
ar
X

iv
:1

70
6.

08
54

5v
2 

 [
m

at
h.

C
O

] 
 2

8 
Ju

n 
20

17

ORTHOGONAL SYMMETRIC CHAIN DECOMPOSITIONS OF HYPERCUBES

HUNTER SPINK

Abstract. In 1979, Shearer and Kleitman [5] conjectured that there exist ⌊n/2⌋+ 1 orthogonal
chain decompositions of the hypercube Qn, and constructed two orthogonal chain decompositions.
In this paper, we make the first non-trivial progress on this conjecture since [5] by constructing
three orthogonal chain decompositions of Qn for n large enough. To do this, we introduce the
notion of “almost orthogonal symmetric chain decompositions”. We explicitly describe three such
decompositions of Q5 and Q7, and describe conditions which allow us to decompose products of
hypercubes into k almost orthogonal symmetric chain decompositions given such decompositions
of the original hypercubes.

1. Introduction

Symmetric chain decompositions of posets as an object of study were perhaps first introduced by
Kleitman in his groundbreaking 1970’s paper [4] resolving the Littlewood-Offord problem on sums of
Bernoulli random variables in an arbitrary number of dimensions. The inductive decomposition of
the hypercube Qn = {0, 1}n (which is alternatively described as the power set of [n] = {1, 2, . . . , n}
via indicator functions) produced by the “duplication” technique introduced in that paper was
later streamlined in Greene-Kleitman [2], where a clever parenthesis-matching argument replaced
the original inductive decomposition. It is in this form that many authors have attempted to
exploit the method. Recently this was carried out by Hersh-Schilling [3], where they produced a
symmetric chain decomposition of the quotient of Qn by the natural Z/nZ-action using Lyndon
words on the parentheses. However, one of the first applications of the Greene-Kleitman technique
was in 1979, when Shearer and Kleitman [5] used the technique to produce two of what they
called “orthogonal chain decompositions” of the hypercube Qn = {0, 1}n, in order to find a lower
bound on the probability that two randomly chosen subsets of {1, 2, . . . , n} are comparable. Here
two decompositions F and G of Qn into

(

n
n/2

)

chains (which is the minimal number possible by

Sperner’s Theorem) are orthogonal chain decompositions if for any chain A in F and any chain B
in G, we have |A ∩B| ≤ 1.

The inductive decomposition presented in [4] can be viewed as a very special case of the following
general observation on products of posets with symmetric chain decompositions. Suppose that
P and Q are two finite graded posets which have symmetric chain decompositions, then P ×
Q has a symmetric chain decomposition which is formed by taking every product of a chain in
the decomposition of P with a chain in the decomposition of Q, and decomposing the resulting
rectangles into symmetric chains. This observation is crucial to the present paper. When we take
the special case of P = Qk and Q = Q1, we obtain precisely the duplication method of Kleitman.
We shall see in Section 4 how the argument in [5] based off of Greene-Kleitman to produce two
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2 HUNTER SPINK

orthogonal chain decompositions is in some sense a simple consequence of the fact that a 2 × m
rectangle has two possible symmetric chain decompositions.

In [5], it was conjectured that ⌊n/2⌋ + 1 orthogonal chain decompositions exist on Qn. Since
their paper in 1979, only two orthogonal chain decompositions were known to exist in general.
The present paper makes the first non-trivial progress on this conjecture. An immediate corollary
of our first main result Theorem 3.1 is the construction of three orthogonal chain decompositions
of Qn for n large enough. As in [5], the present paper proceeds by modifying symmetric chain
decompositions which almost satisfy the above orthogonality condition between them. We make
this explicit in the present paper by saying that two symmetric chain decompositions F and G of
Qn are almost orthogonal symmetric chain decompositions if for any chain A in F and any chain B
in G, we have |A ∩B| ≤ 1 with the exception that if A and B are both maximal chains (note that
there is a unique maximal chain in any symmetric chain decomposition of Qn), then we require
that A and B intersect in precisely their maximal and minimal elements.

If we have two almost orthogonal symmetric chain decompositions of Qn for n ≥ 2, then it
is easy to see that we can move around the empty set in one of the decompositions to produce
orthogonal chain decompositions, which is precisely how Shearer and Kleitman produced their pair
of orthogonal chain decompositions. We can similarly move around the empty set if we have k ≥ 3
almost orthogonal symmetric chain decompositions. Indeed, by considering the elements of middle
rank(s), one can first show that k ≤ ⌊n/2⌋+ 1. Hence when n ≥ 5 we have the number of minimal
length chains in a symmetric chain decomposition

(

n
⌊n/2⌋

)

−
(

n
⌊n/2⌋−1

)

is strictly larger than k− 1 if

n is even and 2(k − 1) if n is odd, so we can move the empty set to a chain of minimal length one
decomposition at a time without ever creating bad intersections. For n = 4, one can either employ a
more careful analysis of the 1-element chains, or show by tedious casework that there does not exist
three almost orthogonal symmetric chain decompositions (which we will not discuss further in this
paper). This allows us to focus our attention on producing collections of k ≥ 3 almost orthogonal
symmetric chain decompositions of Qn.

Similar to how Shearer and Kleitman’s proof can be interpreted as using the two possible sym-
metric chain decompositions on 2×m to produce orthogonal chains in the product of Q1 by Qn−1,
the strategy carried out in this paper will be as follows. We take k almost orthogonal decom-
positions F i

j on Qni
with ni ≥ 2 for each i = 1, 2, . . . , r, and consider cuboids formed for each

j = 1, 2, . . . , k by the products of symmetric chains, one from each F j
i for i = 1, 2, . . . , r. For

each fixed j, we decompose the resulting cuboids, and obtain a symmetric chain decomposition of
Qn1

× . . .×Qnr
= Qn1+...+nr

. Decomposing the cuboids in such a way that we preserve the pairwise
almost orthogonality between the decompositions for various j proves to be a daunting challenge,
and cannot always be done without additional conditions. We comment on these conditions below.

