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Abstract. Motivated by the urgent need to attribute a rigorous mathematical meaning to the
term “metamaterial”, we propose a novel approach to the homogenisation of critical-contrast com-
posites. This is based on the asymptotic analysis of the Dirichlet-to-Neumann map on the interface
between different components (“stiff” and “soft”) of the medium, which leads to an asymptotic
approximation of eigenmodes. This allows us to see that the presence of the soft component makes
the stiff one behave as a class of time-dispersive media. By an inversion of this argument, we also
offer a recipe for the construction of such media with prescribed dispersive properties from periodic
composites.

1. Introduction

1.1. Physics context and motivation for quantitative analysis. Understanding the depen-
dence of material properties of continuous media on frequency is a natural and practically relevant
task, stemming from the theoretical and experimental studies of “metamaterials”, e.g. materials
that exhibit negative refraction of propagating wave packets. Indeed, it was noted as early as in the
pioneering work [37], that negative refraction is only possible under the assumption of frequency
dispersion, i.e. when the material parameters (permittivity and permeability in electromagnetism,
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elastic moduli and mass density in acoustics) are not only frequency-dependent, but also become
negative in certain frequency bands.

Independently of the search for metamaterials, in the course of the development of the theory
of electromagnetism, it has transpired in modern physics that the Maxwell equations need to be
considered with time-nonlocal “memory” terms, see e.g. [24, Section 7.10] and also [7], [34]. The
related generalised system (in the absence of charges and currents in the domain of interest) has
the form

(1) ρ∂tu+

∫ t

−∞
a(t− τ)u(τ)dτ + iAu = 0, A =

(
0 i curl

−i curl 0

)
,

where u represents the (time-dependent) electromagnetic field (H,E)>, the matrix ρ depends on the
electric permittivity and magnetic permeability, and a is a matrix-valued “susceptibility” operator,
set to zero in the more basic form of the system.1

Applying the Fourier transform in time t to (1), an equation in the frequency domain is obtained:

(2)
(
iωρ+ â(ω)

)
û(·, ω) + iAû(·, ω) = 0,

where û is the Fourier transform of u, and ω is the frequency. Equation (2) is often interpreted
as a “non-classical” version of Maxwell’s system of equations, where the permittivity and/or per-
meability are frequency-dependent. The existence of such media (commonly known as Lorentz
materials) and the analysis of their properties go back a few decades in time and has also attracted
considerable interest quite recently, e.g. in the study of plasma in tokamaks, see [15] and references
therein.

Simultaneously with the above developments in the physics literature, recent mathematical
evidence, see [38], [6], suggests that such novel material behaviour, which is incompatible (see
[5, 10, 11]) with the mathematical assumption of uniform ellipticity of the corresponding differential
operators (such as A in (1)), may be explained by means of the asymptotic analysis (“homogeni-
sation”) of operator families with rapidly oscillating, and non-uniformly elliptic, coefficients.

It is therefore reasonable to ask the question of whether frequency dispersion laws such as per-
taining to (2), which in turn may provide one with metamaterial behaviour in appropriate frequency
intervals [37], can be derived by some process of homogenisation of composite media with contrast
(or, as we shall suggest below, any other miscroscopic degeneracies resonating with the macroscopic
wavefields).

1.2. Basis for the mathematical framework. If one were to look for an asymptotic expansion
of eigenmodes of a high-contrast composite, restricted to the soft component of the medium, one
would notice (see, e.g., [9]) that their leading order terms can be understood as the eigenmodes of
boundary-value problems with impedance (i.e., frequency dependent) boundary conditions. Such
problems have been considered in the past (see, e.g., [32]), motivated by the analysis of the wave
equation. On the other hand, by the celebrated analysis of the so-called generalised resolvents of
[29, 30] one knows, that a problem of this type admits a conservative dilation, which is constructed
by adding the hidden degrees of freedom. In fact, precisely this latter observation has been used
in [19, 20] in devising a conservative “extension” of a time-dispersive system of the type (1). The
substance of the argument that is proposed in the present paper is that the aforementioned con-
servative dilation is in fact precisely the asymptotic model of the original high-contrast composite.
Furthermore, the leading order terms of its eigenmodes restricted to the stiff component are solu-
tions to a problem of the type (2) with frequency dispersion. They can be easily expressed in terms

1From the rigorous operator-theoretic point of view, A in (1) is treated as a self-adjoint operator in a Hilbert space
H of functions of x ∈ Ω, for example H = L2(Ω;R6), where Ω is the part of the space occupied by the medium.
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of the above impedance boundary value problems, thus yielding an explicit description of the link
between the resonant soft inclusions and the macroscopic time-dispersive properties.

Therefore, models of continuous media with frequency-dependent effective boundary conditions
can be seen as natural building blocks for media with frequency dispersion.

It is of a considerable value to relate these ideas to the earlier works [26, 27, 18], where similar
limiting impedance-type problems are obtained in the spectral analysis of “thin” periodic structures,
converging to metric graphs. Here, one obtains the aforementioned impedance setup (see Fig. 1)
on the limiting graph as the asymptotics of the eigenmodes of a Neumann Laplacian, when the
“thickness” of the structure vanishes for one particular (resonant) scaling between the “edge” and
“vertex” volumes of the structure.

Frequency-dependent BCs

Figure 1. An example of a resonant thin network Edge volumes are asymp-

totically of the same order as vertex volumes. The stiffness of the material of the structure

is of the order period-squared.

It is instructive to point out that the results of [9] establish a thrilling relationship between the
analysis of thin structures and the homogenisation theory of high-contrast composites.

Namely, the paper [9] deals with the case of the so-called superlattices [36] with high contrast,
see Fig. 2. While simple to set up, the related system of ordinary differential equations (subject to
the appropriate conditions of continuity of fields and fluxes) is nontrivial from the point of view of
quantitative analysis, see also [8]. It is shown that the asymptotic model for this system is precisely
the one derived in [26, 27, 18] in the case of a resonant thin structure converging to a chain-graph,
see Fig. 1. As we shall argue in the present article, such superlattices (and the corresponding
chain-graphs) offer a simple prototype for a metamaterial, via the mathematical approach outlined
above.

The result described above suggests, that thin networks might acquire the same asymptotic
properties as those of the corresponding high-contrast composites. It is therefore a viable conjecture,
that the metamaterial properties of a medium can be attained via a version of geometric contrast
instead of relying upon the contrast between material components. This is especially promising
when the required material contrast cannot be guaranteed, as is commonly the case in elasticity and
electromagnetism. The corresponding thin networks on the other hand have been made available
in the study of graphenes and related areas. This subject will be further pursued in a forthcoming
publication.

The above exposition vindicates the value of quantum graph models in the analysis of high-
contrast composites, where we follow the well-established convention, see [3], to use the term
quantum graph for an ordinary differential operator of second order defined on a metric graph.
These graph-based models are seen as natural limits of composite thin networks consisting of a
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Soft component

Stiff component

Frequency-dependent BCs

Figure 2. High-contrast superlattice The problem for a superlattice is re-

duced to a one-dimensional high-contrast problem. This is asymptotically equivalent to

an impedance-type problem on the soft component.

large number of channels (for, say, acoustic or electromagnetic waves), where a combination of
high-contrast and rapid oscillations becomes increasingly taxing at small scales and often leads
to impractical numerical costs. For channels with low cross-section-to-length ratios, the material
response of such a system, see Fig. 3, is closely approximated by a quantum graph as described
above. Systems of this type are a particular example of high-contrast composites and thus, as

Soft component

Stiff component

Figure 3. Thin network An example of a high-contrast periodic network. Stiff chan-

nels are in grey, soft channels are in blue.

explained above, they possess resonant properties at the miscroscale, which leads to macroscopic
dispersion by the above argument. At a very crude level, this is similar to the way in which particle
motion on the atomic scale leads to Lorentz-type electromagnetism, see e.g. [31, Chapter 1] for the
analysis of a related model of damped harmonic oscillator.

