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Abstract

Adaptive Multilevel Splitting (AMS for short) is a generic Monte Carlo
method for Markov processes that simulates rare events and estimates
associated probabilities. Despite its practical efficiency, there are al-
most no theoretical results on the convergence of this algorithm. The
purpose of this paper is to prove both consistency and asymptotic
normality results in a general setting. This is done by associating
to the original Markov process a level-indexed process, also called a
stochastic wave, and by showing that AMS can then be seen as a
Fleming-Viot type particle system. This being done, we can finally
apply general results on Fleming-Viot particle systems that we have
recently obtained.

Index Terms — Sequential Monte Carlo, Fleming-Viot particle sys-
tems, Rare events simulation
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1 Introduction

In this article, we prove asymptotic results for the Adaptive Multilevel Split-
ting (AMS) algorithm used to estimate rares events or to simulate condi-
tionally on rare events. This method belongs to the family of importance
splitting algorithms, a set of techniques that date back to Kahn and Har-
ris [17] and Rosenbluth and Rosenbluth [23] to analyze particle transmission
energies and molecular polymer conformations. The adaptive version of this
method was proposed in [8]. Here we consider the last particle version of this
algorithm, introduced in [14] and presented in [9] in the context of molec-
ular dynamics. Recently, this algorithm has been successfully applied to
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real world chemical computations in [24] as well as to Monte Carlo particle
transport problems [19].

To our knowledge, there are almost no theoretical results on the convergence
of this algorithm, with the notable exception of the idealized case [1, 3, 4].
Note however that estimators of unnormalized averages are known to be
unbiased in wide generality (see [2]). Under regularity assumptions discussed
below, we give in the present paper an L2-estimate as well as a Central Limit
Theorem (CLT). In both cases, we consider the real algorithm, and not the
idealized case. We also discuss the asymptotic variance given by the CLT.

The general framework is as follows. Given a stopped Markov process (Ys)s>0

in a space E and a function ξ : E → R such that ξ(Y0) = 0 almost surely, the
goal is to compute the probability that sups ξ(Ys) > 1 (the rare event), and
the distribution of Y given that sups ξ(Ys) > 1. In this context, AMS is an
interacting particle system consisting of N particles/trajectories (Y n)n=1...N

simulated according to the distribution of the underlying process Y . At each
iteration, the particle with minimal score with respect to ξ is killed and an-
other particle is cloned, so that the number of particles/trajectories remains
constant and equal to N . The algorithm is stopped as soon as all particles
have reached the level set {ξ > 1}. Then the probability is estimated through
the number of iterations, and the final empirical distribution estimates the
law of Y conditioned by the event sups ξ(Ys) > 1.

The CLT that we obtain for this algorithm applies in the large population
limit, that is, when N goes to infinity. This CLT heavily relies on a CLT for
Fleming-Viot particle systems that we have recently obtained [6]. The key
point here is to remark that the AMS algorithm can be recast as a Fleming-
Viot particle system by introducing a level-indexed process, also called a
stochastic wave in [11], associated to the pair (Y, ξ). The latter is obtained
through a discontinuous time change, where the levels induced by ξ play the
role of a new time parameter, and the associated particle state is given by
the first entrance in successive level sets.

The CLT is obtained for diffusions under three main assumptions (referred to
as Assumptions 1, 2 and 3) on the pair (Y, ξ). These assumptions include the
case where Y is a diffusion in R

d satisfying a stochastic differential equation
(SDE) of the form

dYs = b(Ys) ds+ σ(Ys) dWs, (1.1)

with smooth coefficients (b, σ), and ξ is a smooth function with compact
level sets satisfying everywhere some non-degeneracy condition of the form
(∇ξ)Tσ 6= 0.
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{ξ = t}

A

{ξ = 0} {ξ = 1}

Figure 1: The metastable state A and the reaction coordinate ξ(y1, y2) = y1.

In particular, as explained in [24], this algorithm can be applied to simu-
late so-called reactive trajectories in real-world chemical applications. To fix
ideas, consider an overdamped system solution to the SDE

dYs = −∇V (Ys) ds +
√
2β−1 dWs,

where V is the interaction energy of the system, and β−1 is the temperature.
Then, let A ⊂ {ξ < 0} denote a “metastable” state, that is a thin energy
level set around a local minimum of V . In this context, ξ is called a “reaction
coordinate” and parametrizes a chemical reaction starting from an initial
configuration modeled by A up to a final configuration defined by {ξ > 1} (see
Figure 1). Typically, the system undergoes a large number of quick excursions
between the disjoint sets A and {ξ = 0}. The latter may be simulated on the
one hand, defining the initial distribution η0 of Y0 on {ξ = 0} as an associated
stationary distribution. Then, one needs to simulate the reactive trajectories
defined as L{(Ys)s>0|S1 < SA}, which represents the rare event of interest.
In particular, the associated mean time E [S1|S1 < SA] and the probability
P(S1 < SA) are crucial for the estimation of the underlying chemical kinetics.
It turns out that AMS is particularly efficient to estimate such quantities.
The interested reader can find details and simulations in [24].

Reformulating the AMS algorithm as a Fleming-Viot particle system and
then applying the CLT for Fleming-Viot particle systems of [6] is in fact
a quite generic method that may be applied to other types of underlying
processes Y , for instance to diffusions with degenerate condition (∇ξ)Tσ = 0,
or to Piecewise Deterministic Markov Processes. However, in these cases,
defining the associated level-indexed process and checking the assumptions
of the CLT for the Fleming-Viot particle system requires extensive, specific
analysis that is left for future work.

The paper is organized as follows. In Section 2, we introduce the AMS
algorithm and state the main result of the article, namely Theorem 2.7.
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As mentioned before, the assumptions for the latter are illustrated on the
diffusive case. In Section 3, we reformulate the AMS algorithm as a Fleming-
Viot particle system built from a so-called level-indexed process. Finally,
applying [6], this allows us to establish the desired result. Most of the proofs
and technical results are gathered in the appendices.

2 Setting, algorithm, and main result

2.1 Setting

Let E denote a Polish state space. If ξ : E → R is a measurable function
and I a subset of R, we denote

{ξ ∈ I} = ξ−1(I) = {y ∈ E, ξ(y) ∈ I} .

Besides, if µ is a probability distribution, Y a random variable with law µ,
and ϕ : E → R a test function, we write

Vµ(ϕ) := V(ϕ(Y )) = E[ϕ(Y )2]− E[ϕ(Y )]2 = µ(ϕ2)− µ(ϕ)2.

Let (Ys)s>0 denote a time homogeneous Markov process with continuous tra-
jectories in E that may be defined from any initial condition y0 ∈ E. We
also assume that the mapping ξ : E → R, called a level function, is contin-
uous. In what follows, we suppose for simplicity that the law η0 := L(Y0) is
supported by the level set {ξ = 0}, meaning that

η0(ξ = 0) = 1. (2.1)

For each t > 0, we denote the first entrance time in levels strictly greater
than t by

St := inf {s > 0, ξ(Ys) > t} ∈ [0,+∞].

Note that by continuity of ξ and Y , for all t > 0 with St < +∞, we have

ξ(YSt
) = t. (2.2)

Let A denote a Borel set in E. By convention, in all what follows, the process
(Ys)s>0 is stopped at the random time S1 ∧ SA where

SA := inf {s > 0, Ys ∈ A} ∈ [0,+∞].

Assuming that
p1 := P(S1 < SA) > 0,
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the goal of the algorithm is to estimate p1, as well as the conditional distri-
bution L(YS1|S1 < SA).

Specific algorithms have been developed in order to efficiently simulate such
events, especially when they are rare. The upcoming section recalls the
last particle version of Adaptive Multilevel Splitting algorithm as introduced
in [9]. The main goal of this paper is to prove the consistency and the
asymptotic normality of this algorithm.

For simplicity, we will assume that almost surely

S1 ∧ SA < +∞, (2.3)

which implies that the particles trajectories defined in the AMS algorithm
are all defined on finite time intervals. While removing or modifying con-
dition (2.1) and especially condition (2.2) requires substantial changes in
the definition of the level-indexed process in Section 3, the condition (2.3)
is merely technical and can be simply removed up to dealing with infinite
length trajectories (see Section E).

