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Abstract. In this paper we show the emergence of polycrystalline structures as a
result of elastic energy minimisation. For this purpose, we introduce a variational
model for two-dimensional systems of edge dislocations, within the so-called core
radius approach, and we derive the Γ-limit of the elastic energy functional as the
lattice space tends to zero.

In the energy regime under investigation, the symmetric and skew part of the
strain become decoupled in the limit, the dislocation measure being the curl of
the skew part of the strain. The limit energy is given by the sum of a plastic
term, acting on the dislocation density, and an elastic term, which depends on
the symmetric strains. Minimisers under suitable boundary conditions are piece-
wise constant antisymmetric strain fields, representing in our model a polycrystal
whose grains are mutually rotated by infinitesimal angles.
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Figure 1. Section of an iron-carbon alloy. The darker regions are single
crystal grains separated by grain boundaries represented by lighter lines
(source [20], licensed under CC BY-NC-SA 2.0 UK).

1. Introduction

Many solids in nature exhibit a polycrystalline structure. A single phase polycrystal is
formed by many individual crystal grains, having the same underlying periodic atomic
structure, but rotated with respect to each other. The region that separates two grains
with different orientation is called grain boundary. Since the grains are mutually rotated,
the periodic crystalline structure is disrupted at grain boundaries. As a consequence, grain
boundaries are regions where dislocations occur, inducing high energy concentration.

Polycrystalline structures, which a priori may seem energetically not convenient, arise
from the crystallisation of a melt. As the temperature decreases, crystallisation starts
from a number of points within the melt. These single grains grow until they meet.
Since their orientation is generally different, the grains are not able to arrange in a single
crystal and grain boundaries appear as local minimizers of the energy, in fact as metastable
configurations. After crystallisation there is a grain growth phase, when the solid tries
to minimise the energy by reducing the boundary area. This process happens by atomic
diffusion within the material, and it is thermally activated (see [12, Ch 5.7], [19]). On a
mesoscopic scale a polycrystal resembles the structure in Figure 1.

Our purpose is to describe, and to some extent to predict, polycrystalline structures by
variational principles. To this end, we first derive by Γ-convergence, as the lattice spacing
tends to zero, a total energy functional depending on the strain and on the dislocation
density. Then, we focus on the ground states of such energy, neglecting the fundamental
mechanisms driving the formation and evolution of grain boundaries. The main feature
of the model proposed in this paper is that grain boundaries and the corresponding
grain orientations are not introduced as internal variables of the energy; in fact, they
spontaneously arise as a result of the only energy minimisation under suitable boundary
conditions.
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Figure 2. Left: schematic picture of two grains mutually rotated by an
angle θ. Centre: schematic picture of a SATGB. The two grains are joined
together and the lattice misfit is accommodated by an array of edge dis-
locations spaced δ apart and represented by red dots (pictures after [16]).
Right: HRTEM of a SATGB in silicon. The green lines represent rows of
atoms ending within the crystal. Their end points inside the crystal are
edge dislocations, which correspond to the red atoms in the central picture.
The blue lines show the mutual rotation between the grains (image from [9,
Section 7.2.2] with permission of the author H. Foell).

Let us introduce our model by first discussing the case of two dimensional small angle
tilt grain boundaries (from now on abbreviated to SATGB). The atomic structure of
SATGBs is well understood (see, for example, [12, Ch 3.4], [17]). In fact, the lattice
mismatch between two grains mutually tilted by a small angle θ is accommodated by a
single array of edge dislocations at the grain boundary, evenly spaced at distance δ ≈ ε/θ,
where ε represents the atomic lattice spacing. Therefore, the number of dislocations at a
SATGB is of the order θ/ε (see Figure 2). The elastic energy of a SATGB is given by the
celebrated Read-Shockley formula introduced in [17]

(1) Elastic Energy = E0θ(A + | log θ|) ,

where E0 and A are positive constants depending only on the material. Recently Lau-
teri and Luckhaus in [14], starting from a nonlinear elastic energy, proved compactness
properties and energy bounds in agreement with the Read-Shockley formula.

In thiinputs paper we focus on lower energy regimes, deriving by Γ-convergence, as the
lattice spacing ε → 0 and the number of dislocations Nε → ∞, a certain limit energy
functional F that can be regarded as a linearised version of the Read-Shockley formula.
We work in the setting of linearised planar elasticity as introduced in [10] and in particular



4 S. FANZON, M. PALOMBARO, AND M. PONSIGLIONE

we require good separation of the dislocation cores. Such good separation hypothesis will
in turn imply that the number of dislocations at grain boundaries is of the order

(2) Nε �
θ

ε
.

As a consequence, we cannot allow a number of dislocations sufficient to accommodate
small rotations θ between grains, but rather we can have rotations by an infinitesimal
angle θ ≈ 0, that is, antisymmetric matrices. In this respect our analysis represents the
linearised counterpart of the Read-Shockley formula: grains are micro-rotated by infini-
tesimal angles and the corresponding ground states can be seen as linearised polycrystals,
whose energy is linear with respect to the number of dislocations at grain boundaries.

We now briefly introduce the setting of our problem following [10]. In linearised planar
elasticity, the reference configuration is a bounded domain Ω ⊂ R2, representing a
horizontal section of an infinite cylindrical crystal Ω × R. A displacement is a regular
map u : Ω→ R2 and the stored energy density W : M2×2 → [0,+∞) is defined by

W (F ) :=
1

2
CF : F ,

where C is a fourth order stress tensor that satisfies

c−1|F sym|2 ≤ CF : F ≤ c|F sym|2 for every F ∈M2×2 .

Here F sym := (F +F T )/2 and c is some positive constant. The energy density W acts on
gradient strain fields β := ∇u and the elastic energy induced by β is defined as∫

Ω

W (β) dx .

Following the semi-discrete dislocation model (see [3, 7, 10]), dislocations are introduced
as point defects of the strain β. More specifically, a straight dislocation line γ orthogonal
to the cross section Ω is identified with the point x0 = γ ∩ Ω. We then require

(3) Curl β = ξ δx0 ,

in the sense of distributions. Here ξ := (ξ1, ξ2, 0) is the Burgers vector, orthogonal to γ,
so that (γ, ξ) defines an edge dislocation. Therefore, with the identification above, also
(x0, ξ) represents an edge dislocation (see Figure 3). It is immediate to check that (3)
implies ∫

Bσ(x0)\Bε(x0)

W (β) dx ≥ c log
σ

ε
, for every σ > ε > 0 .

From the above inequality we deduce that, as ε→ 0, the energy diverges logarithmically
in neighbourhoods of x0. To overcome this problem we adopt the so-called core radius
approach. Namely, we remove from Ω the ball Bε(x0), called the core region, where ε
is proportional to the underlying lattice spacing, and we replace (3) by the circulation
condition ∫

∂Bε(x0)

β · t ds = ξ .

In the above formula t is the unit tangent vector to ∂Bε(x0) and ds in the 1 - dimensional
Hausdorff measure. A generic distribution of N dislocations will therefore be identified
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Figure 3. Left: cylindrical domain Ω×R. The dislocation (γ, ξ) is of edge
type. The green plane represents the extra half-plane of atoms correspond-
ing to γ. Right: section Ω of the cylindrical domain in the left picture. The
red point x0 = γ ∩ Ω represents the section of the dislocation line, so that
(x0, ξ) identifies an edge dislocation. The green line is the intersection of
the extra half-plane of atoms in the left picture with Ω.

with the points {xi}Ni=1. To each xi we associate a corresponding Burgers vector ξi,
belonging to a finite set S ⊂ R2 of admissible Burgers vectors, which depends on the
underlying crystalline structure. Clearly the Burgers vector scales like ε; for example for
a square lattice we have S = ε{±e1,±e2}. From now on we will always renormalise the
Burgers vectors, scaling them by ε−1, so that S becomes a fixed set independent of the
lattice spacing. The energy is in turn scaled by ε−2, since it is quadratic with respect to
the Burgers vector. Following [10], we make a technical hypothesis of good separation
for the dislocation cores, by introducing a small scale ρε � ε, called hard core radius.
Any cluster of dislocations contained in a ball Bρε(x0) ⊂ Ω will be identified with a
multiple dislocation ξ δx0 , where ξ is the sum of the Burgers vectors corresponding to the
dislocations in the cluster (see Figure 4 Left). Therefore ξ ∈ S, where

S := SpanZ S

is the set of multiple Burgers vectors. Under this assumption, a generic distribution of
dislocations is identified with a measure

µ =
N∑
i=1

ξi δxi , ξi ∈ S ,

where

|xi − xj| ≥ 2ρε , dist(xk, ∂Ω) > ρε , for every 1 ≤ i, j, k ≤ N , i 6= j .
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Figure 4. Left: clusters of dislocations (blue points) inside the balls
Bρε(xi) are identified with a single dislocation ξi δxi centred at xi (red spot).
The size of the red spot in this schematic picture exemplifies the magnitude
of the total Burgers vector in the cluster. Right: the drilled domain Ωε(µ).
Balls of radius ε, centred at the dislocation points xi, are removed from Ω.
A circulation condition on the strain is assigned on each ∂Bε(xi).

Denote by Ωε(µ) := Ω\
⋃
iBε(xi) the drilled domain (see Figure 4 Right). The admissible

strains associated to µ are matrix fields β ∈ L2(Ωε(µ);M2×2) such that

Curl β Ωε(µ) = 0

and

(4)
∫
∂Bε(xi)

β · t ds = ξi , for every i = 1, . . . , N .

The elastic energy corresponding to (µ, β) is defined by

(5) Eε(µ, β) :=

∫
Ωε(µ)

W (β) dx .

The energy induced by the dislocation distribution µ is given by minimising (5) over the
set of all strains satisfying (4). From (4) it follows that the energy is always positive if
µ 6= 0.