First, one can show that if Qni
is even dimensional, then we have no hope of decomposing the

product almost orthogonally unless all of the 1-element chains in the decompositions of Qni
are

disjoint (by e.g. considering what happens if we take maximal chains in the remaining factors). For
ni odd, we will see in Section 5 that the analogous natural condition to impose on Qni

to make
products of two hypercubes work is the following. If we take the natural bipartite graph formed by
the two-element chains in all decompositions of Qni

, then we require the existence of an orientation
on its edges such that every vertex has out-degree at most 1. In the case of k = 2, this always holds
as the union of two partial matchings on a bipartite graph is the union of cycles and paths. We
define a collection of almost orthogonal symmetric chain decompositions to be good if it satisfies the
corresponding condition above (depending on whether ni is even or odd). As it turns out, we will
show in Theorem 5.6 that in the case of two hypercubes, being able to decompose their product
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into k almost orthogonal decompositions is equivalent to requiring that both hypercubes are good.
The second main result Theorem 3.3 says that in the product of hypercubes, we can guarantee
a decomposition of the product by requiring the goodness hypothesis on the even dimensional
hypercubes and two of the odd dimensional hypercubes (or as many odd dimensional hypercubes
as are present in the product if there are fewer than two).

In Subsections 4.2 and 4.3, we explicitly describe collections of three almost orthogonal chain
decompositions of Q5 and of Q7, each collection satisfying the above goodness condition. Together
with Theorem 3.3, we can conclude Theorem 3.1.

A second, more surprising condition we could impose to guarantee that the product has k almost
orthogonal symmetric chain decompositions is seen in the third main result Theorem 3.4. Here
we still require the goodness of the even dimensional hypercubes, but for the odd dimensional
hypercubes we only impose that there are at least six of them. The proof crucially relies on some
very specific symmetric chain decompositions provided in [1] of cuboids which are formed by the
product of at least five 2-element chains and a chain of length at least 5.

To aid us in decomposing cuboids coherently, we introduce in Definition 4.1 “proper” and “very
proper” decompositions. These notions guarantee the necessary intersection relations between the
chains in the “(very) proper” decomposition of the cuboid and symmetric chains in any decom-
position of any other cuboid under consideration. This allows us to avoid analyzing the intricate
relations between most of the symmetric chain decompositions of the various cuboids, and reduces
us to only considering the interplays between the symmetric chain decompositions in a small num-
ber of cases. As it turns out, cuboids formed by products of minimal length chains and maximal
chains are mostly responsible for the number of cases we will have to handle. Our approach will be
systematic, with the difficulty of the arguments decreasing as our toolbox increases in size.

If one only desires to know the proof of Corollary 3.2 (resp. Theorem 3.1) on the existence
of three (almost) orthogonal (symmetric) chain decompositions for n large enough, note it is a
consequence of Sections 4.2, 4.3, repeated applications of Theorem 6.1, (Theorem 7.1,) and the
argument in Corollary 10.7.

The structure of this paper is as follows.

• In Section 2, we give definitions.
• In Section 3, we state our main results.
• In Section 4, we lay the groundwork for the rest of the paper. We first discuss the proof
of the two orthogonal decomposition result and its limitations to generalization. Then
we produce three almost orthogonal symmetric chain decompositions of Q5 and Q7, and
give the notion of a (very) proper decomposition into symmetric chains, which allows us to
guarantee orthogonality without having to consider the complex interplay between different
decompositions.

• In Section 5, we attempt to decompose a product of almost orthogonal symmetric chain
decompositions. Chains of very small length turn out to pose a non-trivial technical obstruc-
tion to making this strategy work, and we encode the precise conditions we need to make
everything go through in the definition of goodness. The following four sections mitigate
that the product of two good decompositions is not necessarily good.

• In Section 6, we consider the product of three hypercubes, with two having good decom-
positions, and one being either odd dimensional or having a good decomposition (an even
hypercube without a good decomposition will always fail to work in a product construction).

• In Section 7, we consider the product of four odd dimensional hypercubes, with two having
good decompositions.
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• In Section 8, we consider the product of arbitrarily many good even hypercubes (which is
necessary for Theorem 3.3, but not necessary for Theorem 3.1 or Corollary 3.2).

• In Section 9, we consider the product of 1 odd dimensional hypercube and 3 good even
dimensional hypercubes (again, not necessary for Theorem 3.1 or Corollary 3.2).

• In Section 10, we prove Theorems 3.1 and 3.3, using the results from the previous sections.
• In Section 11, we prove Theorem 3.4.

2. Definitions

Following Shearer and Kleitman [5], call two decompositions F and G of Qn into
(

n
⌊n/2⌋

)

chains

(which is the minimal possible by Sperner’s Theorem) orthogonal if for any chain A in F and any
chain B in G, we have |A ∩ B| ≤ 1. Say a family of decompositions of Qn into

(

n
⌊n/2⌋

)

chains is

orthogonal if every pair is.
Recall a symmetric chain decomposition of Qn is a decomposition of Qn into symmetric chains,

i.e. for each chain there is an integer k such that the chain consists of one element of size k, k +
1, . . . , n − k; this is always a decomposition into

(

n
⌊n/2⌋

)

chains since each chain contains a ⌊n/2⌋-

element subset. The following definition is at the heart of this paper.

Definition 2.1. We define symmetric chain decompositions F and G of Qn to be almost orthogonal
if for A a chain in F and B a chain in G, |A ∩ B| ≤ 1 except when A and B both contain ∅ and
[n] (a unique such chain exists in any symmetric chain decomposition), in which case we require
instead |A ∩B| = 2. Say a family of symmetric chain decompositions is almost orthogonal if every
pair is.

To formulate Theorem 3.3, we restate from the introduction the following technical condition,
which will be fully motivated in Section 5.

Definition 2.2. We say that a collection of almost orthogonal symmetric chain decompositions Fi

on Qn is good if either n is even and the 1-element chains in the Fi are all distinct, or n is odd and
the graph with vertex set the union of all 2-element chains in all Fi and edges the 2-element chains
themselves can have its edges oriented so that every vertex has out-degree at most 1 (equivalently,
every component is a tree or a tree union an edge).

3. Main Results

We now state our main results. Theorems 3.1 and 3.3, as well as Corollary 3.2, are proved in
Section 10, while Theorem 3.4 is proved in Section 11.

Theorem 3.1. There exist 3 almost orthogonal symmetric chain decompositions of Qn for all n
large enough.

By moving around ∅ between the chains (see the introduction), this readily implies the following.

Corollary 3.2. There exist 3 orthogonal decompositions of Qn for all n large enough.