Furthermore, periodic quantum graphs with vanishing period can serve as realistic explicitly
solvable ODE models for multidimensional continuous media, as demonstrated2, e.g., in [28], where
an h−periodic cubic lattice is shown to be close (up to and including the scattering properties)
to the Laplacian in Rd. More involved periodic graphs can be used to model non-trivial media,
including anisotropic ones.

2We remark, that it was Professor Pavlov who had pioneered the mathematical study of quantum graphs, see [21].
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As a particular realistic example of a thin network with high contrast, consider the problem of
modelling acoustic wave propagation in a system of channels Ωε,δ, ε-periodic in one direction, of
thickness δ � ε, and with contrasting material properties (cf. Fig. 3). To simplify the presentation,
we assume the antiplane shear wave polarisation (the so called S-waves), which leads to a scalar
wave equation for the only non-vanishing component W, of the form

Wtt −∇x · (aε(x)∇xW ) = 0, u = W (x, t), x, t ∈ R,

where the coefficient aε takes values one and ε2 in different channels of the ε-periodic structure.
Looking for time-harmonic solutions W (x, t) = U(x) exp(iωt), ω > 0, one arrives at the spectral
problem

(3) −∇ · (aε∇U) = ω2U.

As we argue below, the behaviour of (3) is close, in a quantitatively controlled way as ε → 0, to
that of an “effective medium” on R described by an equation of the form

(4) − U ′′ = β(ω)U,

for an appropriate function β = β(ω), explicitly given in terms of the material parameters aε and
the topology of the original system of channels.

The goal of the present paper is to derive an explicit general formula for the function β in
(4), in terms of the topology of the graph representing the original domain of wave propagation,
which is no longer restricted to the example shown in Fig. 3. As noted above, the presence of both
rapid oscillations and high contrast make the task mathematically nontrivial. In our approach,
which is new, we call upon some recently developed machinery in the operator-theoretic analysis
of abstract boundary-value problems (which in our case take the form of boundary-value problems
for differential operators of interest). In the subsequent work [10] we develop the corresponding
analysis for the multidimensional case, which is neither included nor an extension of the analysis
for graphs presented in this article. However, it is based on the same set of mathematical ideas,
which makes us hope that the foundations for (4) in the case of PDEs is clear from what follows.

Unlike the approach aimed at derivation of norm-resolvent convergence, which we adopt in
[11, 10], in the present paper, having the convenience of the more physically inclined reader in mind,
we systematically treat the subject from the point of view of spectral problems and in particular
of the asymptotic analysis of eigenmodes. We refer the interested reader to the aforementioned
papers, where further mathematical details, which we think are out of scope here, are contained.

The present paper can be viewed as following in the footsteps of [9] in that it relies upon the
analysis of the fibre representations (obtained via the Floquet-Gelfand transform) of the original
periodic operator. This is carried out using the boundary triples theory (see, e.g., [22, 14]), which
generalises the classical methods based on the Weyl-Titchmarsh m−coefficient, applied to self-
adjoint extensions of symmetric operators. This allows us to develop a novel approach to the
homogenisation of a class of periodic high-contrast problems on “weighted quantum graphs”, i.e.
one-dimensional versions of thin composite media where the material parameters on one of the
components are much lower than on the others and scaled in a “critical” way with respect to the
period of the composite. We reiterate that the idea that such media can be viewed as idealised
models of thin periodic critical-contrast networks has been explored in the mathematics literature,
see [27], [18], [39] and elsewhere. The backbone of our approach is, as explained above, the study of
eigenfunctions of the problem restricted to one (“soft”) component of the composite only. After the
asymptotics for these is obtained, it proves possible to reconstruct the “complete” eigenfunctions,
where we implicitly rely upon the classical results of operator theory, in particular dealing with
out-of-space self-adjoint extensions of symmetric operators and associated generalised resolvents.
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1.3. Physics interpretation and relevance to metamaterials. Our argument leads to the
understanding of the phenomenon of critical-contrast homogenisation limit as a manifestation of
a frequency-converting device: if one restricts the eigenfunctions to the “stiff” component, they
prove to be close to those of the medium where the soft component has been replaced with voids,
but correspond to non-trivially shifted eigenfrequencies. This is precisely what one would expect
in the setting of time-dispersive media after the passage to the frequency domain, cf. (2).

From the physics perspective, this link between homogenisation and frequency conversion can be
viewed as a justification of an “asymptotic equivalence” between eigenvalue problems for periodic
composites with high contrast and problems with nonlinear dependence on the spectral parameter,
which in the frequency domain characterise “time-dispersive media”, as in (1), see also [34, 35, 19,
20].

As we mentioned above, the phenomenon of frequency dispersion emerging as a result of ho-
mogenisation has been observed in the two-scale formulation applied to critical-contrast PDEs in,
e.g., [38, 6]. Our approach goes beyond the results of [38, 6] in several ways. First, being based
on an explicit asymptotic analysis of operators, using the recent developments in the theory of
abstract boundary-value problems (see e.g. [33]), it provides an explicit procedure for recovering
the dispersion relation and does not draw upon the well-known two-scale asymptotic techniques.

The approach we develop in the present paper thus offers a new perspective on frequency-
dispersive (time non-local) continuous media in the sense that it provides a recipe for the construc-
tion of such media with prescribed dispersive properties from periodic composites whose individual
components are non-dispersive. It has been known that time-dispersive media [19] in the frequency
domain can be realised as a “restriction” of a conservative Hamiltonian defined on a space which
adds the “hidden” degrees of freedom.3

In summary, the existing belief in the engineering and physics literature that time-dispersive
properties often arise as the result of complex microstructure of composites suggests to look for
a rather concrete class of such conservative Hamiltonian dilations, namely, those pertaining to
differential operators on composites with critical contrast. Our results can be viewed as laying
foundations for rigorously solving this problem.

2. Infinite-graph setup

Consider a graph G∞, periodic in one direction, so that G∞+ ` = G∞, where ` is a fixed vector,
which defines the graph axis. Let the periodicity cell G be a finite compact graph of total length
ε ∈ (0, 1), and denote by ej , j = 1, 2, . . . n, n ∈ N its edges. For each j = 1, 2, . . . , n, we identify ej
with the interval [0, εlj ], where εlj is the length of ej . We associate with the graph G∞ the Hilbert
space

L2(G∞) :=
⊕
Z

n⊕
j=1

L2(0, εlj).

Consider a sequence of operators Aε, ε > 0, in L2(G∞), generated by second-order differential
expressions

(5) − d

dx

((
aε
)2 d
dx

)
,

3 This is based on the observation that the equation (2) can be written in the form of an eigenvalue problem
AU = ωU, U ∈ H, for a suitable self-adjoint “dilation” A of the operator A, so that A acts in a space H ⊃ H. The
vector field U has a natural physical interpretation in terms of additional electromagnetic field variables, the so-called
polarisation P and magnetisation M, so that the full (12-dimensional) field vector is (H,E, P,M)>.
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with positive G-periodic coefficients (aε)2 defined on G∞, with the domain dom(Aε) that describes
the coupling conditions at the vertices of G∞ :

(6) dom(Aε) =

{
u ∈

⊕
e∈G∞

W 2,2
(
e)
∣∣∣ u continuous,

∑
e3V

σe(a
ε)2u′(V ) = 0 ∀ V ∈ G∞

}
,

In the formula (6) the summation is carried out over the edges e sharing the vertex V, the coefficient
(aε)2 in the vertex condition is calculated on the edge e, and σe = −1 or σe = 1 for e incoming
or outgoing for V, respectively. The matching conditions (6) represent the so-called standard,
or Kirchhoff, conditions of combined continuity of the function and equality to zero of sums of
co-normal derivatives at all vertices.

3. Gelfand transform

We seek to apply the one-dimensional Gelfand transform

(7) v(x) =

√
ε

2π

∑
n∈Z

u(x+ εn)e−it(x+εn).

to the operator Aε defined on G∞ in order to obtain the direct fibre integral for the operator Aε :

(8) Aε =

∫
⊕
Aεtdt.

