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Abstract

Let k be a positive integer. Bermond and Thomassen conjectured in 1981 that every

digraph with minimum outdegree at least 2k − 1 contains k vertex-disjoint cycles. It is

famous as one of the one hundred unsolved problems selected in [Bondy, Murty, Graph

Theory, Springer-Verlag London, 2008]. Lichiardopol, Por and Sereni proved in [SIAM J.

Discrete Math. 23 (2) (2009) 979-992] that the above conjecture holds for k = 3.

Let g be the girth, i.e., the length of the shortest cycle, of a given digraph. Bang-Jensen,

Bessy and Thomassé conjectured in [J. Graph Theory 75 (3) (2014) 284-302] that every

digraph with girth g and minimum outdegree at least g

g−1
k contains k vertex-disjoint cycles.

Thomassé conjectured around 2005 that every oriented graph (a digraph without 2-cycles)

with girth g and minimum outdegree at least h contains a path of length h(g − 1), where

h is a positive integer.

In this note, we first present a new shorter proof of the Bermond-Thomassen conjecture

for the case of k = 3, and then we disprove the conjecture proposed by Bang-Jensen, Bessy

and Thomassé. Finally, we disprove the even girth case of the conjecture proposed by

Thomassé.

Keywords: Bermond-Thomassen conjecture; vertex-disjoint cycles; longest path; mini-

mum outdegree; girth

1 Introduction

Throughout this note, a cycle (path) in a digraph always means a directed cycle (path). We

use Bang-Jensen and Gutin [4] for terminology and notation not defined here. Only finite and

simple digraphs are considered.

The problem of finding vertex-disjoint cycles in digraphs has received extensive study in

the past decades, one can see, e.g., [1, 5, 6, 8, 10, 11, 12, 14, 16, 17]. For a positive integer k,

denote by f(k) the minimum integer such that every digraph with minimum outdegree at least

f(k) contains k vertex-disjoint cycles. In view of the complete symmetric digraph on 2k − 1
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vertices, we have f(k) ≥ 2k − 1. In 1981, Bermond and Thomassen [8] conjectured that the

equality holds.

Conjecture 1 (Bermond and Thomassen [8]). f(k) = 2k − 1.

The Bermond-Thomassen conjecture is famous as one of the one hundred unsolved problems

selected in Bondy and Murty [7]. It is trivially true for k = 1 and Thomassen [16] proved it

for k = 2 in 1983. Lichiardopol et al. [13] made a major step by showing that it is true for

k = 3 in 2009. For the general value f(k), the best known bound f(k) ≤ 64k was obtained by

Alon [1] via a probabilistic argument in 1996. Besides, Bessy et al. [9] in 2010, Bang-Jensen et

al. [3] in 2014 and Bai et al. [2] in 2015 verified it for regular tournaments, tournaments and

bipartite tournaments, respectively.

In 2014, Bang-Jensen et al. [3] considered the existence of k vertex-disjoint cycles in terms

of minimum outdegree and girth (length of the shortest cycle) of the digraph. Let f(k, g) be

the minimum integer such that every digraph with girth g and minimum outdegree at least

f(k, g) contains k vertex-disjoint cycles. Clearly,

f(k) = max
g

f(k, g)

and thus f(k, g) ≤ f(k). In view of the fact that the circular digraph with order n = p(g−1)+1

and minimum outdegree at least p = ⌊ g
g−1k⌋ contains no k vertex-disjoint cycles, Bang-Jensen

et al. [3] pointed out that f(k, g) ≥ ⌈ g
g−1k⌉ and conjectured that the equality holds.

Conjecture 2 (Bang-Jensen, Bessy and Thomassé [3]). f(k, g) = ⌈ g
g−1k⌉.

An oriented graph is a digraph without 2-cycles. Let l(h, g) be the minimum integer such

that every oriented graph with girth g and minimum outdegree at least h contains a path of

length l(h, g). Sullivan noted in [15] that Thomassé made the following conjecture on l(h, g).

Conjecture 3 (Thomassé, see [15]). l(h, g) ≥ h(g − 1).

Sullivan also noted in [15] that if Conjecture 3 is true then it would imply the famous

Caccetta-Häggkvist conjecture, which states that the minimum outdegree h ≤ n−1
g−1 for any

n-vertex oriented graph with girth g. A simple proof can be found as follows. Note that any

path in an n-vertex oriented graph has length at most n−1. If Conjecture 3 is true, then there

exists a path of length h(g − 1) ≤ n − 1. However, if Caccetta-Häggkvist conjecture fails to

hold, then h > n−1
g−1 and h(g − 1) > n− 1, a contradiction.

