)− 1

αt
(xt+1 − xt) ∈ NC(xt+1). Now, define

ωt+1 := ∇Ψ(xt+1)−∇Ψ(xt)− 1

αt
(xt+1 − xt).

Then we have ωt+1 ∈ ∇Ψ(xt+1) + NC(xt+1) = ∂(Ψ + δC)(xt+1), where the equality
follows from [24, Exercise 8.8]. On the other hand, note from (9) that ∇Ψ is locally
Lipschitz because ψ′+ is Lipschitz. Also, recall from Theorem 4.3(a) that {xt} is
bounded. Using these and the definition of wt+1, we conclude that

‖wt+1‖ =

∥∥∥∥∇Ψ(xt+1)−∇Ψ(xt)− 1

αt
(xt+1 − xt)

∥∥∥∥ ≤ (c+
1

α0

)
‖xt+1 − xt‖,

where c is the Lipschitz continuity modulus of ∇Ψ on a compact set containing {xt},
and α0 := inft≥0 αt, which is positive thanks to Theorem 4.3(a). Thus, H2 holds.

H3: This follows from the boundedness of {xt} by Theorem 4.3(a), the continuity
of Ψ and the closedness of C.

Based on the assumptions of Theorem 5.1, it is now routine (see [6, Theorem 3.4]
for a similar analysis) to establish the local convergence rate of the sequence gener-
ated by sGPls with M = 0 under the additional assumption that Ψ + δC is a KL
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function with exponent θ ∈ [0, 1). In particular, an exponent of θ = 1
2 implies local

linear convergence of the sequence generated. Thus, in the next theorem, we discuss
conditions on {C,D1, . . . , Dm} that will guarantee Ψ + δC to be a KL function with
exponent 1

2 . Specifically, we assume that {C,D1, . . . , Dm} is a collection of closed
convex sets that is boundedly linearly regular. Recall that a collection of closed con-
vex sets {C,D1, . . . , Dm} is boundedly linearly regular if C ∩

⋂m
i=1Di 6= ∅ and for

every bounded set B, there exists c > 0 so that

dist

(
x,C ∩

m⋂
i=1

Di

)
≤ cmax{dC(x), max

1≤i≤m
dDi(x)}

whenever x ∈ B. It is known that when C and Di are polyhedra with nonempty
intersection, then {C,D1, . . . , Dm} is boundedly linearly regular; see [8, Theorem
5.6.2].

Theorem 5.2. Suppose that C and all Di’s are convex and let Ψ be defined in
(8) with ψ ∈ Θ. If {C,D1, · · · , Dm} is boundedly linearly regular, then Ψ + δC is a
KL function with exponent 1

2 .

Proof. For notational simplicity, we write D =
⋂m
i=1 Di. We first show that the

set of stationary points of Ψ + δC , denoted by X , is C ∩ D. Note that C ∩ D ⊆ X
can be shown by a direct verification using the definition of stationary points in (17).
Conversely, suppose that x̄ ∈ X , i.e., it satisfies (17). Note that d2

Di
is convex due

to the convexity of Di, C is convex by assumption and ψ′+ > 0 on R+. Hence, the
function x 7→

∑m
i=1[ψ′+(d2

Di
(x̄))d2

Di
(x)] + δC(x) is a convex function. Using this, (17)

and ∇d2
Di

(x) = 2(x− PDi(x)), we see further that

x̄ ∈ arg min
x∈C

m∑
i=1

ψ′+(d2
Di(x̄))d2

Di(x) = C ∩D,

where the equality holds because ψ′+ > 0 on R+ and C∩D 6= ∅. Thus, we have shown
that C ∩D = X .

Since X = C ∩D = arg min(Ψ + δC), in view of [16, Lemma 2.1] and Definition
2.1, we only need to check that, for any fixed x̄ ∈ C ∩D, there exist positive numbers
c and r so that

dist(0, ∂(Ψ + δC)(x)) ≥ c(Ψ(x)−Ψ(x̄))
1
2 whenever x ∈ C ∩B(x̄, r).

To this end, fix any x̄ ∈ C ∩ D and any r > 0. Since ψ′+(d2
Di

(·)) is continuous
on B(x̄, r) and ψ′+ > 0 on R+, we see that there exist ν1 and ν2 such that 0 < ν1 ≤
ψ′+(d2

Di
(x)) ≤ ν2 for all x ∈ B(x̄, r) and all i = 1, . . . ,m. Now, define ωi(x) :=

ψ′+(d2Di
(x))∑m

j=1 ψ
′
+(d2Dj

(x))
. Then we have for all x ∈ B(x̄, r) that

(21)

m∑
i=1

ωi(x) = 1 and min
1≤i≤m

ωi(x) ≥ ν :=
ν1

mν2
> 0.

Let x ∈ C ∩B(x̄, r) and y ∈ C ∩D. Since y ∈ Di for each i, it follows that

〈PDi(x)− x, y − x〉 = 〈PDi(x)− x, y − PDi(x) + PDi(x)− x〉 ≥ d2
Di(x),(22)
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where the inequality holds because 〈PDi(x)−x, y−PDi(x)〉 ≥ 0, which is a consequence
of the convexity of Di and the definition of PDi(x). Now, for any ζ ∈ NC(x), we have

m∑
i=1

ωi(x)d2
Di(x) ≤

〈
m∑
i=1

ωi(x)PDi(x)− x, y − x

〉

=

〈
m∑
i=1

ωi(x)PDi(x)− x− ζ, y − x

〉
+ 〈ζ, y − x〉

≤

∥∥∥∥∥
m∑
i=1

ωi(x)PDi(x)− x− ζ

∥∥∥∥∥ ‖y − x‖,
where the first inequality is due to (21) and (22), the second inequality holds because
ζ ∈ NC(x) and y ∈ C. Taking infimum over y ∈ C ∩D and ζ ∈ NC(x) in the above
inequality and noting that