2.2 Adaptive Multilevel Splitting

From now on, the integer N denotes the number of trajectories, also called
particles. This sample size will stay unchanged all along the algorithm. Be-
sides, random variables denoted with the superscript n, j, for instance Zn,j,
means that it concerns trajectory with index n at iteration j > 0. Figure 2
illustrates the first two steps of the algorithm in the case where N = 3.

Algorithm 2.1 (Adaptive Multilevel Splitting). We start with a sample of
the initial condition of the process Y , which means that

Y 1,0
0 , . . . , Y N,0

0
i.i.d.∼ η0. (2.4)

From each initial condition Y n,0
0 , we simulate a trajectory (Y n,0

s )s>0. We
recall that the latter is stopped when hitting A or level set {ξ > 1}. Set
τ0 = 0 and then iterate on j > 1:

(i) For 1 6 n 6 N , compute the score of each particle, meaning the supre-
mum of the level ξ along each particle’s trajectory:

sup
06s6Sn,j−1

A
∧Sn,j−1

1

ξ(Y n,j−1
s ).
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Y
n,1
0

{ξ = 0} {ξ = 1}

{ξ = τ2}

A

{ξ = 0} {ξ = 1}

{ξ = τ1}

Y
n,0
0

A

Figure 2: The first two steps of AMS with N = 3 trajectories.

Find the particle with the smallest score:

{
Nj := argminn=1,...,N sup06s6Sn,j−1

A
∧Sn,j−1

1
ξ(Y n,j−1

s )

τj := sup
06s6S

Nj,j−1

A
∧S

Nj,j−1

1

ξ(Y
Nj ,j−1
s )

(2.5)

Under Assumptions 1 and 2 below, a unique particle satisfies (2.5) (see
Proposition 2.5).

(ii) Stop the algorithm if τj = 1.

(iii) for n 6= Nj, set (Y
n,j
s )s>0 = (Y n,j−1

s )s>0.

(iv) Pick an index Mj uniformly at random in {1, . . . , N} \ {Nj}. Replace
the trajectory with index Nj with a resampled version of the trajectory
with index Mj, starting from the hitting time of level τj, that is

• set σj := inf{s > 0, ξ(Y
Mj ,j
s ) > τj} < +∞,

• for s < σj, set Y
Nj ,j
s = Y

Mj ,j
s ,

• for s > σj, simulate a new piece of trajectory (Y
Nj ,j
s )s>σj

according
to the law of the underlying process (Ys)s>0 with initial condition

Y
Mj ,j
σj .

Assumption 2 below will ensure that almost surely, in the last step above,

∀h > 0, sup
s∈[σj ,σj+h]

ξ(Y Nj ,j
s ) > ξ(Y Nj ,j

σj
).

In particular, this implies that the sequence (τj)j>0 is strictly increasing.
Moreover, Assumption 3 below will imply that this algorithm stops after a
finite number of iterations almost surely (see Proposition 2.5).
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{ξ = τJt
}

{ξ = 0} {ξ = 1}

A

{ξ = τ1+Jt
}

{ξ = t}

Xn
t

Figure 3: The entrance points Xn
t of the level set {ξ = t}.

For any t ∈ [0, 1], let us denote Jt the number of branchings of this algorithm
between level 0 and level t, that is

Jt := sup {j, τj 6 t} ,
which by definition satisfies

τJt 6 t < τ1+Jt .

Accordingly, the value of j at the end of the algorithm is J1, and the final
particle system is given by the N trajectories (Y n,J1

s )s>0, 1 6 n 6 N . By
construction, all these trajectories reach the level set {ξ = 1} and are stopped
at this specific time.

Similarly, for a given level t ∈ [0, 1], the particle trajectories after Jt iterations
are given by (Y n,Jt

s )s>0, and the associated entrance times are

Sn
t := inf{s > 0, ξ(Y n,Jt

s ) > t},
with entrance states Y n,Jt

Sn
t

. To lighten the notation and to prepare the def-
inition of the level-indexed process in Section 3, we denote the latter states
(see Figure 3)

Xn
t := Y n,Jt

Sn
t
.

Thus, by (2.2), one has ξ(Xn
t ) = t. Then, for any test function ϕ, we estimate

the law of YSt
given that YSt

< YSA
by the empirical distribution

ηNt (ϕ) :=
1

N

N∑

n=1

ϕ(Y n,Jt
Sn
t

) =
1

N

N∑

n=1

ϕ(Xn
t ).

In the same vein, since exactly one trajectory is resampled at each step of
the algorithm, our estimator for pt = P(YSt

< YSA
) is

pNt :=

(
1− 1

N

)Jt

.
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It was already established in [2] (see also [6] and the discussion in Section 3
of the present article) that pNt × ηNt (ϕ) is in fact an unbiased estimator:

E
[
pNt × ηNt (ϕ)

]
= E [ϕ(YSt

)1St<SA
] .

2.3 Assumptions

In this section, we gather some sufficient conditions to ensure the well-
posedness of the previous algorithm and to obtain the main results of Section
2.4. We illustrate these assumptions in the case of a strong solution of a
Stochastic Differential Equation with smooth coefficients.

Let us begin with some topological and regularity conditions.

Assumption 1 (Feller regularity). E is a locally compact state space, ξ is
continuous, η0(ξ = 0) = 1, A ⊂ {ξ < 0}, and (Ys)s>0 is a Feller diffusion
process, i.e., a Feller process with continuous trajectories.

Remark 2.2. We recall that Feller processes are strong Markov with respect
to their natural filtration denoted

(
FY

s = σ (Ys′, 0 6 s′ 6 s)
)
s>0

, the latter

being necessarily right-continuous (see for example Theorem 2.7 page 169 in
[12]).

For the next assumption, we recall the notation St := inf{s > 0, ξ(Ys) > t}
as well as SB := inf{s > 0, Ys ∈ B} for any set B ⊂ E. Besides, Å and Ā
denote respectively the interior and the closure of the set A.

Assumption 2 (Almost sure strict entrance). For any t ∈ [0, 1] and y ∈ E
such that ξ(y) = t,

Py (St = 0) = 1. (2.6)

In the same way, for all y ∈ {ξ = 0},

Py (SĀ = SÅ) = 1. (2.7)

By the strong Markov property, (2.6) ensures that St, defined as the first
entrance time in levels strictly greater than t, is in fact equal to the hitting
time of level t, that is

St = inf {s > 0, ξ(Ys) = t} .

Besides, since the process Y has continuous trajectories, (2.7) obviously im-
plies that for all y ∈ {0 6 ξ 6 1},

Py (SĀ = SÅ) = 1. (2.8)
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Moreover, we will show in Lemma D.1 that (2.7) and the strong Markov
property imply that the jump times of the càdlàg process t 7→ YSt

have
atomless distributions. This property is indeed required in [6] in order to get
the CLT for Fleming-Viot particle systems.

Let us now define the integral operator

q(ϕ)(y) := Ey [ϕ(YS1)1S1<SA
] , y ∈ {0 6 ξ 6 1} . (2.9)

Denoting Cb({ξ = 1}) the set of continuous and bounded functions on
the level set {ξ = 1}, we will prove in Lemma D.3 that under Assump-
tions 1 and 2, if ϕ ∈ Cb({ξ = 1}), then q(ϕ) is bounded and continuous on
{0 6 ξ 6 1}. The proof is based on a general result given in the appendix,
namely Lemma A.4. The integral operator q will prove crucial in the remain-
der as it will appear in the asymptotic variance of the CLT.

Our next assumption ensures a uniform control on the probabilities of success,
namely Py (S1 < SA), with respect to the initial condition.

Assumption 3 (Uniform positive probability of reaching the last level). We
assume that almost surely

SA ∧ S1 < +∞,

as well as
inf

y∈{ξ=0}
Py (S1 < SA) > 0.

First remark that under Assumption 1, by the strong Markov property, one
has

inf
y∈{06ξ61}

Py (S1 < SA) = inf
y∈{ξ=0}

Py (S1 < SA) .

As mentioned before, the condition SA∧S1 < +∞ is a technical simplification
of minor significance that may in fact be removed, see Section E.

In Section F, a stronger but easier to check variant of the infimum condition
in Assumption 3 is presented.

Let us illustrate the previous conditions in a more specific framework. It
turns out that Assumptions 1, 2 and 3 are satisfied for elliptic diffusions in
a bounded domain. More precisely, let Ys ∈ R

d be a solution to the SDE

dYs = b(Ys) ds+ σ(Ys) dWs, (2.10)

where b and σ are functions from R
d to respectively R

d and R
d×n, with n > 1.

