
ar
X

iv
:1

80
5.

04
19

8v
2

 [
m

at
h.

N
A

]
 1

2
Ju

n
20

18

A MULTISCALE DOMAIN DECOMPOSITION ALGORITHM FOR

BOUNDARY VALUE PROBLEMS FOR EIKONAL EQUATIONS∗

LINDSAY MARTIN† AND RICHARD TSAI ‡

Abstract. In this paper, we present a new multiscale domain decomposition algorithm for
computing solutions of static Eikonal equations. The new method is an iterative two-scale method
that uses a parareal-like update scheme in combination with standard Eikonal solvers. The purpose
of the two scales is to accelerate convergence and maintain accuracy. We adapt a weighted version
of the parareal method for stability, and the optimal weights are studied via a model problem.
Numerical examples are given to demonstrate the method.

1. Introduction. The Eikonal equation has many applications in optimal con-
trol, path planning, seismology, geometrical optics, etc. The equation is fully nonlinear
and classified as a Hamilton-Jacobi equation. Usually, classical solutions do not exist,
and the unique viscosity solution is sought after. Our goal is to numerically solve the
following boundary value problem for the static Eikonal equation:

|∇u(x)| = rǫ(x), x ∈ Ω ⊂ R
d(1.1)

u(x) = g(x), x ∈ Γ ⊂ ∂Ω(1.2)

In particular, we are interested in the case where

rǫ(x) = r0(x) + aǫ(x),

where r0 is smooth and aǫ describes multiscale features. Many serial algorithms exist
for computing numerical solutions to Eikonal equations. However, these algorithms
have limitations when applied to large scale discretized systems. Since we are inter-
ested in Eikonal equations that have multiscale features, a very fine grid discretization
is needed in order to accurately capture the fine scale features. This creates a large
system of coupled nonlinear equations to solve. Therefore, the numerical solutions are
expensive to compute and speed up is desired. The most popular serial algorithms
are the Fast Sweeping Method (FSM) [22, 25] and the Fast Marching Method (FMM)
[23, 20] which have complexity O(N) or O(N logN), respectively. Here, N is the total
number of grid points. Hidden in the O(N) complexity of FSM is a constant that
corresponds to the number of times a characteristic curve of (1.1) “turn around.”

There are several approaches to reducing the computational cost of numerically
solving Eikonal equations. For certain periodic functions rǫ, one approach is homoge-
nization [16, 18]. The goal of homogenization is to derive an effective function, r, that
accurately describes the effective properties of rǫ in the solution. Once r is known,
the homogenized equation can be solved on the coarse grid which is independent of
the small parameter ǫ. For more general rǫ, we consider domain decomposition meth-
ods. The development of domain decomposition algorithms for Eikonal equations is

∗Submitted: 05/11/2018.
Funding: This research is partially supported by National Science Foundation Grants DMS-

1620396 and DMS-1720171.
†Department of Mathematics, The University of Texas at Austin, Austin, TX

(lmartin@math.utexas.edu).
‡Department of Mathematics and Institute for Computational Engineering and Sciences (ICES),

The University of Texas at Austin, Austin, TX, KTH Royal Institute of Technology, Sweden
(ytsai@math.utexas.edu).

1

http://arxiv.org/abs/1805.04198v2
mailto:lmartin@math.utexas.edu
mailto:\unhbox \voidb@x \hbox {ytsai@math.utexas.edu})

2 LINDSAY MARTIN AND RICHARD TSAI

nontrival because of the causal nature of the equations. Standard domain decompo-
sition methods can be difficult to apply because information may not be known at
the boundaries of subdomains a priori. Furthermore, the causal relations among the
subdomains may change depending on the solutions. Our new algorithm combines
features from parareal methods and standard Eikonal solvers in order achieve speed
up and maintain accuracy. A set of coarse grids is used to set up boundary conditions
for the subdomains. After each subdomain is processed in parallel, the method uses
are parareal-like update in order to speed up the accuracy of the solution on the coarse
grids.

Next we give an overview of the discretization of (1.1) and Fast Sweeping Methods,
followed by a review of current parallel methods for Eikonal equations. The paper is
organized as follows. In section 2, we give an overview of parareal methods. Our new
algorithm is presented in section 3. The stability analysis, complexity and speed up
are given in section 4, experimental results are in section 5, and the summary and
conclusion follow in section 6.

1.1. Upwind discretization and FSM. The Eikonal equation (1.1) can be de-
rived from an optimal control problem. Suppose a particle travels at speed F : Ω → R

and its direction of travel is the control of the system. Let g : ∂Ω → R be the exit-
time penalty charged at the boundary. Then the value function u(x) is defined to
the minimum time it takes to travel from x to ∂Ω. In [10], it is shown the viscosity
solution to (1.1) coincides with the value function of the optimal control problem and
the characteristics of the PDE coincide with the optimal paths for moving through Ω.

In our case F (x) = 1/rǫ(x). Thus, we refer to rǫ as the slowness function. For this
paper, we choose the following first-order upwind discretization on a uniform Cartesian
grid. Let ui,j denote the numerical solution at xi,j . For the sake of notation, we will
omit the numerical solution’s dependence on the grid size h. We use a Godonuv
upwind scheme to discretize the Eikonal equation at points in the interior of the
computational domain [19]:

(1.3)
√
max(a+, b−)2 +max(c+, d−)2 = ri,j ,

where

a = D−
x ui,j =

ui,j − ui−1,j

h

b = D+
x ui,j =

ui+1,j − ui,j

h

c = D−
y ui,j =

ui,j − ui,j−1

h

d = D+
y ui,j =

ui,j+1 − ui,j

h
,

for i = 1, . . . I − 1 and j = 1, . . . , J − 1. Here, we have x+ = max(x, 0) and
x− = max(−x, 0). On the boundary nodes, we will use a one sided difference, i.e., in
(1.3) use b− in place of max(a+, b−) if i = 0, a+ in place of max(a+, b−) if i = I, d−

in place of max(c+, d−) if j = 0, and c+ in place of max(c+, d−) if j = J .
This discretization is consistent and monotone and converges to the viscosity

solution as h → 0 [5]. The upwind scheme is also causal, i.e., ui,j depends only on
the neighboring grid values that are smaller. After discretization, we have a system
of N = (I +1)(J +1) coupled nonlinear equations. A simple approach is to solve the
system iteratively [19]. However, it is important to take advantage of the causality of

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 3

the solution. In the fast marching method (FMM) [23, 20], the solution is updated
one grid node at a time and the ordering of grid nodes is given by whichever grid
node has the smallest value at the time of updating. Because a heapsort algorithm
is needed, the complexity is O(N logN). Next we describe the fast sweeping method
(FSM) [22, 25] which we have chosen to use in our method. FSM uses Gauss-Seidel
updates following a predetermined set of grid node orderings. For simplicity, we will
describe the algorithm in two dimensions.

Initialization. Set ui,j = gi,j for xi,j on or near the computational boundary.
These values are fixed in later iterations. For the all other grid nodes, assign a large
positive value.

Sweeping iterations. A compact way of writing the grid orderings in
C/C++ is:

for(s1=-1;s1<=1;s1+=2)

for(s2=-1;s2<=1;s2+=2)

for(i=(s1<0?I:0);(s1<0?i>=0:i<=I);i+=s1)

for(j=(s2<0?J:0);(s2<0?j>=0:j<=J);j+=s2)

Update formula:. For each grid node xi,j whose value is not fixed during the
initialization, compute the solution to (1.3) using the current values at the neighboring
grid nodes. Denote the solution by ũ, then the update formula is as follows:

(1.4) unew
i,j = min(ucurr

i,j , ũ)

The alternating ordering of sweeping ensures that all the directions of charac-
teristics are captured. In [25] it is shown that with the first order Godonuv upwind
scheme, 2d sweeps is sufficient to compute the numerical solution to first order in h.
The exact number of sweeps needed is related to the number of times characteristics
change directions. Thus in general the computational complexity of the fast sweeping
method is O(N) with the caveat that the constant in front of N can be very large
depending on the characteristics of the equation. In section 3, we will describe how
we use the fast sweeping method as the Eikonal equation solver in our method.