This makes progress on the conjecture in Shearer and Kleitman’s paper [5] (which was verified
up to n = 4) that there exist ⌊n/2⌋ + 1 orthogonal chain decompositions of Qn, easily shown to
be an upper bound by considering elements of middle rank(s). We can say the following for k ≥ 3
almost orthogonal symmetric chain decompositions.
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Theorem 3.3. For 1 ≤ i ≤ r, suppose we have k ≥ 3 almost orthogonal symmetric chain decom-
positions F j

i of Qni
, ni ≥ 2. Further suppose that {F j

i } is a good collection whenever ni is even,

and either all or at least two of the {F j
i } are good collections for ni odd. Then we can construct k

almost orthogonal symmetric chain decompositions for Qn1+...+nr
by decomposing the cuboids in

∏

i F
j
i into symmetric chains.

Using a very specific symmetric chain decomposition provided in [1] of cuboids formed as the
product of at least five 2-element chains with a chain of length at least 5, we can remove the
goodness hypothesis in Theorem 3.3 completely for the odd dimensional hypercubes provided there
are at least six of them appearing in the product. As we will see, cuboids with all but one side of
length 2 prove to be some of the most challenging ones to handle.

Theorem 3.4. For 1 ≤ i ≤ r, suppose we have k ≥ 3 almost orthogonal symmetric chain decom-
positions F j

i of Qni
, ni ≥ 2, with ≥ 6 of the ni odd, and {F j

i } is a good collection whenever ni is
even. Then we can construct k almost orthogonal symmetric chain decompositions for Qn1+...+nr

by decomposing the cuboids in
∏

iF
j
i into symmetric chains.

As a consequence, if we can produce k almost orthogonal symmetric chain decompositions of
hypercubes whose dimensions have no common factor, such that each is either odd dimensional or
good, then we can produce k almost orthogonal symmetric chain decompositions of Qn for n large
enough. We will see such families of decompositions in the next section for k = 3 and n = 5, 7.

4. Groundwork

4.1. Littlewood-Offord decomposition. Shearer and Kleitman’s paper [5] uses the Greene-
Kleitman method [2] to create orthogonal chain decompositions, but Kleitman’s “duplication”
technique [4] used to solve the Littlewood-Offord problem yields a recursive proof more in line
with the methods used in this paper, so we will recast their proof using this method (it yields the
same decompositions).

Given a symmetric chain decomposition of Qn, we can inductively create a symmetric chain
decomposition of Qn+1 as follows.

For every chain A : ak ⊂ ak+1 ⊂ . . . ⊂ an−k in the decomposition of Qn, let A′ be the chain
ak ∪ {n + 1} ⊂ . . . ⊂ an−k ∪ {n + 1}. Neither chain is symmetric in Qn+1: A is one element too
low, and A′ is one element too high. If we move the largest element from A′ to A or the smallest
element from A to A′ however, we now have two symmetric chains (if one of the chains happens to
be empty after doing this, discard it). Repeating this for every chain in the decomposition of Qn,
we get a decomposition of Qn+1 into symmetric chains!

Now, suppose we have two almost orthogonal symmetric chain decompositions F ,G ofQn (clearly
such decompositions exist for n = 2 say). Then for a chain A in F , we apply the above procedure
moving the largest element of A′ to A, and for a chain B in G, we move the smallest element of
B to B′. It is an easy check that this yields almost orthogonal symmetric chain decompositions
for Qn+1. We needed to change how we moved the elements, because if we had for example moved
the smallest element of A to A′ and the smallest element of B to B′, and A,B shared the same
smallest element, then A′ and B′ would have shared the same smallest two elements, contradicting
orthogonality.

Hence we have produced a decomposition of Qn+1 from Qn, and we are done by induction. To
produce orthogonal chain decompositions, it suffices to move the empty set from the maximal chain
in F to one of the one or two element long chains disjoint from the maximal chain in G.
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We see immediately what the problem is in propagating larger families of almost orthogonal sym-
metric chain decompositions to higher dimensional hypercubes—it might be impossible to choose
the method of duplicating the chains in such a way that it preserves orthogonality, since we now
have three chains meeting at a point instead of two, forbidding us from simply “doing the opposite”
to each of the families (in fact, it is already impossible if we just consider the three maximal chains).

4.2. Three almost orthogonal symmetric chain decompositions of Q5. In order to start
creating almost orthogonal symmetric chain decompositions of high dimensional hypercubes, we
need decompositions that can be used in a product construction. We do this first for Q5, producing
3 such decompositions. To compactify notation, we omit the empty set and the whole set from
our chains, and we further suppose that if a chain is written, then all chains found by cycling the
indices should also be written. An easy check shows that these work. The 2-element chains form
five paths of length 3, so this family of decompositions is good (see Definition 2.2).

F1:
1 12 123 1235

14 134
∅ and 12345 added onto the chain starting with 1

F2:
1 15 135 1345

14 145
∅ and 12345 added onto the chain starting with 5

F3:
1 14 124 1234

12 125
∅ and 12345 added onto the chain starting with 3

4.3. Three almost orthogonal symmetric chain decompositions of Q7. We now produce 3
almost orthogonal symmetric chain decompositions ofQ7. Grouping the elements modulo the equiv-
alence relation given by cycling the indices, one can readily check the finite number of cases to show
that the decompositions below work. The 2-element chains form seven K1,3 graphs, seven paths
of length 2, and seven paths of length 1, so this family of decompositions is good (see Definition 2.2).

F1:

1 12 123 1234 12345 123456
13 134 1345 13456
14 147 1247 12457

124 1245
135 1357

∅ and 1234567 added onto chain starting with 1

F2:

1 17 167 1567 14567 134567
13 137 1357 13567
14 145 1345 13457

134 1347
135 1235

∅ and 1234567 added onto chain starting with 7

F3:

1 13 136 1346 13467 123467
12 124 1247 12347
14 134 1234 12346

123 1236
125 1245

∅ and 1234567 added onto chain starting with 6

4.4. Products of almost orthogonal symmetric chain decompositions. Note that if F1,F2

are a pair of almost orthogonal symmetric chain decompositions of Qm, and G1,G2 are likewise for
Qn, then F1 ×G1 and F2 ×G2 are two decompositions of Qm+n into products of symmetric chains
which have very small intersections between each other.
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We will see that the product of 2 hypercubes each with k almost orthogonal symmetric chain
decompositions can almost be decomposed into k almost orthogonal symmetric chain decomposi-
tions, but a problem arises with chains of small length. This problem will later be mitigated by
considering products of ≥ 3 hypercubes. In Definition 4.1, we introduce notions which will turn
out to be indispensable in producing almost orthogonal symmetric chain decompositions with the
aid of Lemma 4.2.