In this note, we first present a new shorter proof of Conjecture 1 for the case of k = 3, and

then we disprove Conjecture 2 and the even girth case of Conjecture 3 by constructing a family

of digraphs as counterexamples.

2 Main results

We first offer a new shorter proof of the Bermond-Thomassen conjecture for the case of k = 3.

Note that the original proof of the corresponding result uses 10 pages in the published article

[13].

Theorem 1. Every digraph with minimum outdegree at least 5 contains 3 vertex-disjoint cycles.
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It is worth remarking that our proof uses some ideas appeared in [13], e.g., the ideas we

used while considering the case that the minimum counterexample contains no triangle. In

fact, the main contribution of our proof is that we make the analysis part of the case that ‘the

minimum counterexample contains a triangle’ significantly shorter, and the key purpose of this

work is to motivate new ideas for checking Conjecture 1 for higher values of k in the coming

future.

The second part of this note is devoted to Conjectures 2 and 3. We disprove Conjecture 2

by showing the following results.

Theorem 2. For any integers g ≥ 3 and t ≥ 1, there exists a digraph with girth g and minimum

outdegree at least ⌈ g
g−1k⌉ but contains at most k − t vertex-disjoint cycles under the condition

that k ≥ (t+ 1)(g − 1) if g is even and k ≥ (t+ 2)(g + 1) if g is odd.

Corollary 1. For any integer g ≥ 3, there exists no positive constant (integer) c such that

f(k, g) = ⌈ g
g−1k⌉+ c.

For the case of g = 4, the conjectured result is f(k, 4) = ⌈4k/3⌉, we can also disprove

Conjecture 2 by showing that f(k, 4) ≥ 2k − 1.

Corollary 2. For any integer h ≤ 2k − 2, there exists a digraph with girth 4 and minimum

outdegree at least h but contains no k vertex-disjoint cycles.

Proof. Let X = X1 ∪ · · · ∪ Xh+1 and Y = {y1, . . . , yh+1}, where Xi = {xi1, . . . , x
i
h} for each

1 ≤ i ≤ h + 1 and they are disjoint. For any bipartite digraph with bipartition (X,Y ), since

each cycle contains at least two vertices of Y and |Y | = h + 1 ≤ 2k − 1, there exist at most

k − 1 vertex-disjoint cycles. Let D∗ be a bipartite digraph with bipartition (X,Y ) such that

Xi dominates all vertices in Y \{yi} and yi dominates all vertices in Xi. One can see that the

minimum outdegree of D∗ is h and the girth of D∗ is 4, which is a required digraph.

Remark 1. Bai et al. showed in [2] that every bipartite tournament (an orientation of a

complete bipartite graph) with minimum outdegree at least 2k − 1 contains k vertex-disjoint

cycles. The digraph (bipartite tournament) D∗ constructed in the proof of Corollary 2 shows

that the minimum outdegree 2k− 1 is best possible for Conjecture 1 even when we restrict the

digraph class to bipartite tournaments.

As a final conclusion, we disprove the even girth case g ≥ 4 of Conjecture 3 and present an

upper bound of l(h, g) for even g ≥ 4. Here note that any oriented graph has girth at least 3.

Theorem 3. Conjecture 3 does not hold for any even girth g ≥ 4 and l(h, g) ≤ h(g − 2) + 1

for even g ≥ 4.

We present the proofs of Theorems 1, 2, 3 and Corollary 1 in the remaining sections. Here

we give some necessary definitions and notations. For an arc uv of a digraph D, we write u → v

and say u dominates v (or v is dominated by u). An arc uv is dominated by a vertex w if both

u and v are dominated by w, we also say that w is a dominating vertex of the arc uv. For two

vertex-disjoint subsets M and N of V (D), we write M → N if each vertex of M dominates

all vertex of N . For a subset S of V (D), we sometimes use S to denote the subdigraph of D

induced by the subset S, and we use N+
S (M) (resp. N−

S (M)) to denote the set of outneighbors

(resp. inneighbors) of the vertices of M in S. For convenience, we write v → M for {v} → M ,
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M → v for M → {v}, N+
S (v) for N+

S ({v}) and N−
S (v) for N−

S ({v}). A digraph D is strongly

connected if there is a directed path from u to v for any two vertices u and v of D. We say

that D is k-connected if the removal of any set of fewer than k vertices results in a strongly

connected digraph. The strong connectivity of a digraph D is the minimum integer k such that

D is k-connected.