1.2. Review of current parallel methods. Here we give a brief overview of
existing parallel approaches. In [26], the author proposes two parallelizations of FSM.
The first performs the 2d sweeps of the domain on different processors and after each
iteration information is shared by taking the minimum value at each grid node from
each sweep. The second is a domain decomposition method that performs FSM on
each subdomain in parallel. The information is shared along mutual boundaries after
each iteration. The drawbacks to this method are that subdomains have to wait to be
updated until the information propagates to that part of the domain and the number
of sweeping iterations may be more than the number needed in serial FSM.

In [11] the authors introduce a method that takes advantage of the following fact:
for the upwind scheme (1.3), certain slices of the grid nodes do not directly depend on
each other. The method uses FSM where the sweeping ordering is designed to allow
these sets of grid nodes to be updated simultaneously. The advantage of this method
is that the number of iterations needed in the parallel implementation is equal to the
serial FSM.

Several algorithms have been developed to parallelize FMM. In [6], the authors
propose a domain decomposition method for FMM. The main idea is to split the
boundary among different processors which leads to an equation dependent method.

4 LINDSAY MARTIN AND RICHARD TSAI

In [24], another domain decomposition algorithm is presented for FMM. In this
method, the computational domain is split among different processors and a novel
restarted narrow band approach which coordinates the communications among the
boundaries of the domains is used.

Domain decomposition methods that utilize two scales can be found in [7, 9]. In
[7], the authors take advantage of the optimal control formulation of Eikonal equa-
tions. First, the algorithm computes the solution of (1.1) on a coarse grid. Next,
the domain decomposition is determined by the feedback optimal control. Lastly, the
solution of the equation is computed on a fine grid in each subdomain. However,
the algorithm can lead to complex division of the domain. The method in [9] is a
parallelization of the Heap Cell method (HCM) [8]. HCM maintains a list of cells to
be processed. The order of processing is determined by an assigned cell value that
is given by an estimate of the likelihood that that cell influences other cells. If it is
determined that a cell highly influences other cells it should be processed first. The
method mimics FMM on the coarse level, and FSM is used at the cell level. The
parallelization of HCM divides the cells evenly among p heaps and performs HCM
among each individual heap. If a cell is tagged for reprocessing then it is added to
the heap with the current lowest number of cells. This method was found to achieve
the best speed up on problems where the amount of work per cell is high.

2. Overview of parareal methods. Parareal methods [15, 4] were developed
to parallelize numerical computations of the solutions to ODEs of the form

(2.1)
d

dt
u = f(u), u(0) = u0

on bounded time interval [0, T]. Let uk
n be the computed solution at iteration k at

time tn = nH . Let CH and FH be the numerical coarse and fine integrators, over
time step H . The idea is that CH is less accurate and inexpensive to compute, and
FH is very accurate and expensive to compute. The parareal update scheme is then
defined as

(2.2) uk+1
n+1 = CH(uk+1

n) + FH(uk
n)− CH(uk

n), n, k = 0, 1, 2, . . .N

with initial conditions

(2.3) uk
0 = u0, k = 0, 1, 2, . . .N

The zeroth iteration is given by

(2.4) u0
n+1 = CH(u0

n), n = 0, 1, 2, . . .N

The integrations FH(uk
n) are independent for each n and can be computed in

parallel. IfCH is of order 1, then under certain assumptions, the error after k iterations
of the parareal scheme is of order o(Hk+ef) where ef is the global error from solving
(2.1) with the fine integrator FH [17] . The method only provides speed up if k is
much smaller than N .

The method is generally unstable for hyperbolic problems and problems with
imaginary eigenvalues [21, 3]. Parareal methods for highly oscillatory ODEs can be
found in [1, 13]. In [12], analysis of the parareal method on a class of ODEs originating
in Hamiltonian dynamical systems is presented, and in [14] the parareal method is
applied to stiff dissipative ODEs. Recently, a “weighted” parareal scheme, called
θ-parareal, was proposed in [2]. Following the scheme in [2], let

(2.5) uk+1
n+1 = θCH(uk+1

n) + (1− θ)CH(uk
n) + FH(uk

n)− CH(uk
n)

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 5

which simplifies to

(2.6) uk+1
n+1 = θCH(uk+1

n) + FH(uk
n)− θCH(uk

n).

In [2], the “weight” θ is generalized to an operator which maps CHu to a small
neighborhood of FHu. In this paper, we only let θ be a real number which may vary
for each grid node, i.e., θ = θkn.

Several properties of the parareal scheme are appealing when solving Eikonal
equations.

• Parareal methods use communications between the two-scales in order to
propagate information quickly through time. Because the fine integrations
can be computed in parallel, the method is able to deal with a large number
of unknowns.

• The characteristics of Eikonal equations also have a “time-like” structure
which makes parareal methods attractive.

The main challenge in applying the parareal scheme to Eikonal equations is that
we are now dealing with an infinite number of characteristics simultaneously. We
also must be able to handle the collision of characteristics which should be captured
accurately in the numerical solution in order to compute the viscosity solution. We
adapt the θ-parareal scheme in order to stabilize the new method.

3. The new method. The method is a domain decomposition method that
uses two scales to resolve the fine scale features in rǫ and propagate information
through the computational domain. We use FSM as the Eikonal equation solver
on the coarse and fine grid. An adapted version of the θ-parareal method is used to
propagate information along the characteristics efficiently where the weight θ stabilizes
the method. The optimal choice of weights for stability is studied in section 4. First,
we will demonstrate the method on a one dimensional problem and then explain how
to set up the method in two dimensions which can be generalized to higher dimensions.

3.1. One dimensional example. Consider the following one dimensional
Eikonal equation:

|ux| = r(x), 0 < x < 1,(3.1)

u(0) = u(1) = 0,(3.2)

where

(3.3) rǫ(x) = 1 + 10e
(x−.75)2

2(.01)2 .

Figure 3.1 shows the plot of the slowness function rǫ. Let the coarse grid be defined
by

ΩH := {jH : j = 0, 1, . . . , N},
where H = 1/N and for i = 0, 1, . . . , N − 1. Define the fine grids by

Ωh
i := {iH +mh : m = 0, 1, . . .M},

where h = 1/(MN). Define Ωh :=
⋃N−1

i=0 Ωh
i . The solution to the upwind Godonuv

scheme in one dimension is given by

(3.4) CH(Ui−1, Ui+1) := min(Ui−1, Ui+1) + r(Xi)H.

6 LINDSAY MARTIN AND RICHARD TSAI

We see that if we only solve (3.1) on the coarse grid, the bump in the slowness
function is not seen and the solution is very inaccurate. There are also points in
ΩH where the flow of characteristics is incorrect. Therefore, we keep track of wind
direction, i.e., which neighboring grid node gives the minimum in (3.4) . Let Xi = iH .
We denote the numerical solution at the kth iteration at the coarse grid node Xi by
Uk
i . For grid nodes on the subintervals, Ωh

i , let Xim = iH + mh and uk
im

be the
numerical solution at the kth iteration at the fine grid node Xim . For each coarse grid
node , Xi, i = 1, . . . , N − 1, we will get two values from the fine grid computations.
One value is from Ωh

i−1 and another from Ωh
i . Let u

k
i be the fine grid solution at the

kth iteration at Xi which we will define in step 3. The method is as follows:

0 0.5 1
x

0

2

4

6

8

10

12

r

Fig. 3.1. rǫ(x) = 1 + 10e
(x−.75)2

2(.01)2 .

Step 1: Initialization. Solve (3.1) with boundary conditions (3.2) via FSM on
the coarse grid ΩH , and denote the solution U0. If the left hand neighboring grid
node is used to compute U0

i , denote the wind direction at Xi by W 0
i = 1. If the right

hand neighboring grid node is used, define W 0
i = −1.

Step 2: Update boundary conditions for the subintervals. Once the
coarse grid has been initialized, we use the coarse grid values, Uk, as boundary values
for Ωh

i . The characteristics may flow into or out of Ωh
i . Thus, when setting the bound-

ary conditions, we check the wind direction to see if the coarse grid value should be
used as a boundary value. Intuitively, if a characteristic at a coarse grid node, xi0 or
xiM , is arriving into the subinterval, then we set the boundary value to Ui or Ui+1 at
xi0 or xiM , respectively. Otherwise, we set the boundary value to be ∞.