In order to do achieve this goal, we first note that the geometry of G∞ is encoded in the matching
conditions (6) only. This opens up a possibility to embed the graph G∞ into R1 by rearranging
it edges as consecutive segments of the real line (leading to a one-dimensional ε-periodic chain
graph). In doing so we drop the customary practice of drawing graphs in a way reflecting matching
conditions (i.e., so that these are local relative to graph vertices). The above embedding leads
to rather complex non-local matching conditions, but, on the positive side, allows us to use the
Gelfand transform as required by (7), (8).

The Gelfand transform leads to periodic conditions on the boundary of the cell G and thus in
our case identifies the “left” boundary vertices of the graph G with their translations by `, which

results in a modified graph Ĝ. Apart from this, the matching conditions for the internal vertices
of G admit the same form as for Aε, except for the fact that the Kirchhoff matching is replaced
by a Datta-Das Sarma one (the latter can be viewed as a weighted Kirchhoff), see below in (10).
Unimodular weights appearing in Datta-Das Sarma conditions are precisely due to the non-locality
of matching conditions mentioned above for the embedding of G∞ into R1.

The image of the Gelfand transform is described as follows. There exists a unimodular list

{wV (e)}e3V , cf. [11], defined at each vertex V of Ĝ as a finite collection of values corresponding
to the edges adjacent to V . For each t ∈ [−π/ε, π/ε), the fibre operator Aεt is generated by the
differential expression

(9)

(
1

i

d

dx
+ t

)
(aε)2

(
1

i

d

dx
+ t

)
on the domain

(10) dom(Aεt ) =

{
v ∈

⊕
e∈G

W 2,2
(
e)
∣∣∣ wV (e)v|e(V ) = wV (e′)v|e′(V ) for all e, e′

adjacent to V,
∑
e3V

∂(t)v(V ) = 0 for each vertex V

}
,
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where ∂(t)v(V ) is the weighted “co-derivative” σewV (e)(aε)2(v′+ itv) of the function v on the edge
e, calculated at V.

4. Boundary triples for extensions of symmetric operators

In the analysis of the asymptotic behaviour of the fibres of the original operator representing
the quantum graph, we employ the framework of boundary triples for a symmetric operator with
equal deficiency indices for the description of a class of its extensions. Part of the toolbox of the
theory of boundary triples is the generalisation of the classical Weyl-Titchmarsh m-function to the
case of a matrix (finite deficiency indices) and operators (infinite deficiency indices).

The boundary triples theory is a very convenient toolbox for dealing with extensions of linear
operators, originating in the works of M. G. Krĕın. In essence, it is an operator-theoretic interpre-
tation of the second Green’s identity. As such, it allows one to pass over from the consideration
of functions in Hilbert spaces to a formulation in which one deals with objects in the boundary
spaces (such as traces of functions and traces of their normal derivatives), which in the context of
quantum graphs are finite-dimensional. Furthermore, it allows one to use explicit concise formulae
for the resolvents of operators under scrutiny and for other related objects. Thus it facilitates the
analysis by expressing the familiar, commonly used in this area, objects in a concise way.

Definition 4.1 ([22, 25, 14]). Suppose that Amax is the adjoint to a densely defined symmetric
operator on a separable Hilbert space H and let Γ0, Γ1 be linear mappings of dom(Amax) ⊂ H to a
separable Hilbert space H.

A. The triple (H,Γ0,Γ1) is called a boundary triple for the operator Amax if the following two
conditions hold:

(1) For all u, v ∈ dom(Amax) one has the second Green’s identity

(11) 〈Amaxu, v〉H − 〈u,Amaxv〉H = 〈Γ1u,Γ0v〉H − 〈Γ0u,Γ1v〉H.

(2) The mapping dom(Amax) 3 u 7−→ (Γ0u,Γ1u) ∈ H ⊕H is onto.

B. A restriction AB of the operator Amax such that A∗max =: Amin ⊂ AB ⊂ Amax is called almost
solvable if there exists a boundary triple (H,Γ0,Γ1) for Amax and a bounded linear operator B
defined on H such that

dom(AB) =
{
u ∈ dom(Amax) : Γ1u = BΓ0u

}
.

C. The operator-valued Herglotz4 function M = M(z), defined by

(12) M(z)Γ0uz = Γ1uz, uz ∈ ker(Amax − z), z ∈ C+ ∪ C−,

is called the Weyl-Titchmarsh M -function of the operator Amax with respect to the corresponding
boundary triple.

Suppose AB be a self-adjoint almost solvable restriction of Amax with compact resolvent. Then
M(z) is analytic on the real line away from the eigenvalues of A∞, where A∞ is the restriction of
Amax to domain dom(A∞) = dom(Amax) ∩ ker(Γ0). It is a key observation for what follows that
u ∈ dom(AB) is an eigenvector of AB with eigenvalue z0 ∈ C \ spec(A∞) if and only if

(13)
(
M(z0)−B

)
Γ0u = 0.

In the next section we utilise a particular operator Amax and a boundary triple (H,Γ0,Γ1), which
we use to analyse the resolvents of the operators on quantum graphs introduced earlier.

4For a definition and properties of Herglotz functions, see e.g. [31].
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5. Graph with high contrast: prototype for time-dispersive media

In what follows we develop a general approach to the analysis of weighted quantum graphs with
critical contrast. We demonstrate it on one particular example, which, as we show in Appendix
A, exhibits all the properties of the generic case. We have therefore chosen to present the analysis
in the terms that are immediately applicable to the general case and, whenever advisable, we
provide statements that carry over without modifications. Speaking of a “general” case, we imply
an operator of the class introduced in Section 2, where some of the edges esoft of the cell graph G
carry the weight aε = ε, with the remaining edges carrying weights of order 1 uniformly in ε.

The rationale of the present section is in fact extendable to an even more general setup (including
the one of periodic high-contrast PDEs), which we treat in the paper [10]. However, in the present
paper we consider a rather simplified model, in view of keeping technicalities to a bare minimum
and thus hopefully making the matter transparent to the reader.

Consider the graph G∞ with the periodicity cell G shown in Figure 4. The Gelfand transform, see

Figure 4. Periodicity cell G. The intervals of lengths εl1 and εl3 are “stiff”, i.e.

they carry the weights a21 and a23, respectively, whereas the interval of length εl2 is “soft”,

with weight ε2.

Section 3, applied to this graph, yields the graph Ĝ of Figure 5. In the present section we show that
there exists a boundary triple such that Aεt is an almost solvable extension of the corresponding
Amin, and the M -function (which is in our case a matrix-valued function; for convenience, it is

Figure 5. The graph Ĝ. The left and right boundary vertices have been identified.

written as a function of k :=
√
z, with the branch chosen so that =k > 0) of Amax is given by

(14) M(k, ε, t) = kM̃ stiff(κ, τ) + εM̃ soft(k, τ), κ := εk, τ := εt,
9



where

M̃ stiff(κ, τ) :=



−a1 cot
κl1
a1
− a3 cot

κl3
a3

a1
e−i(l1+l3)τ

sin
κl1
a1

+ a3
eil2τ

sin
κl3
a3

a1
ei(l1+l3)τ

sin
κl1
a1

+ a3
e−il2τ

sin
κl3
a3

−a1 cot
κl1
a1
− a3 cot

κl3
a3


,

(15) M̃ soft(k, τ) := k


− cot kl2

eil2τ

sin kl2

e−il2τ

sin kl2
− cot kl2

 ,

Note that for all τ ∈ [−π, π), the function M̃ soft(·, τ) is meromorphic and regular at zero.
Essentially, the claim made is a straightforward consequence of the double integration by parts,

followed by a simple rearrangement of terms. In the rest of this section we sketch the construction
applicable in the general case, which in particular yields the above claim for the model graph
considered. Under the definitions of Section 4, the maximal operator Amax = A∗min is defined by
the same differential expression (9) on the domain

(16) dom(Amax) =

{
v ∈

⊕
e∈Ĝ

W 2,2
(
e)
∣∣∣ wV (e)v|e(V ) = wV (e′)v|e′(V )

for all e, e′ adjacent to V, ∀V ∈ Ĝ
}
.