3 Proof of Theorem 1

Let D be an n-vertex digraph with minimum outdegree at least 5. Note that n ≥ 6. We

proceed by induction on n. If n = 6, then D is a complete symmetric digraph and the result

holds by the observation that D contains 3 vertex-disjoint 2-cycles. Now assume that n ≥ 7

and the statement holds for each digraph with order at most n − 1. Assume the opposite

that there exist counterexamples and we can let D be a minimum counterexample, which has

minimum number of vertices and, subject to this, has minimum number of arcs. It follows that

each vertex of D has outdegree exactly 5.

The following lemma will play an important role in our proof.

Lemma 1 ([13]). Let D be a digraph such that each vertex has outdegree at least 3, except at

most two vertices which may have outdegree 2. Then D contains 2 vertex-disjoint cycles.

The results in the following claim are included in the proof of the main theorem in [16] (see

also [13] ) and are not difficult to prove, here we give the sketch of the proofs for completeness.

Claim 1 ([13]). Let D be the minimum counterexample of Theorem 1 defined as above. Then

we have the following: (1) D contains no 2-cycle; (2) each arc of D is dominated by some

vertex; (3) the inneighborhood of each vertex of D contains at least one cycle.

Sketch of proof. If there exists a 2-cycle, then we can apply induction on the digraph obtained

from D by removing the 2-cycle. If there exists an arc xy not dominated by any vertex, then

we can apply induction on the digraph obtained from D by removing all outgoing arcs from x

and then identifying x and y. The result (3) is a direct consequence of the result (2).

Let s be the strong connectivity of D and let S be a minimum vertex cut set of D. Then

|S| = s and D−S can be divided into two non-empty parts, say A and B, such that no vertex

in B dominates a vertex in A. We show that s ≥ 3.

If s ≤ 2, then, since d+B(v) ≥ 5 − s ≥ 3 for each vertex v ∈ B, we get that B contains 2

vertex-disjoint cycles, say C1 and C2. For a vertex v ∈ A, by Claim 1 (3), its inneighborhood

N−
D (v) contains a cycle, say C3. Note that N

−
D (v) ⊆ A∪S. Thus C1, C2, C3 are 3 vertex-disjoint

cycles in D, a contradiction.

Claim 2. The digraph D contains no triangle.

Proof. Assume the opposite that C = (x1, x2, x3, x1) is a triangle of D. If there are at most

two vertices in D\C that dominate C, then each vertex of D\C has outdegree at least 3, except

at most two vertices which may have outdegree 2, by Lemma 1, there exist 2 vertex-disjoint

cycles, say C1 and C2, in D\C. It follows that C1, C2, C are 3 vertex-disjoint cycles in D, a

contradiction. If there are three vertices, say y1, y2, y3, that dominate C, then, since the strong
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connectivity of D is at least 3, by Menger’s theorem, there exist three vertex-disjoint paths

from {x1, x2, x3} to {y1, y2, y3}. These three paths together with a matching of appropriate

arcs from {y1, y2, y3} to {x1, x2, x3} form 3 vertex-disjoint cycles in D, a contradiction.

Claim 3. The outneighborhood of each vertex of D contains no cycle.

Proof. Assume the opposite that there exists a vertex v such that N+
D (v) contains a cycle, say

C+. Recall that N−
D (v) contains at least one cycle and we can let C− be an induced cycle in

N−
D (v). Denote by M the set of inneighbors of C− in D\C−. Since D contains no 2-cycle and

no triangle, we have M ∩ (C+ ∪ {v}) = ∅. Since D contains no three vertex-disjoint cycles, we

have that M is acyclic. Let x be a source of M and let y be an outneighbor of x in C−. Since

xy has a dominating vertex and x is a source of M , the dominating vertex of xy is the unique

inneighbor y− of y in C−. Now y− → x and we consider the dominating vertex of the arc y−x,

one can see that it must be the unique inneighbor y−− of y− in C−. It follows that y−− → x.

Consider the dominating vertex of the arc y−−x and continue the above procedure, we can get

that y → x and (x, y, x) is a 2-cycle, a contradiction.

Let D′ be the spanning subdigraph of D which consists of all arcs of the type uv satisfying

that u is contained in some induced cycle Cv of the subdigraph induced by N−
D (v). For each

arc uv ∈ A(D′), in view of the successor u+ of u in Cv, we have N+
D (u) ∩ N−

D′(v) 6= ∅ as

u+ ∈ N+
D (u) ∩N−

D′(v). This simple observation will be used in the following proof.