∂(Ψ + δC)(x) = 2

 m∑
j=1

ψ′+(d2
Dj (x))

[x− m∑
i=1

ωi(x)PDi(x) +NC(x)

]
,

we obtain further that
m∑
i=1

ωi(x)d2
Di(x) ≤ c1dist(0, ∂(Ψ + δC)(x)) · dC∩D(x),

where c1 = (2mν1)−1. Using this together with the bounded linear regularity of
{C,D1, · · · , Dm}, we see further that for any x ∈ C ∩B(x̄, r), we have

ν max
1≤j≤m

{d2
Dj (x)} ≤

m∑
i=1

ωi(x)d2
Di(x) ≤ c1dist(0, ∂(Ψ + δC)(x)) · dC∩D(x)

≤ c2dist(0, ∂(Ψ + δC)(x)) max
1≤j≤m

{dDj (x)}

for some constant c2 > 0, where the first inequality follows from (21), and the last
inequality holds because {C,D1, · · · , Dm} is boundedly linearly regular and x ∈ C.
Thus, we have for all x ∈ C ∩B(x̄, r) that

max
1≤j≤m

{dDj (x)} ≤ c2
ν

dist(0, ∂(Ψ + δC)(x)).(23)

On the other hand, note that for any x ∈ C∩B(x̄, r), we have PC∩D(x) ∈ B(x̄, r)
since the projection operator is nonexpansive and x̄ ∈ C ∩ D. Moreover, note from
(9) that ∇Ψ(x) is locally Lipschitz because ψ′+ is Lipschitz. Thus, we deduce further
that for any x ∈ C ∩B(x̄, r),

Ψ(x)−Ψ(x̄) = Ψ(x)−Ψ(PC∩D(x))

≤ 〈∇Ψ(PC∩D(x)), x− PC∩D(x)〉+
L1

2
‖x− PC∩D(x)‖2

=
L1

2
d2
C∩D(x) ≤ L1

2
c3 max

1≤j≤m
{d2
Dj (x)} ≤ c4dist2(0, ∂(Ψ + δC)(x)),

where L1 is the Lipschitz continuity modulus of ∇Ψ on B(x̄, r), the first equality holds
because Ψ(x̄) = Ψ(PC∩D(x)) = 0, the second equality holds because ∇Ψ(PC∩D(x)) =
0 by direct computation, the existence of c3 follows from the bounded linear regularity
of {C,D1, · · · , Dm} and x ∈ C, and the existence of c4 follows from (23). This
completes the proof.
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5.2. Global sequential convergence of sGPls with M = 0 for nonconvex
Di. In this subsection, we assume that C = Rn but allow each Di to be possibly
nonconvex: note that the function d2

Di
is not smooth when Di is nonconvex. We will

study global convergence of the whole sequence generated by sGPls with M = 0 for
solving (8) in this case.

Our analysis below will be based on the following potential function:

M(x, ξ, u) :=

m∑
i=1

[
ρ∗(ui)− ui‖x− ξi‖2 + δDi(ξi)

]
,(24)

where ξ = (ξ1, · · · , ξm) ∈ Rmn with each ξi ∈ Rn, u ∈ Rm, ρ is the convex function
defined by

(25) ρ(s) :=

{
−ψ(s) if s ≥ 0,

s2 − ls otherwise,

with ψ ∈ Θ (see (8)) and l := ψ′+(0) > 0, and ρ∗ is the convex conjugate. One can
show that

(26) ρ′(s) =

{
−ψ′+(s) if s ≥ 0,

2s− l otherwise.

We then see immediately from (25), (26) and ψ ∈ Θ that ρ is a continuously differen-
tiable nonincreasing convex function on R and ρ′ is Lipschitz continuous on R.

We collect some essential properties of the potential function M that will be useful
in our subsequent analysis. First, fix any x ∈ Rn. For each i, pick any ξ̂i ∈ PDi(x)
and define ûi := ρ′(d2

Di
(x)). Then we see from (26) that

ûi = ρ′(d2
Di(x)) = −ψ′+(d2

Di(x)) < 0.(27)

From this, we deduce further that

(28) M(x, ξ̂, û) =

m∑
i=1

[
ρ∗(ûi)− ûid2

Di(x)
]

=

m∑
i=1

[
−ρ(d2

Di(x))
]

= Ψ(x) ≥ 0,

where the first equality holds because ξ̂i ∈ PDi(x), while the second equality fol-
lows from (27) and [24, Proposition 11.3]. Finally, using [24, Exercise 8.8] and [24,
Proposition 10.5], we have the following formula for the subdifferential of M at any
(x, ξ, u) ∈ Rn × Rmn × Rn:

(29) ∂M(x, ξ, u) =


− 2

m∑
i=1

ui(x− ξi)

[−2ui(ξi − x) +NDi(ξi)]
m
i=1[

∂ρ∗(ui)− ‖x− ξi‖2
]m
i=1

 .
We next bound the distance from the origin to ∂M(x, ξ, u) along a certain se-

quence.

Lemma 5.3. Suppose that
⋂m
i=1D

∞
i = {0}, C = Rn and ψ ∈ Θ. Let M be

defined in (24) and let {xt} and {ξti}, i = 1, . . . ,m, be the sequences generated by
sGPls. Define, for each t, ut := [ρ′(d2

Di
(xt))]mi=1. Then there exists c > 0 such that

for all t ≥ 0, we have

dist(0, ∂M(xt, ξt, ut)) ≤ c‖xt+1 − xt‖.(30)
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Proof. Since C = Rn and xt+1 is a minimizer of (11) when α = αt, we have, using
the definition of ut and the expression of ρ′ in (26), that

0 = gt +
1

αt
(xt+1 − xt) = −2

m∑
i=1

uti(x
t − ξti) +

1

αt
(xt+1 − xt).