We denote as usual a = σσT . Then we have the following result, whose proof
is detailed in Appendix B.
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Lemma 2.3. Let Y be solution to (2.10). Assume that

(a) σ, b are in C2(Rd) with bounded derivatives of order i = 0, 1, 2 on
{−1 6 ξ 6 1}.

(b) ξ is in C2(Rd) with bounded derivatives of order i = 1, 2 on {−1 6 ξ 6 1}.
We also assume that

A = Ā = {ξ 6 −1} .

(c) There exists δ > 0 such that (∇ξ)Ta∇ξ > δ on {−1 6 ξ 6 1}.
Then Assumptions 1, 2 and 3 hold true.

Remark 2.4. Condition (c) ensures that the martingale part of the process
t 7→ ξ(Yt) has a strictly positive quadratic variation. It may happen that
(Ys)s>0 is Feller, ξ is smooth, but (2.6) does not hold without the addition of
Condition (c). Consider for example the case where (Ys)s>0 is solution to an
Ordinary Differential Equation. As a consequence, Assumption 2 has to be
modified without Condition (c), for instance one may need to resort to an ad
hoc restriction of the state space for which (2.6) is still satisfied.

2.4 Main result

For any test function ϕ and any t ∈ [0, 1], let us define the unnormalized
measure γt by

γt(ϕ) := E [ϕ(YSt
)1St<SA

] ,

so that γ0 = η0. Accordingly, the probability that the process (Ys)s>0 reaches
level t is pt := γt(1) = P(St < SA), and the law of YSt

given that St < SA is
denoted ηt and satisfies ηt(ϕ) := γt(ϕ)/γt(1).

The purpose of the AMS Algorithm 2.1 is to approximate the previous quan-
tities. Namely, for any t ∈ [0, 1], let us recall that the probability pt is
estimated by

pNt :=

(
1− 1

N

)Jt

,

where Jt denotes the number of iterations necessary to reach level t. The
measures ηt and γt are respectively estimated by

ηNt (ϕ) :=
1

N

N∑

n=1

ϕ(Y n,Jt
Sn
t

) =
1

N

N∑

n=1

ϕ(Xn
t ) and γNt (ϕ) := pNt η

N
t (ϕ).

Our first statement is a well-posedness result. As will be explained in Section
3.3, it is connected to the first point of Theorem 3.7 and to Lemma 3.8.
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Proposition 2.5. Under Assumptions 1 and 2, the AMS Algorithm 2.1 is
well-posed in the sense that there is only one particle with minimal score
in (2.5). Besides, under Assumption 3, the AMS Algorithm 2.1 is non-
explosive in the sense that the algorithm stops after a finite number of itera-
tions almost surely.

The second statement is a consistency result in the L2 sense and coincides
with the second point of Theorem 3.7.

Proposition 2.6. Under Assumptions 1, 2, and 3, for any ϕ ∈ Cb({ξ = 1}),
one has

E

[(
γN1 (ϕ)− γ1(ϕ)

)2]
6

6 ‖ϕ‖2∞
N

.

Let us come now to the central limit result, which corresponds to the last
point of Theorem 3.7. The asymptotic variance is described through the
integral operator (2.9), namely q(ϕ)(y) := Ey [ϕ(YS1)1S1<SA

] defined for any
y ∈ {0 6 ξ 6 1}.

Theorem 2.7. Under Assumptions 1, 2, and 3, for any ϕ ∈ Cb({ξ = 1}),
one has √

N
(
γN1 (ϕ)− γ1(ϕ)

) D−−−→
N→∞

N (0, σ2
1(ϕ)),

where

σ2
1(ϕ) = p21Vη1(ϕ)− p21 log(p1) η1(ϕ)

2 − 2

∫ 1

0

Vηt(q(ϕ))ptdpt.

Then it is easy to see that Slutsky’s lemma and the decomposition

ηNT (ϕ)− ηT (ϕ) =
1

γNT (1)

(
γNT (ϕ− ηT (ϕ))− γT (ϕ− ηT (ϕ))

)
(2.11)

lead to the upcoming result.

Corollary 2.8. Under Assumptions 1, 2, and 3, for any ϕ ∈ Cb({ξ = 1}),
one has

√
N
(
ηN1 (ϕ)− η1 (ϕ)

) D−−−→
N→∞

N (0, σ2
1(ϕ− η1(ϕ))/p

2
1).

Besides, √
N
(
pN1 − p1

) D−−−→
N→∞

N (0, σ2),

where

σ2 = σ2
1(1) = −p21 log(p1)− 2

∫ 1

0

Vηt(q(1))ptdpt.
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First we can remark that all these asymptotic variances can be viewed as the
limit of the asymptotic variances for the algorithm with a finite number of
levels 0 < t1 < . . . < tK = 1 as in [5, 10], when the number K of levels tends
to infinity. Details and explanations are provided in [7], Section 2.4.

In the rest of this section, we propose to discuss some consequences of the
previous results. We begin with the number of steps of the algorithm. It
essentially says that this number grows logarithmically with the rarity of the
event and linearly with the number of particles. Remember that one step
requires the simulation of only one new trajectory, the computation of its
score and the comparison with the (N − 1) other already evaluated scores.
Hence we can conclude that the total complexity of the algorithm scales like
OP (−N logN log p1). A similar remark was already present in [14], but was
restricted to the so-called idealized setting.

Corollary 2.9. Under Assumptions 1, 2, and 3, the number of steps of the
AMS algorithm satisfies

J1 = −N log(p1) +OP (
√
N).

Proof. Indeed, Proposition 2.6 with ϕ = 1 gives pN1 = γN1 (1) and p1 = γ1(1),
so that

pN1 = p1 +OP (1/
√
N),

and
log(pN1 ) = log(p1) +OP (1/

√
N).

Besides,
log(pN1 ) = J1 log(1− 1/N) = J1(−1/N + o(1/N)).

Therefore, by using both expressions we get

J1 = −(log(p1) +OP (1/
√
N))(1/N + o(1/N))−1 = −N log(p1) +OP (

√
N).

Now we can focus our attention on the asymptotic variance of the probability
estimate, that is

σ2 = σ1(1)
2 = −p21 log(p1)− 2

∫ 1

0

Vηt(q(1))ptdpt. (2.12)

By choosing the level function ξ⋆(y) = q(1)(y) = Py(S1 < SA), it turns out
that ηt is supported on the level set t of ξ⋆. Besides, for every y on this level
set, we have q(1)(y) = Py(S1 < SA) = 1− t, so that

Vηt(q(1)) = Vηt(ξ
⋆) = 0.

13



Hence the integral term vanishes and σ2 reduces to

σ2 = −p21 log(p1).

This function y 7→ ξ⋆(y) is called the committor function in molecular dy-
namics, where its prominent role is well known (see e.g. [15] and [20]). In
fact, the knowledge of the committor function typically requires solving a
PDE, which in turn is much more involved than the problem of estimating
rare events probabilities. However, it is important to notice that it gives the
best possible asymptotic variance.

This phenomenon also arises when considering the idealized case, where we
assume that at each branching, we can generate a new trajectory reaching at
least the current level, and independent of the other particles’ trajectories (see
[3, 14]). Note also that in the one dimensional case, if ξ is strictly increasing,
then the levels sets are reduced to one point, ηt is a Dirac measure, and the
variance is minimal.

On the opposite, we can also exhibit the worst value for σ2. For that, consider
the variance term in the integrand of (2.12), that is Vηt(q(1)). It corresponds
to the variance of the random variable Z = q(1)(X), with X drawn according
to ηt. Hence Z is between 0 and 1, and its mean value is p1/pt. Under those
constraints, the largest variance is that of a Bernoulli variable with parameter
p1/pt, and is given by p1/pt(1− p1/pt). In this situation, we have

−2

∫ 1

0

Vηt(q(1))ptdpt = −2

∫ 1

0

p1
pt
(1− p1

pt
) pt dpt = 2p21 log(p1)− 2p21 + 2p1,

which yields

σ2
6 2p1(1− p1) + p21 log(p1) 6 2p1(1− p1).