Claim 4. The digraph D′ is 4-regular.

Proof. SinceD has no triangle andN−
D (v) contains a cycle for each vertex v, we have d−D′(v) ≥ 4.

It suffices to show that d+D′(v) ≤ 4. Assume the opposite that there exists a vertex u with

d+D′(u) = 5 = d+D(u). Then clearly N+
D′(u) = N+

D (u). Note that N+
D (u) ∩N−

D′(v) 6= ∅ for each

arc uv ∈ A(D′). It therefore follows that every vertex in N+
D (u) has an inneighbor in N+

D (u)

and thus N+
D (u) contains a cycle, a contradiction to Claim 3.

Claim 5. An arc uv ∈ A(D′) if and only if uv ∈ A(D) and N+
D (u) ∩N−

D′(v) 6= ∅.

Proof. By the observation before Claim 4, it suffices to show that for every uv ∈ A(D) if

N+
D (u)∩N−

D′(v) 6= ∅ then uv ∈ A(D′). Assume the opposite that there exists an arc uv /∈ A(D′)

with N+
D (u) ∩ N−

D′(v) 6= ∅. Note that |N+
D (u)| = 5 and we can let N+

D (u) = {v, v1, v2, v3, v4}.

Since D′ is 4-regular and uv /∈ A(D′), then for each i ∈ {1, . . . , 4} we have uvi ∈ A(D′) and

N+
D (u) ∩N−

D′(vi) 6= ∅, i.e., vi has an inneighbor in N+
D (u). Now every vertex in N+

D (u) has an

inneighbor in N+
D (u) and thus N+

D (u) contains a cycle, a contradiction to Claim 3.

Claim 6. The digraph D′ contains no 4-cycle.

Proof. Assume the opposite that C = (a, b, c, d, a) is a 4-cycle of D′. By Lemma 1 and Claim

3, there exist three vertices, say x, y, z, outside the cycle C such that each vertex has exactly

three outneighbors in C. One can see that no vertex in C has an outneighbor in {x, y, z}; since

otherwise either a 2-cycle or a triangle will appear. One can also see that one vertex in C is

dominated by {x, y, z}. Assume w.l.o.g. that a is such a vertex. By the definition of D′ and

Claim 2, we have that the inneighborhood N−
D′(v) of each vertex v of D′ induces a 4-cycle in D.

Note that {d, x, y, z} forms no 4-cycle as there is no arc from d to {x, y, z}. It therefore follows
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that at least one arc in {xa, ya, za} is not in D′ and assume w.l.o.g. that xa /∈ A(D′). Then,

by Claim 5, we have N+
D (x) ∩N−

D′(a) = ∅ and thus xd /∈ A(D), x → {a, b, c}, xb, xc ∈ A(D′) .

Now we claim that {y, z} → d. If not, then there exists one vertex in {y, z} which dominates

{b, c} and assume w.l.o.g. that y → {b, c}. It follows that yb, yc ∈ A(D′) as N+
D (y)∩N−

D′(b) 6= ∅,

N+
D (y)∩N−

D′(c) 6= ∅. Now a, x, y ∈ N−
D′(b), {x, y} → a, a contradiction to the fact that N−

D′(b)

induces a 4-cycle in D. So {y, z} → d. It follows that ya, za ∈ A(D′) as N+
D (y) ∩N−

D′(a) 6= ∅,

N+
D (z)∩N−

D′(a) 6= ∅. Now d, y, z ∈ N−
D′(a), {y, z} → d, a contradiction to the fact that N−

D′(a)

induces a 4-cycle in D.

Recall that N−
D′(v) induces a 4-cycle in D for each vertex v of D′. Clearly, D has a 4-cycle.