Combining this with (29), we deduce that

∂xM(xt, ξt, ut) = −2

m∑
i=1

uti(x
t − ξti) = − 1

αt
(xt+1 − xt).

Since α := inft≥0 αt > 0 according to Theorem 4.3(a), we obtain further that

dist(0, ∂xM(xt, ξt, ut)) ≤ α−1‖xt+1 − xt‖.(31)

Next, recall that ξti ∈ PDi(xt), which implies xt − ξti ∈ NDi(ξti), thanks to [24,
Example 6.16]. Moreover, using the expression of ρ′ in (26) and the definition of
ut together with the assumption that ψ ∈ Θ, we have −uti = −ρ′(d2

Di
(xt)) =

ψ′+(d2
Di

(xt)) > 0. Hence, −2uti(x
t − ξti) ∈ NDi(ξ

t
i). This together with (29) gives

0 ∈ ∂ξM(xt, ξt, ut). Thus,

dist(0, ∂ξM(xt, ξt, ut)) = 0.(32)

Finally, since uti = ρ′(d2
Di

(xt)) implies d2
Di

(xt) ∈ ∂ρ∗(uti) according to [24, Propo-
sition 11.3] and note that ξti ∈ PDi(x

t), we see that ‖xt − ξti‖2 ∈ ∂ρ∗(uti). This
together with (29) gives 0 ∈ ∂uM(xt, ξt, ut). The desired bound (30) now follows
immediately from this, (31) and (32).

We are now ready to present our convergence analysis.

Theorem 5.4. Suppose that
⋂m
i=1D

∞
i = {0}, C = Rn, ψ ∈ Θ and M in (24) is

a KL function. Let {xt} be the sequence generated by sGPls with M = 0. Then {xt}
is globally convergent to a stationary point of Ψ.

Proof. In view of Theorem 4.3, it suffices to show that the sequence {xt} is con-
vergent. We first note that max[t−M ]+≤i≤t Ψ(xi) ≡ Ψ(xt) since M = 0. Using this
and (12), we have

M(xt+1, ξt+1, ut+1)−M(xt, ξt, ut) = Ψ(xt+1)−Ψ(xt) ≤ −σ
2
‖xt+1 − xt‖2,(33)

where {ξt} is generated by sGPls and ut := [ρ′(d2
Di

(xt))]mi=1, and the first equality

follows from (28) and the definitions of ξ̂, ξt, û and ut.
Next, we note from Theorem 4.3(a) and the definition of ut that the sequence

{(xt, ξt, ut)} is bounded. Let Ω be the set of cluster points of {(xt, ξt, ut)}. Then Ω is
nonempty and compact. We now show that M is constant on Ω. To this end, we first
observe from (28) that M(xt, ξt, ut) = Ψ(xt) for all t. This together with Theorem
4.3(b) implies that limt→∞M(xt, ξt, ut) = l∗ for some l∗. Now, take any (x∗, ξ∗, u∗) ∈
Ω. Then there exists a convergent subsequence {(xtj , ξtj , utj )} converging to it. Using
(33), we have

M(xtj , ξtj , utj ) ≤M(xtj−1, ξtj−1, utj−1)− σ

2
‖xtj − xtj−1‖2

≤M(xtj−1, ξtj−1, u∗)− σ

2
‖xtj − xtj−1‖2 ≤M(xtj−1, ξ∗, u∗)− σ

2
‖xtj − xtj−1‖2,
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where the second inequality follows from the definition of {ut} so that ut is a minimizer

of u 7→ M(xt, ξt, u), while the last inequality follows from the facts that ξ
tj−1
i ∈

PDi(x
tj−1) and that uti < 0 (so that u∗i ≤ 0) for all i. Passing to the limit in the

above inequality and invoking the definition of l∗ and Theorem 4.3(b), we deduce that

l∗ = lim
j→∞

M(xtj , ξtj , utj ) ≤M(x∗, ξ∗, u∗).

Since the converse inequality is an immediate consequence of the lower semicontinuity
of M, we conclude that M ≡ l∗ on Ω.

Now, the global convergence of {xt} can be proved based on M ≡ l∗ on the
nonempty compact set Ω ⊆ dom∂M, (33), (30), Lemma 2.2 and the KL assumption
on M. The proof is routine (see, for example, [10, Theorem 1]) and we omit the proof
for brevity.

One can also establish local convergence rate of the sequence generated by sGPls
with M = 0 based on the assumptions of Theorem 5.4 and the additional assumption
that M is a KL function with exponent θ ∈ [0, 1); we refer the readers to [6, Theo-
rem 3.4] for a similar analysis.

5.3. Relating the KL exponent of Ψ and M when C = Rn. Notice that
global convergence of the sequence generated by sGPls with M = 0 was established
in Theorems 5.1 and 5.4 under two different KL assumptions. Theorem 5.1 studied
the case when each Di is convex and requires Ψ+δC in (8) to be a KL function, while
Theorem 5.4 studied the case when some Di’s are possibly nonconvex and C = Rn,
and requires M in (24) to be a KL function. In this section, we study a relationship
between these two KL assumptions.

We start with the following lemma, which describes how M is related to the
stationary points of Ψ in (8) when C = Rn and each Di is convex.