Definition 4.1. A chain which skips no ranks (i.e. the set of ranks forms an interval in N) inside
a product of hypercubes Qn1

× . . . × Qnr
is said to be very proper if for every pair of distinct

elements a, a′ in the chain, there is a coordinate 1 ≤ i ≤ r where the i’th coordinates ai, a
′
i differ,

and {ai, a
′
i} 6= {∅, [ni]}. A proper chain is defined in the same way except we do not require

the condition for {a, a′} the smallest and largest element of the product hypercube. We call a
decomposition of a subset of Qn1

× . . .×Qnr
(which does not necessarily lie in a rank symmetric

way inside the product) into (very) proper chains all of which are symmetric chains with respect to
the subset, a (very) proper decomposition.

Note if a subset of the hypercube product is just a product of chains which skip no ranks in the
corresponding hypercubes, and no chain is maximal, then any symmetric chain decomposition is
very proper. If at least one chain is not maximal, then all proper decompositions are very proper.

Lemma 4.2. Suppose we have r hypercubes Qni
, each with a pair of almost orthogonal symmetric

chain decompositions F1
i and F2

i . Take two cuboids A1×A2× . . .×Ar and B1×B2× . . .×Br, where
Ai ∈ F1

i , Bi ∈ F2
i are symmetric chains, and suppose the first cuboid has a proper decomposition.

Then given any symmetric chain decomposition of the second cuboid, every chain in the first
cuboid’s decomposition intersects every chain in the second cuboid’s decomposition in at most one
element unless all Ai and Bi are maximal, in which case we have the exceptional case that the
maximal chains in both intersect in precisely their minimal and maximal elements.

Proof. Everything follows straightforwardly from the fact that Ai ∩ Bi is either empty, a single
element in Qni

, or {∅, [ni]}. �

Remark 4.3. In light of Lemma 4.2, it appears at first glance that we made our definition of
(very) proper decompositions unnecessarily general, by not forcing the subset of Qn1

× . . . × Qnr

to lie inside the product in such a way that the notions of symmetric chain for the subset and
the product coincide. However, we will see later examples of subsets that arise very naturally
as C1 × C2 × . . . × Ck, with each Ci a (very) proper chain that skips no ranks in a product of
hypercubes, such that the Ci are not necessarily symmetric in their respective products, but the
notion of symmetric chain in C1×C2× . . .×Ck agrees with the notion in the total ambient product.
On our way to creating (very) proper decompositions, when we work with a subset of the Ci we
obviously need the more general definition, even though it clearly doesn’t affect the final symmetry
of the chains we create in the total product.

5. Products of 2 Hypercubes and The Notion of Goodness

Suppose that we have k almost orthogonal symmetric chain decompositions Fi of Qm, and Gi of
Qn, with m,n ≥ 2.

If A,B are chains in Fi,Fj, and C,D are chains in Gi,Gj , then (A×C) ∩ (B ×D) = (A ∩B)×
(C ∩D), which has size 0,1,2, or 4. If the size is 0 or 1, then any decomposition of the rectangles
A×C and B×D into symmetric chains (which one can easily check implies they are symmetric in
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the ambient Qm+n) will have intersection of size 0 or 1 between their respective chains, so we only
have to worry about size 2 and 4 intersections of the rectangles.

If we manage to give a proper decomposition of a rectangle, then Lemma 4.2 says we don’t have
to worry about intersections of these chains with any other chains.

Consider the decomposition of an r × s rectangle depicted in Figure 1 for r = 4, s = 6.

(min,min)

Figure 1. Zigzag decomposition for a 4× 6 rectangle

Definition 5.1. For r, s ≥ 3, we say the zigzag decomposition of an r×s rectangle is the modification
of the decomposition by 90 degree clockwise rotated L’s as depicted in Figure 1. Specifically, we
modify two edges of the two “leftmost” chains, at the smallest and largest elements.

Lemma 5.2. Given a chain of length r ≥ 3 in Qm, and a chain of length s ≥ 3 in Qn, the zigzag
decomposition of the product r × s rectangle is a proper decomposition.

Proof. If we draw the zigzag decomposition as in Figure 1, then the salient features which ensure it
is a proper decomposition are that no chain horizontally connects a point on the left with the cor-
responding point on the right, or vertically connects a point on the bottom with the corresponding
point on the top. �

Hence, we can properly decompose all rectangles with both sides of length ≥ 3. Also, if neither
chain is maximal, then any decomposition of the rectangle will be (very) proper. We are thus left
to consider rectangles that are the product of a maximal chain and a 1 or 2-element chain. Now
comes a serious problem though: it is impossible to do a proper symmetric chain decomposition of
such rectangles! So we have to carefully consider their pairwise intersections.

We can in fact determine exactly the obstruction to decomposing Qm × Qn in this fashion (by
decomposing the rectangles in the products Fi × Gi). Let ǫm be 1 if m is even and 2 if m is odd,
and similarly for ǫn (so ǫ is the length of the smallest chain in the corresponding hypercube). Note
that the only rectangles we have left to deal with are size ǫm × (n+ 1) and (m+ 1)× ǫn. Because
{Fi} and {Gi} are each almost orthogonal families, an ǫm × (n+1) and (m+1)× ǫn rectangle will
intersect in at most one point, so we can handle the intersections of ǫm × (n+ 1) rectangles and of
(m + 1)× ǫn rectangles separately. We consider ǫm × (n + 1) rectangles, (m + 1) × ǫn is identical
with m,n swapped.

If ǫm = 1, then the rectangles are already just chains, and the condition amounts to saying that
the decompositions of Qm have distinct 1-element chains.

If ǫm = 2, then there are two ways of decomposing a 2× (n+1) rectangle into symmetric chains.

Definition 5.3. Say a decomposition of a 2× r rectangle where the longer chain contains the long
upper edge of the rectangle the top decomposition, and the other one the bottom decomposition, as
depicted in Figure 2.
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Figure 2. Bottom and top decompositions of 2× 6 rectangle respectively

If two 2-element chains A,B in Qm intersect in their top element, then as long as the decompo-
sitions of A × (n + 1) and B × (n + 1) are not both top decompositions, the chains will intersect
appropriately (and if they were both top decompositions, then the two longest chains would not
intersect appropriately). Similarly if A,B intersect in their bottom element, with bottom decom-
positions. If they don’t intersect at all, then it doesn’t matter how we decompose the rectangles.