The energy contribution of a single dislocation core is of order | log ε| (see Proposition
3.2). Therefore, for a system of Nε dislocations, with Nε → ∞ as ε → 0, the relevant
energy regime is

Eε ≈ Nε| log ε| .
This scaling was already studied in [6] for Nε ≤ C. The critical regime Nε ≈ | log ε| has
been considered for Ginzburg Landau vortices in [13] and for edge dislocations in [10],
where the authors, assuming that the dislocations are well separated, characterise the
Γ-limit of Eε

| log ε|2 . We will later discuss how this compares to our Γ-convergence result.
For our analysis we will consider a higher energy regime corresponding to

1

ε
� Nε � | log ε|
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(see Section 2 for the precise assumptions on Nε). We will see that this energy regime
will account for grain boundaries that are mutually rotated by infinitesimal angles θ ≈ 0.
To be more specific, one can split the contribution of Eε into

Eε(µ, β) = Einter
ε (µ, β) + Eself

ε (µ, β) ,

where Eself
ε is the self-energy concentrated in the hard core region ∪iBρε(xi) while Einter

ε

is the interaction energy computed outside the hard core region. In Theorem 4.2 we will
prove that the Γ-limit as ε→ 0 of the rescaled functionals Eε, with respect to the strains
and the dislocation measures, is of the form

(6) F(µ, S,A) =

∫
Ω

W (S) dx+

∫
Ω

ϕ

(
dµ

d|µ|

)
d|µ| .

The first term of F comes from the interaction energy. It represents the elastic energy of
the symmetric field S, which is the weak limit of the symmetric part of the strains rescaled
by
√
Nε| log ε|. Instead, the antisymmetric part of the strain, rescaled by Nε, weakly

converges to an antisymmetric field A. Therefore, since Nε � | log ε|, the symmetric part
of the strain is of lower order with respect to the antisymmetric part.

The second term of F is the plastic energy. The density function ϕ is positively 1-
homogeneous and it can be defined as the relaxation of a cell-problem formula (see Propo-
sition 3.2). The measure µ in (4) is the weak-∗ limit of the dislocation measures rescaled
by Nε, and dµ/d|µ| represents the Radon-Nikodym derivative of µ with respect to |µ|.
Notice that A and µ come from the same rescaling Nε, whereas the symmetric part S
is of lower order, namely

√
Nε| log ε|. As a consequence, the compatibility condition (4)

passes to the limit as
CurlA = µ .

This implies that the elastic and plastic terms in F are decoupled. Indeed this is the main
difference with the critical regime Nε ≈ | log ε| studied in [10], where the contribution of
the symmetric and antisymmetric part of the strain, as well as the dislocation measure,
have the same order | log ε|. This results, in [10], into the coupling of the two terms of
the energy, through the condition Curl β = µ where β = S + A.

Next we focus on the study of the Γ-limit F . Precisely, we impose piecewise constant
Dirichlet boundary conditions on A, and we show that F is minimised by strains that
are locally constant and take values in the set of antisymmetric matrices. More precisely,
there is a Caccioppoli partition of Ω with sets of finite perimeter where the antisym-
metric strain is constant. Such sets represent the grains of the polycrystal, while the
corresponding constant antisymmetric matrices represents their orientation. We call such
configurations linearised polycrystals. This definition is motivated by the fact that anti-
symmetric matrices can be considered as infinitesimal rotations, being the linearisation
about the identity of the set of rotations. The proof of this result is based on the simple
observation that the variational problem is equivalent to minimise some anisotropic total
variation of a scalar function, which is locally constant on ∂Ω. By the coarea formula,
one can easily show that there always exists a piece-wise constant minimiser.

The paper is organised as follows. In Section 2 we introduce the rigorous mathematical
setting of the problem. In Section 3 we recall some results from [10], which will be useful
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for the Γ-convergence analysis of the rescaled energy Eε. The main Γ-convergence result
will be proved in Section 4. In Section 5 we will include Dirichlet type boundary conditions
to the Γ-convergence analysis performed in the previous section. Finally, in Section 6 we
will show that the plastic part of F is minimised by linearised polycrystals, by prescribing
piecewise constant boundary conditions on the antisymmetric part of the limit strain.

2. Setting of the problem

Let Ω ⊂ R2 be a bounded open domain with Lipschitz continuous boundary. The
set Ω represents a horizontal section of an infinite cylindrical crystal Ω × R. Define as
S := {b1, . . . , bs} the class of Burgers vectors. We will assume that S contains at least
two linearly independent vectors so that SpanR S = R2. We then define the set of slip
directions

S := SpanZ S ,

that coincides with the set of Burgers vectors for multiple dislocations. An edge dislocation
can be identified with a point x ∈ Ω and a vector ξ ∈ S.

Let ε > 0 be a parameter representing the interatomic distance of the crystal and
denote by {Nε} ⊂ N the number of dislocations present in the crystal at the scale ε. As
in [10], we introduce a hard core radius ρε → 0, and we assume that

(i) limε→0 ρε/ε
s = +∞ for every fixed 0 < s < 1 ,

(ii) limε→0Nερ
2
ε = 0 ,

(iii) limε→0
Nε
| log ε| = +∞.

The first condition implies that the hard core region contains almost all the self energy (see
Proposition 3.3), the second one guarantees that the area of the hard core region tends
to zero, while the third one corresponds to the supercritical regime, where the interaction
energy is dominant with respect to the self energy. The above conditions are compatible
if

(7) ρε = εt(ε), Nε = ε−t(ε)

for some positive t(ε) converging to zero slowly enough (for instance such that t(ε)| log ε| <<
log(| log ε|)). The class of admissible dislocations is defined by

(8)
ADε(Ω) :=

{
µ ∈M(Ω;R2) : µ =

M∑
i=1

ξiδxi , M ∈ N, ξi ∈ S ,

Bρε(xi) ⊂ Ω , |xj − xk| ≥ 2ρε , for every i and j 6= k
}
.

Here M(Ω;R2) denotes the space of R2 valued Radon measures on Ω and Br(x) is the
ball of radius r centred at x ∈ R2.

Fix a dislocations measure µ =
∑M

i=1 ξiδxi ∈ ADε(Ω). For r > 0 define

(9) Ωr(µ) := Ω \ ∪Mi=1Br(xi) .
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The class of admissible strains associated with µ is given by the maps β ∈ L2(Ωε(µ);R2)
such that

Curl β Ωε(µ) = 0 ,

∫
∂Bε(xi)

β · t ds = ξi for every i = 1, . . . ,M .

The identity Curl β = 0 is intended in the sense of distributions, where Curl β ∈ D′(Ω;R2)
is defined as

(10) Curl β := (∂1β12 − ∂2β11, ∂1β22 − ∂2β21) .

The integrand β · t is intended in the sense of traces, since β ∈ H(Curl,Ωε(µ)) (see [5,
Theorem 2, p. 204]), and t is the unit tangent vector to ∂Bε(xi), obtained by a counter-
clockwise rotation of π/2 of the outer normal ν to Bε(x), that is t := Jν with

(11) J :=

(
0 −1
1 0

)
.

In the following it will be useful to extend the admissible strains to the whole Ω. Therefore,
for a dislocation measure µ =

∑M
i=1 ξiδxi ∈ ADε(Ω), we introduce the class ASε(µ) of

admissible strains as

(12)
ASε(µ) :=

{
β ∈ L2(Ω;M2×2) : β ≡ 0 in Ω \ Ωε(µ) , Curl β = 0 in Ωε(µ) ,∫
∂Bε(xi)

β · t ds = ξi ,

∫
Ωε(µ)

βskew dx = 0 , for every i = 1, . . . ,M
}
.

Here F skew := (F −F T )/2. The last condition in (12) is not restrictive and will guarantee
the uniqueness of the minimising strain.

The energy associated to an admissible pair (µ, β) with µ ∈ ADε(Ω) and β ∈ ASε(µ)
is defined by

(13) Eε(µ, β) :=

∫
Ωε(µ)

W (β) dx =

∫
Ω

W (β) dx ,

where
W (F ) :=

1

2
CF : F =

1

2
CF sym : F sym

is the strain energy density, where C is the elasticity tensor satisfying

(14) c−1|F sym|2 ≤ W (F ) ≤ c|F sym|2 for every F ∈M2×2 ,

for some given c > 0. Since the elasticity tensor also satisfies the symmetry properties
Cijkl = Cklij = Cijlk = Cjikl (see [2]), it follows that

1

2
CF : F =

1

2
CF sym : F sym .

Notice that for any µ ∈ ADε(Ω) the minimum problem

(15) min

{∫
Ωε(µ)

W (β) dx : β ∈ ASε(µ)

}
has a unique solution. This can be seen by removing a finite number of cuts L from Ωε(µ)
so that Ωε(µ)\L becomes simply connected and observing that there exists a displacement
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gradient such that ∇u = β in Ωε(µ) \ L. Then we can apply the classic Korn inequality
(see, e.g., [4]) to ∇u, and conclude by using the direct method of calculus of variations.

We recall that in our analysis we assume the supercritical regime

(16) Nε � | log ε| .
As already discussed, the relevant scaling for the asymptotic study of Eε is given by
Nε| log ε|. Therefore we introduce the scaled energy functional defined on the space
M(Ω;R2)× L2(Ω;M2×2) as

(17) Fε(µ, β) :=


1

Nε| log ε|
Eε(µ, β) if µ ∈ ADε(Ω) , β ∈ ASε(µ) ,

+∞ otherwise.

3. Preliminaries

In this section we will recall some results and notations from [10] that will be needed
in the following Γ-convergence analysis.

3.1. Cell formula for the self-energy. In this section we will rigorously define the
density function ϕ appearing in the Γ-limit F introduced in (6). In order to do so,
following [10, Section 4], we will introduce the self-energy ψ(ξ) stored in the core region
of a single dislocation ξ δ0 centred at the origin.

Let us start by defining, for every ξ ∈ R2 and 0 < r1 < r2, the space

(18) ASr1,r2(ξ) :=

{
β ∈ L2(Br2 \Br1 ;M2×2) : Curl β = 0,

∫
∂Br1

β · t ds = ξ

}
,

where Br is the ball of radius r centred at the origin. For strains belonging to such class,
we have the following bound from below of the energy (see [10, Remark 3]).

Proposition 3.1. Let 0 < r1 <
r2
2
and ξ ∈ R. There exists a constant c > 0 such that,

for every β ∈ ASr1,r2(ξ),

(19)
∫
Br2\Br1

|βsym|2 dx ≥ c|ξ|2 log
r2

r1

.

Let Cε := B1 \Bε, with 0 < ε < 1, and introduce ψε : R2 → R through the cell problem

(20) ψε(ξ) :=
1

| log ε|
min

{∫
Cε

W (β) dx : β ∈ ASε,1(ξ)

}
.