Lemma 5.5. Suppose that each Di is convex, C = Rn, Ψ is defined in (8) with
ψ ∈ Θ and M is defined in (24). If 0 ∈ ∂M(x̄, ξ̄, ū), then M(x̄, ξ̄, ū) = Ψ(x̄),
∇Ψ(x̄) = 0 and

m∑
i=1

ūi(x̄− ξ̄i) = 0, ξ̄ = [PDi(x̄)]mi=1 and ū = [ρ′(d2(x̄, Di))]
m
i=1 < 0.(34)

Proof. We first prove (34). Since 0 ∈ ∂M(x̄, ξ̄, ū), we see from (29) that ξ̄i ∈ Di,
0 =

∑m
i=1 ūi(x̄ − ξ̄i), ‖x̄ − ξ̄i‖2 ∈ ∂ρ∗(ūi) and −2ūi(x̄ − ξ̄i) ∈ NDi(ξ̄i) for each

i. Hence, the first relation in (34) holds. Also, combining ‖x̄ − ξ̄i‖2 ∈ ∂ρ∗(ūi)
with [24, Proposition 11.3], we obtain

(35) ūi = ρ′(‖x̄− ξ̄i‖2) < 0.

Using this and −2ūi(x̄ − ξ̄i) ∈ NDi(ξ̄i), we have x̄ − ξ̄i ∈ NDi(ξ̄i). This together
with [24, Proposition 6.17] and the convexity of Di implies that

ξ̄i = (I +NDi)
−1(x̄) = PDi(x̄).

In particular, the second relation in (34) holds and ‖x̄− ξ̄i‖2 = d2(x̄, Di). Combining
this with (35) gives the third relation in (34). These prove (34).

Next, we deduce from (28), (34) and the definitions of ξ̂ and û that M(x̄, ξ̄, ū) =
Ψ(x̄). Finally, from (34) and (26) we see that

0 =

m∑
i=1

ūi(x̄− ξ̄i) =

m∑
i=1

ρ′(d2(x̄, Di))(x̄−PDi(x̄)) =

m∑
i=1

−ψ′+(d2(x̄, Di))(x̄−PDi(x̄)),
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i.e., ∇Ψ(x̄) = 0. This completes the proof.

We now present our analysis concerning the two different KL assumptions used
in Theorems 5.1 and 5.4. In our analysis below, we assume that each Di is convex,
C = Rn and ψ ∈ Θ. We also require in addition that ψ is strict concave on
R+. This latter assumption together with (25) shows that ρ is a strictly convex
continuously differentiable nonincreasing function on R. One can check that the
functions s 7→ s

s+ε + εs, ε > 0, and s 7→ log(s+ ε)− log(ε), ε ∈ (0, 1), discussed in the
beginning of Section 4 are both strictly concave on R+.

Under the additional strict concavity assumption on ψ, we see from [23, Theo-
rem 26.3] that ρ∗ is essentially smooth. Thus, dom ∂ρ∗ is open thanks to [23, Theo-
rem 26.1] and ρ∗ is indeed continuously differentiable at each ui ∈ dom ∂ρ∗ in view
of [23, Theorem 25.5]. On the other hand, notice from (29) that (x, ξ, u) ∈ dom ∂M
implies ui ∈ dom ∂ρ∗ for each i. Thus, if (x, ξ, u) ∈ dom ∂M, then ρ∗ is continuously
differentiable at ui for each i. In the next lemma, we establish some inequalities
concerning (ρ∗)′ at some special points in dom ∂M.

Lemma 5.6. Suppose that each Di is convex, C = Rn, ψ ∈ Θ and is strictly
concave on R+, Ψ is defined in (8) and M is defined in (24). Let 0 ∈ ∂M(x̄, ξ̄, ū).
Then there exist positive numbers ε, L, c̄, c1 and c2 so that whenever (x, ξ, u) ∈
dom ∂M ∩B((x̄, ξ̄, ū), ε), the following inequalities hold:

(36) M(x, ξ, u) ≤ Ψ(x) +
L

2

m∑
i=1

[d2
Di(x)− (ρ∗)

′
(ui)]

2 −
m∑
i=1

ui
[
‖x− ξi‖2 − d2

Di(x)
]
,

(37) L|(ρ∗)
′
(ui)− d2

Di(x)| ≥ |ui + ψ′+(d2
Di(x))| for all i,

(38) |d2
Di(x)− (ρ∗)

′
(ui)| < m−1 and 0 ≤ ‖x− ξi‖2 − d2

Di(x) < m−1 for all i,

(39) − c̄ < ui < 0 and u2
i ≥ c1 for all i,

(40) inf
µi∈NDi (ξi)

‖ − 2ui(ξi − x) + µi‖2 ≥ c1
(
‖ξi − x‖2 − d2

Di(x)
)
≥ 0 for all i,

(41) inf
µi∈NDi (ξi)

‖ − 2ui(ξi − x) + µi‖2 ≥ c2‖PDi(x)− ξi‖2 for all i.