Step 3: Solve for uk in parallel. In parallel for each i = 0, 1, . . . , N − 1, we
solve via FSM on Ωh

i

(3.5) |ux| = r(x), x ∈ [iH, (i+ 1)H]

with the boundary conditions described in step 2 . Denote the solutions after sweeping
by uk

im
for m = 0, . . . ,M . We keep track of the fine wind directions, wk

im
, in the same

manner as in step 1. For each coarse grid node , Xi, i = 1, . . . , N − 1, we will get two
values from the fine grid computations. One value is from Ωh

i−1 and another from Ωh
i .

Consider a coarse grid point, Xi:
• If wk

i−1M
= wk

i0 = 1, then we choose uk
i to be uk

i−1M
since the wind is flowing

from left to right.
• If wk

i−1M
= wk

i0
= −1, then we choose uk

i to be uk
i0

since the wind is flowing
from right to left.

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 7

• Otherwise, we take the minimum of uk
i−1M

and uk
i0
.

• We set wk
i to be the wind value corresponding to the fine grid point used to

define uk
i .

For the given example, U0 is plotted in Figure 3.2a and u0 is plotted in Figure 3.2b .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 U0

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6
u0

(b)

Fig. 3.2. (a) Plot of U0. (b) Plot of u0 using U0 as boundary conditions as defined in step 2.

Step 4: Coarse grid updates. Now we compute Uk+1. We use the previous
coarse and fine wind directions to determine whether or not we will use a weighted
correction. We sweep the grid as in FSM and the update formula is as follows:

• Let Ũ = CH(Uk+1
i−1 , U

k+1
i+1). If the left hand neighboring grid node was used

to compute Ũ then denote the current wind direction W̃ = −1. If the right
hand neighboring grid node was used, define W̃ = 1.

• If W k
i = wk

i = W̃ then we use a weighted correction update,i.e.,

(3.6) Ui = θŨ + uk
i − θCH(Uk

i−1, U
k
i+1)

and Wi = wk
i .

• Otherwise we set Ui = uk
i and Wi = wk

i .
• After the weighted corrections, the solutions may have the wrong causality
because information on the fine grid that was not seen previously has now
been propagated to the coarse level. To correct this, we implement a causal
sweep after each coarse grid update. Sweeping the coarse grid in both direc-
tions, the causal update is as follows:

– If Wi = 1 and Ui < Ui−1, then Ui = Ui−1.
– If Wi = −1 and Ui < Ui+1, then Ui = Ui+1.

After the causal sweep on the coarse grid, denote the solution by Uk+1 and the wind
directions by W k+1. Repeat steps 2-4 until convergence.

In Figure 3.3a, we see that at X7 = 0.7 the effect of the Gaussian bump in rǫ has
been propagated to the coarse level. Before the causal sweep, U6 < U7, but W6 = −1.
Therefore, after the casual sweep, U1

6 = U1
7 . Figures 3.4 and 3.5 show the next two

iterations of the method which converges at k = 3. Next, we introduce the method
in two dimensions in more detail.

8 LINDSAY MARTIN AND RICHARD TSAI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 U0

U1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 u1

U1

(b)

Fig. 3.3. (a) Plot of U0 and U1. (b) Plot of u1 using U1 as boundary conditions as defined in
step 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 U1

U2

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 u2

U2

(b)

Fig. 3.4. (a) Plot of U1 and U2. (b) Plot of u2 using U2 as boundary conditions as defined in
step 2.

3.2. New method in two dimensions. In two dimensions we solve:

|∇u(x)| = r(x), x ∈ Ω = [0, 1]2(3.7)

u(x) = 0, x ∈ Γ ⊂ [0, 1]2.(3.8)

One of the main challenges of setting up the method in two dimensions and higher is
setting up the boundary conditions of the subdomains. We approach this by setting
up a coarse grid and shifting it vertically and horizontally M − 1 times each. Let

ΩH = {(iH, jH) : i, j = 0, 1, . . .N},

and H = 1/N. Then the horizontally shifted coarse grids are defined by

ΩH + (x0, 0) = {(iH + x0, jH) : i = 0, 1, . . .N − 1, j = 0, 1, . . . , N}

where x0 = lh for l = 1, . . . ,M − 1 where h = 1/(MN). The vertically shifted coarse
grids are defined by

ΩH + (0, y0) = {(iH, jH + y0) : i = 0, 1, . . .N, j = 0, 1, . . . , N − 1}

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 U2

U3

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 u2

U3

(b)

Fig. 3.5. (a) Plot of U2 and U3. (b) Plot of u3 using U3 as boundary conditions as defined in
step 2. We see that the method has converged and U3 = u3.

ΩH + (lh, 0)

+

ΩH + (0,mh)

=

Fig. 3.6. Shifted coarse grids in two dimensions

where y0 = mh form = 1, . . . ,M−1. The shifted grids are demonstrated in Figure 3.6.
Next we define the fine grids on the subdomains for i, j = 0, 1, . . . , N − 1:

Ωh
i,j = {(lh+ iH,mh+ jH) : 0 ≤ l,m ≤ M}.

The notation for the two dimensional problem is as follows:

Xi,j = (iH, jH) ∈ ΩH ,

Xil,j = (iH + lh, jH) ∈ ΩH + (lh, 0),

Xi,jm = (iH, jH +mh) ∈ ΩH + (0,mh),

xil,jm = (iH + lh, jH +mh) ∈ Ωh
i,j ,

Uk
i,j denotes the coarse solution at Xi,j in the kth iteration,

Uk
il,j denotes the coarse solution at Xil,j in the kth iteration,

Uk
i,jm denotes the coarse solution at Xi,jm in the kth iteration,

uk
i,j denotes the fine solution at Xi,j in the kth iteration,

uk
il,jm denotes the fine solution at xil,jm in the kth iteration.

10 LINDSAY MARTIN AND RICHARD TSAI

Now that we have the grids set up we begin the description of the method. The coarse
grid solver is given by the solution to (1.3):

(3.9) CH(nbrsH(Ui,j)) =

1
2

(
a+ b+

√
2r2i,jH

2 − (a− b)2
)

if |a− b| < ri,jH,

min(a, b) + ri,jH if |a− b| ≥ ri,jH,

where nbrsH(Ui,j) = {Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1}, a = min(Ui−1,j , Ui+1,j), and
b = min(Ui,j−1, Ui,j+1).

The steps are the same as in the one dimensional case, except we also have a
causal sweep in the initialization step. Step 1 is the initialization of the coarse grids
with a causal sweep, step 2 is to update the boundary conditions for the subdomains,
and step 3 is to compute the fine solutions on the subdomains in parallel. Step 4 is
to perform weighted corrections on the coarse grids where we allow θ to vary for each
coarse grid node. The weighted update will be:

(3.10) Uk+1
i,j = θk+1

i,j CH(nbrsH(Uk+1
i,j)) + uk

i,j − θk+1
i,j CH(nbrsH(Uk

i,j)).

Step 1: Initialize coarse grids in parallel. Since the shifted coarse grids
are independent of each other, the values {U0

il,j
}i,j and {U0

i,jm}i,j are computed in
parallel for each l and m. We solve (3.7) with boundary conditions (3.8) on each of
the coarse grids. Keeping track of the flow of characteristics is more complex than
in the one dimensional problem. In two dimensions, the set of eight distinct wind
direction vectors is {(±1,±1), (±1, 0), (0,±1)}. The wind direction at a coarse grid
node is determined by the solution to (1.3). We describe how to initialize the grid
ΩH . The initialization on ΩH + (lh, 0) and ΩH + (0,mh) for l = 1, . . .M − 1 and
m = 1, . . . ,M − 1 is the same.

• Initialize U as described in subsection 1.1.
• Sweep the grid as described in subsection 1.1. Algorithm 3.1 explains the
update formula as well as how to compute W0

i,j . At each Xi,j , we input

nbrsH(Ui,j), Ui,j and H , using one sided differences if Xi,j is a boundary grid
node.