In what follows we use the triple (Cm,Γ0,Γ1), where m is the number of vertices in the graph Ĝ,
and

(17) Γ0v =
{
v(V )

}
V
, Γ1v =

{∑
e3V

∂(t)v(V )
}
V
, v ∈ dom(Amax),

where u(V ) is defined as the common value of wV (e)v|e(V ) for all edges e adjacent to V .
By definition of the M -matrix one has Γ1v = MΓ0v, v ∈ ker(Amax−z). Functions v ∈ ker(Amax−

z) have the form

v(x) = exp(−ixt)

{
Ae exp

(
− ikx

aε

)
+Be exp

(
ikx

aε

)}
, x ∈ e, Ae, Be ∈ C,

where k :=
√
z, and the co-derivative is given by

a2
ε(v
′(x) + itv(x)) = ikaε exp(−ixt)

{
−Ae exp

(
− ikx

aε

)
+Be exp

(
ikx

aε

)}
, x ∈ e,

For the vertex V and for every “Dirichlet data” vector Γ0v one of whose entries is unity and the other
entries vanish, the “Neumann data” vector Γ1v gives the column of the M -matrix corresponding
to V. The corresponding Γ1v has diagonal and off-diagonal entries of the form, respectively,

−
∑
e∈V

kaε cot

(
kεle
aε

)
,

∑
e∈V

kaεw̃V (e)

(
sin

kεle
aε

)−1

,

where {w̃V (e)}e3V is a unimodular list uniquely determined by the list {wV (e)}e3V . The resulting
M -matrix is constructed from these columns over all vertices V.
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In particular, for the example of Fig. 4 – 5, we have the following: the boundary space H
pertaining to the graph Ĝ is chosen as H = C2. The unimodular list functions wV1 and wV2 are
chosen as follows:

{wV1(e(j))}3j=1 = {1, 1, eiτ(l(2)+l(3))}, {wV2(e(j))}3j=1 = {eiτ l(3)
, 1, 1}

and

{w̃V1(e(j))}3j=1 = {e−iτ(l(1)+l(3)), eiτ l
(2)
, eiτ l

(2)},

{w̃V2(e(j))}3j=1 = {eiτ(l(1)+l(3)), e−iτ l
(2)
, e−iτ l

(2)},
yielding the formula (15).

6. Asymptotic diagonalisation of the M-matrix and the eigenvector asymptotics

The present section is the centrepiece of our approach. The major difficulty to overcome is of
course the fact that the operator Aεt entangles in a non-trivial way the stiff and soft components
of the medium. On the level of the analysis of the operator itself this problem admits no obvious
solution, unless one is prepared to introduce a two-scale asymptotic ansatz. On the other hand, the
M -matrix calculated above will be shown to be additive with respect to the decomposition of the
medium (hence the notation M soft and M stiff). Thus, via the representation (13), it proves possible
to use the asymptotic expansion of M stiff , which is readily available, to recover the asymptotics of
eigenmodes, restricted to the soft component. This way, the homogenisation task at hand can be
viewed as a version of the perturbation analysis in the boundary space pertaining to the problem.

In the example considered (and in the general case in view of Appendix A) it follows from (13),
(14) that uε is an eigenfunction of the operator Aεt , see (9)–(10), if and only if

(18) M softΓ0uε = −M stiffΓ0uε, M soft := εM̃ soft, M stiff := kM̃ stiff .

In writing (18), we assume, without loss of generality, that the eigenvalue zε = k2 corresponding
to the eigenfunction uε does not belong to the spectrum of the Dirichlet decoupling At∞, defined
according to the general theory of Section 4 for the operators we introduce in Section 3. Indeed, in
any compact subset of C, for small enough ε, this spectrum coincides with the ε-independent set of

poles of the matrix M̃ soft, see (15). For the same reason, we can safely assume that the eigenvalues
zε do not belong to the spectrum of the Dirichlet operator on the soft inclusion. These assumptions
ensure that that the condition z0 ∈ C \ spec(A∞) for the validity of (13) is satisfied in both cases:
for the M -matrix of the operator Aεt , where B = 0, and for the M -matrix of the operator on the
soft component represented by (18), where the role of B is played by the matrix −M stiff .

We proceed by observing that the matrices M soft and M stiff in (18) can be treated as M -matrices
of certain triples on their own. In particular, it will be instrumental in what follows to attribute

this meaning to M soft. To this end, consider the decomposition of the graph Ĝ into its “soft” Gsoft

and “stiff” Gstiff components (each of these is treated as a graph, so that Ĝ = Gsoft ∪ Gstiff) and

the operator Asoft
max defined by (9), (16), with Ĝ replaced by Gsoft. The boundary space for Asoft

max

can be defined as H, the same as the boundary space for the operator Amax (again by Appendix
A in the general case). The boundary operators Γsoft

j , j = 0, 1, are defined as in (17) for the graph

Gsoft. Then, by inspection, the M -matrix for the operator Asoft
max is nothing but M soft (see [12] for

further details).
For each v ∈ dom(Amax), define ṽ to be the restriction of v to the soft component Gsoft. It is

obvious that ṽ ∈ dom(Asoft
max).

We notice that (18) implies, in particular, that

(19) M softΓsoft
0 ũε = BεΓsoft

0 ũε, Bε := −M stiff .
11



Furthermore, since M soft is the M -matrix for the pair (Γsoft
0 ,Γsoft

1 ), one has

M softΓsoft
0 ũε = Γsoft

1 ũε,

so the condition (19) takes a form similar to (12):

(20) Γsoft
1 ũε = BεΓsoft

0 ũε.

This condition involves the Dirichlet data of the solution to the spectral equation for Asoft
max which

is an ODE on the graph Gsoft with a constant coefficient. The Dirichlet data Γsoft
0 ũε determine

the vector ũε uniquely. The named vector is interpreted as a solution to the spectral equation

on the soft component of the graph Ĝ subject to z-dependent boundary conditions, encoded in
(20). On the other hand, this vector can also be used to reconstruct the vector uε: indeed, from
Γ0uε = Γsoft

0 ũε it follows, that uε, which is by assumption an eigenvector to Aεt at the point z,

is nothing but a continuation of ũε to the rest of the graph Ĝ based on its Dirichlet data at the
boundary of the soft component. It follows, cf. (20), that the asymptotic analysis can be reduced
to the soft component, with the information about the presence of the stiff component fed into the
related asymptotic procedure by means of the stiff-soft interface.

Before we proceed further, let us take another look at the equation MΓ0uε = 0, cf. (18), which
is equivalent to uε being an eigenvector of Aεt at the value of spectral parameter z. Using the
fact that M = M soft + M stiff as well as the explicit expressions for the matrices M soft, M stiff, cf.
(14), it is easily seen that the leading-order term of Γ0uε, and thus of uε, does not depend on
the soft component of the medium, since the elements of M soft are ε-small. On the other hand,
the situation is drastically different from the viewpoint of the associated dispersion relation, which
must be guaranteed for the solvability of MΓ0uε = 0. The dispersion relation follows from the
condition detM = 0, and it is here, and here only, that the soft component of the medium makes
its presence felt in the problem. Due to the fact that M stiff is rank one at τ = 0, it transpires
that the leading-order term of the equation detM = 0 in the case of critical contrast only blends
together in a non-trivial way the stiff and soft components of the medium. Bearing this in mind,
the phenomenon of critical-contrast homogenisation can be seen as a manifestation of a frequency-
converting device: if one restricts the eigenfunctions to the stiff component, they are ε-close to
those of the medium where the soft component has been replaced with voids, but correspond to
non-trivially shifted eigenfrequencies. This is precisely what one would expect in the setting of
time-dispersive media after the passage to the frequency domain, cf. (1), (2). We will come back
to this discussion in Section 8.

Let us return to the analysis of (20), which, as explained above, contains all the information on
the asymptotic behaviour of Aεt . We notice that the named equation corresponds to a homogeneous
ODE; the non-trivial dependence on ε is concealed in the right-hand side, which describes ε- and
frequency-dependent boundary conditions. The problem of asymptotic analysis of eigenfunctions
of Aεt is thus effectively reduced to the analysis of the asymptotic behaviour of these boundary
conditions. This analysis however is greatly simplified by the fact that Bε is equal to −M stiff,
where M stiff is shown to be the M -matrix of Astiff

max (see Appendix A) by a similar argument to that
applied above to M soft. Hence, the asymptotics sought for M stiff is simply the asymptotics of the
Dirichlet-to-Neumann map of a uniformly elliptic problem at zero frequency, which allows to use
well-known elliptic techniques.