To finish the whole proof, we show that D has a 4-cycle which contains two consecutive arcs

of D′. Consider an induced 4-cycle Cx = (x1, x2, x3, x4, x1) in D, since D′ contains no 4-cycle,

there exists an arc not in D′ and assume w.l.o.g. that x4x1 is not in D′. It follows that there

exists another 4-cycle Cy = (y1, y2, y3, y4, y1) induced by N−
D′(x1) and Cx ∩ Cy = ∅. Similarly,

since D′ contains no 4-cycle, we can assume w.l.o.g. that y4y1 is not in D′ and there exists

another 4-cycle Cz = (z1, z2, z3, z4, z1) induced by N−
D′(y1) and Cy ∩ Cz = ∅. Note that D

contains no three vertex-disjoint cycles. Therefore, Cx ∩ Cz 6= ∅. If x1 ∈ Cx ∩ Cz, then a

2-cycle will appear. If x2 ∈ Cx ∩ Cz, then a triangle will appear. If x4 ∈ Cx ∩ Cz, then

since x4 → y1 and y1 → x1 we have x4x1 ∈ A(D′), a contradiction. Thus, x3 ∈ Cx ∩ Cz and

x3y1 ∈ A(D′). Now the cycle (x1, x2, x3, y1, x1) is a 4-cycle with two consecutive arcs x3y1, y1x1

of D′.

We are now ready to finish the proof by getting a contradiction to Claim 6 that D′ contains

a 4-cycle. Let Cx′
= (x′1, x

′
2, x

′
3, x

′
4, x

′
1) be a 4-cycle in D with two consecutive arcs of D′.

We can assume w.l.o.g. that x′4x
′
1 /∈ A(D′) and x′1x

′
2, x

′
2x

′
3 ∈ A(D′). Similar to the above

analysis, we can get two 4-cycles Cy′ and Cz′ which are induced by the inneighborhood of x′1
and y′1 in D′, respectively. Moreover, we can get that Cz′ ∩Cx′

= x′3. It therefore follows that

x′3y
′
1 ∈ A(D′) and now (x′1, x

′
2, x

′
3, y

′
1, x

′
1) is a 4-cycle of D′, a contradiction.

4 Proofs of Theorem 2, Corollary 1 and Theorem 3

Proof of Theorem 2. We first consider the case that g ≥ 4 is even. Let h = ⌈ g
g−1k⌉ and

n = (g2 − 1)⌈ g
g−1k⌉+ 1. Note that

n =
(g

2
− 1

)

⌈

g

g − 1
k

⌉

+ 1

≤

(

g − 1

2
−

1

2

)(

g

g − 1
k + 1

)

+ 1

=
gk

2
+

g − 1

2
−

gk

2(g − 1)
−

1

2
+ 1

=
g

2

(

k + 1−
k

g − 1

)

.

(1)

We construct a bipartite digraph D = (X,Y ;A) with X = {x0, x1, . . . , xn−1} and Y = Y0 ∪

Y1 ∪ · · · ∪ Yn−1, where Yi consists of ⌈ g
g−1k⌉ independent vertices. Let xi → Yi and Yi →

{xi+1, xi+2, . . . , xi+h} for each 0 ≤ i ≤ n − 1, where indices are taken modulo n. One can see
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that each vertex of D has outdegree h. Recall that g is even. Since each cycle will use at least

⌈n/h⌉ = ⌈g2 − 1 + 1
h⌉ = g/2 vertices of X and |X| = n, by Inequality (1), there exist at most

k − t vertex-disjoint cycles in D if we choose k ≥ (t + 1)(g − 1). Now it suffices to show that

the girth of D is g.

Consider the digraph Dx with V (Dx) = {x0, x1, . . . , xn−1} and

A(Dx) = {xixj : i+ 1 ≤ j ≤ i+ h, 0 ≤ i ≤ n− 1}.

It is not difficult to see that Dx has a cycle of length less than g/2 if and only if D has a cycle of

length less than g. Let Cx be a shortest cycle in Dx. Note that Cx must consist of an arc x−i xi

with x−i ∈ N−
Dx

(xi) and a shortest path from xi to x−i for some vertex xi. By symmetry, we can

let xi = x0. Recall that N
−
Dx

(x0) = {xn−1, xn−2, . . . , xn−h}. It then follows from the definition

of A(Dx) that the shortest path P from x0 to N−
Dx

(x0) has length at least ⌈n−h
h ⌉ = g/2 − 1.

So |A(Cx)| = |A(P )|+ 1 ≥ g/2 and the girth of D is at least g. Let yi be a vertex in Yi. Now

(x0, y0, xh, yh, x2h, y2h, . . . , x(g/2−1)h, y(g/2−1)h, x0)

is a cycle of length g in D. So the girth of D is g and the proof is complete.