The solutions on the coarse grids may have the wrong causality because small scale
features in rǫ may be sampled on some shifted coarse grids and not others. To correct
this, we implement a causal sweep. We must sweep the coarse grids sequentially in
order to capture the right causality. We sweep all the coarse grids in each of the four
directions just once. The update is given by inputing Ui,jm−1 , Ui,jm+1 , Ui,jm ,Wi,jm

into Algorithm 3.2, which describes the update for a vertically shifted grid node. The
updates for the other coarse grid nodes are defined analogously. Note that since we
are sweeping the coarse grids sequentially, Ui,jm−1 , Ui,jm+1 , and Ui,jm belong to three
different vertically shifted coarse grids. Denote the solutions after sweeping by U0

and W0.

Step 2: Update boundary conditions for subdomains. Now that we have
computed the solutions on all the coarse grids, we can set the boundary conditions
for each Ωh

i,j . Intuitively, if a characteristic at a coarse grid point is arriving into

the boundary of the subdomain, ∂Ωh
i,j , then we set u at that node to be the value

from the coarse grid computations, Uk. Otherwise, we set u to be ∞ at the coarse
grid point. To describe this mathematically for a vertically shifted coarse grid point,
define nw,rm to be the inward normal vector to the subdomain Ωh

i,j at Xw,rm ∈ ∂Ωh
i,j .

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 11

Algorithm 3.1 Update and wind formula for initialization

Input: nbrsH(Ui,j), Ui,j , H
Output: Ui,j,Wi,j

{Compute wind in x direction.}
if Ui−1,j < Ui+1,j then

Wx = 1
else

Wx = −1
end if

{Compute wind in y direction.}
if Ui,j−1 < Ui,j+1 then

Wy = 1
else

Wy = −1
end if

{Compute in solution to (1.3) and define W̃.}
Ũ = CH(nbrsH(Ui,j))
a = min(Ui−1,j , Ui+1,j)
b = min(Ui,j−1, Ui,j+1)

if Ũ < b then

W̃ = (Wx, 0)
else if Ũ < a then

W̃ = (0,Wy)
else

W̃ = (Wx,Wy)
end if

{Take minimum.}
if Ũ < Ui,j then

Ui,j = Ũ

Wi,j = W̃

end if

Algorithm 3.2 Causal sweep update formula for vertically shifted coarse grid node

Input: Ui,jm−1 , Ui,jm+1 , Ui,jm ,Wi,jm

Output: Ui,jm

if Wi,jm · (0,−1) > 0 and Ui,jm < Ui,jm+1 then

Ui,jm = Ui,jm+1

end if

if Wi,jm · (0, 1) > 0 and Ui,jm < Ui,jm−1 then

Ui,jm = Ui,jm−1

end if

Then define

gw,rm(Uw,rm ,Ww,rm) :=

{
Uw,rm if Ww,rm · nw,rm > 0

∞ otherwise.

When Xwl,r is a horizontally shifted grid point, the definition of gwl,r is the same as
above. For Xw,r, a non-shifted coarse grid point on ∂Ωh

i,j, the inward normal vector

12 LINDSAY MARTIN AND RICHARD TSAI

of Ωh
i,j is not unique since the coarse grid point is a corner of the subdomain. There

are two possibilities for the inward normal vector. Denote them by n1
w,r and n2

w,r,
then

gw,r(U
k
w,r,W

k
w,r) =

{
Uk
w,r if Wk

w,r · n1
w,r > 0 or Wk

w,r · n2
w,r > 0

∞ otherwise.

Step 3: Solve for uk in parallel. In parallel for i, j = 0, . . . , N − 1, we solve

|∇u(x)| = r(x), x ∈ [iH, (i+ 1)H]× [jH, (j + 1)H](3.11)

u = g, on ∂([iH, (i+ 1)H]× [jH, (j + 1)H])(3.12)

via FSM on the grid Ωh
i,j and g is defined in step 2.

• Initialize u as described in subsection 1.1
• Sweep the grid. To the update the solution at each xil,jm , input nbrsh(uil,jm),
uil,jm , and h into Algorithm 3.3. Use one sided differences if xil,jm is a bound-

ary grid node. Here, nbrsh(uil,jm) = {uil−1,jm , uil+1,jm , uil,jm−1 , uil,jm+1}.
Denote the solutions after sweeping by uk

il,jm
and wk

il,jm
for l,m = 0, . . .M .

After the computations on each subdomain, we will have two or four values for
each coarse grid node, depending on whether the point is in a shifted or non-shifted
coarse grid. Intuitively, we define the value uk

i,j by the following:

• If the coarse wind and the fine wind flow into the same subdomain Ωh
s,t

from Ωh
s′,t′ , then we set the value uk

i,j to be the fine grid solution from the

subdomain Ωh
s′,t′ .

• Otherwise we set uk
i,j to be the minimum of the fine grid solutions at the

coarse grid point.
A vertically shifted coarse grid node, Xi,jm , is on the boundary of the two subdo-
mains, Ωh

i−1,j′ and Ωh
i,j′ . Denote the two possibilities of an inward normal vector

by n1 = (−1, 0) and n2 = (1, 0). Algorithm 3.4 explains how to compute uk
i,jm

at a
vertically shifted coarse grid node, Xi,jm . The computations at a horizontally shifted
and non shifted coarse grid point are similar.

Step 4: Coarse grid updates. Now we compute the coarse grid updates,
Uk+1. Again since the shifted coarse grids are independent of each other, the values
{Uk+1

il,j
}i,j and {Uk+1

i,jm
}i,j can be computed in parallel for each l and m.

• Initialize U as described in subsection 1.1.
• Sweep the grid and the update formula at a vertically shifted coarse grid node
is given by Algorithm 3.5. The computations at a horizontally shifted and non
shifted coarse grid point are similar. Let n1 and n2 be the inward normal vec-
tors as defined in step 3. We input nbrsH(Ui,jm), nbrsH(Uk

i,jm
),Wk

i,jm
,wk

i,jm
and H into Algorithm 3.5.

Again we must implement a sequential causal sweep to make sure the coarse grids
respect the causality of the solution. Sweep the coarse grids sequentially in each of the
four directions once. The update formula is given by inputing Ui,jm−1 , Ui,jm+1 , Ui,jm ,
Wi,jm into Algorithm 3.2 for a vertically shifted coarse grid point. The updates for
other coarse grid nodes are defined similarly. Denote the solutions after sweeping by
Uk+1 and Wk+1. Repeat steps 2-4 until convergence.

The method is demonstrated in Figure 3.7 which shows the contours for the fine
grid solution patched together for r1ǫ = 1 + .99 sin(2πx) sin(2πy) for k = 0, 2, 4 and 6.
We see the solution contours begin to smooth out after a few iterations.

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 13

Algorithm 3.3 Update and wind formula for fine grid compuations

Input: nbrsh(uil,jm), uil,jm , h
Output: uil,jm ,wil,jm

{Compute wind in x direction.}
if uil−1,j < uil+1,j then

a = uil−1,j

wx = −1
else

a = uil+1,j

wx = 1
end if

{Compute wind in y direction.}
if ui,jm−1 < ui,jm+1 then

b = ui,jm−1

wy = −1
else

b = ui,jm+1

wy = 1
end if

{Solve (1.3).}
if |a− b| < ri,jh then

ũ = 1
2

(
a+ b+

√
2r2i,jh

2 − (a− b)2
)

w̃ = (wx, wy)
else

ũ = min(a, b) + ri,jh

if a < b then

w̃ = (wx, 0)
else

w̃ = (0, wy)
end if

end if

{Take minimum.}
if ũ < uil,jm then

uil,jm = ũ
wil,jm = w̃

end if

4. Analysis of the new method. We choose the following model problem to
study the choice of weight θ. Let Ω = [0, 1] × [0, H] Then we numerically solve via
our method

|∇u(x, y)| = 1, (x, y) ∈ Ω\Γ(4.1)

u(x, y) =
√
x2 + y2, (x, y) ∈ Γ(4.2)

where Γ = {(x, 0) : 0 ≤ x ≤ 1}∪{(0, y) : 0 ≤ y ≤ H}. The coarse grids can be defined
in one set by