Notice that this upper bound is exactly twice the variance of a naive Monte
Carlo method, which simply consists in simulating N i.i.d. replicates of the
original process Y and counting the proportion of trajectories that reach the
level set {ξ = 1} before A. Consequently, we see that if we make a very bad
choice for ξ, things can go pretty bad, even worse than naive Monte Carlo.
Nonetheless, this has to be compared to importance sampling, where one
is not even guaranteed to have a finite variance (see for example [13]). We
summarize the previous results in the following lemma.

Corollary 2.10. Under Assumptions 1, 2, and 3, the asymptotic variance
for the probability estimator satisfies

−p21 log(p1) 6 σ2
6 2p1(1− p1).
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Let us conclude this section with some comments on the asymptotic variance
for ηN1 (ϕ), namely σ2

1(ϕ− η1(ϕ))/p
2
1. First notice that for all t ∈ [0, 1]

γt(q(ϕ)) = E[q(ϕ(YSt
))1St<SA

] = E[E[ϕ(YS1)1S1<SA
|YSt

]1St<SA
],

which yields
γt(q(ϕ)) = E[ϕ(YS1)1S1<SA

] = γ1(ϕ).

As a consequence, by linearity of both q and ηt, one has

ηt(q(ϕ− η1(ϕ))) = ηt(q(ϕ))− ηt(q(1))η1(ϕ) = (γt(q(ϕ))− γ1(ϕ))/pt = 0.

Hence, denoting rt = pt/p1, we are led to the alternative expression

σ2
1(ϕ− η1(ϕ))/p

2
1 = Vη1(ϕ)− 2

∫ 1

0

ηt((q(ϕ− η1(ϕ)))
2) rt drt.

It is readily seen that |q(ϕ− η1(ϕ))| 6 ‖ϕ− η1(ϕ)‖∞q(1), so that

−2

∫ 1

0

ηt((q(ϕ− η1(ϕ)))
2) rt drt 6 −2‖ϕ− η1(ϕ)‖2∞

∫ 1

0

ηt((q(1))
2) rt drt.

Taking into account that ηt(q(1)) = 1/rt, we get

−2

∫ 1

0

ηt((q(1))
2) rt drt = −2

∫ 1

0

Vηt(q(1)) rt drt − 2 log(p1).

So we have the following bound

Vη1(ϕ) 6 σ2
1(ϕ− η1(ϕ))/p

2
1 6 Vη1(ϕ) + ‖ϕ− η1(ϕ)‖2∞

σ2

p21
− log p1, (2.13)

with σ2 as in Corollary 2.8. The lower bound is the variance we would get
with an i.i.d. sample from η1. As noticed in Corollary 2.10, at best the second
term in the r.h.s. of (2.13) reduces to −‖ϕ− η1(ϕ)‖2∞ log(p1).

Remark 2.11. In the AMS Algorithm 2.1, we assume that the initial con-
dition (2.4) consists in N i.i.d. random variables Y n,0

0 , 1 6 n 6 N , with
common law η0. In fact, this assumption can be relaxed to any exchangeable
initial condition satisfying a bound of the form

E

[(
ηN0 (q(ϕ))− η0(q(ϕ))

)2]
6
c ‖ϕ‖2∞
N

for some constant c > 0, as well as the following CLT:
√
N
(
ηN0 (q(ϕ))− η0(q(ϕ))

) D−−−→
N→∞

N (0,Vη0(q(ϕ))).

In that case, all the results of this section still hold true (see Remark 2.8
in [6]).
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2.5 Extension to path observables and entrance times

This section deals with an extension of the CLT to richer observables. For
this purpose, we can consider the following Polish space.

Definition 2.12. Let Cstop(R+, E) denote the space of continuous paths, with
possibly a given terminal time s. We will use the notation

y[0,s] :=

{
(ys′)06s′6s if s < +∞,
(ys′)s′>0 if s = +∞.

We say that a sequence yn[0,sn] in Cstop(R+, E) converges towards y[0,s] if

limn s
n = s ∈ R+ and limn(y

n
s′∧sn)s′>0 = (ys′∧s)s′>0 in C(R+, E) endowed

with uniform convergence on compacts. This defines a Polish topology on
Cstop(R+, E) that we will always use in the sequel, unless otherwise specified.

The main message is that, mutatis mutandis, the central limit result of Theo-
rem 2.7 is still valid in this new context. More precisely, we have the extended
following CLT (see Appendix G for the proof).

Theorem 2.13. Let ψ : Cstop (R+, E) → R denote a given continuous and

bounded functional. Set X n
t := Y n,Jt

[0,Sn
t ]

and

ηNt :=
1

N

N∑

n=1

δXn
t
.

Besides, consider
γt(ψ) := E

[
ψ(Y[0,St])1St<SA

]
,

and
q(ψ)(y[0,s]) := E

[
ψ(Y[0,S1])1S1<SA

|Y[0,s] = y[0,s]
]
.

Denote as before ηt := γt/γt(1) and γ
N
t := pNt η

N
t . If Assumptions 1, 2, and 3

are satisfied, then Proposition 2.6, Theorem 2.7 and Corollary 2.8 hold true
when replacing ϕ with ψ.

Remark 2.14. In the special case of entrance times, i.e. observables of the
form ψ(YS1, S1), the CLT is in fact a direct consequence of Theorem 2.7.
Indeed, consider the time homogeneous Markov Feller process

Ỹh := (Yh, s0 + h), h > 0,

defined for each initial condition Ỹ0 = (y0, s0) ∈ {0 6 ξ 6 1} × [0, 1]. By
construction, it can be easily checked that if Y satisfies Assumptions 1, 2,
and 3, then it is also true for Ỹ , so that this case is included in Theorem 2.7.
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3 Level-indexed processes and Fleming-Viot

particle systems

In this section, we introduce a càdlàg process X based on the couple (Y, ξ)
and called the level-indexed process. In a different framework, it was intro-
duced by Dynkin and Vanderbei in [11] and called a stochastic wave by these
authors. They mainly studied it in the case where Y is a diffusion, but appar-
ently without any specific application in mind. In our framework, thanks to a
slight modification of this object, we can interpret the AMS Algorithm 2.1 as
a Fleming-Viot particle system. The results of [6] on Fleming-Viot particle
systems can then be applied in order to prove Proposition 2.6 and Theo-
rem 2.7.

3.1 Level-indexed processes

Let us denote ∂ a cemetery point. Recall that SA := inf{s > 0, Ys ∈ A} and
St := inf{s > 0, ξ(Ys) > t}.

Definition 3.1 (Level-indexed process). Let the first condition of Assump-
tion 2 be satisfied, namely that for each t ∈ [0, 1] and for each y ∈ {ξ = t}, we
have Py(St = 0) = 1. The level-indexed process, or stochastic wave, (Xh)h>0

with state space F ∪ {∂} where

F := {0 6 ξ 6 1} ,

and associated with the pair (Y, ξ) and initial condition Y0 = x is defined by
its initial condition X0 = x, and for any h > 0,

Xh :=

{
YS(ξ(x)+h)∧1

if S(ξ(x)+h)∧1 < SA,

∂ if S(ξ(x)+h)∧1 > SA.

Remark 3.2. • The first condition of Assumption 2 is necessary to en-
sure the consistency of the definition of the level-indexed process. For
instance it is necessary to ensure that X0 = YSξ(x)

= x given the initial
condition X0 = Y0 = x.

• If Y has continuous trajectories, ξ is continuous, and S1 ∧ SA < +∞
as is the case here, then Xh is càdlàg and ξ(Xh) = (ξ(x) + h) ∧ 1 for
all h > 0. See also Section E for the case where S1 ∧ SA = +∞ with
non zero probability.

17
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A

Figure 4: The level-indexed process Xt associated to the pair (Y, ξ).

• If the initial level is ξ(x) = 0 and if t ∈ [0, 1] is such that Xt 6= ∂, then
ξ(Xt) = t (see Figure 4). In particular, if X1 6= ∂, then Xt = YSt

for
all t ∈ [0, 1].

• If Y is Feller, as is the case here, then Y is strong Markov with respect to
its right-continuous natural filtration FY . By construction of the level-
indexed process, it implies that X is - at least - a time homogeneous

Markov process with respect to the filtration
(
FY

S(ξ(X0)+h)∧1

)
h>0

, and

thus a fortiori with respect to its smaller natural filtration.

• If F = {0 6 ξ 6 1} is compact, then the continuity Lemma A.4 implies
that the level-indexed process X is itself Feller.