Proof. Since (x̄, ξ̄, ū) ∈ dom ∂M, from the discussion preceding this lemma, we
see that there exists ε0 > 0 so that (ρ∗)

′
is continuous at ui for all i whenever

(x, ξ, u) ∈ dom ∂M ∩B((x̄, ξ̄, ū), ε0).
Let (x, ξ, u) ∈ dom ∂M∩B((x̄, ξ̄, ū), ε0) and define ỹi = (ρ∗)

′
(ui) for each i. Then,

from [24, Proposition 11.3], we see that

ui = ρ′(ỹi) and ρ∗(ui) = −ρ(ỹi) + ỹiui for each i.(42)

Moreover, since ρ′ is Lipschitz continuous on R in view of ψ ∈ Θ and (26), we have

(43) ρ(d2
Di(x)) ≤ ρ(ỹi) + ui(d

2
Di(x)− ỹi) +

L

2
(d2
Di(x)− ỹi)2,
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where L is the Lipschitz continuity modulus. Then we have

M(x, ξ, u) =

m∑
i=1

[
−ui‖x− ξi‖2 − ρ(ỹi) + ỹiui

]
=

m∑
i=1

[
−ρ(ỹi)− ui(d2

Di(x)− ỹi)− ui(‖x− ξi‖2 − d2
Di(x))

]
≤

m∑
i=1

[
−ρ(d2

Di(x)) +
L

2
(d2
Di(x)− ỹi)2

]
+

m∑
i=1

(−ui)
[
‖x− ξi‖2 − d2

Di(x)
]

= Ψ(x) +
L

2

m∑
i=1

[d2
Di(x)− (ρ∗)

′
(ui)]

2 +

m∑
i=1

(−ui)
[
‖x− ξi‖2 − d2

Di(x)
]
,

where the first equality follows from the second relation in (42), the inequality is due
to (43) and the last equality follows from the definitions of Ψ and ỹi. Furthermore,
we deduce that for each i,

|ui + ψ′+(d2
Di(x))| = |ρ′(ỹi)− ρ′(d2

Di(x))| ≤ L|ỹi − d2
Di(x)| = L|(ρ∗)

′
(ui)− d2

Di(x)|,

where the first equality follows from the first relation in (42) and the expression
of ρ′ in (26), the inequality follows from the Lipschitz continuity of ρ′ and the last
equality follows from the definition of ỹi. Thus, (36) and (37) hold whenever (x, ξ, u) ∈
dom ∂M ∩B((x̄, ξ̄, ū), ε0).

Next, note that (34) holds because 0 ∈ ∂M(x̄, ξ̄, ū). Then for each i, it holds that

(44) lim
ui→ūi

(ρ∗)′(ui) = (ρ∗)′(ūi) = (ρ∗)
′ (
ρ′(d2

Di(x̄))
)

= d2
Di(x̄) = lim

x→x̄
d2
Di(x),

where the second equality follows from the last relation in (34) and the third equality
follows from [24, Proposition 11.3]. Moreover, we have for each i,

(45) lim
(x,ξi)→(x̄,ξ̄i)

‖x− ξi‖2 = ‖x̄− ξ̄i‖2 = d2
Di(x̄) = lim

x→x̄
d2
Di(x),

where the second equality above follows from the second relation in (34). In addition,
for any (x, ξ, u) ∈ dom ∂M, we have ξi ∈ Di for all i and hence ‖x − ξi‖2 ≥ d2

Di
(x).

In view of this, (44) and (45), we conclude that one can further shrink ε0 so that (38)
also holds whenever (x, ξ, u) ∈ dom ∂M∩B((x̄, ξ̄, ū), ε0). Now, recall that ū < 0 from
the third relation in (34). Thus, one can shrink ε0 further so that (39) holds true for
some positive numbers c1 and c̄ whenever (x, ξ, u) ∈ dom ∂M ∩B((x̄, ξ̄, ū), ε0).

It now remains to prove (40) and (41). We first prove (40). Let (x, ξ, u) ∈
dom ∂M ∩B((x̄, ξ̄, ū), ε0). Fix any i. Then we have ui ≤ −

√
c1 from (39) and hence

inf
µi∈NDi (ξi)

‖ − 2ui(ξi − x) + µi‖2 = 4u2
i · inf
− 1

2ui
µi∈NDi (ξi)

∥∥∥∥ξi − x− 1

2ui
µi

∥∥∥∥2

≥ u2
i · inf
µi∈NDi (ξi)

‖ξi − x+ µi‖2 ≥ c1dist2 (0, ∂f(ξi)) ,

(46)

where f(·) := 1
2‖·−x‖

2 +δDi(·). Since Di is convex, we see that f is a strongly convex
function with modulus 1. This together with PDi(x) ∈ Di and ξi ∈ Di gives

1

2
‖PDi(x)−x‖2− 1

2
‖ξi−x‖2 ≥ 〈η, PDi(x)−ξi〉+

1

2
‖PDi(x)−ξi‖2 for all η ∈ ∂f(ξi).
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Multiplying the above inequality by 2 and rearranging terms, we obtain further that

2〈η, ξi − PDi(x)〉 ≥ ‖ξi − x‖2 − ‖PDi(x)− x‖2 + ‖PDi(x)− ξi‖2.

This together with the relation ‖η‖2 + ‖ξi − PDi(x)‖2 ≥ 2‖η‖‖ξi − PDi(x)‖ gives

‖η‖2 ≥ ‖ξi − x‖2 − ‖PDi(x)− x‖2 ≥ 0 for all η ∈ ∂f(ξi),

where the last inequality holds because ξi ∈ Di. This together with (46) shows that
(40) holds whenever (x, ξ, u) ∈ dom ∂M ∩B((x̄, ξ̄, ū), ε0).

Finally, we show that there exists ε ∈ (0, ε0] so that (41) holds whenever (x, ξ, u) ∈
dom ∂M ∩B((x̄, ξ̄, ū), ε). To this end, we first recall from the second relation in (34)
that ξ̄i = PDi(x̄) for each i. Moreover, recall also from [24, Proposition 6.17] that (I+
NDi)

−1 = PDi , since Di is convex. Using these together with the nonexpansiveness
(and hence, Lipschitz continuity) of PDi , we see that (I + NDi)

−1 has the Aubin
property at (x̄, ξ̄i). Hence, I + NDi is metrically regular at (ξ̄i, x̄) thanks to [24,
Theorem 9.43]. Thus, there exist εi > 0 and κi > 0 such that

(47) κi‖ξi−(I+NDi)
−1(x)‖ ≤ inf

ωi∈(I+NDi )(ξi)
‖x−ωi‖ for all (x, ξi) ∈ B((x̄, ξ̄i), εi).