It is easy to show that the minimum in (20) exists, by combining the classic Korn inequality
with the direct method of the calculus of variations. It is also immediate to check that
the minimiser βε(ξ) of (20) satisfies the boundary value problem{

DivCβε(ξ) = 0 in Cε,
Cβε(ξ) · ν = 0 on ∂Cε,

where ν is the outer normal to ∂Cε. Also, there exists a strain β0(ξ) : R2 → M2×2 with
|β0(ξ)(x)| ≤ c|x|−1|ξ| (see [2]) that is a distributional solution to
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(21)

{
DivCβ0(ξ) = 0 in R2,

Curl β0(ξ) = ξ δ0 in R2.

The following result holds true (see [10, Corollary 6]).

Proposition 3.2 (Self-energy). There exists a constant C > 0 such that for every ξ ∈ R2,

(22) ψε(ξ) ≤
1

| log ε|

∫
Cε

W (β0(ξ)) dx ≤ ψε(ξ) +
C|ξ|2

| log ε|
.

In particular, for every ξ ∈ R2, we have that

lim
ε→0

ψε(ξ) = ψ(ξ) ,

pointwise, where the map ψ : R2 → R is the self-energy defined by

(23) ψ(ξ) := lim
ε→0

1

| log ε|

∫
Cε

W (β0(ξ)) dx .

Moreover, there exists a constant c > 0 such that, for every ξ ∈ R2,

(24) c−1|ξ|2 ≤ ψ(ξ) ≤ c|ξ|2 .

We now want to show that the self-energy ψ(ξ) is indeed concentrated in the hardcore
region Bρε \Bε of the dislocation ξ δ0. To this end, define the map ψ̄ε : R2 → R as

(25) ψ̄ε(ξ) :=
1

| log ε|
min

{∫
Bρε\Bε

W (β) dx : β ∈ ASε,ρε(ξ)

}
,

for ξ ∈ R2. It will also be useful to introduce ψ̃ε : R2 → R as
(26)

ψ̃ε(ξ) :=
1

| log ε|
min

{∫
Bρε\Bε

W (β) dx : β ∈ ASε,ρε(ξ), β · t = β̂ · t on ∂Bε ∪ ∂Bρε

}
,

where β̂ ∈ ASε,ρε(ξ) is a fixed given strain such that

(27) |β̂(x)| ≤ K
|ξ|
|x|

,

for some positive constant K. By (14), it is immediate to see that problems (25)-(26) are
well posed. The following results holds (see [10, Remark 7, Proposition 8]).

Proposition 3.3. We have ψ̄ε(ξ) = ψε(ξ)(1 + o(ε)) and ψ̃ε(ξ) = ψε(ξ)(1 + o(ε)), with
o(ε)→ 0 as ε→ 0 uniformly with respect to ξ ∈ R2. In particular

lim
ε→0

ψ̄ε(ξ) = lim
ε→0

ψ̃ε(ξ) = ψ(ξ)

pointwise, where ψ is the self-energy defined in (23).
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Now, we can define the density ϕ : R2 → [0,+∞) as the relaxation of the self-energy ψ,

(28) ϕ(ξ) := inf

{
N∑
k=1

λkψ(ξk) :
N∑
k=1

λkξk = ξ, N ∈ N, λk ≥ 0, ξk ∈ S

}
.

The properties of ϕ are summarised in the following proposition.

Proposition 3.4. The function ϕ defined in (28) is convex and positively 1-homogeneous,
that is

ϕ(λξ) = λϕ(ξ), for every ξ ∈ R2, λ > 0 .

Moreover there exists a constant c > 0 such that

(29) c−1|ξ| ≤ ϕ(ξ) ≤ c|ξ| ,

for every ξ ∈ R2. In particular, the infimum in (28) is actually a minimum.

3.2. Korn type inequality. We will now recall the generalised Korn inequality proved
in [10, Theorem 11].

Theorem 3.5 (Generalised Korn inequality). There exists a constant C > 0, depending
only on Ω, with the following property: for every β ∈ L1(Ω;M2×2) with

Curl β = µ ∈M(Ω;R2) ,

we have

(30)
∫

Ω

|β − A|2 dx ≤ C

(∫
Ω

|βsym|2 dx+ |µ|(Ω)2

)
,

where A is the constant 2× 2 antisymmetric matrix defined by A := 1
|Ω|

∫
Ω
βskew dx.

3.3. Remarks on the distributional Curl. We conclude this section with some con-
siderations on the distributional Curl of admissible strains (see [10, Remark 1]).

Remark 3.6 (Curl of admissible strains). Let µ ∈ ADε(Ω) and β ∈ ASε(µ). Recalling
definition (10), we can define the scalar distribution

curl β(i) :=
∂

∂x1

βi2 −
∂

∂x2

βi1 ,

where β(i) denotes the i-th row of β. This means that for any test function ϕ in C∞c (Ω),
we can write

(31) 〈curl β(i), ϕ〉 = −
∫

Ω

β(i) · J∇ϕdx ,

where J is the counter-clockwise rotation of π/2, as defined in (11). Notice that, if
β(i) ∈ L2(Ω;R2), then (31) implies that curl β(i) is well defined also for ϕ ∈ H1

0 (Ω) and
acts continuously on it. Therefore

Curl β ∈ H−1(Ω;R2) for every β ∈ ASε(µ) ,

where H−1(Ω;R2) denotes the dual of the space H1
0 (Ω;R2).
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Further, if µ =
∑M

i=1 ξi δxi ∈ ADε(Ω), then the circulation condition∫
∂Bε(xi)

β · t ds = ξi , for every i = 1, . . . ,M ,

can be written as

〈Curl β, ϕ〉 =
M∑
i=1

ξi ci ,

for every ϕ ∈ H1
0 (Ω) such that ϕ ≡ ci in Bε(xi). If in addition ϕ ∈ C0(Ω) ∩H1

0 (Ω), then

〈Curl β, ϕ〉 =

∫
Ω

ϕdµ .

4. Γ-convergence analysis

In this section we will study, by means of Γ-convergence, the behaviour as ε → 0 of
the functionals Fε : M(Ω;R2) × L2(Ω;M2×2) → R defined in (17), in the energy regime
Nε � | log ε|. In Theorem 4.2 we will prove that the Γ-limit for the sequence Fε is given
by the functional F : (M(Ω;R2)∩H−1(Ω;R2))×L2(Ω;M2×2

sym)×L2(Ω;M2×2
skew)→ R defined

as

(32) F(µ, S,A) :=


∫

Ω

W (S) dx+

∫
Ω

ϕ

(
dµ

d|µ|

)
d|µ| if CurlA = µ,

+∞ otherwise ,

where ϕ is the energy density introduced in (28). The topology under which the Γ-
convergence result holds is given by the following definition.

Definition 4.1. We say that the family (also referred to as sequence in the following)
(µε, βε) ∈ M(Ω;R2) × L2(Ω;M2×2) is converging to a triplet (µ, S,A) ∈ M(Ω;R2) ×
L2(Ω;M2×2

sym)× L2(Ω;M2×2
skew) if

µε
Nε

∗
⇀ µ in M(Ω;R2) ,(33)

βsym
ε√

Nε| log ε|
⇀ S and

βskew
ε

Nε

⇀ A weakly in L2(Ω;M2×2) .(34)

Theorem 4.2. The following Γ-convergence result holds true.
(i) (Compactness) Let εn → 0 and assume that (µn, βn) ∈M(Ω;R2)×L2(Ω;M2×2) is

such that supnFεn(µn, βn) ≤ E, for some positive constant E. Then there exists

(µ, S,A) ∈ (M(Ω;R2) ∩H−1(Ω;R2))× L2(Ω;M2×2
sym)× L2(Ω;M2×2

skew),

with CurlA = µ, such that up to subsequences (not relabelled), (µn, βn) converges
to (µ, S,A) in the sense of Definition 4.1.

(ii) (Γ-convergence) The functionals Fε defined in (17) Γ-converge to the functional
F defined in (32), with respect to the convergence of Definition 4.1. Specifically,
for every

(µ, S,A) ∈ (M(Ω;R2) ∩ H−1(Ω;R2))× L2(Ω;M2×2
sym)× L2(Ω;M2×2

skew)
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such that CurlA = µ we have:
• (Γ-liminf inequality) For all sequences (µε, βε) ∈ M(Ω;R2) × L2(Ω;M2×2)
converging to (µ, S,A) in the sense of Definition 4.1,

F(µ, S,A) ≤ lim inf
ε→0

Fε(µε, βε) .

• (Γ-limsup inequality) There exists a recovery sequence (µε, βε) ∈M(Ω;R2)×
L2(Ω;M2×2), such that (µε, βε) converges to (µ, S,A) in the sense of Definition
4.1, and

lim sup
ε→0

Fε(µε, βε) ≤ F(µ, S,A) .

Remark 4.3. Since A is antisymmetric, there exist u ∈ L2(Ω) such that

(35) A =

(
0 u
−u 0

)
.

Notice that CurlA = Du. Therefore, CurlA ∈ M(Ω;R2) implies that u ∈ BV (Ω) and
curl µ = 0.

4.1. Compactness. We will prove the compactness statement in Theorem 4.2. Assume
that (µn, βn) is a sequence inM(Ω;R2)× L2(Ω;M2×2) such that

(36) sup
n
Fεn(µn, βn) ≤ E .

The proof is divided into four parts.

Part 1. Compactness of the rescaled measures.

Let µn :=
∑Mn

i=1 ξn,iδxn,i ∈ ADεn(Ω). We show that the total variation of µn/Nεn is
uniformly bounded, i.e., there exists C > 0 such that

(37)
1

Nεn

|µn|(Ω) =
1

Nεn

Mn∑
i=1

|ξn,i| ≤ C ,

for every n ∈ N. Since the function y 7→ βn(xn,i + y) belongs to ASεn,ρεn (ξn,i), we have

E ≥ Fεn(µn, βn) ≥ 1

Nεn| log εn|

Mn∑
i=1

∫
Bρεn (xn,i)\Bεn (xn,i)

W (βn) dx

=
1

Nεn| log εn|

Mn∑
i=1

∫
Bρεn (0)\Bεn (0)

W (βn(xn,i + y)) dy ≥ 1

Nεn

Mn∑
i=1

ψ̄εn(ξn,i) ,

where ψ̄ε is defined in (25). Let ψ be the self-energy in (23) and set c := 1
2

min|ξ|=1 ψ(ξ).
Notice that c > 0, by (24). By Proposition 3.3, ψ̄ε → ψ pointwise as ε→ 0, therefore for
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sufficiently large n, we have ψ̄εn(ξ) ≥ c for every ξ ∈ R2 with |ξ| = 1. Hence,

1

Nεn

Mn∑
i=1

ψ̄εn(ξn,i) =
1

Nεn

Mn∑
i=1

|ξn,i|2 ψ̄εn
(
ξn,i
|ξn,i|

)
≥ c

Nεn

Mn∑
i=1

|ξn,i|2

≥ c

Nεn

Mn∑
i=1

|ξn,i| = c
|µn|(Ω)

Nεn

.