In the case where Y is not stopped at SA, the level-indexed process has
been introduced in [11] and called a stochastic wave. If, for example, Ys =
(Y 1

s , Y
2
s ) is a two-dimensional Brownian motion with Y0 = 0 and ξ(y1, y2) =

y1, then X1
t = t and X2

t = Y 2
St

where St = inf {s > 0, Y 1
s = t} is a symmetric

Cauchy process with a dense set of discontinuity points. This is illustrated
on Figure 5.

Remark 3.3 (Soft versus hard killing times). It turns out that under As-
sumption 2, the killing time of the level-indexed process is typically “soft” in
the sense that it is a totally inaccessible stopping time, i.e. a stopping time
that cannot be predicted (see [16] for a precise definition, as well as the dis-
cussion in [6]). This is for instance a consequence of the Feller property when
X is Feller. Note that this is a stronger property than having an atomless
distribution. Interestingly, the CLT in [6] also holds true for “hard” killing
times, so that it may be used to treat cases beyond Assumption 2.

The Markov semi-group of the level-indexed process, defined by

18
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Figure 5: 2D Brownian trajectory Ys = (Y 1
s , Y

2
s ) and associated stochastic

wave (X1
t , X

2
t ) = (t, Y 2

St
) when ξ(y1, y2) = y1.

Qhϕ(x) := E[ϕ(Xh)|X0 = x],

can be easily related to the integral operator q(ϕ)(y) = Ey [ϕ(YS1)1S1<SA
] as

follows.

Lemma 3.4. For any x ∈ F and any ϕ : F → R extended to F ∪ {∂} with
the convention ϕ(∂) = 0, one has

Q1−ξ(x)ϕ(x) = q(ϕ)(x).

3.2 AMS as a Fleming-Viot particle system

The AMS Algorithm 2.1 can be recast in the form of a Fleming-Viot algo-
rithm as studied in [6]. For this purpose, let us consider a time homogeneous
càdlàg Markov process (Xh)h>0 in F ∪{∂}, constructible from any initial con-
dition in F . We assume that ∂ is an absorbing state, meaning that Xh′ ∈ ∂
whenever Xh ∈ ∂ and h′ > h. Let us first recall what we mean by Fleming-
Viot particle system.

Definition 3.5 (Fleming-Viot particle system). An exchangeable particle
system (X1

t , . . . , X
N
t )t>0 in FN is called the Fleming-Viot particle system

associated with (Xh)h>0 if:
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• Initialization: the particles are initially i.i.d. with distribution η0

X1
0 , . . . , X

N
0

i.i.d.∼ η0,

• Evolution and killing: between branching times, each particle evolves
independently according to the law of the underlying Markov process X
until one of them hits ∂,

• Branching (or rebirth): the killed particle is taken from ∂ and is in-
stantaneously given the state of one of the (N − 1) other particles - the
choice being uniformly random,

• And so on until time 1.

Note that in order to be well-defined, a Fleming-Viot particle system should
almost surely satisfy the following two properties: (i) particles die at different
times, (ii) there is a finite number of branchings in the time interval [0, 1].
Some conditions ensuring (i) and (ii) are given and discussed below.

The next result makes explicit the connection between the AMS algorithm,
Fleming-Viot particle systems and the level-index process.

Lemma 3.6. Let Assumptions 1 and 2 hold true for the pair (Y, ξ). Recall
that the particles have initial level 0, i.e. η0 (ξ = 0) = 1. Consider the AMS
Algorithm 2.1. For each n = 1, . . . , N and each t ∈ [0, 1], set as before

Sn
t := inf

{
s > 0, ξ(Y n,Jt

s ) > t
}
= inf

{
s > 0, ξ(Y n,Jt

s ) = t
}
,

as well as
Xn

t := Y n,Jt
Sn
t
.

Then (X1
t , . . . , X

N
t )t>0 is the Fleming-Viot particle system in F = {0 6 ξ 6 1}

associated with the level-indexed process X of the pair (Y, ξ) in the sense of
Definition 3.1 and Definition 3.5.

Proof. For t ∈ [0, 1], j > 0 and n = 1, . . . , N , let us first define

Sn,j
t := inf{s > 0, ξ(Y n,j

s ) ∈ A ∪ {ξ = t}},

and

Xn,j
t :=

{
Y n,j

Sn,j
t

if ξ(Y n,j

Sn,j
t

) = t

∂ otherwise

By Assumption 2 and Remark 3.2, the initial condition satisfies

(X1,0
0 , . . . , XN,0

0 ) = (Y 1,0
0 , . . . , Y N,0

0 ) ∈ {ξ = 0}N ,

20



so that
ξ(X1,0

0 ) = · · · = ξ(XN,0
0 ) = 0.

Note also that for all t ∈ [0, 1], if Xn,j
t 6= ∂, then

ξ(Xn,j
t ) = ξ(Y n,j

Sn,j
t

) = t,

so that Xn,j is indeed the level-indexed process associated with Y n,j in the
sense of Definition 3.1.

Set τ0 = 0. By construction of the AMS Algorithm 2.1, the processes
(X1,j

t , . . . , XN,j
t )06t61 can thus be iteratively constructed for j > 1 as fol-

lows:

(i) We can reformulate Nj and τj defined in the AMS Algorithm 2.1 as
{
Nj := argminn=1,...,N sup06s6Sn,j−1

A
∧Sn,j−1

1
ξ(Y n,j−1

s )

τj := sup
06s6S

Nj,j−1

A
∧S

Nj,j−1

1

ξ(Y
Nj ,j−1
s )

(3.1)

(ii) Stop if τj = 1, i.e. all trajectories are still alive at time 1.

(iii) Set Xn,j := Xn,j−1 for n 6= Nj. Pick a number Mj uniformly at random
in {1, . . . , N} \ {Nj}.

(iv) Replace the trajectory on [0, τj] of the particle with index Nj with the

trajectory of the particle with index Mj , that is set (X
Nj ,j
t )06t6τj :=

(X
Mj ,j
t )06t6τj . Let particle Nj evolve independently starting from state

X
Nj ,j
τj at time τj , until time 1 or until it is killed.

If we now set

Xn
t := Xn,Jt

t = Xn,j−1
t for τj−1 6 t < τj

for n = 1, . . . , N and j > 1, we thus obtain by definition the Fleming-
Viot particle system associated with the level-indexed Markov process X of
Definition 3.5.

3.3 L2 estimate and CLT for Fleming-Viot particle sys-
tems

Building on [6], we can now present two sufficient assumptions to obtain the
desired L2-estimate and CLT for Fleming-Viot particle systems based on the
level-indexed processes.

The first assumption is the following:
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Assumption (Ã). This assumption has two parts.

(i) For any initial condition x ∈ F = {0 6 ξ 6 1}, the jump “times” of
the level-indexed process (Xh)h>0 have an atomless distribution:

P (Xh− 6= Xh | X0 = x) = 0 ∀x ∈ F, ∀h > 0.

(ii) If ϕ ∈ Cb({ξ = 1}), then the mapping x 7→ q(ϕ)(x) = Q1−ξ(x)ϕ(x) is
continuous on F .

The second key assumption is simply:

Assumption (B). The Fleming-Viot particle system is well-defined in the
sense that P(J1 < +∞) = 1, where J1 denotes the number of branchings until
final time 1.

Under these assumptions, [6] implies the following (see Section C for details
on how to rigorously import the content of [6]).

Theorem 3.7. Under Assumptions (Ã) and (B), one has the following:

• The Fleming-Viot particle system is well-posed in the sense that only
one particle is killed at each branching time.

• L2 estimate: for any ϕ ∈ Cb({ξ = 1}),

E

[(
γN1 (ϕ)− γ1(ϕ)

)2]
6

6 ‖ϕ‖2∞
N

.

• Central Limit Theorem: for any ϕ ∈ Cb({ξ = 1}),
√
N
(
γN1 (ϕ)− γ1(ϕ)

) D−−−→
N→∞

N (0, σ2
1(ϕ)),

where

σ2
1(ϕ) = p2TVη1(ϕ)− p21 log(p1) η1(ϕ)

2 − 2

∫ 1

0

Vηt(Q
1−t(ϕ))ptdpt.