On the other hand, let (x, ξ, u) ∈ dom ∂M ∩B((x̄, ξ̄, ū), ε0). Then, from (46), we see
that infµi∈NDi (ξi) ‖ − 2ui(ξi − x) + µi‖2 is bounded below by

c1 inf
µi∈NDi (ξi)

‖x− ξi − µi‖2 = c1 inf
ωi∈(I+NDi )(ξi)

‖x− ωi‖2.

Combining this with (47) and recalling that (I + NDi)
−1 = PDi , we conclude that

(41) holds for some c2 > 0 whenever (x, ξ, u) ∈ dom ∂M ∩ B((x̄, ξ̄, ū), ε), where
ε := min{εi : 0 ≤ i ≤ m}. This completes the proof.

We are now ready to prove the main theorem of this section.

Theorem 5.7. Suppose that each Di is convex, C = Rn, ψ ∈ Θ and is strictly
concave on R+. If Ψ in (8) satisfies the KL property with exponent θ ∈ [ 1

2 , 1), then
M in (24) satisfies the KL property with exponent θ.

Proof. In view of [16, Lemma 2.1], it suffices to prove that M satisfies the KL
property with exponent θ at all points (x̄, ξ̄, ū) verifying 0 ∈ ∂M(x̄, ξ̄, ū). To this
end, fix any (x̄, ξ̄, ū) that satisfies 0 ∈ ∂M(x̄, ξ̄, ū). Notice that Ψ is continuously
differentiable because each Di is convex. Since Ψ is also a KL function with exponent
θ, we see that there exist positive numbers η and ε such that

η‖∇Ψ(x)‖ 1
θ ≥ Ψ(x)−Ψ(x̄) whenever ‖x− x̄‖ ≤ ε;(48)

here, the condition on the bound on function values is waived by the continuity of
Ψ and by choosing a smaller ε if necessary. In view of Lemma 5.6, we can shrink
this ε further so that (36), (37), (38), (39), (40) and (41) hold whenever (x, ξ, u) ∈
dom ∂M ∩B((x̄, ξ̄, ū), ε).

Now, fix any (x, ξ, u) ∈ dom ∂M ∩ B((x̄, ξ̄, ū), ε). By [16, Lemma 2.2] and a

suitable scaling, there exists c3 > 0 so that dist
1
θ (0, ∂M(x, ξ, u)) is bounded below by

c3

[
dist

1
θ (0, ∂xM(x, ξ, u)) + 3dist

1
θ (0, ∂ξM(x, ξ, u)) + dist

1
θ (0, ∂uM(x, ξ, u))

]
.(49)
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We now derive lower bounds for the three terms on the right hand side of (49). We
first derive bounds for the second term. Using [16, Lemma 2.2] and (29), we see that
there exists c0 > 0 so that

2dist
1
θ (0, ∂ξM(x, ξ, u)) = 2

(
m∑
i=1

inf
µi∈NDi (ξi)

‖ − 2ui(ξi − x) + µi‖2
) 1

2θ

≥ 2c0

m∑
i=1

inf
µi∈NDi (ξi)

‖ − 2ui(ξi − x) + µi‖
1
θ

≥ c0
m∑
i=1

c
1
2θ
1

(
‖ξi − x‖2 − d2

Di(x)
) 1

2θ + c0

m∑
i=1

c
1
2θ
2 ‖PDi(x)− ξi‖

1
θ

≥ κ̄0

(
m∑
i=1

(
‖ξi − x‖2 − d2

Di(x)
) 1
θ +

m∑
i=1

‖PDi(x)− ξi‖
1
θ

)
,

(50)

where κ̄0 := min{c0c
1
2θ
1 , c0c

1
2θ
2 }, the second inequality follows from (40) and (41), and

the last inequality holds because 0 ≤ ‖ξi − x‖2 − d2
Di

(x) < 1 (see (38)). On the other
hand, using (40), we also have

dist
1
θ (0, ∂ξM(x, ξ, u)) =

(
m∑
i=1

inf
µi∈NDi (ξi)

‖ − 2ui(ξi − x) + µi‖2
) 1

2θ

≥

[
m∑
i=1

c1
(
‖ξi − x‖2 − d2

Di(x)
)] 1

2θ

≥ c
1
2θ
1

m∑
i=1

(
‖ξi − x‖2 − d2

Di(x)
)
,

(51)

where the last inequality follows from 0 ≤
∑m
i=1

(
‖ξi − x‖2 − d2

Di
(x)
)
< 1 (see (38))

and θ ∈ [ 1
2 , 1).

We next derive a lower bound for the third term on the right hand side in (49).
In view of [16, Lemma 2.2], there exists κ̄1 ∈ (0, κ̄0), with κ̄0 given in (50), so that

dist
1
θ (0, ∂uM(x, ξ, u)) ≥ κ̄1

m∑
i=1

∣∣∣(ρ∗)′(ui)− ‖x− ξi‖2∣∣∣ 1θ
≥ τ̄1

m∑
i=1

∣∣∣(ρ∗)′(ui)− d2
Di(x)

∣∣∣ 1θ − κ̄0η1

m∑
i=1

(
‖x− ξi‖2 − d2

Di(x)
) 1
θ ,

(52)

where the last inequality follows from [16, Lemma 3.1] for some η1 ∈ (0, 1) and τ̄1 > 0.
Finally, we derive a lower bound for the first term on the right hand side in (49).