Firstly, we notice that the results of Section 5 combined with the asymptotic formulae

ae cot
κle
ae

=
a2
e

κle
− 1

3
κle +O(κ3), ae

(
sin

κle
ae

)−1

=
a2
e

κle
+

1

6
κle +O(κ3),

yield the following statement.
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Lemma 6.1. Suppose that K ⊂ C is compact. One has

M̃ stiff(κ, τ) = κ−1M0(τ) + κM1(τ) +O(κ3), τ ∈ [−π, π), κ = εk, ε ∈ (0, 1), k ∈ K,
where M0 and M1 are analytic matrix functions of τ .

It follows from Lemma 6.1 that, for all τ ∈ [−π, π),

(21) Bε(z) = ε−1B0 + εzB1 +O(ε3z2), ε ∈ (0, 1),
√
z ∈ K,

where B0, B1 are Hermitian matrices that depend on τ only. The following two lemmata carry
over to the general case with minor modifications, since they only pertain to the stiff component
of the medium and therefore rely upon the general uniformly elliptic properties of the latter.

Lemma 6.2. There exist γ ≥ 0 (where γ = 0 if and only if the graph Gstiff is a tree5) and an

eigenvalue branch µ(τ) for the matrix B0, such that dim Ker
(
B0 − µ(τ)

)
= 1, τ ∈ [−π, π), and

(22) µ(τ) = γτ2 +O(τ4).

We denote by ψ(τ) the normalised eigenvector for the eigenvalue µ(τ), so that ψ(0) = (1/
√

2)(1, 1)>,
i.e. the trace of the first eigenvector of the Neumann problem on the stiff component at zero quiasi-
momentum, which is clearly constant. Let P := 〈·, ψ(τ)〉ψ(τ) and P⊥ be the orthogonal projections

in the boundary space onto ψ(τ) and its orthogonal complement, respectively.

Lemma 6.3. There exists C⊥ > 0 such that

(23) P⊥B0P⊥ ≥ C⊥P⊥,
in the sense that the operator P⊥(B0 − C⊥)P⊥ is non-negative.

We use Lemma 6.3 to solve (20) asymptotically. The overall idea is to diagonalise the leading
order term ε−1B0 of the asymptotic expansion of Bε in (20). From Lemma 6.2 we infer that B0 has
precisely one eigenvalue quadratic in τ (which thus gets close to zero), while Lemma 6.3 provides

us with a bound below on the remaining eigenvalue. The fact that the eigenvalue µ(τ) degenerates
requires that the next term in the asymptotics of Bε be taken into account in the related eigenspace.
This additional term is easily seen to be z−dependent (in fact, linear in z).

We start with an auxiliary rescaling of the soft component. Namely, we introduce the unitary
operator Φε mapping v 7→ v̂ according to the formula v̂(·) =

√
εv(ε·). Under this mapping, the

length of the soft component loses its dependence on ε. The operator Âsoft
max is defined as the unitary

image of Asoft
max under the mapping Φε, and Γ̂soft

0 , Γ̂soft
1 are the boundary operators for the rescaled

soft component:

Γ̂soft
0 v̂ :=

{
v̂(V )

}
V
, Γ̂soft

1 v̂ :=

{∑
e3V

∂̂(τ)v̂(V )

}
V

, v̂ ∈ dom
(
Âsoft

max

)
,

where we set v̂(V ) as the common value of wV (e)v̂|e(V ) for all e adjacent to V, and ∂̂(τ)v̂(V ) is the

expression σewV (e)(v̂′ + iτ v̂) on the edge e, calculated at V. Note that Γ̂soft
1 does not depend on ε.

Under the rescaling Φε the equation (20) becomes

(24) Γ̂soft
1 ûε = ε−1BεΓ̂soft

0 ûε,

where in accordance with the above convention ûε = Φεũε.
We start our diagonalisation procedure by considering the non-degenerate eigenspace of Bε.

Applying P⊥ to both sides of (24), replacing Bε by its asymptotics (21) and using (23) yields

(25) P⊥Γ̂soft
1 ûε = ε−2P⊥B0P⊥Γ̂soft

0 ûε +O(1) ≥ ε−2C⊥P⊥Γ̂soft
0 ûε +O(1),

5Recall that a tree is a connected forest [13].
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where we assume that uε is L2-normalised. Multiplying by ε2 both sides of (25) and applying the
Sobolev embedding theorem to the left-hand side of (25), we infer

(26) P⊥Γ̂soft
0 ûε = O(ε2).

Plugging this partial solution back into (24), to which P is applied on both sides, we obtain

PΓ̂soft
1 ûε = ε−2PB0PΓ̂soft

0 ûε + zPB1PΓ̂soft
0 ûε +O(ε2)

= ε−2µ(τ)PΓ̂soft
0 ûε + zPB1PΓ̂soft

0 ûε +O(ε2).

We have proved that up to an error term admitting a uniform estimate O(ε2) one has the
following asymptotically equivalent problem for the eigenvector v̂ε:

(27) P⊥Γ̂soft
0 ûε = 0, PΓ̂soft

1 ûε = ε−2µ(τ)PΓ̂soft
0 ûε + zPB1PΓ̂soft

0 ûε.

We use Lemma 6.2 and expand PB1P in powers of τ = εt as follows6: PB1P = PB(0)
1 P +O(τ).

The second equation in (27) admits the form

(28) PΓ̂soft
1 ûε = γt2PΓ̂soft

0 ûε + zPB(0)
1 PΓ̂soft

0 ûε + (O(τ) +O(τ4/ε2))PΓ̂soft
0 ûε.

Expressing PΓ̂soft
0 ûε from the latter equation, it is easily seen based on embedding theorems that

(28) is asymptotically equivalent, up to an error uniformly estimated as O(ε), to the following
equation:

(29) PΓ̂soft
1 ûε = γt2PΓ̂soft

0 ûε + zPB(0)
1 PΓ̂soft

0 ûε.

We formulate the above result as the following theorem.

Theorem 6.4. Let û solve the following equation on the re-scaled soft component:

Âsoft
maxû(x) = zû(x),

P⊥Γ̂soft
0 û = 0,

PΓ̂soft
1 û = γt2PΓ̂soft

0 û+ zPB(0)
1 PΓ̂soft

0 û.

Then the eigenvalues zε and their corresponding eigenfunctions uε of the operators Aεt are O(ε)-
close uniformly in t ∈ [−π/ε, π/ε), in the sense of C and in the sense of the L2 norm, respectively,
to the values z as above and functions ueff defined as follows. On the soft component Gsoft we set
ueff(·) := (1/

√
ε)û(ε−1·). On the stiff component Gstiff the function ueff is obtained as the extension

by (1/
√
ε)v, where v is the solution of the operator equation

Astiff
maxv = 0,

determined by the Dirichlet data of û(ε−1·), where Astiff
max is defined by (46), Appendix A.

Remark 6.5. It is straightforward to see that the eigenvalue µ(τ) in Lemma 6.2 is the least, by
absolute value, Steklov eigenvalue of Astiff

max, i.e. the least κ such that the problem

Astiff
maxv̆ = 0, v̆ ∈W 2,2(Gstiff),

Γstiff
1 v̆ = κΓstiff

0 v̆.

admits a non-trivial solution v̆. Note that for this solution v̆ one has Γstiff
0 v̆ = ψ(τ). It follows that

for the function v of Theorem 6.4 one has v = cv̆, where c is a constant determined by û.