Proposition 2.6, Theorem 2.7 and Corollary 2.8 are then consequences of the
following:

Lemma 3.8. Assumptions 1 and 2 imply Assumption (Ã). With the addition
of Assumption 3, they also imply Assumption (B).
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The proof of Lemma 3.8 is given in Section D. For now, let us just give some
intuition behind this result. First, assume for simplicity that ξ(X0) = 0 and
that a jump of the level-indexed process occurs, i.e. Xt− 6= Xt for a given
t ∈ [0, 1]. Then, since by left continuity Xt− = YS

t−
, this jump means that

s 7→ ξ(Ys) has a local maximum with value t. However, under Assumption 2,
this is prohibited since the Y -hitting times of levels > t and > t are equal
almost surely.

Second, the continuity of x 7→ q(ϕ)(x) = Ex [ϕ(YS1)1S1<SA
] is a consequence

of the fact that Y is Feller (Assumption 1) and that for Feller processes,
hitting times of the interior or the closure of, respectively, A and {ξ > 1} are
the same.

Finally, the fact that the algorithm has almost surely a finite number of
branchings (non-explosion) comes directly from the uniform lower bound of
Assumption 3 through a comparison with a geometric random sequence.

A Preliminaries on Feller processes

In this section, we recall some standard properties of continuous Feller pro-
cesses. Most proofs are detailed in [6] in the case of càdlàg processes.

Definition A.1. Let E be a locally compact Polish space. Let C0(E) denote
the space of continuous functions that vanish at infinity. A continuous process
(Ys)s>0 in E is Feller if each of its probability transition maps C0(E) into
itself: for all ϕ ∈ C0(E) and s > 0, (y 7→ Ey[ϕ(Ys)]) ∈ C0(E).

Feller processes have many useful standard properties: (i) The associated nat-
ural filtration FY

s := σ (Ys′, 0 6 s′ 6 s) is right-continuous; (ii) Y is strong
Markov with respect to FY .

We will need the following slightly less standard pathwise continuity of Feller
processes.

Lemma A.2. Let C(R+, E) denote the space of continuous trajectories en-
dowed with uniform convergence on compacts. Let (Y y

s )s>0 ∈ C(R+, E) de-
note a given Feller process with initial condition Y0 = y. Then the mapping
y 7→ L

(
(Y y

s )s>0

)
from E to probabilities on C(R+, E), endowed with conver-

gence in distribution, is continuous.

Proof. In [6] Lemma 4.3, the convergence is shown in the Skorokhod space
instead of C(R+, E) using Theorem 17.25 of [18]. The Skorokhod topology
and the topology of uniform convergence on compacts on C(R+, E) are known
to be the same on continuous trajectories, see Lemma 10.1, Chapter 3 of [12]
(see also Problem 7 Chapter VI in [21]). Hence the result.
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We then recall some lower and upper semi-continuity of hitting times with
respect to the locally uniform topology

Lemma A.3. Let B ⊂ E be a Borel set. For each y ∈ C(R+, E), define
sB̊(y) := inf{s > 0, ys ∈ B̊}, as well as sB̄(y) := inf{s > 0, ys ∈ B̄}. Then
sB̊ is upper semi-continuous in C(R+, E) and sB̄ is lower semi-continuous
in C(R+, E): for any sequence (yn)n>1 converging to y ∈ C(R+, E),

lim sup
n

sB̊ (yn) 6 sB̊ (y) ,

sB̄ (y) 6 lim inf
n

sB̄ (yn) .

Proof. See Lemma 4.4 in [6].

We can then conclude with the general property used to prove the continuity
of the integral operator q defined in (2.9) (see Lemma D.3). We denote as
before SB̄ := inf{s > 0, Ys ∈ B̄} as well as SB̊ := inf{s > 0, Ys ∈ B̊}.

Lemma A.4. Let B ⊂ E be a Borel set, Y be a continuous Feller process,
and limn y

n = y a converging sequence of initial conditions. If

Py (SB̄ = SB̊) = 1, (A.1)

then the distribution of SB under Pyn converges when n → +∞ towards
its distribution under Py. If moreover Py(SB < +∞) > 0, then the joint

distribution of (SB, YSB
) in R+×E under Pyn ( |SB < +∞) converges when

n→ +∞ towards the joint distribution under Py ( |SB < +∞).

Proof. Using Lemma A.2 and a Skorokhod embedding argument, a sequence
(Y n

s )s>0 of Feller processes with initial conditions (yn)n>0 can be constructed
on a single probability space so that limn Y

n = Y in C(R+, E) almost surely,
where Y denotes the Feller process with initial condition y. Then Lemma A.3
with (A.1) implies that limn S

n
B = SB, hence the first result. The second

result follows by continuity of Y .

In order to obtain a pathwise version of the main CLT of the present paper, we
will need a pathwise version of the latter continuity result. For this purpose,
let us recall that the Polish space Cstop(R+, E) of continuous paths with a
possibly given end time (see Definition 2.12) is equipped with a topology
defined by the convergence of end times and of processes stopped at the end
time uniformly on any finite time intervals.

The following technical lemma about the continuity of the extension of paths
will prove useful.
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Lemma A.5. The extension map

T : Cstop(R+, E)× C(E,R+) −→ C(E,R+)

y = ((ys′)06s′6s, (ỹh)h>0) 7−→ Ty =

{
ys′ s′ 6 s
ỹs′−s s′ > s

defined for paths satisfying ys = ỹ0 is continuous.

Proof. Let d stand for the distance on E. Denote by (yn[0,sn]) a sequence of

paths in Cstop(R+, E) converging to y∞[0,s∞] (for the topology given in Def-

inition 2.12), and (ỹn) a sequence of paths in C(E,R+) converging to ỹ∞

(uniformly on compact sets). We assume that ynsn = ỹn0 for all n, as well
as y∞s∞ = ỹ∞0 . We have to prove the convergence of the extended function
sequence (Tyn) to Ty∞. Note that for any s, one can control d(Ty∞s , T y

n
s )

by considering all cases:

• If s 6 s∞ ∧ sn,

d(Ty∞s , T y
n
s ) 6 d(y∞s∧s∞, y

n
s∧sn).

• If s > s∞ ∨ sn,

d(Ty∞s , T y
n
s ) 6 d(ỹ∞s−s∞, ỹ

n
s−sn) 6 d(ỹ∞s−s∞, ỹ

∞
s−sn) + d(ỹns−sn, ỹ

∞
s−sn).

• If sn 6 s 6 s∞,

d(Ty∞s , T y
n
s ) = d(y∞s , ỹ

n
s−sn)

6 d(y∞s , ỹ
∞
s−sn) + d(ỹns−sn, ỹ

∞
s−sn)

6 d(y∞s , y
∞
s∞) + d(ỹ∞0 , ỹ

∞
s−sn) + d(ỹns−sn, ỹ

∞
s−sn).

• If s∞ 6 s 6 sn,

d(Ty∞s , T y
n
s ) = d(ỹ∞s−s∞, y

n
s ) 6 d(y∞s∧s∞, y

n
s∧sn) + d(ỹ∞s−s∞, ỹ

∞
0 ).

Let s0 > 0 be given. The convergence assumptions, together with the uniform
continuity of Ty∞ on compacts, imply that, when n goes to infinity, all the
right hand sides converge uniformly to 0 with respect to s ∈ [0, s0]. Hence
the result.

We can then safely prove the following pathwise continuity of stopped Feller
processes.
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Lemma A.6. Let limn y
n
[0,sn] = y[0,s] denote a converging sequence of initial

path conditions in Cstop(R+, E). Let B ⊂ E denote a Borel set and Y a
continuous Feller process. Assume that

Pys (SB̄ = SB̊) = 1.

Then the distribution of (Y06s6SB
) in Cstop(R+, E) under P( |Y[0,sn] = yn[0,sn])

converges when n→ +∞ towards its distribution under P( |Y[0,s] = y[0,s]).

Remark A.7. Recall that, by Definition 2.12, if SB = +∞, then (Y06s6SB
)

is actually (Y06s<+∞).

Proof. It is an extension of the proof of Lemma A.4 using Lemma A.5. In-
deed, the latter and a Skorokhod embedding argument allow us to construct
a sequence Y n converging almost surely to Y in C(E,R+) such that (i)
Y n
s′ = yns′ for s

′ 6 sn and Ys′ = ys′ for s
′ 6 s; (ii) all processes are distributed

according to Y with initial conditions prescribed by (i). Then Lemma A.3
with (A.1) implies that limn S

n
B = SB almost surely, hence the result.