ΩH := {(iH, jh) : i = 0, 1 . . . , N and j = 0, 1, . . . ,M}

14 LINDSAY MARTIN AND RICHARD TSAI

Algorithm 3.4 Update formula for uk
i,jm and wk

i,jm for a vertically shifted coarse
grid node

Input: uk
i−1M ,jm , uk

i0,jm ,wk
i−1M ,jm ,wk

i0,jm ,Wk
i,jm

output: uk
i,jm

,wk
i,jm

if wk
i−1M ,jm

· n1 ≥ 0,wk
i0,jm

· n1 ≥ 0, and Wk
i,jm

· n1 ≥ 0 then

uk
i,jm = uk

i0,jm

wk
i,jm

= wk
i0,jm

else if wk
i−1M ,jm

· n2 ≥ 0,wk
i0,jm

· n2 ≥ 0, and Wk
i,jm

· n2 ≥ 0 then

uk
i,jm = uk

i−1M ,jm

wk
i,jm

= wk
i−1M ,jm

else

if uk
i−1M ,jm

≤ uk
i0,jm

then

uk
i,jm

= uk
i−1M ,jm

wk
i,jm = wk

i−1M ,jm
else

uk
i,jm

= uk
i0,jm

wk
i,jm = wk

i0,jm
end if

end if

Algorithm 3.5 Update formula for weighted corrections for a vertically shifted coarse
grid node

Input: nbrsH(Ui,jm), nbrsH(Uk
i,jm), W k

i,jm , wk
i,jm , H

Output: Ui,jm ,Wi,jm

Compute Ũ and W̃ as in Algorithm 3.1
if wk

i,jm
· n1 ≥ 0,Wk

i,jm
· n1 ≥ 0, and W̃ · n1 ≥ 0 then

Ui,jm = θk+1
i,jm

Ũ + uk
i,jm

− θk+1
i,jm

CH(nbrsH(Uk
i,jm

))

Wi,jm = wk
i,jm

else if wk
i,jm · n2 ≥ 0,Wk

i,jm · n2 ≥ 0, and W̃ · n2 ≥ 0 then

Ui,jm = θk+1
i,jm

Ũ + uk
i,jm − θk+1

i,jm
CH(nbrsH(Uk

i,jm))

Wi,jm = wk
i,jm

else

Ui,jm = uk
i,jm

Wi,jm = wk
i,jm

end if

with Xi,j = (iH, jh). The overall fine grid is given by

Ωh = {(lh,mh) : l = 0, 1, . . . , NM and m = 0, 1, . . .M}.

The advantage of this problem is that the characteristics can be captured in one sweep
of FSM, i.e., an upward right sweep. This fact means we can use a weighted correction
update for every coarse grid node. Let uf be the overall fine solution on Ωh. Suppose
we allow θ to vary for each coarse grid node and iteration and denote it by θki,j . Then

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 15

(a) k = 0 (b) k = 2

(c) k = 4 (d) k = 6

Fig. 3.7. Contours for fine grid solutions patched together for the slowness function
r1ǫ (x, y) = 1 + .99 sin(2πx) sin(2πy) where in (a) k = 0, (b) k = 2,(c) k = 4 and (d) k = 6.

0 5 10 15
k

10-2

100

102

104

re
la

tiv
e

L
 e

rr
or

Fig. 4.1. ||Uk − uf ||L∞
for θ = 1, H = 1/20, h = 1/1000.

for i = 1, . . . , N and j = 1, . . . ,M , we have the following coarse grid solver:

CH(Ui−1,j , Ui,j−M) =

{
Ui−1,j+Ui,j−M+

√
2H2−(Ui−1,j−Ui,j−M)2

2 , j = M

Ui−1,j +H, otherwise
,

16 LINDSAY MARTIN AND RICHARD TSAI

where if j = 1, . . . ,M−1 we ignore the second argument of the coarse grid solver. Let
U0
i,j = CH(U0

i−1,j , U
0
i,j−M). The weighted update for this problem for j = 1, . . .M :

(4.3) Uk+1
i,j = θk+1

i,j

[
CH(Uk+1

i−1,j , U
k+1
i,j−M)− CH(Uk

i−1,j , U
k
i,j−M)

]
+ uk

i,j

with initial conditions

(4.4) Uk+1
0,j = uf

0,j for j = 1, . . . ,M and k = 0, 1, 2 . . .

and

(4.5) Uk+1
i,0 = uf

i,0 for i = 1, . . . , N and k = 0, 1, 2. . . .

Figure 4.1 shows the L∞ error plot for θ = 1 which is analogous to the standard
parareal method. Note the error is large from the first iteration and increases for later
iterations. The error peaks around k = 10. This is because as k increases the solutions
in each successive subdomain converge to the exact solution which then allows the
maximum error to begin to decrease. If we choose a small value for θ, the solutions
converge as seen in Figure 4.2. However, the convergence may be slow. Next, we
study how to choose θki,j for the coarse grid updates.

4.1. Analysis of θ on model problem. First we prove a theorem that gives
an exactness property for the method on this model problem. Let uf be the overall
fine solution on Ωh.

Theorem 4.1. Let Uk
i,j be given by (4.3). Then for each j = 1, . . .M,

Uk
i,j = uf

i,j for k ≥ i.

Proof. First note U1
0,j = U0

0,j and U1
1,0 = U0

1,0 = uf
1,0. Now,

U1
1,j = θ11,j

[
CH(U1

0,j , U
1
1,j−M)− CH(U0

0,j , U
0
1,j−M)

]
+ u0

1,j

= u0
1,j

= uf
1,j.

The second equality comes from the fact that u0
1,j was computed using only the

boundary values.
Now assume

(4.6) Uk
i,j = uf

i,j for k ≥ i.

Let k ≥ i+ 1. We have

Uk
i+1,j = θki+1,j

[
CH(Uk

i,j , U
k
i+1,j−M)− CH(Uk−1

i,j , Uk−1
i+1,j−M)

]
+ uk−1

i+1,j .

Now k ≥ i+ 1 and (4.6) imply Uk
i,j = Uk−1

i,j = uf
i,j . Also, (4.5) imply

Uk
i+1,0 = Uk−1

i+1,0 = uf
i+1,0.

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 17

Therefore,
Uk
i+1,j = uk−1

i+1,j = uf
i+1,j ,

where second equality comes from the fact that uk−1
i+1,j is computed using the values

Uk−1
i,j and (4.6) implies Uk−1

i,j = uf
i,j for j = 0, . . . ,M − 1. Thus, we have our desired

result.

Now that the exactness property for the method is proven, we have the following
theorem that proves existence of θki,j for each k such that the sequence of solutions
is monotonically decreasing for the model problem. The following fact is used in the
proof of the theorem: If a ≤ b ≤ c, then CH(a, c) ≤ CH(b, c).

Theorem 4.2. For j = 1, . . . ,M and i = 1, . . . , N , there exists θki,j such that

Uk
i,j < Uk−1

i,j and Uk
i,j > uf

i,j for all i > k.

Proof. First we note U0
i,j > uf

i,j and u0
i,j ≥ uf

i,j for i = 1, . . . N and j = 1, . . . ,M .
We will proceed by induction on k. Let k = 1. We will show the theorem holds for
all i > 1. Either u0

2,j > U0
2,j or u0

2,j ≤ U0
2,j . If u

0
2,j ≤ U0

2,j, choose θ12,j > 0. Then

U1
2,j = θ12,j

[
CH(U1

1,j , U
1
2,j−M)− CH(U0

1,j , U
0
2,j−M)

]
+ u0

2,j

< u0
2,j

≤ U0
2,j

where the first inequality comes from the fact that U1
1,j = uf

1,j < U0
1,j . If u

0
2,j > U0

2,j ,
then define

m1
2,j =

U0
2,j − u0

2,j

CH(U1
1,j , U

1
2,j−M)− CH(U0

1,j, U
0
2,j−M)

.