To this end, observe that

(53) ĉ := sup
{

(|a1|+ · · ·+ |am|)
1
θ : |a1|

1
θ + · · ·+ |am|

1
θ = 1

}
∈ (0,∞).

Choose κ̄2 = min{2 1
θ , c̄−

1
θ ĉ−1κ̄0} (with c̄ and κ̄0 given in (39) and (50), respectively),
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we then have

dist
1
θ (0, ∂xM(x, ξ, u)) =

∥∥∥∥∥−2

m∑
i=1

ui(x− ξi)

∥∥∥∥∥
1
θ

≥ κ̄2

∥∥∥∥∥
m∑
i=1

ui(x− ξi)

∥∥∥∥∥
1
θ

≥ τ̄2

∥∥∥∥∥
m∑
i=1

ui(x− PDi(x))

∥∥∥∥∥
1
θ

− κ̄2η2

[
m∑
i=1

|ui|‖PDi(x)− ξi‖

] 1
θ

≥ τ̄2

∥∥∥∥∥
m∑
i=1

ui(x− PDi(x))

∥∥∥∥∥
1
θ

− κ̄0η2

m∑
i=1

‖PDi(x)− ξi‖
1
θ ,

(54)

where the second inequality follows from [16, Lemma 3.1] for some η2 ∈ (0, 1) and
τ̄2 > 0 and the triangle inequality, and the last inequality follows from (39), the

definition of ĉ and the fact that κ̄2 ≤ c̄−
1
θ ĉ−1κ̄0.

Now, we derive a lower bound for the first term on the right hand side of (54).

Let M̂ := max
1≤i≤m

maxx∈B(x̄,ε) ‖x−PDi(x)‖. Choose κ̄3 = min{2− 1
θ τ̄2, (2M̂L)

− 1
θ
ĉ−1τ̄1}

(with L, τ̄1 and ĉ given in (37), (52) and (53), respectively), then we have

τ̄2

∥∥∥∥∥
m∑
i=1

ui(x−PDi(x))

∥∥∥∥∥
1
θ

=
τ̄2

2
1
θ

∥∥∥∥∥∇Ψ(x)− 2

m∑
i=1

(ui + ψ′+(d2
Di(x)))(x−PDi(x))

∥∥∥∥∥
1
θ

≥ κ̄3

∥∥∥∥∥∇Ψ(x)− 2

m∑
i=1

(ui + ψ′+(d2
Di(x)))(x− PDi(x))

∥∥∥∥∥
1
θ

≥ τ̄3‖∇Ψ(x)‖ 1
θ − 2

1
θ κ̄3η3

(
m∑
i=1

|ui + ψ′+(d2
Di(x))| · ‖x− PDi(x)‖

) 1
θ

≥ τ̄3‖∇Ψ(x)‖ 1
θ − κ̄3η3(2M̂)

1
θ
ĉ

m∑
i=1

|ui + ψ′+(d2
Di(x))| 1θ

≥ τ̄3‖∇Ψ(x)‖ 1
θ − τ̄1η3

m∑
i=1

∣∣∣(ρ∗)′(ui)− d2
Di(x)

∣∣∣ 1θ ,

(55)

where the second inequality follows from [16, Lemma 3.1] for some η3 ∈ (0, 1) and τ̄3 >
0 and the triangle inequality, the third inequality follows from the definitions of ĉ and

M̂ , and the last inequality follows from (37) and the fact that κ̄3 ≤ (2M̂L)
− 1
θ
ĉ−1τ̄1.

Combining (50), (51), (52), (54) and (55) with the lower bound of the quantity

dist
1
θ (0, ∂M(x, ξ, u)) in (49), we see that

c−1
3 dist

1
θ (0, ∂M(x, ξ, u))

≥ κ̄0

(
m∑
i=1

(
‖ξi − x‖2−d2

Di(x)
) 1
θ +

m∑
i=1

‖PDi(x)− ξi‖
1
θ

)
+c

1
2θ
1

m∑
i=1

(
‖ξi − x‖2−d2

Di(x)
)

+ τ̄1

m∑
i=1

∣∣∣(ρ∗)′(ui)− d2
Di(x)

∣∣∣ 1θ − κ̄0η1

m∑
i=1

(
‖x− ξi‖2 − d2

Di(x)
) 1
θ

+ τ̄3‖∇Ψ(x)‖ 1
θ − τ̄1η3

m∑
i=1

∣∣∣(ρ∗)′(ui)− d2
Di(x)

∣∣∣ 1θ − κ̄0η2

m∑
i=1

‖PDi(x)− ξi‖
1
θ
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Grouping like terms and noting that η1, η2, η3 ∈ (0, 1) and ‖ξi − x‖2 − d2
Di

(x) ≥ 0
(thanks to (40)), we see further that

c−1
3 dist

1
θ (0, ∂M(x, ξ, u))

≥ c4

[
η‖∇Ψ(x)‖ 1

θ +
L

2

m∑
i=1

∣∣∣(ρ∗)′(ui)− d2
Di(x)

∣∣∣ 1θ + c̄

m∑
i=1

(
‖ξi − x‖2 − d2

Di(x)
)]

≥ c4

[
η‖∇Ψ(x)‖ 1

θ +
L

2

m∑
i=1

∣∣∣(ρ∗)′(ui)− d2
Di(x)

∣∣∣ 1θ +

m∑
i=1

(−ui)
(
‖ξi − x‖2 − d2

Di(x)
)]

≥ c4

[
Ψ(x)−Ψ(x̄) +

L

2

m∑
i=1

∣∣∣(ρ∗)′(ui)− d2
Di(x)

∣∣∣ 1θ+ m∑
i=1

(−ui)
(
‖ξi − x‖2 − d2

Di(x)
)]

≥ c4
(
M(x, ξ, u)−M(x̄, ξ̄, ū)

)
,

where: the first inequality holds for some c4 > 0 upon a suitable scaling (recall that
η is given in (48), c̄ is defined in (39) and L is given in (36)); the second inequality
follows from (39), the third inequality follows from (48), and the last inequality follows
from (36) and Ψ(x̄) = M(x̄, ξ̄, ū), thanks to Lemma 5.5 and the assumption that
0 ∈ ∂M(x̄, ξ̄, ū). This completes the proof.