B Proof of Assumptions 1, 2, and 3 for dif-

fusions in R
d

We can now establish Lemma 2.3, by checking successively that Assump-
tions 1, 2, and 3 hold true under the conditions (a), (b) and (c) stated in
Lemma 2.3.

Step 1: Assumption 1 holds true.

Indeed, Condition (a) implies that the diffusion is a strong solution of the
SDE (2.10) and is Feller, see for example [12] Th.2.4 page 373.

Step 2: Assumption 2 holds true.

By definition of the stopping times St, condition (2.6) of Assumption 2 will
follow from

Py

(
lim
s↓0

s−
1
2 (ξ(Ys)− ξ(y)) = +∞

)
= 1 (B.1)

for any y ∈ {0 6 ξ 6 1}. On the other hand, recalling that A := {ξ 6 −1},
condition (2.7) of Assumption 2 follows similarly from the strong Markov
property for Feller processes and from the fact that, for any y ∈ {ξ = −1},

Py

(
lim
s↓0

s−
1
2 (ξ(Ys)− ξ(y)) = −∞

)
= 1. (B.2)
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We claim that both (B.1) and (B.2) hold true for any y ∈ {−1 6 ξ 6 1},
which will conclude the proof of Step 2.

Since ξ is C2, Itô’s formula gives

dξ(Ys) =
(
∇ξ(Ys)T b(Ys) + 1

2
Tr(∇2ξ(Ys)a(Ys))

)
ds +∇ξ(Ys)Tσ(Ys) dWs,

so that if we denote by Us ds the finite variation part of this decomposition,
and set

Σs =
√(

(∇ξ)Ta∇ξ
)
(Ys) >

√
δ > 0,

then for the one dimensional Brownian motion dW̃s = Σ−1
s ∇ξ(Ys)Tσ(Ys) dWs,

it comes

dξ(Ys) = Us ds+ Σs dW̃s. (B.3)

Since s 7→ Us is continuous, it remains to prove that

Py

(
lim
s↓0

s−
1
2

∫ s

0

Σr dW̃r = −∞
)
= Py

(
lim
s↓0

s−
1
2

∫ s

0

Σr dW̃r = +∞
)
= 1.

(B.4)

For this, remark that the process

s 7→ B∫ s
0 Σ2

r dr
:=

∫ s

0

Σr dW̃r (B.5)

is a time-changed Brownian motion B (Chapter V, Section 1 of [22]). The
law of the iterated logarithm for the Brownian motion (Chapter II, Section 1
of [22]) now implies (B.4) since almost surely we have

lim
s→0

s−
1
2

∫ s

0

Σr dW̃r = lim
s→0

(1
s

∫ s

0

Σ2
r dr

) 1
2
(∫ s

0

Σ2
r dr
)− 1

2

B∫ s
0 Σ2

r dr

= Σ0 lim
s→0

(∫ s

0

Σ2
r dr

)− 1
2
B∫ s

0 Σ2
r dr

= +∞.

The same reasoning applies for the other limit in (B.4).

Step 3: Assumption 3 holds true.
Consider the differential equation (B.3) above, and recall that Condition (a)
on the coefficients implies that Us is bounded, while the positive lower bound
in Condition (c) implies that Σs > 0 is bounded from above and from below.
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We then consider the continuous process s 7→ Zs defined by Z0 = ξ(Y0) and

dZs := −λ0Σ2
s ds+ Σs dW̃s,

where λ0 is such that
UsΣ

−2
s 6 λ0

almost surely and for all s > 0. By construction, (i) the process s 7→ Zs −
ξ(Ys) is decreasing and thus negative, and (ii) s 7→ Zs is the time-changed
Brownian motion (B.5), but drifted with constant drift −λ0, that is

Z̃l=
∫ s
0 Σ2

r
:= Zs,

satisfies dZ̃l = −λ0dl + dBl. We will denote by SZ
±1 the first hitting time of

±1 by Z, and LZ̃
±1 the first hitting time of ±1 of Z̃ so that

∫ SZ
±1

0

Σ2
r dr = LZ̃

±1.

Consider also the stopping time σ defined by
∫ σ

0

Σ2
r dr = 1.

Notice that σ 6 1/δ almost surely. Now, let us first prove that

p0 := sup
y∈{−16ξ61}

Py (S1 = S−1 = +∞) = 0.

Conditioning and applying the strong Markov property yields

Py (S1 = S−1 = +∞) = Ey

[
Ey[1S1=S−1=+∞|FY

σ ]1S1∧S−1>σ

]

= Ey

[
E[1S1=S−1=+∞|Yσ]1S1∧S−1>σ

]

6 p0Py (S1 ∧ S−1 > σ) 6 p0Py (S1 > σ) .

Since ξ(Ys) > Zs we have that S1 6 SZ
1 so that

Py(S1 > σ) 6 Py(S
Z
1 > σ) = P

(∫ SZ
1

0

Σ2
rdr >

∫ σ

0

Σ2
rdr

)
= Py(L

Z̃
1 > 1).

Since Z̃ starting from 0 is stochastically smaller than Z̃ starting from ξ(y) >

0, it yields Py(L
Z̃
1 > 1) 6 P(LZ̃

1 > 1|Z̃ = 0) < 1, so that

p0 6 p0 × P(LZ̃
1 > 1|Z̃ = 0),
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which shows that p0 = 0.

Finally, let us prove that

p1 := inf
y∈{ξ=0}

Py (S1 < S−1) > 0.

Obviously, since Zs 6 ξ(Ys) and ξ(y) = 0,

Py(S1 < S−1) > Py(S
Z
1 < SZ

−1) = P(LZ̃
1 < LZ̃

−1|Z̃ = 0) > 0,

the last term being independent of the choice of y ∈ {ξ = 0}.

C Remarks on the main result of [6]

Let us now explain the connection between Assumptions (Ã) and (B), and
the set of assumptions in [6]. Theorem 3.7 of the present paper corresponds
exactly to Proposition 3.3 and Proposition 3.13 in [6] where they are estab-
lished under Assumption (B), also called Assumption (B) in [6], as well as
a weaker variant of Assumption (Ã), called Assumption (A’), and recalled
below.

Definition C.1. First, let us fix a measurable bounded function ϕ : F → R,
and denote for each 1 6 n 6 N and any t ∈ [0, 1],

L
n
t := Q1−t(ϕ)(Xn

t ) = q(ϕ)(Xn
t ),

where ϕ is omitted in order to lighten the notation. For any n ∈ {1, . . . , N}
and any k > 0, we denote by τn,k the k-th branching time of particle n, with
the convention τn,0 = 0. Moreover, for any j > 0, we denote by τj the j-th
branching time of the whole system of particles, with the convention τ0 = 0.

Remark C.2. The identity in the definition of Ln
t comes from Lemma 3.4.

A key assumption on the Fleming-Viot particle system in [6] is the following.

Assumption (A’). We assume that the particle system is such that for the
bounded test function ϕ, t 7→ L

n
t is càdlàg for each 1 6 n 6 N , and:

(i) Only one particle is killed at each branching time: if n 6= m, then
τn,k 6= τm,j almost surely for any j, k > 1. In other words, the particle
system is well-defined.

(ii) The processes Ln
t and L

m
t don’t jump at the same time: if n 6= m, then

P(∃t > 0, ∆L
m
t 6= 0 & ∆L

n
t 6= 0) = 0.
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(iii) The process Ln
t never jumps at a branching time of another particle: if

n 6= m, then
P(∃j > 0, ∆L

n
τm,j

6= 0) = 0.

In order to obtain precisely Theorem 3.7, it remains to show that Assump-
tion (Ã) implies Assumption (A’), that is

(Ã) ⇒ (A′).

In fact, this can be proven using exactly the same arguments as the ones
used to prove Lemma 3.1 in [6]. In the latter, it is shown that a slightly
stronger but very similar assumption (denoted there Assumption (A), and
not specific to the AMS context) implies Assumption (A’),that is

(A) ⇒ (A′).

However, the proof of (Ã) ⇒ (A′) is very similar to the one of (A) ⇒ (A′),
so we will not go into more details on this point. In summary, it can be
checked, following the arguments of the proof of Lemma 3.1 in [6], the chain
of implications

(A) ⇒ (Ã) ⇒ (A′).