Now m1
2,j > 0. Thus, if θ12,j > m1

2,j , then U1
2,j < U0

2,j. Now let

M
1

2,j =
uf
2,j − u0

2,j

CH(U1
1,j , U

1
2,j−M)− CH(U0

1,j , U
0
2,j−M)

.

Note M
1

2,j > 0. If we choose θ12,j < M
1

2,j , then U1
2,j > uf

2,f .

Now assume U1
i,j > U0

i,j and U1
i,j > uf

i,j for all i > 1. If u0
i+1,j ≤ U0

i+1j , choose

θ1i+1,j > 0. Then

U1
i+1,j = θ1i+1,j

[
CH(U1

i,j , U
1
i+1,j−M)− CH(U0

i,j , U
0
i+1,j−M)

]
+ u0

i+1,j

< u0
i+1,j

≤ U0
i+1,j,

where the first inequality comes from the induction assumption. If u0
i+1,j > U0

i+1j ,
then let

m1
i+1,j =

U0
i+1,j − u0

i+1,j

CH(U1
i,j , U

1
i+1,j−M)− CH(U0

i,j , U
0
i+1,j−M)

Now m1
i+1,j > 0. Thus, if θ1i+1,j > m1

i+1,j , then U1
2,j < U0

2,j. Next let

M
1

i+1,j =
uf
i+1,j − u0

i+1,j

CH(U1
i,j , U

1
i+1,j−M)− CH(U0

i,j , U
0
i+1,j−M)

.

18 LINDSAY MARTIN AND RICHARD TSAI

Note M
1

i+1,j > 0. If we choose θ1i+1,j < M
1

i+1,j , then U1
i+1,j > uf

i+1,j . So if

0 < θ1i+1,j < M
1

i+1,j , the theorem holds for k = 1.

Assume the theorem holds for k, i.e., Uk
i,j < Uk−1

i,j and Uk
i,j > uf

i,j for i > k. We
want to show it holds i > k + 1. Let i = k + 2. The induction hypothesis implies
Uk
k+1,j > uf

k+1,j and Theorem 4.1 implies Uk+1
k+1,j = uf

k+1,j . Thus,

CH(Uk+1
k+1,j , U

k+1
k+2,j−M)− CH(Uk

k+1,j , U
k
k+2,j−M) < 0.

If uk
k+2,j ≤ Uk

k+2,j , choose θk+1
k+2,j > 0. Then

Uk+1
k+2,j = θk+1

k+2,j

[
CH(Uk+1

k+1,j , U
k+1
k+2,j−M)− CH(Uk

k+1,j , U
k
k+2,j−M)

]
+ uk

k+1,j

< uk
k+2,j

≤ Uk
k+2,j

If uk
k+2,j > Uk

k+2,j , let

mk+1
k+2,j =

Uk
k+2,j − uk

k+2,j

CH(Uk+1
k+1,j , U

k+1
k+2,j−M)− CH(Uk

k+1,j , U
k
k+2,j−M)

.

Note mk+1
k+2,j > 0. If θk+1

k+2,j > mk+1
k+2,j , then Uk+1

k+2,j < Uk
k+2,j .

Next we need Uk+1
k+2,j > uk+2,j

f
. Let

M
k+1

k+2,j =
uf
k+2,j − uk

k+2,j

CH(Uk+1
k+1,j , U

k+1
k+2,j−M)− CH(Uk

k+1,j , U
k
k+2,j−M)

.

Note M
k+1

k+2,j . Then if θk+1
k+2,j < M

k+1

k+2,j , Uk+1
k+2,j > uf

k+2,j . So if uk
k+2,j ≤ Uk

k+2,j ,

choose 0 < θk+1
k+2,j < M

k+1

k+2,j . If uk
k+2,j > Uk

k+2,j , choose mk+1
k+2,j < θk+1

k+2,j < M
k+1

k+2,j .
Therefore, the theorem holds.

The proof of Theorem 4.2 provides insight on the stability of the method and the
optimal choice for the weights θki,j . Let

m̃k
i,j =

{
0 if mk

i,j ≤ 0

mk
i,j otherwise

.

If m̃k
i,j < θki,j < M

k

i,j , we have a monotonically convergent sequence of solutions. The

closer we choose θki,j to M
k

i,j the more accurate Uk
i,j is.

If we analyze the values for M
k

i,j we see in early iterations that M
k

i,j can be very

small. For example, if k = 1, h = 1/20, h = 1/1000, minXi,j∈ΩH (M
k

i,j) = 5.6 × 10−3.
This is a reason why we cannot use the standard parareal method where θ = 1. In

practice, we do not know M
k

i,j a priori since it relies on knowing uf
i,j. Therefore, we

estimate M
k

i,j in order to choose θki,j and create a sequence Uk
i,j that converges very

quickly to uf
i,j . Next, we explain how we estimate M

k

i,j in practice.

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 19

4.2. Estimating M
k

i,j. Recall

M
k

i,j =
uf
i,j − uk−1

i,j

CH(Uk
i−1,j , U

k
i,j−M)− CH(Uk−1

i−1,j , U
k−1
i,j−M)

and we would like m̃k
i,j ≤ θki,j < M

k

i,j . Since we do not know uf
i,j a priori, we estimate

M
k

i,j by the following

(4.7) θ
k

i,j =
uk−1
i,j − uk−2

i,j

CH(Uk−1
i−1,j , U

k−1
i,j−M)− CH(Uk−2

i−1,j , U
k−2
i,j−M)

.

However, upon implementation this estimation produces very unstable solutions. The

values θ
k

i,j become extremely large and creates sequences of solutions where Uk
i,j ≪ uf

i,j

or Uk
i,j ≫ Uk−1

i,j . This occurs when the denominator of (4.7) is much smaller than the
numerator. We overcome this issue by using a weighted sum in the denominator, i.e.,
(4.8)

θ
k

i,j =
uk−1
i,j − uk−2

i,j[∑2
s=0 ωsCH(Uk−s

i−1,j , U
k−s
i,j−M)− CH(Uk−1−s

i−1,j , Uk−1−s
i,j−M)

]
/(ω0 + ω1 + ω2)

.

To further ensure that the estimated value, θ
k

i,j does not become too large we dampen
the values if they are beyond a threshold and apply a smooth approximation function.
Let

(4.9) σ(θ
k

i,j) =
1

1 + e(θ
k

i,j
−x0)/γ

.

Then

(4.10) θ
k,used

i,j =
[
σ(θ

k

i,j)θ
k

i,j + (1− σ(θ
k

i,j))δθ
k

i,j

]+
,

where x0, γ, and δ are parameters chosen experimentally.

Figure 4.2d shows the plot of θ
k

i,j versus θ
k,used

i,j , and Figures 4.2a to 4.2c show
the error plots for various values of H . In all three examples h = 1/1000. We see the

advantage of using θ
k,used

i,j over a fixed value of θ.

4.3. Complexity and speed up. Let N = 1/H and M = 1/(Nh). Define
A(N, d) := C(2d(N + 1)d) be the number of flops for FSM where C depends on the
characteristics of the given Eikonal equation. Then the number of flops for the compu-
tations on all of the coarse grids and the causal sweep is (dM)A(N, d)+2dM(N +1)2

and the number of flops for all the subdomains combined is (Nd)A(M,d). If we solve
the Eikonal equation on Ωh, then the number of flops is given by A(NM, d). Theo-
retically suppose we have enough processors to compute the solution on each coarse
grid and each subdomain in parallel. Then after k iterations the number of flops will
be k[A(N, d) + A(M,d) + 2dM(N + 1)2]. For our method to achieve speed up via
parallelization, we need

k ≪ A(NM, d)

A(N, d) +A(M,d) + 2dM(N + 1)2
.

For example, suppose N = 20,M = 100, and d = 2 and we perform 10 sweeping
iterations on each coarse grid as well as on each subdomain, then we need k ≪ 266
in order to achieve speed up.