Consider a directed graph whose vertex set is the union of all 2-element chains in all decom-
positions Fi of Qm, with edges corresponding to the 2-element chains themselves. Give all edges
corresponding to a bottom decomposition the orientation pointing from the smaller subset to the
larger one, and if it corresponds to a top decomposition, give it the opposite orientation. Then the
corresponding graph-theoretic condition is that the out-degree of every vertex is at most 1.

Definition 5.4. Call a graph good if it can be given an orientation such that the out-degree of
every vertex is at most 1.

Lemma 5.5. A graph is good if and only if every component has at most one cycle (equivalently,
every component is either a tree, or a tree union an edge).

Proof. If a component has no cycle, then choose a root vertex and direct all edges towards it. If
a component has a unique cycle, give the cycle an orientation, then direct all remaining arrows
towards the cycle. If a component has two cycles, then it is easy to see the cycles would have to be
disjoint, and then one can check there is no way to orient a path between the two cycles. �

The above discussion shows that the definition of “goodness” in Definition 2.2 is precisely what
we need to make Theorem 5.6 true.

Theorem 5.6. Let m,n ≥ 2, and suppose Qm, Qn each have a family of k almost orthogonal
symmetric chain decompositions Fi and Gi respectively. Then we can construct k almost orthogonal
symmetric chain decompositions of Qm × Qn = Qm+n by decomposing the rectangles in Fi × Gi

into symmetric chains if and only if the two families of decompositions are both good.

We have checked that the decompositions of Q5 and Q7 provided in Sections 4.2 and 4.3 are
good when we introduced them. Note that the product of two hypercubes with good families of
decompositions may not have a good family of decompositions, so we can’t use Theorem 5.6 to
produce decompositions of arbitrarily large hypercubes yet. However, we still have the following.

Corollary 5.7. Q10, Q12, Q14 all have 3 almost orthogonal symmetric chain decompositions.

6. Product of three hypercubes, one odd and two good, or three good

The goal of this section is to prove the following.

Theorem 6.1. Let m,n, p ≥ 2, and suppose Qm, Qn, Qp have k ≥ 3 almost orthogonal symmetric
chain decompositions Fi, Gi, and Hi, two of these families are good, and the remaining family is
either good or is associated to an odd dimensional hypercube. Then we can construct k almost
orthogonal symmetric chain decompositions of Qm+n+p by decomposing the cuboids in Fi×Gi×Hi

into symmetric chains.
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As we will be working quite a lot with proper and very proper chains, Lemma 6.2 (which we call
the Decomposition Lemma) will be frequently used in the rest of the paper. Note that the proof is
more subtle than might initially appear, as the chains are in products of hypercubes as opposed to
individual hypercubes, so the definition of (very) proper chains must be carefully considered.

Lemma 6.2 (Decomposition Lemma). The following statements are true in a product of hypercubes
of dimensions ≥ 2.

(1) The product of two proper chains of lengths ≥ 3 has a proper decomposition.
(2) The product of two very proper chains has a very proper decomposition.
(3) The product of a very proper chain of length ≥ 3 with a proper chain has a very proper

decomposition.

In particular we have the following.

• The product of a set which has a proper decomposition with a (very) proper chain of length
≥ 3 has a (very) proper decomposition.

• The product of a set which has a very proper decomposition with a very proper chain has
a very proper decomposition.

Proof. For the second item, we can take any symmetric chain decomposition. The first item follows
from the zigzag decomposition, and the third follows from the zigzag decomposition when the proper
chain has length ≥ 3, and from the second item otherwise. �

We will also need the following modified version of the zigzag decomposition.

Definition 6.3. For r, s ≥ 3, we call a decomposition of an r × s rectangle into the two modified
chains from the zigzag decomposition, one proper of length r+ s− 1, and one very proper of length
r + s − 3, along with the remaining (r − 2) × (s − 2) rectangle, which is the product of two very
proper chains, the partial zigzag decomposition.

There is a subtlety to Definition 6.3, as neither of the two sides of the remaining rectangle are
symmetric, though no problems will arise as was noted in Remark 4.3.

Note that the hypothesis k ≥ 3 in Theorem 6.1 forces m,n, p ≥ 4 (see the Introduction). We
shall need another assumption — for emphasis, we display it below.

In our cuboid under consideration, all sides are made up of

proper chains, and all sides of length < 5 are very proper.
(∗)

This assumption is true for example when the sides are proper chains inside (products of) hy-
percubes of dimension ≥ 4, as is the situation for example in Theorem 6.1.

Lemma 6.4. A cuboid of size r1 × r2 × r3 satisfying (∗) with ri ≥ 3 has a proper decomposition.

Proof. If we have some ri < 5 (say r1), then the corresponding chain is very proper. By Decom-
position Lemma 6.2, there is a proper decomposition of the product of the last two factors, and
taking the product with the first factor then yields by Decomposition Lemma 6.2 again a (very)
proper decomposition.

Suppose then all ri ≥ 5. Do a partial zigzag decomposition of r1×r2 into a proper chain of length
r1+r2−1, a very proper chain of length r1+r2−3, and a rectangle of dimensions (r1−2)× (r2−2)
(the product of two very proper chains of length ≥ 3). Decompose the product of the proper and
very proper chains with r3 using Decomposition Lemma 6.2, and for the product of the rectangle
with r3, use Decomposition Lemma 6.2 twice. �
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Now, let us consider possible cuboids in Fi ×Gi ×Hi that we need to decompose. If none of the
three chains is of length 2 or 1, then Lemma 6.4 gives us a proper decomposition of the cuboid. If
none of the chains is maximal, then we can decompose the cuboid arbitrarily to get a (very) proper
decomposition. Lemmas 6.5, 6.6, and 6.7 properly decompose most of the remaining cuboids.

Lemma 6.5. A cuboid of size 2×r2×r3 satisfying (∗) with ri ≥ 4 has a very proper decomposition.

Proof. Take the bottom decomposition of 2× r2, as depicted in Figure 3.

A B

C

Figure 3. Bottom Decomposition of 2× r2 rectangle with longer chain labeled

The smaller chain is very proper of length ≥ 3, so taking the product with r3 is handled by
Decomposition Lemma 6.2. For the longer chain, we decompose the product with r3 as in Figure
4. Only 3 chains were modified from a decomposition into clockwise rotated L’s, namely the 3
“leftmost” chains. Graphically, the salient features that need to be checked in Figure 4 to ensure
that we have a very proper decomposition are that the bottom left A is not connected to the upper
right B, that no chain connects a point on the left side horizontally to the corresponding point on
the right side, and that no point on the bottom side connects vertically to the corresponding point
on the line segment connecting the two B’s.