The last inequality follows from the fact that the vectors ξn,i are bounded away from zero.
By putting together the above estimates, we conclude that (37), and in turn (33) hold
true.

Part 2. Compactness of the rescaled βsym
n .

This follows immediately by the bounds on the energy (14). Indeed by (36), (13) and
(14),

(38) CNεn| log εn| ≥ CEεn(µn, βn) ≥ C

∫
Ω

|βsym
n |2 dx ,

and the weak compactness of βsym
n /

√
Nεn| log εn| in L2(Ω;M2×2) follows.

Part 3. Compactness of the rescaled βskew
n .

Now that the bounds (37)-(38) are established, the idea is to apply the generalised Korn
inequality of Theorem 3.5, in order to obtain a uniform upper bound for βskew

n /Nεn in
L2(Ω;M2×2). In order to do that, we need a control over |Curl βn|(Ω). In fact, even
if βn is related to µn by circulation compatibility conditions, the relationship between
|Curl βn|(Ω) and |µn|(Ω) has to be clarified. In order to obtain a bound for |Curl βn|(Ω)

in terms of |µn|(Ω), we will define new strains β̃n that have the same order of energy of
βn and that satisfy |Curl β̃n|(Ω) = |µn|(Ω).

Recall that µn =
∑Mn

i=1 ξi,nδxi,n . Define the annuli Ci,n := B2εn(xi,n) \Bεn(xi,n) and the
functions Ki,n : Ci,n →M2×2 by

Ki,n(x) :=
1

2π
ξi,n ⊗ J

x− xi,n
|x− xi,n|2

,

where J is the counter-clockwise rotation of π/2. It is immediate to check that∫
Ci,n

|Ki,n|2 dx = C|ξi,n|2 ,

where the constant C > 0 does not depend on εn. By Proposition 3.1 we also have∫
Ci,n

|βsym
n |2 dx ≥ C|ξi,n|2 ,

where, again, the constant C > 0 does not depend on εn. Therefore

(39)
∫
Ci,n

|Ki,n|2 dx ≤ C

∫
Ci,n

|βsym
n |2 dx .
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Note that CurlKi,n = ξi,nδxi,n in D′(R2;R2), hence Curl(βn−Ki,n) = 0 in Ci,n. Moreover∫
∂Bεn (xi,n)

(βn−Ki,n) · t ds = 0, therefore there exists vi,n ∈ H1(Ci,n;R2) such that ∇vi,n =

βn −Ki,n in Ci,n. By (39),∫
Ci,n

|∇vsym
i,n |2 dx ≤ C

∫
Ci,n

|βsym
n |2 dx .

By applying the classic Korn inequality we get∫
Ci,n

|∇vi,n − Ai,n|2 dx ≤ C

∫
Ci,n

|∇vsym
i,n |2 dx ≤ C

∫
Ci,n

|βsym
n |2 dx ,

for some constant matrix Ai,n ∈M2×2
skew and some constant C > 0. By standard extension

methods, there exists ui,n ∈ H1(B2εn(xi,n);R2) such that ∇ui,n = ∇vi,n−Ai,n in Ci,n and

(40)
∫
B2εn (xi,n)

|∇ui,n|2 dx ≤ C

∫
Ci,n

|∇vi,n − Ai,n|2 dx ≤ C

∫
Ci,n

|βsym
n |2 dx .

Define β̃n : Ω→M2×2 by setting

(41) β̃n(x) :=

{
βn(x) if x ∈ Ωεn(µn) ,

∇ui,n(x) + Ai,n if x ∈ Bεn(xi,n) .

From (38) and (40), we have∫
Ω

|β̃sym
n |2 dx =

∫
Ωεn (µn)

|βsym
n |2 dx+

Mn∑
i=1

∫
Bεn (xi,n)

|∇usym
i,n |2 dx

≤ C

∫
Ω

|βsym
n |2 dx ≤ CNεn| log εn| .

Moreover by construction Curl β̃n is concentrated on ∂Bεn(xi,n) and we have

(42) |Curl β̃n|(Bεn(xi,n)) = |µn|(Bεn(xi,n)) for all i, |Curl β̃n|(Ω) = |µn|(Ω).

Therefore we can apply the generalised Korn inequality of Theorem 3.5 to get∫
Ω

|β̃n − Ãn|2 dx ≤ C

(∫
Ω

|β̃sym
n |2 dx+ (|µn|(Ω))2

)
≤ C

(
Nεn| log εn|+N2

εn

)
≤ CN2

εn ,

where Ãn := 1
|Ω|

∫
Ω
β̃skew
n ∈ M2×2

skew. The last inequality follows from the assumption
| log εn| � Nεn . Now recall that by hypothesis the average of βn is a symmetric matrix
and βn ≡ 0 in Ω \Ωεn(µn). Therefore, since symmetric and skew matrices are orthogonal,
we have |βn − Ãn|2 = |βn|2 + |Ãn|2, so that∫

Ωεn (µn)

|βn|2 dx ≤
∫

Ωεn (µn)

|βn − Ãn|2 dx ≤
∫

Ω

|β̃n − Ãn|2 dx ≤ CN2
εn ,

which yields the desired compactness property for βskew
n /Nεn in L2(Ω;M2×2).

Part 4. µ ∈ H−1(Ω;R2) and CurlA = µ.
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Recall that µn =
∑Mn

i=1 ξn,iδxn,i ∈ ADεn(Ω) and βn ∈ ASεn(µn). Let ϕ ∈ C1
0(Ω) and

ϕn ∈ H1
0 (Ω) be a sequence converging to ϕ uniformly and strongly in H1

0 (Ω), and such
that

ϕn ≡ ϕ(xn,i) in Bεn(xn,i) .

By Remark 3.6, we then have∫
Ω

ϕn dµn = 〈Curl βn, ϕn〉 =

∫
Ω

βnJ∇ϕn dx .

Hence, by invoking (16), (33) and (34), we have∫
Ω

ϕdµ = lim
n→∞

1

Nεn

∫
Ω

ϕn dµn = lim
n→∞

1

Nεn

〈Curl βn, ϕn〉

= lim
n→∞

1

Nεn

∫
Ω

βnJ∇ϕn dx =

∫
Ω

AJ∇ϕdx = 〈CurlA,ϕ〉 .

From this we conclude that CurlA = µ. Moreover, since A ∈ L2(Ω;M2×2), then by
definition CurlA ∈ H−1(Ω;R2). Hence also µ ∈ H−1(Ω;R2).

4.2. Γ-liminf inequality. We now want to prove the Γ-liminf inequality of Theorem 4.2.
Let µε ∈ ADε(Ω), βε ∈ ASε(µε) and

(µ, S,A) ∈ (M(Ω;R2) ∩ H−1(Ω;R2))× L2(Ω;M2×2
sym)× L2(Ω;M2×2

skew) ,

such that CurlA = µ. Assume that (µε, βε) converges to (µ, S,A) in the sense of Definition
4.1. We have to show that

(43) lim inf
ε→0

Fε(µε, βε) ≥ F(µ, S,A) .

In order to do so, we decompose the energy in

(44)
1

Nε| log ε|

∫
Ω

W (βε) dx =
1

Nε| log ε|

∫
Ωρε (µε)

W (βε) dx+
1

Nε| log ε|

∫
Ω\Ωρε (µε)

W (βε) dx

and study the two contributions separately.
Recall that µε =

∑Mε

i=1 ξε,iδxε,i . Since we are assuming that µε/Nε
∗
⇀ µ, this implies that

|µε|(Ω)/Nε is uniformly bounded, hence Mε ≤ CNε for some uniform constant C > 0.
Moreover Nερ

2
ε → 0 by hypothesis, therefore χΩρε → 1 in L1(Ω), as∫

Ω

|χΩρε − 1| dx =
Mε∑
i=1

|Bρε(xε,i)| = πρ2
εMε ≤ Cρ2

εNε .

Since βsym
ε /

√
Nε| log ε|⇀ S, we deduce that

βsym
ε

χ
Ωρε√

Nε| log ε|
⇀ S weakly in L2(Ω;M2×2) .
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Hence, by weak lower semicontinuity,

(45)
lim inf
ε→0

1

Nε| log ε|

∫
Ωρε (µε)

W (βε) dx = lim inf
ε→0

∫
Ω

W

(
βsym
ε

χ
Ωρε√

Nε| log ε|

)
dx

≥
∫

Ω

W (S) dx .

Let us consider the second integral in (44). By Proposition 3.3 we have

(46)

1

| log ε|

∫
Ω\Ωρε (µε)

W (βε) dx =
Mε∑
i=1

1

| log ε|

∫
Bρε (xε,i)

W (βε) dx

≥
Mε∑
i=1

ψ̄ε(ξε,i) = (1 + o(ε))
Mε∑
i=1

ψ(ξε,i) ,

where o(ε) → 0 as ε → 0. By the properties of ϕ (Proposition 3.4) and by Reshetnyak’s
lower semicontinuity Theorem ([1, Theorem 2.38]),

(47)
lim inf
ε→0

1

Nε

Mε∑
i=1

ψ(ξε,i) ≥ lim inf
ε→0

1

Nε

Mε∑
i=1

ϕ(ξε,i)

= lim inf
ε→0

1

Nε

∫
Ω

ϕ

(
dµε
d|µε|

)
d|µε| ≥

∫
Ω

ϕ

(
dµ

d|µ|

)
d|µ| .

By (46)-(47) we get

lim inf
ε→0

1

Nε| log ε|

∫
Ω\Ωρε (µε)

W (βε) dx ≥
∫

Ω

ϕ

(
dµ

d|µ|

)
d|µ| ,

that together with (45) yields the Γ-liminf inequality (43).

4.3. Γ-limsup inequality. In this section we prove the Γ-limsup inequality of Theorem
4.2. Before proceeding, we need the following technical lemma to construct the recovery
sequence for the measure µ. Let us first introduce some notation. For a sequence of
atomic vector valued measures of the form νε :=

∑Mε

i=1 αε,iδxε,i and a sequence rε → 0, we
define the corresponding diffused measures

(48) ν̃rεε :=
1

πr2
ε

Mε∑
i=1

αε,iH2 Brε(xε,i) , ν̂rεε :=
1

2πrε

Mε∑
i=1

αε,iH1 ∂Brε(xε,i) .