Now we consider the case that g ≥ 3 is odd. Let g = 2r + 1 and r ≥ 1. Let h = ⌈ g
g−1k⌉

and n = g−1
2 ⌈ g

g−1k⌉ + 1 = rh + 1. We construct a digraph D′ with V (D′) = X ′ ∪ Y ′, where

X ′ = {x′0, x
′
1, . . . , x

′
n−1}, Y

′ = Y ′
0 ∪ Y ′

1 ∪ · · · ∪ Y ′
n−1 and Y ′

i consists of ⌈ g
g−1k⌉ independent

vertices. Let x′i → Y ′
i and Y ′

i → {x′i+1, x
′
i+2, . . . , x

′
i+h} for each 0 ≤ i ≤ n−1, where indices are

taken modulo n. One can see that each vertex of D′ has outdegree h with only one exception

that x′rh has outdegree h+1. Denote by D′′ the digraph obtained from D′ by removing the arc

x′rhx
′
0. Similar to the above analysis, we can get that the girth of D′′ is g + 1; and moreover,

for any cycle containing x′rhx
′
0 in D′, since the shortest path from x′0 to x′rh in D′ has length

at least 2r, we can get that the girth of D′ is at least 2r + 1. Let y′i be a vertex in Y ′
i . Now

(x′0, y
′
0, x

′
h, y

′
h, x

′
2h, y

′
2h, . . . , x

′
rh, x

′
0)

is a cycle of length 2r + 1 in D′. So the girth of D′ is g = 2r + 1. Denote by p′ and p′′ the

maximum numbers of vertex-disjoint cycles in D′ and in D′′, respectively. It is not difficult to

see that p′ − p′′ ≤ 1. Note that each cycle in D′′ uses at least g+1
2 vertices in X and

|X| = n =
g − 1

2

⌈

g

g − 1
k

⌉

+ 1 ≤
g

2
k +

g − 1

2
+ 1 =

g + 1

2

(

k + 1−
k

g + 1

)

.

So there exist at most k − t− 1 vertex-disjoint cycles in D′′ if we choose k ≥ (t+ 2)(g + 1). It

follows that D′ has at most k − t vertex-disjoint cycles if we choose k ≥ (t+ 2)(g + 1).

Here note that we can construct a finite number of counterexamples to Conjecture 2, which

can be obtained from D (or D′) by adding an arbitrary number of vertices S such that each

vertex in S has exactly ⌈g−1
g k⌉ outneighbors in D and no inneighbors.

Proof of Corollary 1. We only show the even girth case. For the odd girth case of the result,

one can deduce by similar arguments. We consider a bipartite digraph D = (X,Y ;A) with

X = {x0, x1, . . . , xn−1} and Y = Y0 ∪ Y1 ∪ · · · ∪ Yn−1, where each Yi consists of ⌈ g
g−1k⌉ + c
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independent vertices. Let

n =
(g

2
− 1

)

(⌈

g

g − 1
k

⌉

+ c

)

+ 1, h =

⌈

g

g − 1
k

⌉

+ c.

Let xi → Yi and Yi → {xi+1, xi+2, . . . , xi+h} for each 0 ≤ i ≤ n − 1, where indices are taken

modulo n. Similar to the proof of Theorem 2, we can show that the girth of D is g and thus

each cycle of D uses at least g/2 vertices in X. Since

n =
(g

2
− 1

)

(⌈

g

g − 1
k

⌉

+ c

)

+ 1

≤

(

g − 1

2
−

1

2

)(

g

g − 1
k + c+ 1

)

+ 1

=
gk

2
+

(g − 1)c

2
+

g − 1

2
−

gk

2(g − 1)
−

c

2
−

1

2
+ 1

=
g

2

(

k +
gc+ g − 2c

g
−

k

g − 1

)

,

(2)

there exist at most k − 1 vertex-disjoint cycles in D if we choose

k >
(g − 1)(gc + g − 2c)

g
.

This completes the proof.

Proof of Theorem 3. Let g ≥ 4 be an arbitrary even integer. Consider the digraph D =

(X,Y ;A) constructed in the proof of Theorem 2, note that D has girth g, minimum outdegree

h = ⌈ g
g−1k⌉ and |X| = n = (g/2 − 1)h+ 1. According to Conjecture 3, if it is true, then there

exists a path of length h(g − 1). However, it is not difficult to see that the longest path of D

has length at most 2n − 1, which implies a contradiction for any k ≥ 1, this is due to the fact

that k ≥ 1 implies h ≥ 2 and

2n− 1 = 2
((g

2
− 1

)

h+ 1
)

− 1 = (g − 2)h+ 1 < (g − 1)h.

It therefore follows that Conjecture 3 does not hold for any even girth g ≥ 4 and l(h, g) ≤

h(g − 2) + 1 for even g ≥ 4.
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