A

B

A

B

C C

Figure 4. Decomposition of (longer chain from Figure 3)×r3

�

Lemma 6.6. A cuboid of size 2×3×r3 satisfying (∗) with r3 ≥ 3 has a very proper decomposition.

Proof. Apply Decomposition Lemma 6.2 to the last two chains to get a very proper decomposition,
then as the first chain is very proper, apply Decomposition Lemma 6.2 again. �
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Lemma 6.7. A cuboid of size 1× r2 × r3 satisfying (∗), with r2, r3 ≥ 3 and r2 very proper, has a
very proper decomposition.

Proof. Apply Decomposition Lemma 6.2 to the last two factors to get a very proper decomposition.
�

The only cuboids we have not dealt with are those with one maximal chain and the other two of
length ≤ 2, and the rectangles (m+1)× (n+1)× 1, (m+1)× 1× (p+1), and 1× (n+1)× (p+1)
if they exist. We note now that the conditions in Theorem 6.1 imply that any factor corresponding
to an even dimensional hypercube is good.

Suppose we have an (m+1)×(n+1)×1 cuboid. If we do a proper decomposition of the first two
factors, then only the maximal chain is not very proper, the properness condition failing precisely at
its top and bottom elements, so it could potentially intersect another chain from another cuboid in
the two elements (∅,∅, ⋆) and ([m], [n], ⋆) (where ⋆ is the element in Qp which the 1-element chain
corresponds to). Of the aforementioned remaining cuboids we need to worry about, the only one
which could possibly intersect in these two elements is another (m+1)× (n+1)×1 cuboid, coming
from one of the other triples of almost orthogonal symmetric chain decompositions. But because
we have a 1-element chain in the last factor, Qp must be a good even dimensional hypercube, so
this 1-element chain is different for the two cuboids, so the cuboids are disjoint.

We reason similarly for (m + 1) × 1 × (p + 1) and 1 × (n + 1) × (p + 1), so all that is left to
consider are the pairwise intersections of cuboids formed as the product of one maximal chain, and
two chains of length ≤ 2.

Note that if the maximal chain is in a different factor for two such cuboids, then by the almost
orthogonality of the decompositions, they intersect in size at most 1, so we only have to deal with
the intersection properties of those cuboids with the maximal chain in the same factor. This then
fixes the dimensions of the cuboids under consideration to be the same.

If one of the factors is length 1, then that factor corresponds to an even dimensional, hence good,
hypercube, so all such cuboids are disjoint and there’s nothing to check. Otherwise, such a cuboid
has at least one of its two length 2 factors in a good hypercube, say Qn (we only use goodness in
this factor now). By symmetry, the only case we have to deal with are cuboids of size 2×2×(p+1).

For these cuboids, ignore the Qm factor and decompose the last two factors using top and bottom
decompositions like in Section 3 (using the goodness of Qn), so that we’re left with rectangles of
the form 2× C, with C’s corresponding to different Gi ×Hi having intersections of size at most 1.
Then any decompositions of the 2× C rectangles work because Fi is an almost orthogonal family.

7. Product of four odd hypercubes, two good

The goal of this section is to prove Theorem 7.1.

Theorem 7.1. Take m,n, p, q ≥ 3 odd. Suppose Qm, Qn, Qp, and Qq have families of k ≥ 3
almost orthogonal symmetric chain decompositions Fi, Gi, Hi, and Ki, and two of these families
are good. Then we can construct k almost orthogonal symmetric chain decompositions of Qm+n+p+q

by decomposing the cuboids in Fi × Gi ×Hi ×Ki into symmetric chains.

Note that as before, k ≥ 3 implies m,n, p, q ≥ 4, so (∗) holds for all cuboids we consider. Lemmas
7.2, 7.3, 7.4, 7.5, and 7.6 allow us to decompose most of the cuboids in the product in a proper way.

Lemma 7.2. A cuboid of size r × s× t× u satisfying (∗), with r ≥ 3 very proper, s, t, u ≥ 2, has
a very proper decomposition.
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Proof. If the s×t×u cuboid has a proper decomposition, then we’re done by Decomposition Lemma
6.2. From Lemmas 6.4, 6.5, and 6.6, the only case we have left is when (up to permutation), s = t = 2
and u ≥ 2. But then the r × u cuboid has a very proper decomposition by Decomposition Lemma
6.2, so since the other two factors are very proper, we’re done by applying Decomposition Lemma
6.2 two more times.

�

Lemma 7.3. A cuboid of size 2×s×t×u satisfying (∗), s, t, u ≥ 5 has a very proper decomposition.

Proof. Take t× u and do a partial zigzag decomposition, to get a proper chain of length t+ u− 1,
a very proper chain of length t+ u− 3, and a rectangle of dimension (t− 2)× (u− 2), (the product
of two very proper chains of length ≥ 3). For the chains, take the product with 2 × s and use one
of Lemmas 6.5 or 6.6. For the rectangle, use Decomposition Lemma 6.2 on s× (t− 2) to get a very
proper decomposition, then since the other two factors are very proper, we’re done by applying
Decomposition Lemma 6.2 two more times.

�

Lemma 7.4. A cuboid of size 2×2× t×u satisfying (∗), t, u ≥ 5 has a very proper decomposition.

Proof. By Lemma 6.5, 2×t×u has a very proper decomposition, and since the first 2 is very proper,
we’re done by Decomposition Lemma 6.2. �

Lemma 7.5. A cuboid of size 2× 2× 2× 2 satisfying (∗) has a very proper decomposition.

Proof. All of the chains are very proper, so we apply Decomposition Lemma 6.2 repeatedly to get
our result. �

Lemma 7.6. A cuboid of size r×s×t×u satisfying (∗), r, s, t, u ≥ 5 has a very proper decomposition.

Proof. Take r× s, and do a partial zigzag decomposition, to get a proper chain of length r+ s− 1,
a very proper chain of length r+s−3, and a rectangle of dimension (r−2)× (s−2) (the product of
two very proper chains of length ≥ 3). For the chains, take the product with t× u and use Lemma
6.4. For the rectangle, use Decomposition Lemma 6.2 on t× u to get a proper decomposition, then
since r− 2 and s− 2 are very proper of length ≥ 3, we’re done by applying Decomposition Lemma
6.2 two more times.