6. Numerical test. In this section, we perform numerical experiments to study
the performance of EASMFSC

on some large-scale MFSC problems. All codes are
written in Matlab, and the experiments are performed in Matlab 2015b on a 64-bit
PC with an Intel(R) Core(TM) i7-4790 CPU (3.60GHz) and 32GB of RAM.

In EASMFSC
, we take ϕεk(s) = 1− log(s+εk)

log εk
with εk = 0.9(0.1)k−1, and terminate

when εk ≤ 10−6. As for initialization, in our experiments below, we use randomly
generated initial points x̃0, which are projections onto C of random vectors with i.i.d.
standard Gaussian entries.

As discussed in Section 4, the corresponding subproblems of EASMFSC
take the

form of (8) with ψ(s) = ψεk(s) := log(εk + s) − log(εk), and we use sGPls for
solving them approximately. In the sGPls, we pick αmin = 10−10, αmax = 1010,
η = 1/2, M = 9 and σ = 10−4. We initialize the algorithm at x̃k−1 for approx-
imately minimizing Φεk + δC , and terminate the algorithm when ‖xt − xt−1‖ ≤
max

{
10−5

3k−1 , 10−7
}
· max{1, ‖xt‖}. As for α0

t , we initialize it at α0
1 = 1 and set, for

t ≥ 1,

α0
t =

{
P[10−10,1010]

(
‖xt−xt−1‖2

〈xt−xt−1,gt−gt−1〉

)
if 〈xt − xt−1, gt − gt−1〉 > 10−12,

P[10−10,1010](2α
0
t−1) otherwise;

the choice of α0
t is motivated by the renowned Barzilai-Borwein stepsize.

We apply EASMFSC
as described above to two classes of MFSC problems. In the

first class, we set
C := {x ∈ [−r, r]n : ‖x‖0 ≤ s}

and Di = {x ∈ Rn : 〈ai, x〉 ≤ bi}, where ai is the ith row of an A ∈ Rm×n. For
the second class, we consider the same C as above but we choose Di = {x ∈ Rn :
〈ai, x〉 ≤ bi} ∪ {x ∈ Rn : 〈pi, x〉 ≤ qi}, where ai and pi are the ith row of A ∈ Rm×n
and P ∈ Rm×n, respectively. The matrices A, P and vectors b and q are randomly
generated as follows. We first randomly generate A and P to have i.i.d. standard
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Gaussian entries. We next generate a w̃ ∈ Rn with s i.i.d. standard Gaussian entries
at random positions, and project w̃ onto [−r, r]n to form w. Set b̃ = Aw and fix a
real number p̄ ∈ [0, 1]. We then define b ∈ Rn by

bi =

{
b̃i + 0.01εi if i ≤ dp̄me,
b̃i − 50εi otherwise,

where εi are chosen uniformly at random from [0, 1]. Finally, we set q = Pw − 50ι
for some random vector ι ∈ [0, 1]m. By construction, the system {C,D1, . . . , Ddp̄me}
is feasible and hence the optimal value of (1) is at least dp̄me for these problems.
Moreover, the vector w ∈ C is not in C ∩

⋂m
i=1Di. Furthermore, the resulting system

{C,D1, . . . , Dm} is conceivably infeasible because of the subtractions of 50ε and 50ι.
In our experiments below, for the two classes of problems, we consider m = 3000,

5000, n = m
5 , s = n

5 , p̄ = 0.5, 0.6 and 0.7, and r = 108. For each class of problems,
for each m and p̄, we randomly generate 5 instances as described above. For each
instance, we solve the corresponding MFSC problem using EASMFSC

from 5 random
initial points.6 We report the number of iterations (iter) and the CPU time in seconds
(CPU) in Table 1, averaged over the 5 random initializations and the 5 instances. We
also use the following quantities to evaluate the performance of our algorithm:

• feas(x): For a given x ∈ Rn, this corresponds to 1
m#{i : x ∈ Di}.

• ε-feas(x): For a given x ∈ Rn, this corresponds to 1
m#{i : 〈ai, x〉 < bi +

10−5m
4 } when eachDi is a halfspace, and corresponds to 1

m#{i : min{〈ai, x〉−
bi, 〈pi, x〉 − qi}< 10−5m

4 } when each Di is a union of two halfspaces.
For each of the 5 random instances, we take the maximum of feas(x0) and ε-feas(x0)
and the maximum of feas(x∗) and ε-feas(x∗) over 5 random initial points x0, where
x∗ is the approximate solution returned by our algorithm. We report in Table 1 the
average of these quantities over the 5 random instances under the columns feas0, ε-
feas0, feas∗ and ε-feas∗. One can see that our approach is able to identify a reasonably
large (approximately) feasible subsystem with respect to C (i.e., ε-feas∗ & p̄) in a
reasonable period of time, even for large-scale problems. Moreover, we always obtain
a larger feasible subsystem compared with that identified by the random initial points.
Finally, we also observe that our algorithm is faster when each Di is convex.
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