20 LINDSAY MARTIN AND RICHARD TSAI

0 2 4 6 8
k

10-14

10-8

10-2

re
la

tiv
e

L
1
 e

rr
or

(a) H = 1/10

0 5 10 15
k

10-14

10-8

10-2

re
la

tiv
e

L
1
 e

rr
or

(b) H = 1/20

0 10 20 30 40
k

10-14

10-8

10-2

re
la

tiv
e

L
1
 e

rr
or

(c) H = 1/50

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

=.75, =.01,x
0
=.9

(d)

Fig. 4.2. Error plots of ||Uk−uf ||L1
for specified values of H. In all three examples h = 1/1000.

For (a), (b), and (c), ||uf − uexact||L1
= 3.79× 10−4. (d) shows the parameters γ, δ, and x0 used

to estimate θ. For (a)- (c), γ = .75, δ = .01, x0 = .9.

5. Numerical results. 1Next we present some numerical results computed by
the method. Every example is computed on Ω = [0, 1]2 and Γ is a set of source points
chosen in each example. The focus of our examples is demonstrating the reduction in
error in a few iterations and the ability to handle some stereotypes of rǫ. We report
the L1 relative error in each example, i.e., ||Uk − uf ||L1 where uf is the overall fine

solution. In every example, θ
k,used

i,j is chosen so the solution is stable and converges
to the overall fine solution.

5.1. Smooth slowness functions. We test the method on two smooth oscilla-
tory continuous slowness functions. Figures 5.1a and 5.1b show the contour plots of
the overall fine solution where

r1ǫ (x, y) = 1 + .99 sin(2πx) sin(2πy)

and

r2ǫ (x, y) = 1 + .5 sin(20πx) sin(20πy).

1Matlab/C++ code used to produce all numerical results can be found at
https://github.com/lindsmart/MartinTsaiEikonal

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 21

Figure 5.2 shows the error plots for H = 1/10 and h = 1/500. The method is able
to handle small and large changes in direction of the characteristics. We see that the
performance is worse in earlier iterations for r1ǫ . This is because the solutions in the
upper left and bottom right corner depend on more subdomains than in the r2ǫ case.

(a) r1ǫ (b) r2ǫ

Fig. 5.1. (a) Solution contour for r1ǫ (x, y) = 1+ .99 sin(2πx) sin(2πy). (b) Solution contour for
r2ǫ (x, y) = 1 + .5 sin(20πx) sin(20πy).

0 2 4 6 8 10 12
k

10-7

10-4

10-1

re
la

tiv
e

L
1
 e

rr
or

Fig. 5.2. Relative L1 error plots for r1ǫ and r2ǫ for H = 1/10 and h = 1/500.

5.2. Mazes and obstacles. We show the method’s performance on examples
that model optimal paths through a maze. Here, we define rǫ(x, y) = 1000 inside the
barriers so that all optimal paths choose to avoid them. We also test the method
on the case where an obstacle may be a “fast obstacle”, i.e., rǫ(x, y) = 0.01 inside
and optimal paths near the obstacle choose to go through it. We set rǫ(x, y) = 1
everywhere else, and let the source point be given by Γ = {(0, 0)} . These examples
show the performance of the method on problems when the coarse grid captures the
flow of characters in the opposite direction. The causal sweeps are critical in order to
capture the right flow of characteristics because some coarse grids the right causality
will never be computed. The solution contours for r3ǫ and r4ǫ is shown in Figures 5.3a
and 5.3b, respectively.

For r3ǫ , there are coarse grid points which coincide with the obstacles as well as
points in the obstacles that do not coincide with a coarse grid point. The circle barrier

22 LINDSAY MARTIN AND RICHARD TSAI

in Figure 5.3a contains an entire subdomain and the other circle is a fast obstacle
that is contained entirely in a subdomain. The non-monotonicity of error is due to
the causal sweeps. The method only provides speed up once the right characteristics
have been captured around the barriers. This is seen in Figure 5.4 where the error
starts to decrease monotonically around 20 iterations. For r3ǫ , it takes around 2/H
iterations for the coarse grid to “see” around the two curved barriers.

For r4ǫ , the fast obstacle is located in [0.26, 0.27]× [0, 0.6]. This example demon-
strates that the method performs well when there is large collision of characteristics
that goes through several subdomains, and there is a fast obstacle affects the char-
acteristics throughout the majority of the domain. i.e., almost every optimal path in
Figure 5.3b must go through the obstacle.

(a) r3ǫ (b) r4ǫ

Fig. 5.3. (a) Solution contour for r3ǫ . (b) Solution contour for r4ǫ .

0 10 20 30
k

10-10

10-5

100

re
la

tiv
e

L
1
 e

rr
or

Fig. 5.4. Relative L1 error plots for the slowness functions r3ǫ and r4ǫ for H = 1/10 and
h = 1/500.

5.3. Multiscale slowness functions. Finally, we show the advantage of the
method on multiscale slowness functions. These examples arise in front propagation
in multiscale media problems. In our computations, we let the scale epsilon be 7
fine grid points, i.e., ǫ = 7h, in order for the fine grid to fully capture the micro
scale behavior. As mentioned in section 1, one approach for numerically resolving the
multiscale behavior in rǫ is homogenization. We will first demonstrate our method

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 23

(a) (b)

Fig. 5.5. (a) Solution contour for the squares slowness function where h = 1/1400 and
ǫ = 1/200. (b) Plot of squares slowness function for ǫ = 1/5.

0 2 4 6 8 10 12
k

10-7

10-4

10-1

re
la

tiv
e

L
1
 e

rr
or

Fig. 5.6. Relative error L1 error plots for CH and CH .

on an example where the homogenized slowness function, r, can be computed.
Let the source point be given by Γ = {(0.5, 0.5)}, and define the slowness function

as follows: let

r(x, y) =

{
1 if x = 0 or y = 0

2 otherwise

and define rǫ by extending r by periodicity ǫ. Figure 5.5b shows the slowness func-
tion for ǫ = 1/5. The homogenized slowness function is anisotropic and is equal to
r(α) = (α1 + α2) where α = (α1, α2) and |α| = 1. This is due to the optimal paths
moving only vertically or horizontally [18].

In our computations, we chose H = 1/14, h = 1/1400, and ǫ = 1/200. The value
of rǫ on the coarse grid points is always equal to 1. Thus, the coarse grid solver is
always solving the equation

|∇u| = 1.

This equation is inaccurate as seen by the shape of the solution contour in Figure 5.5a
which is a diamond and not a circle. Suppose in the method we have the coarse solver
solve an equation that better describes the macro scale behavior of the solution. Since
in this example we know the homogenized equation, on the coarse grid we can solve

24 LINDSAY MARTIN AND RICHARD TSAI

(a)

0 5 10 15
k

10-9

10-5

10-1

re
la

tiv
e

L
1
 e

rr
or

(b)

Fig. 5.7. Generalization of Figure 5.1b: (a) Solution contour for

rǫ(x, y) = 1 + .5 sin(πx
ǫ
) sin(πy

ǫ
) where ǫ = |x|+|y|+0.001

50
. (b) Relative L1 error plot for the

given rǫ where the estimated θ
k,used

i,j and M
k
i,j − 0.001 are used.

the homogenized equation

1

r(∇u
|∇u|)

|∇u| = 1.(5.1)

Denote the homogenized equation coarse solver by CH . Figure 5.6 shows the relative
L1 error plots for both the method that uses the CH as described in section 3 and
the method that uses CH in place of CH . As expected, we can see that method that
uses CH performs better.

Next, we demonstrate the method on a generalization of r2ǫ as defined in subsec-
tion 5.1. Notice in Figure 5.1b, we can see the rough shape of the contours of the
solution to the homogenized equation. Let

rǫ = 1 + .5 sin(
πx

ǫ
) sin(

πy

ǫ
).

For r2ǫ , ǫ = 1/20. Now suppose we let ǫ vary through out the domain, i.e., the problem
cannot be solved via homogenization. Define

ǫ =
|x|+ |y|+ 0.001

50

and Γ = {(0.35, 0.35), (0.65, 0.65)}. Then ǫ is very small near (0, 0) and increases as
we move diagonally up and right through the domain. Figure 5.7a shows the solution
contour for this given rǫ. Since uf can be computed a priori, we compare the error

plots of our method where we use formula (4.10) and M
k

i,j − 0.001 as the choice of
weights in the method. In this example, H = 1/14 and h = 1/1400. The error plots
Figure 5.7b suggest that the proposed formula (4.10) has room for improvement in

estimating M
k

i,j . For example, if Xi,j = (0, 0), we have

min
k

(|Mk

i,j − 0.001− θ
k,used

i,j |) = 0.1053,

but
max

k
(|Mk

i,j − 0.001− θ
k,used

i,j |) = 2.508× 105.