For xε,i ∈ supp νε, define the functions K̃αε,i
ε,i , K̂

αε,i
ε,i : Brε(xε,i)→M2×2 as

(49) K̃
αε,i
ε,i (x) :=

1

2πr2
ε

αε,i ⊗ J(x− xε,i) , K̂
αε,i
ε,i (x) :=

1

2π
αε,i ⊗ J

x− xε,i
|x− xε,i|2

,

where J is the counter-clockwise rotation of π/2. Finally define K̃νε
ε , K̂

νε
ε : Ω→M2×2 as

(50) K̃νε
ε :=

Mε∑
i=1

K̃
αε,i
ε,i

χ
Brε (xε,i) , K̂νε

ε :=
Mε∑
i=1

K̂
αε,i
ε,i

χ
Brε (xε,i) .
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It is easy to show that

(51) Curl K̃νε
ε = ν̃rεε − ν̂rεε , Curl K̂νε

ε = νε − ν̂rεε .

The following easy lemma will be used in some density argument in the construction
of the recovery sequence.

Lemma 4.4. Let n ∈ N, and set
(52)

Sn :=

{
ξ :=

M∑
k=1

λkξk with M ∈ N, ξk ∈ S, λk > 0 such that zj :=
n2λj∑
λk
∈ N for all j

}
.

The union of such sets is dense in R2.

Lemma 4.5. Let conditions (i), (ii) and (iii) of Section 2 hold true. Then we have:
(A) Let n ∈ N, ξ ∈ Sn defined as in (52) and let µ := ξ dx. Set Λ :=

∑M
k=1 λk,

rε := 1
2
√

ΛNε
. Then, there exists a sequence ηε =

∑M
k=1 ξkη

k
ε , with ηkε =

∑Mk
ε

l=1 δxε,l,
such that ηε ∈ ADε(Ω), and

|ηkε |
Nε

∗
⇀ λk dx in M(Ω;R) ,

ηε
Nε

∗
⇀ µ in M(Ω;R2) ,(53) ∥∥∥∥ η̃rεεNε

− µ
∥∥∥∥
H−1(Ω;R2)

≤ nC√
Nε

,(54)

for some constant C independent of n, where the measure η̃rεε is defined according
to (48).

(B) Let µ, rε as in (A), let g ∈ C0(Ω;R2) and set σ := g(x) dx. Then, there exists a
sequence ηε satisfying all the properties in (A) and a sequence σε =

∑Hε
l=1 ζε,lδyε,l,

with ζε,l ∈ S, such that supp(σε)∩ supp(ηε) = ∅, ηε + σε ∈ ADε(Ω) and
σε√

Nε| log ε|
∗
⇀ σ in M(Ω;R2) ,

σ̃ε√
Nε| log ε|

→ σ in H−1(Ω;R2),(55)

where the measures σ̃rεε are defined according to (48).
In particular there exists a constant C > 0 such that

(56) Hε ≤ C
√
Nε| log ε| , Mε ≤ CNε ,

where Mε :=
∑M

k=1M
k
ε .

Proof. Step 1. Proof of (A), the case M = 1 and µ = ξ dx with ξ ∈ S.
We cover R2 with squares of side length 2rε. Divide each of them in four squares of side
length rε, and plug a mass ξ δxε,i at the centre of one of such rε-squares, obtaining in this
way a measure νε on R2 which is 2rε periodic. We notice that we leave some free space
just in order to accomplish also point (B). Then we define ηε as the restriction of νε on all
the 2rε-squares contained in Ω (see Figure 5). Notice that ηε ∈ ADε(Ω) since rε � 2ρε.
Also, the density of 1

Nε
η̃rεε − µ has zero average on each 2rε-square, so that it converges

to zero weakly in L2(Ω;R2) and (53) is verified.
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Ω

2rε
rε

Figure 5. Approximating µ = ξ dx with the 2rε-periodic atomic measure
ηε. The red dots represent Dirac masses ξδxε,i in the support of ηε.

Let vε : R2 → R2 be the 2rε-periodic solution to ∆vε = 1
Nε
ν̃rεε − µ. By construction it

is easy to see that

(57)
∥∥∥∥ 1

Nε

ν̃rεε − µ
∥∥∥∥
H−1(Ω)

≤ ‖vε‖H1(Ω;R2) ≤ Crε,

∥∥∥∥ 1

Nε

η̃rεε −
1

Nε

ν̃rεε

∥∥∥∥
H−1(Ω;R2)

≤ Crε.

These last estimates clearly imply (54).

Step 2. Proof of (A), the general case ξ ∈ Sn.
Cover R2 with squares of side length 2nrε, and divide each of them in four squares of side
length nrε. As in Step 1, pick one of these nrε-squares in all 2nrε-squares in a periodic
manner. Finally, divide each of these selected nrε-squares in n2 squares of side length rε.
Now, plug at the centres of each of these n2 squares a mass ξk δxε,i with 1 ≤ k ≤ M , in
such a way that the resulting measure νε is 2nrε-periodic, and on each 2nrε-square there
are exactly zk masses with weight ξk, where zk is defined in (52). Then, defining ηε as the
restriction of νε on the union of all 2nrε-squares contained in Ω, and arguing as in the
proof of Step 1, we have that (53) holds true, while (57) holds true with C replaced by
nC, so that (54) follows.

Step 3. Proof of (B).

We have at disposal CNε squares of side length nrε, left free from the constructions in
Step 2. Clearly, we can plug masses with weights in S at the centre of c

√
Nε| log ε| of

such free squares, in such a way that (55) holds true. �

We are now ready to prove the Γ-limsup inequality of Theorem 4.2.

Proof of Γ-limsup inequality of Theorem 4.2. Let

(µ, S,A) ∈ (M(Ω;R2) ∩ H−1(Ω;R2))× L2(Ω;M2×2
sym)× L2(Ω;M2×2

skew) ,

with CurlA = µ. We will construct a recovery sequence in three steps.

Step 1. The case µ = ξ dx with S ∈ C1(Ω;M2×2
sym).
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In this step we assume that µ := ξ dx, A ∈ L2(Ω;M2×2
skew) with CurlA = µ and S ∈

C1(Ω;M2×2
sym). We will construct a recovery sequence µε ∈ ADε(Ω), βε ∈ ASε(µε), such

that (µε, βε) converges to (µ, S,A) in the sense of Definition 4.1 and

(58) lim sup
ε→0

1

Nε| log ε|

∫
Ω

W (βε) dx ≤
∫

Ω

(W (S) + ϕ(ξ)) dx .

By Proposition 3.4, there exist λk ≥ 0, ξk ∈ S, M ∈ N, such that ξ =
∑M

k=1 λkξk and

(59) ϕ(ξ) =
M∑
k=1

λkψ(ξk) ,

where ϕ is the self-energy defined in (28). By standard density arguments in Γ-convergence,
we will assume without loss of generality that ξ ∈ Sn is as in (52) for some n ∈ N.

Set σ := CurlS. Since S ∈ C1(Ω;M2×2
sym), then σ = g(x) dx for some continuous function

g : Ω→ R2. Let ηε :=
∑Mε

i=1 ξε,iδxε,i , σε :=
∑Hε

i=1 ζε,iδyε,i and rε := C/
√
Nε be the sequences

given by Lemma 4.5 (B). Set µε := ηε+σε. By (53), (55) and the hypothesis Nε � | log ε|,
µε is a recovery sequence for µ.

Let η̃rεε , η̂rεε , σ̃rεε , σ̂rεε be defined according to (48). Notice that K̂ξε,i
ε,i ∈ ASε,ρε(ξε,i) and it

satisfies (27). Therefore, by Proposition 3.3, there exist strains Âε,i such that
(i) Âε,i ∈ ASε,ρε(ξε,i),
(ii) Âε,i · t = K̂

ξε,i
ε,i · t on ∂Bε(xε,i) ∪ ∂Bρε(xε,i),

and

(60)
1

| log ε|

∫
Bρε (xε,i)\Bε(xε,i)

W (Âε,i) dx = ψ(ξε,i)(1 + o(ε)).

Now extend Âε,i to be K̂ξε,i
ε,i in Brε(xε,i) \ Bρε(xε,i) and zero in Ω \ (Brε(xε,i) \ Bε(xε,i)).

Set

(61) Ŝε :=
Hε∑
l=1

K̂ζε,i
ε

χ
Brε (yε,i)\Bε(yε,i) , Âε :=

Mε∑
i=1

Âε,i .

Hence, recalling definition (48) we have

(62) Curl Ŝε = −σ̂rεε + σ̂εε , Curl Âε = −η̂rεε + η̂εε .

Define Qε := J ∇uε, Rε := J ∇vε where uε, vε solve

(63)

{
∆uε = σ̃rεε −

√
Nε| log ε|σ in Ω

uε
∂ν

= Cu,ε on ∂Ω;
,

{
∆vε = η̃rεε −Nεµ in Ω
vε
∂ν

= Cv,ε on ∂Ω ,

where the constants Cu,ε, Cv,ε are satisfy the compatibility condition∫
∂Ω

Cu,ε ds =

∫
Ω

σ̃rεε −
√
Nε| log ε| dx,

∫
∂Ω

Cv,ε ds =

∫
Ω

η̃rεε −Nεµ dx.

In this way,

(64) CurlQε = σ̃rεε −
√
Nε| log ε|σ, CurlRε = η̃rεε −Nεµ .
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Notice that by construction 1√
Nε| log ε|

(|Cu,ε| + |Cv,ε| → 0 as ε → 0. Therefore, using also

(54), (55) and standard elliptic estimates, we have

(65)
Qε√

Nε| log ε|
→ 0,

Rε√
Nε| log ε|

→ 0 in L2(Ω;M2×2) .

Also notice that

(66)
Qε +Rε√
Nε| log ε|

· t→ 0 in H−1/2(∂Ω;R2) ∩ L1(∂Ω;R2) .

We can now define the candidate recovery sequence as

(67) µε = ηε + σε, βε := (Sε + Aε)χΩε(µε) ,

where

Sε :=
√
Nε |log ε|S + Ŝε − K̃σε

ε +Qε ,(68)

Aε := NεA+ Âε − K̃ηε
ε +Rε .(69)

By definition and (51), (62), (64), it is immediate to check that

CurlSε = σ̂εε , CurlAε = η̂εε in Ω .