6In the example considered in the present paper, as opposed to the general case, one can prove that PB1P =

PB(0)
1 P+O(τ2), see the calculation in [11, Appendix B] for details. This yields the error bound O(ε2) in the statement

of Theorem 6.4 below.
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7. Eigenvalue and eigenvector asymptotics in the example of Section 5

Here we provide the result of an explicit calculation applying the general procedure described in
the previous section to the specific example of Section 5 (see [11] for details). We start by expanding
the matrix Bε as a series in powers of ε:

B̂ := ε−1Bε = B̂0 + zB̂1 +O(ε2z2), B̂0 :=
1

ε2

(
D ξ

ξ D

)
, B̂1 :=

(
E η

η E

)
,

where

ξ : = −a
2
1

l1
exp
(
iτ(l1 + l3)

)
− a2

3

l3
exp(−iτ l2), D :=

a2
1

l1
+
a2

3

l3
,(30)

η : =
1

6

(
l1 exp

(
iτ(l1 + l3)

)
+ l3 exp(−iτ l2)

)
, E :=

1

3
(l1 + l3).

The matrix ε2B̂0 is Hermitian and has two distinct eigenvalues, µ = D−|ξ| and µ⊥ = D+ |ξ|. The
eigenvalue branch µ is singled out by the condition µ|τ=0 = 0. In order to diagonalise the matrix

B̂0, consider the normalised eigenvectors ψ(τ) = (1/
√

2)(1,−ξ/|ξ|)> and ψ
(τ)
⊥ = (1/

√
2)(1, ξ/|ξ|)>

corresponding to the eigenvalues µ and µ⊥, respectively, and the matrix X :=
(
ψ(τ), ψ

(τ)
⊥
)
. The

projections P, P⊥ introduced in the previous section are as follows:

P =
1

2


1

ξ

|ξ|
ξ

|ξ|
1

 , P⊥ =
1

2


1 − ξ

|ξ|

− ξ

|ξ|
1

 .

It follows by a straightforward calculation that the effective spectral problem is given by

(31) −
(
d

dx
+ iτ

)2

u = zu,

(32) u(0) = − ξ

|ξ|
u(l2),

(u′ + iτu)(0) +
ξ

|ξ|
(u′ + iτu)(l2) =

((
l1
a2

1

+
l3
a2

3

)−1(τ
ε

)2

− (l1 + l3)z

)
u(0),

By invoking Theorem 6.4, the problem (31)–(32) on the scaled soft component provides the
asymptotics, as ε → 0, of the eigenvalue problems for the family Aεt , t = τ/ε ∈ [−π/ε, π/ε). Its
spectrum, i.e. the set of values z for which (31)–(32) has a non-trivial solution, as well as the
corresponding eigenfunctions approximate, up to terms of order O(ε2), the corresponding spectral
information for the family Aεt , and consequently, Aε. Notice that the stiff component of the original
graph (where the eigenfunctions converge to a constant, in a suitable scaled sense), appears in this
limit problem through the boundary datum u(0). In the next section we show that an appropriate
extension of the function space for (31)–(32) by the (one-dimensional) complementary space of
constants leads to an eigenvalue problem for a self-adjoint operator, describing a conservative
system. Solving this latter eigenvalue problem for the element in the complementary space yields
a frequency-dispersive formulation we announced in the introduction.
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8. Frequency dispersion in a “complementary” medium

8.1. Self-adjoint out-of-space extension. Following the strategy outlined at the end of the
last section, we treat u(0) in (32) as an additional field variable, and reformulate (31)–(32) as an
eigenvalue problem in a space of pairs (u, u(0)), see (36).

More precisely, for all values τ ∈ [−π, π), consider an operator Ahom
τ in the space L2(0, l2) ⊕ C

defined as follows. The domain dom
(
Ahom
τ

)
consist of all pairs (u, β) such that u ∈W 2,2(0, l2) and

the quasiperiodicity condition

(33) u(0) = wτu(l2) =:
β√
l1 + l3

, wτ ∈ C,

is satisfied. On dom
(
Ahom
τ

)
the action of the operator is set by

(34) Ahom
τ

(
u

β

)
=


(

1

i

d

dx
+ τ

)2

u

1√
l1 + l3

Γτ

(
u

β

)
 ,

where Γτ : W 2,2(0, l2)⊕ C→ C is bounded. We set

(35) Γτ

(
u

β

)
= −(u′ + iτu)(0) + wτ (u′ + iτu)(l2) +

(σt)2

√
l1 + l3

β, σ2 :=

(
l1
a2

1

+
l3
a2

3

)−1

,

where wτ = −ξ/|ξ| (see (30) for the definition of ξ), in which case Ahom
τ is a self-adjoint operator

on the domain described by (33). Moreover, (31)–(32) is the problem on the first component of
spectral problem for the operator Ahom

τ :

(36) Ahom
τ

(
u

β

)
= z

(
u

β

)
.

We now re-write this spectral problem in terms of the complementary component β ∈ C. In
order to do this, we represent the function u in (36) as a sum of two: one of them is a solution to
the related inhomogeneous Dirichlet problem, while the other takes care of the boundary condition.
More precisely, consider the solution v to the problem

−
(
d

dx
+ iτ

)2

v = 0, v(0) = 1, v(l2) = wτ ,

i.e.

(37) v(x) =
{

1 + l−1
2

(
wτ exp(iτ l2)− 1

)
x
}

exp(−iτx), x ∈ (0, l2).

The function

ũ := u− β√
l1 + l3

v

satisfies

−
(
d

dx
+ iτ

)2

ũ− zũ =
zβ√
l1 + l3

v, ũ(0) = ũ(l2) = 0.

In other words, one has

ũ =
zβ√
l1 + l3

(AD − zI)−1v,
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where AD is the Dirichlet operator in L2(0, l2) associated with the differential expression

−
(
d

dx
+ iτ

)2

.

We can now write the “boundary” part of the spectral equation (36) as

(38) K(τ, z)β = zβ, K(τ, z) :=
1

l1 + l3

{
zΓτ

(
(AD − zI)−1v

0

)
+ Γτ

(
v

√
l1 + l3

)}
.

In accordance with the rationale for introducing the component β, the effective dispersion relation
for the operator Aετ/ε, τ ∈ [−π, π), is given by

K(τ, z) = z.

The explicit expression for this relation that we have obtained, see (38), is new, and it quantifies
explicitly the rôle of the soft component of the composite in the macroscopic frequency-dispersive
properties. In particular, the expression (38) shows that the soft inclusions enter the macroscopic
equations via a Dirichlet-to-Neumann map on the boundary of the inclusions.

8.2. Explicit formula for the time-dispersion kernel. Here we compute explicitly the kernel
K(τ, z) entering the effective dispersion relation for Aετ . In view of possible generalisations, and
recalling the pioneering formula in [38, Section 8] for effective dispersion in double-porosity me-
dia, we represent the action of the resolvent (AD − zI)−1 as a series in terms of the normalised
eigenfunctions

(39) φj(x) =

√
2

l2
exp(−iτx) sin

πjx

l2
, x ∈ (0, l2), j = 1, 2, 3, . . . ,

of the operator AD. This yields

(40) K(τ, z) :=
1

l1 + l3

z
∞∑
j=1

〈v, φj〉
µj − z

Γτ

(
ϕj

0

)
+ Γτ

(
v

√
l1 + l3

) .

where µj = (πj/l2)2, j = 1, 2, 3, . . . , are the eigenvalues corresponding to (39). For the choice (35)
of Γτ we obtain (see (37), (39))

Γτ

(
v

√
l1 + l3

)
=

2

l2

(
1−<θ(τ)

)
+

(
στ

ε

)2

, θ(τ) :=

a2
1

l1
e−iτ +

a2
3

l3∣∣∣∣a2
1

l1
e−iτ +

a2
3

l3

∣∣∣∣ ,

Γτ

(
ϕj

0

)
= −

√
2

l2

πj

l2

(
(−1)j+1θ(τ) + 1

)
, 〈v, φj〉 =

√
2l2
πj

(
(−1)j+1θ(τ) + 1

)
, j = 1, 2, . . .