�

The only cuboids we haven’t created proper decompositions for are ones with three factors of
length 2, and one factor maximal. Two such cuboids can intersect in more than one element only
if the maximal chain is in the same factor. We will show how to handle 2× 2× 2× (q+1) cuboids,
the other cases are similarly dealt with. As two of the decompositions are good, without loss of
generality assume Qp (the third factor) is good.

For 2× 2× 2× (q+1), ignore the first two factors and decompose the last two factors using top
and bottom decompositions like in Section 3 (using the goodness of Qp), so that we’re left with
cuboids of the form 2× 2× C, with C’s corresponding to different Hi ×Ki having intersections of
size at most 1. Then any decompositions of these 2 × 2 × C cuboids will work because Fi and Gi

are almost orthogonal families.
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8. Arbitrarily many good even hypercubes

We now consider the product of arbitrarily many good even hypercubes.

Theorem 8.1. For 1 ≤ i ≤ r, suppose we have k ≥ 3 good almost orthogonal symmetric chain
decompositions F j

i of Qni
, all ni ≥ 2 even. Then we can construct k almost orthogonal symmetric

chain decompositions for Qn1+...+nr
by decomposing the cuboids in

∏

i F
j
i into symmetric chains.

Note that as before, k ≥ 3 implies ni ≥ 4, so (∗) holds for all cuboids we consider. We start by
generalizing Lemmas 6.4 and 7.6.

Lemma 8.2. A cuboid of size r1 × r2 × . . .× rt satisfying (∗), ri ≥ 5 has a proper decomposition.

Proof. We’ve already seen this for t = 2, 3, 4 in Decomposition Lemma 6.2, Lemma 6.4, and Lemma
7.6 respectively. We proceed by induction — assume we always have a proper decomposition for such
cuboids of dimension < t. Take the last two factors rt−1×rt, and do a partial zigzag decomposition
to get a proper chain of length rt−1 + rt − 1, a very proper chain of length rt−1 + rt − 3, and
a rectangle of dimensions (rt−1 − 2) × (rt − 2) (the product of two very proper chains of length
≥ 3). For the chains, use the inductive hypothesis for k − 1. For the rectangle, take a proper
decomposition of the remaining k− 2 factors (which exists by induction), then since (rt−1 − 2) and
(rt − 2) are very proper of length ≥ 3, we’re done by applying Decomposition Lemma 6.2 two more
times. �

Lemma 8.3. A cuboid of size r1× r2× . . .× rt satisfying (∗), r1 ≥ 3 very proper has a very proper
decomposition.

Proof. Do a proper decomposition of all factors of length ≥ 5 by Lemma 8.2, then apply Decompo-
sition Lemma 6.2 with r1 to get a very proper decomposition. The remaining factors are all very
proper, so we’re done by repeated applications of Decomposition Lemma 6.2. �

The only cuboids we have not dealt with are the ones which are the products of chains of maximal
size and minimal size (size 1), and contain at least one chain of minimal size.

For each of these, do a proper decomposition on the factors containing the chains of maximal
size. Every chain in such a decomposition is very proper except the maximal chain in the cuboid,
and the only two elements the maximal chain could have in common with any other chain are its
maximal and minimal elements as this is the only pair of elements that properness fails at. Hence,
if two chains intersected in two elements, it would be two maximal chains intersecting in their
common top and bottom elements, forcing the cuboids to have the same dimensions. But then they
share a factor with a 1-element chain, which by the goodness of the factor containing the 1-element
chain forces the cuboids to be disjoint.

9. 4 hypercubes, one odd and three good even

We now consider the last case needed to prove Theorems 3.3 and 3.4.

Theorem 9.1. Take m ≥ 3 odd, and n, p, q ≥ 2 even. Suppose Qm, Qn, Qp, and Qq have
families of k ≥ 3 almost orthogonal symmetric chain decompositions Fi,Gi, Hi, and Ki, with the
decompositions of Qn, Qp, and Qq good. Then we can construct k almost orthogonal symmetric
chain decompositions of Qm+n+p+q by decomposing the cuboids in Fi×Gi×Hi×Ki into symmetric
chains.

Note that as before, k ≥ 3 implies m,n, p, q ≥ 4, so (∗) holds for all cuboids we consider.
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Proof. First note that Lemma 8.3 reduces us to considering cuboids formed by products of maximal
and minimal length chains.

Consider first when the factor in Qm is a 2-element chain. If none of the factors is maximal, then
we are done by Decomposition Lemma 6.2. Lemma 7.3 shows we have a very proper decomposition
if the remaining factors are all maximal, and Lemma 6.5 shows we have a very proper decomposition
when two of the remaining factors are maximal and one is minimal (of length 1) by Decomposition
Lemma 6.2. Hence the remaining cuboids we have to deal with have sizes 2 × (n + 1) × 1 × 1,
2 × 1 × (p + 1) × 1, or 2 × 1 × 1 × (q + 1). Any two such cuboids have a 1-element chain in the
same factor, which by goodness of the corresponding hypercube forces them to be disjoint. We will
shortly return to consider their intersections with other cuboids.

Assume now that the factor in Qm is a maximal chain. Lemma 8.2 gives us a proper decomposi-
tion when all of the factors are maximal. When there is at least 1 minimal chain in this case, then
just as in the end of the proof of Theorem 8.1, any two such cuboids will have no problems with
their pairwise intersections when we properly decompose the non-1 factors.

Thus we only have to consider the intersections of the remaining cuboids in the first case with
cuboids in the second case with at least one factor of length 1. By almost orthogonality, the maximal
length chain in the cuboid from the first case must be in the same factor as a maximal length chain
in the cuboid from the second case for the cuboids to have intersection of size at least 2. But then
the cuboids must share a factor with a 1-element chain, forcing disjointness by the goodness of that
factor. �

10. Proof of Theorems 3.1 and 3.3

We will prove Theorem 3.3 through a series of lemmas, and then prove Theorem 3.1 as a con-
sequence. Note that as before, k ≥ 3 implies ni ≥ 4, so (∗) holds for all cuboids we consider.
First note that Theorem 8.1 handles the case when all hypercubes are even dimensional, so we may
assume at least one hypercube is odd dimensional.

Lemma 10.1. Theorem 3.3 is true when exactly one of the r hypercubes is odd dimensional.