Recalling that µε = ηε + σε, we deduce that

Curl βε = η̂εε + σ̂εε = µ̂εε in Ω , Curl βε Ωε(µε) = 0.

Moreover, the circulation condition
∫
∂Bε(x)

βε · t ds = µε(x) is satisfied for every point
x ∈ suppµε. Hence βε ∈ ASε(µε).

In order for (µε, βε) to be the desired recovery sequence, we need to prove that

βsym
ε√

Nε| log ε|
⇀ S weakly in L2(Ω;M2×2) ,(70)

βskew
ε

Nε

⇀ A weakly in L2(Ω;M2×2) ,(71)

lim
ε→0

1

Nε| log ε|

∫
Ω

W (βε) dx =

∫
Ω

(W (S) + ϕ(ξ)) dx .(72)

In view of (65)-(69), in order to prove (70), (71) we have to show that

Âε√
Nε |log ε|

⇀ 0 in L2(Ω;M2×2) ,(73)

Ŝε√
Nε |log ε|

,
K̃σε
ε√

Nε |log ε|
,

K̃ηε
ε√

Nε |log ε|
→ 0 in L2(Ω;M2×2) .(74)
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We have

(75)

∫
Ωρε (µε)

|Âε|2

Nε| log ε|
dx =

1

Nε| log ε|

Mε∑
i=1

∫
Brε (xε,i)\Bρε (xε,i)

|K̂ξε,i
ε,i |2 dx

≤ C

Nε| log ε|

Mε∑
i=1

∫
Brε (xε,i)\Bρε (xε,i)

|x− xε,i|−2 dx

≤ C
Mε(log rε − log ρε)

Nε| log ε|
≤ C

log rε − log ρε
| log ε|

→ 0 ,

as ε→ 0, where the last inequality follows from (56). Moreover, by (75), (53), (60), (59),
and the definition of µkε given by Lemma 4.5, we have

(76)

lim
ε→0

1

Nε| log ε|

∫
Ω

W (Âε) dx = lim
ε→0

1

Nε| log ε|

∫
Ω\Ωρε (µε)

W (Âε) dx

= lim
ε→0

1

Nε

Mε∑
i=1

ψ(ξε,i)(1 + o(ε)) = lim
ε→0

1

Nε

M∑
k=1

|ηkε |(Ω)ψ(ξk)(1 + o(ε))

= |Ω|
M∑
k=1

λkψ(ξk) =

∫
Ω

ϕ(ξ) dx .

From (14), (75), (76) we conclude that Âε/
√
Nε| log ε| is bounded in L2(Ω;M2×2) and its

energy is concentrated in the hard core region. We easily deduce that (73) holds true.
We pass to the proof of (74). One can readily see that∫

Ω

|K̃σε
ε |2

Nε| log ε|
dx ≤ C

Nε| log ε|

Mε∑
i=1

1

r4
ε

∫
Brε (xε,i)

|x− xε,i|2 dx = C
Mε

Nε| log ε|
→ 0

as ε→ 0. The statement for K̃ηε
ε can be proved in a similar way. Finally, since Hε � Nε

by (56), we have ∫
Ω

|Ŝε|2

Nε| log ε|
dx ≤ C

Hε(log rε − log ε)

Nε| log ε|
→ 0

which concludes the proof of (74)
We are left to prove (72). By the symmetries of the elasticity tensor C and definition

(67), we have

(77)

W (βε)

Nε| log ε|
= W

(
S +

Ŝε√
Nε| log ε|

− K̃σε
ε√

Nε| log ε|
+

Qε√
Nε| log ε|

+

+
Âε√

Nε| log ε|
− K̃ηε

ε√
Nε| log ε|

+
Rε√

Nε| log ε|

)
.
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By (74) and (65), we get

lim
ε→0

1

Nε| log ε|

∫
Ω

W (βε) dx = lim
ε→0

∫
Ω

W

(
S +

Âε√
Nε| log ε|

)
dx .

By recalling (73) and (76), (73), by Hölder inequality we deduce (72).

Step 2. The case µ =
∑L

l=1
χ

Ωlξl dx and S ∈ C1(Ω;M2×2
sym).

In this step we assume that S ∈ C1(Ω;M2×2
sym) and A ∈ L2(Ω;M2×2

skew) with µ := CurlA

locally constant, i.e., µ =
∑L

l=1
χ

Ωlξl dx, with ξl ∈ R2 and with Ωl ⊂ Ω that are Lip-
schitz pairwise disjoint domains such that |Ω \ ∪Ll=1Ωl| = 0. We will construct the re-
covery sequence by combining the previous step with classical localisation arguments of
Γ-convergence.

Let Sl := S Ωl, Al := A Ωl, µl := µ Ωl = ξl dx. Denote by (µl,ε, βl,ε) the
recovery sequence for (µl, Sl, Al) given by Step 1. We can now define µε ∈M(Ω;R2) and
βε : Ω→M2×2 as

βε :=
L∑
l=1

χ
Ωl βl,ε , µε :=

L∑
l=1

µl,ε .

By construction µε ∈ ADε(Ω) and βε satisfies the circulation condition on every ∂Bε(xε),
with xε ∈ suppµε. Also notice that on each set Ωl belonging to the partition of Ω, we
have

Curl βε Ωl(µε) = 0 .

However Curl βε could concentrate on the intersection region between two elements of the
partition {Ωl}Ll=1. To overcome this problem, it is sufficient to notice that by construction∥∥∥∥∥Curl βε Ωε(µε)√

Nε| log ε|

∥∥∥∥∥
H−1(Ω;R2)

≤
L∑
l=1

∥∥∥∥∥βl,ε −
√
Nε| log ε|S −NεA√
Nε| log ε|

· t

∥∥∥∥∥
H−1/2(∂Ωl;R2)

=
L∑
l=1

∥∥∥∥∥ Ql,ε +Rl,ε√
Nε| log ε|

· t

∥∥∥∥∥
H−1/2(∂Ωl;R2)

,

where Ql,ε, Rl,ε are defined according to (63), with Ω replaced by Ωl. Therefore by (66),

Curl βε Ωε(µε)√
Nε| log ε|

→ 0 strongly in H−1(Ω;R2) .

Hence we can add a vanishing perturbation to βε (on the scale
√
Nε| log ε|), in order to

obtain the desired recovery sequence in ASε(µε).
Step 3. The general case.

Let (µ, S,A) be in the domain of the Γ-limit F . In view of Step 2 and by standard density
arguments of Γ-convergence, it is sufficient to find sequences (µn, Sn, An) such that µn is
locally constant as in Step 2,

(78) Sn ∈ C1(Ω;M2×2
sym) , An ∈ L2(Ω;M2×2

skew) , with CurlAn = µn,
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and such that

(79) Sn → S, An → A in L2(Ω;M2×2) , µn
∗
⇀ µ in M(Ω;R2) , |µn|(Ω)→ |µ|(Ω),

where S and A are the symmetric and antisymmetric part of β, respectively. In fact , we
have to show that (79) implies

(80) lim
n→∞

F(µn, βn) = F(µ, S,A) .

Since Sn → S strongly in L2(Ω;M2×2), then

lim
n→∞

∫
Ω

W (Sn) dx =

∫
Ω

W (S) dx .

Also, |µn|(Ω)→ |µ|(Ω) implies

lim
n→∞

∫
Ω

ϕ

(
dµn
d|µn|

)
d|µn| =

∫
Ω

ϕ

(
dµ

d|µ|

)
d|µ| ,

by Reshetnyak’s Theorem ([1, Theorem 2.39])), so that (80) is proved.
Let us then proceed to the construction of the sequences Sn, An and µn satisfying

properties (78)-(79). Clearly, we can approximate S in L2(Ω;M2×2
sym) with a sequence

Sn ∈ C1(Ω;M2×2
sym). Then, by Remark (4.3), writing A as in (35) we have that u is in

BV (Ω) ∩ L2(Ω). Therefore, by standard density results in BV we can find a sequence of
piecewise affine functions un with

un → u in L2(Ω), Dun
∗
⇀ Du = µ, |Dun|(Ω)→ |Du|(Ω) = |µ|(Ω).

Setting µn := Dun and An as in (35) with u replaced by un, it is readily seen that µn is
piecewise constant, and that (78) and (79) holds true, and this concludes the proof of the
Γ-limsup inequality. �

Remark 4.6. Recalling (66) and inspecting the density arguments in Step 3 above, we
notice that we can provide a recovery sequence βε for the limit strain β = S + A such
that

(81)
βε
Nε

· t→ A · t in H−1/2(∂Ω;R2) ∩ L1(∂Ω;R2).

5. Relaxed Dirichlet-type boundary conditions

The aim of this section is to add a Dirichlet type boundary condition to the Γ-
convergence statement of Theorem 4.2. Fix a boundary condition

(82) gA ∈ L2(Ω;M2×2
skew) : Curl gA ∈ H−1(Ω;R2) ∩M(Ω;R2).

The rescaled energy functionals FgAε : M(Ω;R2)×L2(Ω;M2×2)→ R, taking into account
the boundary conditions, are defined by

(83) FgAε (µ, β) :=
1

Nε| log ε|
Eε(µ, β) +

∫
∂Ω

ϕ
((
gA −

β

Nε

)
· t
)
ds
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if µ ∈ ADε(Ω) , β ∈ ASε(µ), and +∞ otherwise, while the candidate Γ-limit is the
functional

(84) FgA : (H−1(Ω;R2) ∩M(Ω;R2))× L2(Ω;M2×2
sym)× L2(Ω;M2×2

skew)→ R ,

with

(85) FgA(µ, S,A) :=

∫
Ω

W (S) dx+

∫
Ω

ϕ

(
dµ

d|µ|

)
d|µ|+

∫
∂Ω

ϕ((gA − A) · t) ds ,

if CurlA = µ and FgA(µ, S,A) := ∞ otherwise. Here ds coincides with H1 ∂Ω. The
boundary term appearing in the definition of FgAε and FgA are intended in the sense of
traces of BV functions (see [1]). Indeed, since A and gA are antisymmetric, there exist
u, a ∈ L2(Ω) such that

A =

(
0 u
−u 0

)
, gA =

(
0 a
−a 0

)
,

Notice that CurlA = Du and Curl gA = Da in the sense of distributions. Therefore,
as already observed in Remark 4.3, conditions CurlA,Curl gA ∈ M(Ω;R2) imply that
a, u ∈ BV (Ω). Hence a and u admit traces on ∂Ω that belong to L1(∂Ω;R2). By noting
that ∫

∂Ω

ϕ((gA − A) · t) ds =

∫
∂Ω

ϕ((u− a)ν) ds ,

where ν is the inner normal to Ω, we conclude that the definition of FgA is well-posed, as
well as the definition of FgAε .