Substituting the above expressions into (40) and making use of the formulae, see e.g. [23, p. 48],

∞∑
j=1

1

(πj)2 − x2
=

1

2

(
1

x2
− cosx

x sinx

)
,

∞∑
j=1

(−1)j

(πj)2 − x2
=

1

2

(
1

x2
− 1

x sinx

)
, x /∈ πZ,

we obtain

(41) K(τ, z) =
1

l1 + l3

{
2
√
z cos(l2

√
z)

sin(l2
√
z)

− 2
√
z

sin(l2
√
z)
<θ(τ) +

(
στ

ε

)2}
.
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8.3. Asymptotically equivalent model on the real line. In this section we are going to
treat (38), (41) as a nonlinear eigenvalue problem in the space of second components of pairs
(u, β) = L2(0, l2)⊕C. As is evident from above, this problem is closely related to (31)–(32), via the
construction presented in Section 8.1. We show next that the aforementioned macroscopic field is
governed by a certain frequency-dispersive formulation. In order to obtain the latter, we will use a
suitable inverse Gelfand transform.

Our strategy can be seen as motivated by the following elementary observation, closely linked
with the Birman-Suslina study of homogenisation in the moderate contrast case, albeit understood
in terms of spectral equations. Starting with the spectral problem

(42) − d2u

dx2
= zu on L2(R),

one applies the Gelfand transform7 (well-defined on generalised eigenvectors due to the rigging
procedure, see, e.g., [2, 4]) to obtain for ũ := Gu

−
(
d

dx
+ it

)2

ũ(x, t) = zũ(x, t), x ∈ (0, ε), t ∈ [−π/ε, π/ε).

We compute the inner products of both sides in L2(0, ε) with the normalised constant function
(1/
√
ε)1, which yields the dispersion relation of the original problem via the equation

t2û(t) = zû(t),

where û is the Fourier transform of the function u ∈ L2(R). The latter equation is then solved in
the distributional sense,

(43) β(t) =
∑
m

cmδ(t− tm),

where β(t) := û(t) and the sum in (43) is taken over m = 1, 2, t1, t2 being the zeroes of the equation
t2 = z and cm are arbitrary constants. Ultimately, one applies the inverse Gelfand transform

(G∗f)(x) =

√
ε

2π

π/ε∫
−π/ε

f(t) exp(itx)dt, f ∈ L2

(
−π
ε
,
π

ε

)
, x ∈ R,

to the function B(x, t) := (1/
√
ε)β(t)1(x), i.e.

v(x) :=

√
ε

2π

∫ π/ε

−π/ε
B(x, t) exp(itx)dt, x ∈ R.

It is easily seen that this function is precisely the solution to (42).
We emulate the above argument for the case of interest to us, starting from the eigenvalue

problem K(τ, z)β = zβ, which we now treat as an equation in the distributional sense with K
given by (41). It admits the form

(44) (σt)2β =

{
(l1 + l3)z − 2

√
z cos(l2

√
z)

sin(l2
√
z)

+
2
√
z

sin(l2
√
z)
<θ(εt)

}
β, t =

τ

ε
,

The solution is defined by (43), where {tm} is the set of zeroes of the equation K(εt, z) = z.

7Recall, cf. Section 3, that the Gelfand transform is a map L2(R)→ L2
(
(0, ε)× (−π/ε, π/ε)

)
given by

Gu(y, t) =

√
ε

2π

∑
n∈Z

u(x+ εn) exp
(
−it(x+ εn)

)
, t ∈

[
−π/ε, π/ε

)
, x ∈ (0, ε).
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Second, we argue that the function B(x, t) as defined above is the ε-periodic Gelfand transform
of the solution to a spectral equation on R for a differential operator with constant coefficients,
where the conventional spectral parameter z is replaced by a nonlinear in z expression, as on the
right-hand side of (44).

Indeed, expand the function <θ(τ) into Fourier series

<θ(τ) =
1√
2π

∞∑
n=−∞

cn exp(inτ), cn :=
1√
2π

∫ π

−π
<θ(τ) exp(−inτ)dτ, n ∈ Z.

and apply to B(x, t) the inverse Gelfand transform G∗ :

(G∗f)(x) =

√
ε

2π

π/ε∫
−π/ε

f(t) exp(itx)dt, f ∈ L2

(
−π
ε
,
π

ε

)
, x ∈ R.

We denote U := G∗B and notice that√
ε

2π

π/ε∫
−π/ε

t2B(x, t) exp(itx)dt = − d2

dx2

(√
ε

2π

π/ε∫
−π/ε

B(x, t) exp(itx)dt

)
= −U ′′(x)

and √
ε

2π

π/ε∫
−π/ε

<θ(εt)B(x, t) exp(itx)dt =

∞∑
n=−∞

cn

√
ε

2π

π/ε∫
−π/ε

B(x, t) exp
(
it(x+ εn)

)
dt

=
1√
2π

∞∑
n=−∞

cnU(x+ εn) ∼ 1√
2π

∞∑
n=−∞

cnU(x) = <θ(0)U(x) = U(x), ε→ 0.

The above asymptotics as ε→ 0 is understood in the sense of W−2,2(R). It can be demonstrated,
see [11], that the order of convergence is O(ε2) (and O(ε) in the general case), however we do not
dwell on the complete proof here. The idea of the proof, which is standard, can be, for example,
the following. Instead of the function β, define β0 by the expression (43), where the sequence
{tm} is replaced by the sequence {t0m} of zeros of the equation K0(τ, z) = z. Here K0 is defined
by (41) with <θ(τ) replaced by <θ(0) = 1. It is then shown that β is O(ε2)-close, in the sense of
distributions, to β0, from where one obtains the claim by taking the inverse Gelfand transform of
the function B0(x, t) = (1/

√
ε)β0(t)1(x).

It follows that the limit equation on the function U takes the form

(45) − σ2 U ′′(x) =

{
(l1 + l3)z + 2

√
z tan

(
l2
√
z

2

)}
U(x), x ∈ R.

In particular, the limit spectrum is given by the set of z ∈ R for which the expression in brackets
on the right-hand side of (45) is non-negative, see Fig. 6.

Appendix A: The reduction of the general case to the one treated in Section 6

We proceed as follows. First, we decompose the graph Ĝ into the union of its stiff and soft

components, Ĝ = Gsoft ∪Gstiff, each of these being a graph on its own. The common boundary of
them is ∂G := Gsoft ∩Gstiff, and it is treated as a set of vertices. Second, we consider two maximal
operators Ăsoft

max and Ăstiff
max, which are densely defined in L2(Gsoft) and L2(Gstiff), respectively, by (9),

(16) applied to Gsoft and Gstiff. Furthermore, we introduce the orthogonal projections P soft, P stiff in
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Figure 6. Dispersion function. The plot of the dispersion function on the right-

hand side of (45), for L = 0.2. The spectral gaps are highlighted in bold.

the boundary space H onto the subspaces pertaining to vertices of Gsoft and Gstiff, respectively. Fi-

nally, we construct boundary triples for Ă
soft (stiff)
max with boundary spaces P soft (stiff)H and boundary

operators Γ̆
soft (stiff)
j , j = 0, 1 (cf. (17)), respectively.

Now consider the restrictions

(46)

Asoft (stiff)
max = Ăsoft (stiff)

max

∣∣
dom(A

soft (stiff)
max )

,

dom
(
Asoft (stiff)

max

)
:=
{
u ∈ dom

(
Ăsoft (stiff)

max

)∣∣∣(1− P∂G)Γ̆
soft (stiff)
1 u = 0

}
,

where P∂G is defined as an orthogonal projection in H onto the subspace pertaining to the vertices
belonging to ∂G. For these two maximal operators, one has the common boundary space P∂GH
and boundary operators defined by

Γ
soft (stiff)
j := P∂GΓ̆

soft (stiff)
j , j = 0, 1.

The corresponding M -matrices M soft (stiff) are computed as inverses of the matrices

P∂G
(
M̆ soft (stiff)

)−1
P∂G,

where the latter are considered in the reduced space P∂GH and M̆ soft (stiff) are M -matrices of

Ă
soft (stiff)
max relative to the boundary triples

(
P soft (stiff)H, Γ̆soft (stiff)

0 , Γ̆
soft (stiff)
1

)
.