Proof. Applying Theorem 5.6 once if necessary, we reduce to the product of an even number of
good even dimensional hypercubes, and one (possibly not good) odd dimensional hypercube. We
can now repeatedly apply Theorem 6.1 to the odd hypercube and two even ones until there is only
one hypercube left. �

Lemma 10.2. Theorem 3.3 is true when exactly two of the r hypercubes are odd dimensional.

Proof. If there is at most one even dimensional hypercube, we’re done by Theorem 5.6 or Theo-
rem 6.1. Otherwise, apply either Theorem 5.6 or Theorem 6.1 with exactly one odd dimensional
hypercube so that we’re now left with an odd number of even dimensional hypercubes, and two
odd dimensional hypercubes, one of which is possibly not good. Take the possibly not good odd
dimensional hypercube and repeatedly apply Theorem 6.1 with two even dimensional hypercubes
to reduce down to one even dimensional hypercube, and two odd dimensional hypercubes, one of
which is possibly not good. Now apply Theorem 6.1 to the remaining 3 hypercubes. �

Lemma 10.3. Assume Theorem 3.3 is true when there are at least three odd dimensional hyper-
cubes and at most 1 even dimensional hypercube. Then Theorem 3.3 is true when there are at least
3 odd dimensional hypercubes.
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Proof. Suppose we have at least 2 even dimensional hypercubes. We have at least 2 good odd
dimensional hypercubes, take a third one. Repeatedly applying Theorem 6.1 and 9.1 with this
third hypercube and some of the even dimensional hypercubes, we reduce to the case of the same
number of odd dimensional hypercubes, but with at most 1 even dimensional hypercube. �

Lemma 10.4. Theorem 3.3 is true when there are no even dimensional hypercubes, and r ≥ 3.

Proof. Using Lemma 8.3, all product cuboids have a very proper decomposition except possibly for
the ones formed by products of maximal chains, and 2-element chains. If all chains are maximal,
then we have a proper decomposition by Lemma 8.2, so assume we have at least one 2-element
chain. If all chains have length 2, then the cuboid is a product of very proper chains, so we’re done
by Decomposition Lemma 8.2. If there are exactly 2 maximal chains, then using Lemma 6.5 on the
2 maximal chains and a 2-element chain, we are done by Decomposition Lemma 6.2. If there are at
least 3 maximal chains, do a proper decomposition of all but two of the maximal chains by Lemma
8.2, which reduces us to two possible types of cuboids. Either we get a product of a very proper
chain with the two maximal chain case above, hence we are again done by Decomposition Lemma
6.2, or we get a product of 3 proper chains of length ≥ 5 with some non-zero number of 2-element
chains. In the latter case, we apply Lemma 7.3 with one of the 2-element chains and the 3 proper
chains, and then conclude by Decomposition Lemma 6.2 for each of the resulting cuboids, which
are all products of very proper chains.

Hence all that remains is the case when all but one factor is a 2-element chain, and the remaining
factor is maximal. Two such cuboids can intersect in more than one element only if they have the
maximal chain in the same factor. We can restrict ourselves to assuming without loss of generality
that the last factor has the maximal chain, so the dimensions are 2× 2× . . .× 2× (nr + 1). Then
without loss of generality, the second last hypercube is good, so ignoring all but the last two factors,
we can decompose these factors using top and bottom decompositions like in Section 3 (using the
goodness of Qnr−1

). Then we’re left with cuboids of the form 2 × 2 × . . . × C, and two such

cuboids arising from different
∏

i F
j
i intersect in at most one element by the almost orthogonality

of the remaining factors. Thus arbitrarily decomposing the resulting cuboids gives us the desired
decomposition. �

Lemma 10.5. Theorem 3.3 is true when there is one even dimensional hypercube, and at least
three odd dimensional hypercubes.

Proof. Using Lemma 8.3, all product cuboids have a very proper decomposition except possibly for
the ones formed by products of maximal chains, and minimal length chains.

Consider first the case when the even dimensional hypercube (which we can assume to be in the
last factor) has a maximal length chain in it. Then we can argue exactly as in the proof of Lemma
10.4 to get proper decompositions of all such cuboids except ones of the form 2× 2× . . .× (nr +1).

Next, consider the case that the even dimensional hypercube factor has a 1-element chain. Then
as the even dimensional hypercube is good, any two such cuboids will be disjoint. Furthermore,
they will intersect any 2× 2× . . .× (nr + 1) cuboid in at most one element. Consequently, we can
reduce ourselves to only considering 2× 2× . . .× 2× (nr + 1) cuboids, and the proof then finishes
off identically to the proof of Lemma 10.4. �

This completes the proof of Theorem 3.3. Theorem 3.1, and hence also Corollary 3.2, now follows
from Corollary 10.6, by using the 3 almost orthogonal symmetric chain decompositions of Q5 and
Q7 in Subsections 4.2 and 4.3 respectively.
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Corollary 10.6. We have 3 almost orthogonal symmetric chain decompositions for Qn for n ≥ 5
with the possible exceptions of 6, 8, 9, 11, 13, 16, 18, 23 (which are the numbers not non-negative
linear combinations of 5 and 7).

Corollary 10.7. We have 3 orthogonal decompositions for Qn for n ≥ 4 with the possible excep-
tions of 9, 11, 13, 23.

Proof. Given a collection of orthogonal decompositions of Q2k−1, we can construct a collection of
orthogonal decomposition for Q2k by, for each decomposition, duplicating each chain and adding
the element 2k into each element of the duplicate chain. We leave n = 4 to the reader (or see
[5]). �

11. Proof of Theorem 3.4

In this section, we will show how to decompose a product of hypercubes if there are at least 6
odd dimensional hypercubes, and all the even dimensional hypercubes are good using [1]. Note that
as before, k ≥ 3 implies ni ≥ 4, so (∗) holds for all cuboids we consider. By repeatedly applying
Theorem 6.1 or 9.1 with one of the odd dimensional hypercubes, we can reduce to the case of at
most one even dimensional hypercube.

The proofs of Lemmas 10.4 and 10.5 now apply verbatim up until we are only left with 2× 2×
. . . × 2 × (nr + 1) cuboids (with at least five 2’s). No clever manipulations allow one to (very)
properly decompose such cuboids from the results we have, but as it turns out, one can bootstrap
a certain decomposition of 2× 2× 2× 2× 2× 5 to decompose the product of at least five 2’s with
a chain of length at least 5 in a very proper way. We refer to [1] for the very explicit verification
that such decompositions exist.
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