We are now ready to state the Γ-convergence result with boundary conditions.

Theorem 5.1. The following Γ-convergence statement holds with respect to the conver-
gence of Definition 4.1.

(i) (Compactness) Let εn → 0 and assume that (µn, βn) ∈ M(Ω;R2) × L2(Ω;M2×2)
is such that supnFgAεn (µn, βn) ≤ E, for some positive constant E. Then there
exists (µ, S,A) ∈ (H−1(Ω;R2) ∩ M(Ω;R2)) × L2(Ω;M2×2

sym) × L2(Ω;M2×2
skew) such

that (µn, βn) converges to (µ, S,A) in the sense of Definition 4.1. Moreover µ ∈
H−1(Ω;R2) and CurlA = µ.

(ii) (Γ-convergence) The energy functionals FgAε defined in (83) Γ-converge with re-
spect to the convergence of Definition 4.1 to the functional FgA defined in (85).
Specifically, for every

(µ, S,A) ∈ (M(Ω;R2) ∩ H−1(Ω;R2))× L2(Ω;M2×2
sym)× L2(Ω;M2×2

skew)

such that CurlA = µ, we have:
• (Γ-liminf inequality) for every sequence (µε, βε) ∈ M(Ω;R2) × L2(Ω;M2×2)
converging to (µ, S,A) in the sense of Definition 4.1, we have

FgA(µ, S,A) ≤ lim inf
ε→0

FgAε (µε, βε) .

• (Γ-limsup inequality) there exists a recovery sequence (µε, βε) ∈ M(Ω;R2)×
L2(Ω;M2×2) such that (µε, βε) converges to (µ, S,A) in the sense of Definition 4.1,
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and
lim sup
ε→0

FgAε (µε, βε) ≤ FgA(µ, S,A) .

The compactness statement readily follows from the compactness of Theorem 4.2, since
FgAε (µ, β) ≥ Fε(µ, β). Let us proceed with the proof of the Γ-convergence result.

Proof of Γ-lim sup inequality of Theorem 5.1. Let (µ, S,A) be given in the domain of the
Γ-limit FgA . We will construct a recovery sequence in two steps, relying on Theorem 4.2.

Step 1. Approximation of the boundary values.

For δ > 0 fixed, set ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}, so that ωδ ⊂⊂ Ω, and assume with-
out loss of generality that wδ is Lipschitz. Define Sδ ∈ L2(Ω;M2×2

sym) and Aδ ∈ L2(Ω;M2×2
skew)

as

(86) Aδ :=

{
A in ωδ ,

gA in Ω \ ωδ ,
Sδ :=

{
S in ωδ ,

0 in Ω \ ωδ .

Further, let µδ ∈M(Ω;R2) be such that

(87) µδ := µ ωδ + Curl gA (Ω \ ωδ) + (gA − A) · t H1 ∂ωδ .

Notice that

(88) CurlAδ = µδ and µδ ∈ H−1(Ω;R2) ,

therefore (µδ, Sδ, Aδ) belongs to the domain of the functional F . Also note that

(89)
Sδ → S , Aδ → A in L2(Ω;M2×2) ,

µδ
∗
⇀ µ in M(Ω;R2) , |µδ|(Ω)→ |µ|(Ω) +

∫
∂Ω

|(gA − A) · t| ds ,

as δ → 0. Therefore, by Reshetnyak’s Theorem (see [1, Theorem 2.39]), we have

(90) lim
δ→0
F(µδ, Sδ, Aδ) = FgA(µ, S,A) .

It will now be sufficient to construct dislocation measures µδ,ε and strains βδ,ε such that
(µδ,ε, βδ,ε) converges to (µδ, Sδ, Aδ) in the sense of Definition 4.1 and that

(91) lim
ε→0
FgAε (µδ,ε, βδ,ε) = F(µδ, Sδ, Aδ) .

Indeed, by taking a diagonal sequence (µδε,ε, βδε,ε) and using (89), (90), the thesis will
follow.

Step 2. Recovery sequence for strains satisfying the boundary condition.

Let us now proceed to construct the sequence (µgεδ,ε, β
gε
δ,ε) as stated in the previous step.

From Theorem 4.2, there exist a sequence (µδ,ε, βδ,ε) converging to (µ, S,A) in the sense
of Definition 4.1, and such that

(92) lim
ε→0
Fε(µδ,ε, βδ,ε) = F(µ, S,A) .

Moreover (see Remark 4.6), we can assume that βε satisfies (81), from which it easily
follows (92).
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�

Proof of Γ-lim inf inequality of Theorem 5.1. Let (µ, S,A) be in the domain of the Γ-limit
FgA . Assume that (µε, βε) converges to (µ, S,A) in the sense of Definition 4.1. By
combining an extension argument with the Γ-lim inf inequality in Theorem 4.2 we will
show that

(93) FgA(µ, S,A) ≤ lim inf
ε→0

FgAε (µε, βε) .

Fix δ > 0 and define Uδ := {x ∈ R2 : dist(x,Ω) < δ}. By standard reflexion arguments
one can extend gA to g̃A ∈ L2(Uδ;M2×2

skew), in such a way that µ̃A := Curl g̃A is a measure
on Uδ satisfying |µ̃A|(∂Ω) = 0. Consider now the functions β̃ε defined as in (41) (with εn
replaced by ε), and set

β̂ε :=

{
β̃ε in Ω ,

Nεg̃A in Uδ \ Ω ,
β̂ :=

{
A in Ω ,

g̃A in Uδ \ Ω .

By construction we have β̂ε
Nε

⇀ β̂ in L1(Uδ), so that

µ̂ε :=
Curl β̂ε
Nε

∗
⇀ µ+ ((gA − A) · t)H1 ∂Ω + Curl g̃A (Uδ \ Ω)

Recalling (42), (46) and (47), we conclude

(94) lim inf
ε→0

FgAε (µε, βε) ≥ lim inf
ε→0

1√
Nε| log ε|

∫
Ω

W (βsym
ε ) dx

+ lim inf
ε→0

1

Nε

∫
Ω

ϕ

(
dµε
d|µε|

)
d|µε|+

∫
∂Ω

ϕ
((
gA −

βε
Nε

)
· t
)
ds

≥
∫

Ω

W (S) dx+ lim inf
ε→0

∫
Uδ

ϕ

(
dµ̂ε
d|µ̂ε|

)
d|µ̂ε| −

∫
Uδ\Ω

ϕ

(
dCurl g̃A
d|Curl g̃A|

)
d|Curl g̃A|

≥
∫

Ω

W (S) dx+

∫
Ω

ϕ

(
dµ

d|µ|

)
d|µ|+

∫
∂Ω

ϕ((gA − A) · t) ds = FgAε (µ, S,A).

�

6. Linearised polycrystals as minimisers of the Γ-limit

Let Ω ⊂ R2 be a bounded domain with Lipschitz continuous boundary. Let k ∈ N be
fixed and let {Ui}ki=1 be a Caccioppoli partition of Ω (see [1, Section 4.4]). Moreover fix
m1, . . . ,mk ∈ R+ with mi < mi+1, and define the piecewise constant function a ∈ BV (Ω)
as

(95) a :=
k∑
i=1

mi
χ
Ui .
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In particular, (95) implies that a ∈ L∞(Ω) and Da ∈ M(Ω;R2). We can now define the
piecewise constant boundary condition gA ∈ L∞(Ω;M2×2

skew) as

(96) gA :=

(
0 a
−a 0

)
.

Notice that gA ∈ L2(Ω;M2×2
skew) and Curl gA = Da, therefore Curl gA ∈ H−1(Ω;R2) ∩

M(Ω;R2). In this way gA is an admissible boundary condition for FgA , as required in
(82).

We wish to minimise the Γ-limit (85) with boundary condition gA prescribed by (95)-
(96). Since the elastic energy and plastic energy are decoupled in FgA , and there is no
boundary condition fixed on the elastic part of the strain S, we have

inf FgA(CurlA, S,A) = inf FgA(CurlA, 0, A) .

Therefore it is sufficient to study

(97)

inf

{∫
Ω

ϕ(CurlA) +

∫
∂Ω

ϕ((gA − A) · t) ds : A ∈ L2(Ω;M2×2
skew),

CurlA ∈ H−1(Ω;R2) ∩M(Ω;R2)

}
,

where t is the unit tangent to ∂Ω defined as the π/2 counter-clockwise rotation of the
outer normal ν to Ω, ϕ : R2 → [0,∞) is the density defined in (28), and

(98)
∫

Ω

ϕ(µ) :=

∫
Ω

ϕ

(
dµ

d|µ|

)
d|µ|

is the anisotropic ϕ-total variation for a measure µ ∈ M(Ω;R2). Note that (98) is well-
posed, since ϕ satisfies the properties given in Proposition 3.4.

For A ∈ L2(Ω;M2×2
skew), we have that

(99) A =

(
0 u
−u 0

)
,

for some u ∈ L2(Ω). Moreover CurlA = Du, therefore condition CurlA ∈ M(Ω;R2)
implies u ∈ BV (Ω). Also notice that∫

∂Ω

ϕ((gA − A) · t) ds =

∫
∂Ω

ϕ((u− a)ν) ds ,

where a is the piecewise constant function (95). We claim that (97) is equivalent to the
following minimisation problem

(100) inf

{∫
Ω

ϕ(Du) +

∫
∂Ω

ϕ((u− a)ν) ds : u ∈ BV (Ω)

}
.

Indeed, we already showed that if A is a competitor for (97), then the function u, given
by (99), belongs to BV (Ω), and it is a competitor for (100). Conversely, assume that
u ∈ BV (Ω) and define A through (99). Since u ∈ BV (Ω), then CurlA = Du ∈M(Ω;R2).
Moreover, recall that the immersion BV (Ω) ↪→ L2(Ω) is continuous, therefore u ∈ L2(Ω),
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which implies A ∈ L2(Ω;M2×2), so that CurlA ∈ H−1(Ω;R2). This shows that (97) and
(100) are equivalent.