It is easily shown that the operator Aεt is expressed as an almost solvable extension parameterised
by the matrix B = 0 relative to a triple which has the M -matrix M = M soft + M stiff . It follows
that all the prerequisites of the analysis carried out in Section 6 are met.

Appendix B: Proof of Lemma 6.2

The proof could be carried out on the basis of [16], [17] and is rather elementary. Nevertheless,
in the present paper we have elected to follow an alternative approach to this proof, which has an
advantage of carrying over to the PDE case with minor modifications.

For simplicity we set wV (e) = 1 for all e, V in (10), as the argument below is unaffected by the

concrete choice of the list {wV (e)}e3V , V ∈ Ĝ, in the construction of Section 3. For convenience,
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we also imply that the unitary rescaling to a graph of length one has been applied to the operator

family Aεt . For brevity, we keep the same notation for the unitary images of graphs Ĝ, Gstiff and
∂G under this transform.

For each τ ∈ [−π, π), the eigenvalues of B0(τ) are those µ ∈ C for which there exists u 6= 0
satisfying

(47)



(
d

dx
+ iτ

)2

u = 0 in Gstiff ,

−
∑

e3V σe
(
u′e(V ) + iτu(V )

)
= µu(V ), V ∈ ∂G,

u continuous on Gstiff ,

where u′e(V ) is the derivative of u along the edge e of Gstiff evaluated at V ∈ ∂G, and, as before,
σe = −1 or σe = 1, depending on whether e is incoming or outgoing for V, respectively. It is known
that the spectrum of (47) is discrete and the least eigenvalue, which clearly coincides with µ(τ), is
simple.

Formal series. In order to show (22), we first consider series in powers of iτ :

(48) µ =
∞∑
k=1

αj(iτ)2k, u =
∞∑
j=0

uj(iτ)j ,

where uj , j = 1, 2, . . . are continuous on Gstiff .
Note that the expansion for µ contains only even powers of the parameter τ, as it is an even

function of τ. Indeed, the function obtained from the eigenfunction u in (47) by changing the
directions of all edges of the graph is clearly an eigenfunction for (47) with τ replaced by −τ. (On

such a change of edge direction, the weights we(V ), e 3 V , V ∈ Ĝ, are replaced by their complex

conjugates.) In view of the fact that for all τ ∈ (−π, π] the eigenvalue µ(τ) is simple, we obtain

µ(−τ) = µ(τ).
Substituting the expansion (48) into (47) and equating the coefficients on different powers of τ,

we obtain a sequence of recurrence relations for uj , j = 0, 1, . . . In particular, the problem for u0

is obtained by comparing the coefficients on τ0 :
u′′0 = 0 on Gstiff ,∑

e3V σe(u0)′e(V ) = 0, V ∈ ∂G,

u0 continuous on Gstiff .

Assuming that Gstiff contains a loop, it follows that u0 is a constant, which we set to be unity. In
the case opposite, i.e., when Gstiff is a tree, µ(τ) ≡ 0 for all τ , and the claim of Lemma follows
trivially.

We impose the condition of vanishing mean of uj , j = 1, 2, . . . over Gstiff . This is justified by the
convergence estimates below as well as the fact that the eigenvalue µ is simple. The choice u0 = 1
thus corresponds to the “normalisation” condition that the mean over Gstiff of the eigenfunction u
for (47) is close to unity8 for small values of τ.

8The eigenfunction u clearly does not vanish identically, at least for small values of τ.
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Proceeding with the asymptotic procedure, the problem for u1 is obtained by comparing the
coefficients on τ1 : 

u′′1 = 0 on Gstiff ,∑
e3V σe

(
(u1)′e(V ) + 1

)
= 0, V ∈ ∂G,

u1 continuous on Gstiff ,∫
Gstiff u1 = 0.

Further, the equation for u2 is obtained by comparing the coefficients on τ2 :

(49)



u′′2 = −2u′1 − 1 on Gstiff ,

−
∑

e3V σe
(
(u2)′e(V ) + u1(V )

)
= α2, V ∈ ∂G,

u2 continuous on Gstiff ,∫
Gstiff u2 = 0.

The condition for solvability of the problem (49) yields the expression for α2, as follows:

∫
Gstiff

(−2u′1 − 1) =

∫
Gstiff

u′′2 = −
∑
V ∈∂G

∑
e3V

σe(u2)′e(V ) =
∑
V ∈∂G

(∑
e3V

σeu1(V ) + α2

)
.

Re-arranging the terms in the last equation, we obtain

α2 = −
∣∣∂G∣∣−1

∫
Gstiff

(u′1 + 1).

The above asymptotic procedure is continued, to obtain the terms of all orders in (48). In particular,
for the term u3 in the expansion for u we obtain



u′′3 = −2u′2 − u1 on Gstiff ,

−
∑

e3V σe
(
(u3)′e(V ) + u2(V )

)
= α2u1, V ∈ ∂G,

u3 continuous on Gstiff ,∫
Gstiff u3 = 0.

Error estimates. We write

u = 1 + iτu1 + (iτ)2u2 + (iτ)3u3 +R, µ(τ) = α2(iτ)2 + r,
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so that R, r satisfy

(50)

(51)

(
d

dx
+ iτ

)2

R = −(iτ)4(2u′3 + u2)− (iτ)5u3 on Gstiff ,

−
∑
e3V

σe(R
′
e(V ) + iτR(V )) =

=
(
r + α2(iτ)2

)(
1 + iτu1 + (iτ)2u2 + (iτ)3u3 +R

)
− α2(iτ)2(1 + iτu1), V ∈ ∂G

R continuous on Gstiff ,∫
Gstiff

R = 0.


Notice first that

(52) r + α2(iτ)2 = µ(τ) = min
u∈W 2,2(Gstiff)

(∑
∂G

|u|2
)−1 ∫

Gstiff

∣∣∣∣∣
(
d

dx
+ iτ

)
u

∣∣∣∣∣
2

≤
∣∣∂G∣∣−1∣∣Gstiff

∣∣τ2.

Multiplying (50) by R, integrating by parts, and using (51), we obtain the estimate

(53) ‖R‖2L2(Gstiff) ≤ C
(
|τ ||r|‖R‖L2(Gstiff) + |τ |4‖R‖L2(Gstiff) + |r|2

)
, C > 0,

and hence, by virtue of (52), we obtain

(54) ‖R‖L2(Gstiff) ≤ Cτ2.

Next, we re-arrange the right-hand side of (51):(
r + α2(iτ)2

)(
1 + iτu1 + (iτ)2u2 + (iτ)3u3 +R

)
− α2(iτ)2(1 + iτu1)

= r
(
1 + iτu1 + (iτ)2u2 + (iτ)3u3 +R

)
+ α2(iτ)2

(
(iτ)2u2 + (iτ)3u3 +R

)
.

Multiplying (50) by 1, integrating by parts, and using (51) once again yields the existence of C > 0
such that

(55) |r| ≤ C
(
|τ |‖R‖L2(Gstiff) + |τ |4

)
.

Combining this with (54) yields |r| ≤ Cτ3, which, by virtue of (53) again, implies

(56) ‖R‖L2(Gstiff) ≤ C|τ |3.

Finally, the inequalities (55) and (56) together yield

(57) |r| ≤ C|τ |4,

as claimed.9

9Combining (57) with (52), we also obtain the estimate ‖R‖L2(Gstiff ) ≤ Cτ4.
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Appendix C: Proof of Lemma 6.3

For all τ ∈ [−π, π), using the formula for the second eigenvalue µ
(τ)
2 of the problem (47) via the

Rayleigh quotient, we obtain

µ
(τ)
2 = min

{(∑
∂G

|u|2
)−1 ∫

Gstiff

∣∣∣∣∣
(
d

dx
+ iτ

)
u

∣∣∣∣∣
2

: u ∈W 2,2(Gstiff),

∫
Gstiff

u = 0

}

≥ min

{(∑
∂G

|u|2
)−1 ∫

Gstiff

|u′|2 : u ∈W 2,2(Gstiff),

∫
Gstiff

u = 0

}
= µ

(0)
2 > 0,

from which the claim follows by setting C⊥ = µ
(0)
2 .
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