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 25

Finally, we show the results of our method on a case where the values of the
slowness function are random. We follow the set up of the random slowness function
in [18]. Consider a periodic checkerboard where the slowness function is either 1 or 2
with probability 1/2. Let the scale of the periodicity be ǫ. A solution contour and the
plot of a random slowness function is shown in Figures 5.8a and 5.8b, repsectively.
In [18], the authors showed experimentally the homogenized slowness function, r, is
isotropic and its value is a little less than 1. Figure 5.9 shows the plot of the average
error over 20 trials where H = 1/14 and h = 1/1400.

(a)

0 0.5 1

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 5.8. (a) Solution contour plot of random periodic checkboard of scale ǫ. (b) Plot of random
slowness function.

0 5 10 15
k

10-10

10-5

100

A
ve

ra
ge

 r
el

at
iv

e
L 1

 e
rr

or

Fig. 5.9. Relative L1 error plot for random rǫ.

6. Summary and conclusion. In this paper, we presented a new domain de-
composition algorithm for solving boundary value Eikonal equations. Traditional
domain decomposition algorithms are difficult to apply due to the nonlinear casual
nature of the Eikonal equation. We overcome this difficulty by using coarse and fine
grids to propagate information from the subdomains into the coarse level. The par-
allelization of our method is simple. The coarse grid is initialized using FSM, and
the values and wind directions are used to define the boundary conditions for the
subdomains. Next, we perform fine grid computations in each subdomain in parallel.
In our coarse grid updates we apply an adapted weighted parareal scheme to speed

26 LINDSAY MARTIN AND RICHARD TSAI

up convergence. A causality sweep is performed after each coarse grid update in order
to ensure the wind directions are captured correctly.

By clever choice of the weight, it is possible to stabilize parareal-like iterative

methods. At each coarse grid node, θki,j is computed by estimating M
k

i,j which is

defined to be the upper bound for θki,j to create a monotonically decreasing sequence
of solutions for the model problem. We show via numerical examples on a model
problem that the choice of θki,j stabilizes the method and using a variable θ has

advantages over a fixed value. We speculate that improving the estimate of M
k

i,j , it
would be possible further increase the stability and speed up of the method.

We demonstrated the method on several classes of slowness functions showing that
the performs well on general types of rǫ including multiscale slowness functions where
homogenization cannot be applied. The errors decrease to an acceptable tolerance
well within the limit of theoretical speed up. Thus, we can solve efficiently through
parallelization multiscale problems beyond the conventional multiscale methods. The
example in Figure 5.5 gives us a direction for future work. We would like to use the
coarse and fine grid computations to estimate the effective slowness function “on the
fly,” which could further speed up the method based on the evidence in Figure 5.6.

REFERENCES

[1] G. Ariel, S. J. Kim, and R. Tsai, Parareal multiscale methods for highly oscillatory dynamical
systems, SIAM J. Sci. Comput., 38 (2016), pp. A3540–A3564.

[2] G. Ariel, H. Nguyen, and R. Tsai, θ-parareal schemes, ArXiv e-prints, (2017), https://arxiv.
org/abs/1704.06882.

[3] G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differ-
ential equations, in Domain decomposition methods in science and engineering, vol. 40 of
Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2005, pp. 425–432.

[4] G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE’s with applica-
tion to the pricing of an American put, in Recent developments in domain decomposition
methods (Zürich, 2001), vol. 23 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2002,
pp. 189–202.

[5] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear
second order equations, Asymptotic Anal., 4 (1991), pp. 271–283.

[6] M. Breuß, E. Cristiani, P. Gwosdek, and O. Vogel, An adaptive domain-decomposition
technique for parallelization of the fast marching method, Appl. Math. Comput., 218
(2011), pp. 32–44.

[7] S. Cacace, E. Cristiani, M. Falcone, and A. Picarelli, A patchy dynamic programming
scheme for a class of hamilton-jacobi-bellman equation, SIAM J. Scientific Computing, 34
(5) (2012), pp. A2625–A2649.

[8] A. Chacon and A. Vladimirsky, Fast two-scale methods for eikonal equations, SIAM J. Sci.
Comput., 34 (2012), pp. A547–A578.

[9] A. Chacon and A. Vladimirsky, A parallel two-scale method for eikonal equations, SIAM J.
Sci. Comput., 37 (2015), pp. A156–A180.

[10] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc., 277 (1983), pp. 1–42.

[11] M. Detrixhe, F. Gibou, and C. Min, A parallel fast sweeping method for the Eikonal equation,
J. Comput. Phys., 237 (2013), pp. 46–55.

[12] M. J. Gander and E. Hairer, Analysis for parareal algorithms applied to Hamiltonian dif-
ferential equations, J. Comput. Appl. Math., 259 (2014), pp. 2–13.

[13] T. Haut and B. Wingate, An asymptotic parallel-in-time method for highly oscillatory PDEs,
SIAM J. Sci. Comput., 36 (2014), pp. A693–A713.

[14] F. Legoll, T. Lelièvre, and G. Samaey, A micro-macro parareal algorithm: application
to singularly perturbed ordinary differential equations, SIAM J. Sci. Comput., 35 (2013),
pp. A1951–A1986.

[15] J.-L. Lions, Y. Maday, and G. Turinici, A ”parareal” in time discretization of PDE’s,
Comptes Rendus de l’Acadmie des Sciences - Series I - Mathematics, 332 (2001), pp. 661–

https://arxiv.org/abs/1704.06882
https://arxiv.org/abs/1704.06882

DOMAIN DECOMPOSITION ALGORITHM FOR EIKONAL EQUATIONS 27

668.
[16] S. Luo, Y. Yu, and H. Zhao, A new approximation for effective Hamiltonians for homog-

enization of a class of Hamilton-Jacobi equations, Multiscale Model. Simul., 9 (2011),
pp. 711–734.

[17] Y. Maday, The parareal in time algorithm, in Substructuring Techniques and Domain Decom-
position Methods, Saxe-Coburg Publications, Stirlingshire, UK, 2010, pp. 19–44.

[18] A. M. Oberman, R. Takei, and A. Vladimirsky, Homogenization of metric Hamilton-Jacobi
equations, Multiscale Model. Simul., 8 (2009), pp. 269–295.

[19] E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM J.
Numer. Anal., 29 (1992), pp. 867–884.

[20] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc.
Nat. Acad. Sci. U.S.A., 93 (1996), pp. 1591–1595.

[21] G. A. Staff and E. M. Rø nquist, Stability of the parareal algorithm, in Domain decom-
position methods in science and engineering, vol. 40 of Lect. Notes Comput. Sci. Eng.,
Springer, Berlin, 2005, pp. 449–456.

[22] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping algorithms for a class
of Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), pp. 673–694.

[23] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat.
Control, 40 (1995), pp. 1528–1538.

[24] J. Yang and F. Stern, A highly scalable massively parallel fast marching method for the
Eikonal equation, J. Comput. Phys., 332 (2017), pp. 333–362.

[25] H. Zhao, A fast sweeping method for eikonal equations, Math. Comp., 74 (2005), pp. 603–627.
[26] H. Zhao, Parallel implementations of the fast sweeping method, J. Comput. Math., 25 (2007),

pp. 421–429.

	1 Introduction
	1.1 Upwind discretization and FSM
	1.2 Review of current parallel methods

	2 Overview of parareal methods
	3 The new method
	3.1 One dimensional example
	3.2 New method in two dimensions

	4 Analysis of the new method
	4.1 Analysis of on model problem
	4.2 Estimating Mi,jk
	4.3 Complexity and speed up

	5 Numerical results
	5.1 Smooth slowness functions
	5.2 Mazes and obstacles
	5.3 Multiscale slowness functions

	6 Summary and conclusion
	References