The main result of this section is that, given the piecewise constant boundary condition
a defined in (95), there exists a piecewise constant minimiser ũ to (100). In our model
the function ũ corresponds to a linearised polycrystal.

Theorem 6.1. There exists a locally constant minimiser ũ ∈ BV (Ω) to (100), i.e.,

ũ =
k∑
i=1

mi
χ

Ωi ,

where {Ωi}ki=1 is a Caccioppoli partition of Ω, and the values mi are the ones of (95).

The proof of this theorem relies on the anisotropic coarea formula. For the readers
convenience we briefly recall it here. For E ⊂ Ω of finite perimeter, the anisotropic
ϕ-perimeter of E in Ω is defined as

Perϕ(E,Ω) :=

∫
Ω

ϕ(DχE) .

Since ϕ is convex and positively 1-homogenous, the anisotropic coarea formula holds true
for every u ∈ BV (Ω):

(101)
∫

Ω

ϕ(Du) =

∫ ∞
−∞

Perϕ(Et,Ω) dt ,

where Et is the level set Et := {x ∈ Ω : u(x) > t}, defined for every t ∈ R.
Proof of Theorem 6.1.
Step 1. Equivalent minimisation problem.
We start by rewriting (100) as a boundary value problem in BV . Let Ω′ := {x ∈
R2 : dist(x,Ω) < 1}, so that Ω ⊂⊂ Ω′. Consider a piecewise constant extension ã ∈
BV (Ω′) of the function a ∈ BV (Ω) defined in (95), that is,

ã =
k∑
i=1

mi
χ
U ′i
,

where {U ′i}ki=1 is a Caccioppoli partition of Ω′, agreeing with {Ui}ki=1 on Ω. This is possible
since the extension can be chosen such that |Dã|(∂Ω) = 0, that is, we are not creating
any jump on ∂Ω. Consider the new minimisation problem

(102) I := inf

{∫
Ω′
ϕ(Du) : u ∈ BV (Ω′), u = ã a.e. in Ω′ \ Ω

}
.

Finding a solution to (102) is equivalent to finding a solution to (100). Indeed, if u ∈
BV (Ω′) is such that u = ã in Ω′ \ Ω then

(103) Du = Du Ω + (uΩ − aΩ) νH1 ∂Ω +Dã (Ω′ \ Ω) ,

where uΩ, aΩ ∈ L1(∂Ω) are the traces of u and a on ∂Ω. Notice that we can use aΩ in
(103) because the extension ã is such that |Dã|(∂Ω) = 0, hence we have ã+

∂Ω = ã−∂Ω = aΩ

Hn−1-a.e. in ∂Ω.
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Step 2. Existence of a minimiser for (102).
Let uj ∈ BV (Ω′) be a minimising sequence for (102), that is uj = ã a.e. on Ω′ \ Ω and

(104) lim
j→∞

∫
Ω′
ϕ(Duj) = I .

By standard truncation arguments we can assume that ‖uj‖∞ ≤ maxi |mi|. In particular,
from (104), we deduce that supj ‖uj‖BV (Ω′) < ∞. By compactness in BV , there exists
ũ ∈ BV (Ω′) such that, up to subsequences, uj → ũ in L1(Ω′) and Duj

∗
⇀ Dũ weakly in

M(Ω′;R2). Since uj = ã a.e. on Ω′ \ Ω, the strong convergence in L1 implies that (up to
subsequences) uj → ũ a.e. in Ω′, so that ũ = ã a.e. in Ω′ \ Ω. From Reshetnyak’s lower
semicontinuity Theorem we conclude that∫

Ω′
ϕ(Dũ) ≤ lim inf

j→∞

∫
Ω′
ϕ(Duj) = I ,

so that ũ is a minimiser for (102).
Step 3. Existence of a piecewise constant minimiser for (100).
Let u be a minimiser for (102). By a standard truncation argument we can assume that
m1 ≤ u ≤ mk a.e. on Ω′. Formula (101) then reads

(105)
∫

Ω′
ϕ(Du) =

k−1∑
i=1

∫ mi+1

mi

Perϕ(Et,Ω
′) dt ,

where Et := {x ∈ Ω′ : u(x) > t} for t ∈ R. By the mean value theorem, for every
i = 1, . . . , k − 1, there exists ti ∈ (mi,mi+1) such that

(106)
∫ mi+1

mi

Perϕ(Et,Ω
′) dt ≥ (mi+1 −mi) Perϕ(Eti ,Ω

′) .

We define the piecewise constant function

ũ(x) := mi if x ∈ Eti−1
r Emi ,

for i = 1, . . . , k, where we have set Et0 := Ω′ and we notice that Emk = ∅ set theoretically.
Since the sets Et have finite perimeter in Ω′, we have that ũ ∈ BV (Ω′). Moreover, by
construction, ũ = ã on Ω′ \ Ω, so that ũ is a piecewise constant competitor for (102). It
is immediate to compute that

Dũ =
k−1∑
i=1

(mi+1 −mi) νEti H
1 ∂∗Eti ,

so that

(107)

∫
Ω′
ϕ(Dũ) =

k−1∑
i=1

(mi+1 −mi)

∫
∂∗Eti

ϕ(νEti ) dH
1

=
k−1∑
i=1

(mi+1 −mi) Perϕ(Eti ,Ω
′) .
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By minimality of u and (105)-(107) we conclude that ũ is a locally constant minimiser for
(102). Hence ũ|Ω is a locally constant minimiser for (100). �

7. Conclusions and perspectives

The aim of this paper is to describe polycrystalline structures from a variational point
of view. Grain boundaries and the corresponding grain orientations are not introduced
as internal variables of the energy, but they spontaneously arise as a result of energy
minimisation, under suitable boundary conditions.

We work under the hypothesis of linear planar elasticity as in [10], with the reference
configuration Ω ⊂ R2 representing a section of an infinite cylindrical crystal. The elastic
energy functional depends on the lattice spacing ε of the crystal and we allow Nε edge
dislocations in the reference configuration, with Nε → ∞ as ε → 0. Each dislocation
contributes by a factor | log ε| to the elastic energy, so that the natural rescaling for the
energy functional is Nε| log ε|. We work in the energy regime

1

ε
� Nε � | log ε| ,

which accounts for grain boundaries that are mutually rotated by an infinitesimal angle
θ ≈ 0.

After rescaling the elastic energy of such system of dislocations and sending the lattice
spacing ε to zero, in Theorem 4.2 we derive by Γ-convergence a macroscopic energy
functional of the form

F(µ, S,A) =

∫
Ω

CS : S dx+

∫
Ω

ϕ

(
dµ

d|µ|

)
d|µ| ,

where C is the linear elasticity tensor and ϕ is a positively 1-homogeneous density func-
tion, defined through a suitable cell-problem. The elastic energy is computed on S, that
represents the elastic part of the macroscopic strain. The plastic energy depends only on
the dislocation measure µ, which is coupled to the plastic part A of the macroscopic strain
through the relation µ = CurlA. As a consequence, µ is a curl-free vector Radon measure.
The contributions of elastic energy and plastic energy are decoupled in the Γ-limit F , due
to the fact that S and A live on different scales:

√
Nε| log ε| and Nε, respectively.

Indeed this is the main difference with the energy regime Nε ≈ | log ε| studied in [10],
where S and A live on the same scale | log ε|. In [10] the authors derive a macroscopic
energy that has the same structure as F , but in which the contributions of elastic energy
and plastic energy are coupled by the relation µ = Curl β, where β = S + A represents
the whole macroscopic strain.

Once the Γ-limit F is obtained, we impose a piecewise constant Dirichlet boundary
condition on A, and minimise F under such constraint. In Theorem 6.1 we prove that F
admits piecewise constant minimisers, of the form

Â =
k∑
i=1

Ai χΩi ,
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where the Ai’s are antisymmetric matrices and {Ωi} is a Caccioppoli partition of Ω.
We interpret Â as a linearised polycrystal, with Ωi representing a single grain having
orientation Ai. This interpretation is motivated by the fact that antisymmetric matrices
can be considered as infinitesimal rotations. The (linear) energy corresponding to Â can
be seen as a linearised version of the Read-Shockley formula for small angle tilt grain
boundaries, i.e.,

(108) E = E0 θ(1 + | log θ|) ,

where E0 > 0 is a constant depending only on the material and θ is the angle formed
by two grains. Indeed, the Read-Shockley formula is obtained in [17] by computing the
elastic energy for an evenly spaced array of 1/ε dislocations at the grain boundaries.
Our energy regime accounts only for Nε � 1/ε dislocations, therefore we do not have
enough dislocations to create true rotations between grains. Nevertheless we still observe
polycrystalline structures, but the rotation angles between grains are infinitesimal.

Recently Lauteri and Luckhaus [14] proved some compactness properties and energy
bounds in agreement with the Read-Shockley formula. It would be desirable to understand
if our Γ-limit can be deduced from their model as the angle θ between grains tends to zero.
Moreover, it would be interesting to push our Γ-convergence analysis to energy regimes
of order | log ε|

ε
, corresponding to Nε ≈ 1

ε
. In this regime true rotations should emerge and

the Read-Shockley formula could be possibly derived by Γ-convergence. At present, our
technical assumption on well separation between dislocations is not compatible with such
an energy regime.

Another natural question is whether the minimiser Â is unique, or at least if all the
minimisers are piece-wise constant. We suspect that, by enforcing piece-wise constant
boundary conditions, generically all minimisers are piece-wise constant.

A further problem is to deduce our Γ-limit F by starting from a nonlinear energy
computed on small deformations v = x + εu, in the energy regime Nε � | log ε|. A
similar analysis was already performed in [15] (see also [18, 11]), where the authors derive
the Γ-limit obtained in [10] starting from a nonlinear energy, under the assumption that
Nε ≈ | log ε|. It seems possible to adapt the techniques used in [15] to our case. This
problem is currently under investigation by the authors.

Finally, a further step forward in our analysis is the following: in this paper the forma-
tion of polycrystalline structures is driven by relaxed boundary conditions, as usual for
minimisation problems in BV spacess. It would be interesting to deal with true boundary
conditions, which we expect to lead to the same Γ-limit F gA defined in (84). Moreover, it
would be interesting to replace boundary conditions by forcing terms. For instance, bulk
forces in competition with surface energies at grain boundaries should result in polycrys-
tals exhibiting some intrinsic length scale. This is the case of semi-coherent interfaces,
separated by periodic nets of dislocations (see [8]).
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