D Assumptions 1, 2, 3 imply (Ã) and (B)

Lemma D.1. Under Assumptions 1 and 2, for any y ∈ F = {0 6 ξ 6 1}
and any t ∈]0, 1] satisfying ξ(y) 6 t, one has Py(St = St−) = 1, meaning that
the jump times of t 7→ St have an atomless distribution.

Proof. Let us recall that

St := inf{s > 0, ξ(Ys) > t} = inf{s > 0, ξ(Ys) = t}

is a stopping time with respect to the natural filtration of Y for all t ∈
[0, 1], and that by continuity of (Y, ξ), the process t 7→ St is càdlàg. By
construction, for t > 0, St− is the supremum of the increasing sequence of
stopping times (St−1/k)k>1, and thus is itself a stopping time.

Y is Feller by Assumption 1, so in particular it is strong Markov: for the
stopping time St−, this gives

Py(St = St−) = Py (St = St− = +∞) + Ey

[
1S

t−
<+∞PYS

t−
(St = St−)

]
.

But (2.6) in Assumption 2 directly implies that PYS
t−

(St = St− = 0) = 1

almost surely, so that Py(St = St−) = 1.
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Lemma D.2. Assumptions 1 and 2 imply Assumption (Ã)(i). In other
words, for any h > 0 and any initial condition X0 = x ∈ F , one has
Xh = Xh− almost surely.

Proof. Consider the level th := 1∧ (ξ(x)+h). Then Xh = YSth
where Y0 = x,

with the convention Y+∞ = ∂. Since h 7→ th and s 7→ Ys are almost surely
continuous, the result is then a consequence of the fact that Sth = St−

h
, which

is precisely the result of Lemma D.1.

Lemma D.3. Assumptions 1 and 2 imply Assumption (Ã)(ii), that is to say
if ϕ : {ξ = 1} → R is continuous and bounded, then the integral operator

y 7→ q(ϕ)(y) := Ey [ϕ(YS1)1S1<SA
]

is continuous on the set {0 6 ξ 6 1}.

Proof. Consider Lemma A.4. Letting B := A ∪ {ξ > 1}, we may write

q(ϕ)(y) = Ey

[
ϕ(YSB

)1ξ(YSB
)>11SB<∞

]
.

The result is now a direct consequence of Lemma A.4, because Assumption 2
guarantees that S{ξ>1} = S{ξ>1} and SĀ = SÅ. Since B̄ ⊂ Ā ∪ {ξ > 1}, we
deduce that SB̄ = SB̊.

Lemma D.4. Assumption 3 implies Assumption (B), meaning that the num-
ber of branchings on the time interval [0, 1] is almost surely finite.

Proof. Define

ε := inf
y: 06ξ(y)61

Py (S1 < SA) > 0.

Denote Jn the total number of branchings of particle n during the algorithm,
and as before J1 =

∑N
n=1 Jn the total number of branchings. Clearly, we have

that P(Jn > j) 6 (1− ε)j, so

E[Jn] =
∞∑

j=1

P(Jn > j) 6 1/ε.

We conclude that E[J1] 6 N/ε < +∞, as desired.
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E Removing the condition SA ∧ S1 < +∞
The following property enables us to deal with transient cases where the
condition SA∧S1 < +∞ is not satisfied almost surely, which means that the
event St = SA = +∞ may happen with positive probability.

Lemma E.1. Under Assumptions 1, 2 and 3, then almost surely, either S1 <
+∞ or ξ(Ys) < 0 for s large enough, that is sup {s > 0, ξ(Ys) > 0} < +∞.

Proof. Let y = Y0 ∈ {0 6 ξ 6 1} be any initial condition. By Assumption 3,
we have

2ε := inf
y∈{ξ=0}

Py (S1 < SA) = inf
y∈{06ξ61}

Py (S1 < SA) > 0.

In particular, this implies that

sup
y∈{06ξ61}

Py(S1 = +∞) 6 1− 2ε.

For each y, a simple dominated convergence argument shows that we can
construct a measurable function s : {0 6 ξ 6 1} → N+ such that

sup
y∈{06ξ61}

Py (S1 < s(y)) 6 1− ε.

Consider the increasing double sequence of stopping times

σ1
0 := 0 < σ1

1 6 σ2
0 < σ2

1 6 . . .

defined for each n > 1 by
{
σn
0 = inf

{
s > σn−1

1 , Ys ∈ {ξ > 0}
}

σn
1 = σn

0 + s(Yσn
0
)

By construction, we have the implication

sup {s > 0, ξ(Ys) > 0} = +∞ ⇒ sup
n
σn
0 < +∞,

so that it remains to prove that

P({S1 = +∞} ∩ {sup
n
σn
0 < +∞}) = 0.

The strong Markov property as well as the definition of s(y) imply that

P({S1 > σn+1
0 } ∩ {σn+1

0 < +∞}|Yσn
0
, S1 > σn

0 , σ
n
0 < +∞)

6 P(S1 > σn
1 |Yσn

0
, S1 > σn

0 , σ
n
0 < +∞) 6 1− ε.
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Iterating the conditioning yields

P({S1 > σn+1
0 } ∩ {σn+1

0 < +∞}) 6 (1− ε)n+1,

so that by σ-additivity

P({S1 > lim
n
σn
0 } ∩ {sup

n
σn
0 < +∞}) = 0.

The result follows since limn σ
n
0 = +∞.

F A variant of Assumption 3

The following variant of Assumption 3 may be useful in practice.

Assumption 3’. There exists t0 6 0 such that A ⊂ {ξ < t0}, the level set
{ξ = t0} is compact, and

∀y ∈ {ξ = t0} , Py(S1 < SĀ) > 0. (F.1)

Indeed, one has the following implication of assumptions.

Lemma F.1. If Assumptions 1, 2, and 3’ are satisfied, then so is Assump-
tion 3.

Proof. First, suppose that Assumptions 1 and 2 are satisfied. We claim that
the mapping

y 7→ Py(S1 < SĀ)

is lower semi-continuous on {0 6 ξ 6 t0}, in the sense that if yn → y, then

Py(S1 < SĀ) 6 lim inf
n

Pyn(S1 < SĀ).

Note that Lemma D.3 already implies that this mapping is continuous on
{0 6 ξ 6 1}.
The proof of the claim is similar to the one of Lemma A.4. Indeed, using
Lemma A.2 and a Skorokhod embedding argument, a sequence (Y n

s )s>0 of
Feller processes with initial conditions (yn)n>0 can be constructed on a single
probability space so that limn Y

n = Y in C(R+, E) almost surely, where
Y denotes the Feller process with initial condition y. Then Lemma A.3
with (A.1) implies that limn S

n
1 = S1 as well as lim infn S

n
Ā

> SĀ. But
obviously

{S1 < SĀ} ⊂
{
S1 < lim inf

n
Sn
Ā

}
⊂
⋃

N

⋂

n>N

{Sn
1 < Sn

Ā} ,
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so that P (S1 < SĀ) 6 lim infn P
(
Sn
1 < Sn

Ā

)
, hence the claim.

Next, suppose that Assumptions 1, 2, and 3’ hold true. For any initial
condition y ∈ {0 6 ξ 6 1}, denote σ0 := inf{s > 0, ξ(Ys) = t0}. By the
strong Markov property for Feller processes, we may write:

Py(S1 < SĀ) = Ey

[
1σ0<S1PYσ0

(S1 < SĀ)
]
+ Py (S1 < SĀ, S1 6 σ0)

> Py(σ0 < S1) inf
z∈{ξ=t0}

Pz(S1 < SĀ) + (1− Py(σ0 < S1))

> inf
z∈{ξ=t0}

Pz(S1 < SĀ).

Because a lower semi-continuous function on a compact reaches its infimum,
and using Assumption 3’, we get that the latter infimum is > 0, hence As-
sumption 3.

G Proof of Theorem 2.13

Theorem 2.13 is a pathwise extension of Theorem 2.7 and is stated under the
same set of assumptions, namely Assumptions 1, 2, and 3. The proof follows
the same line as the latter. The main difference consists in the definition of
the level-indexed process and its state space, which is augmented in order to
include pathwise information.

Once the appropriate definition of the level-indexed objects is set up, the
interpretation of the AMS algorithm as a Fleming-Viot particle system is
strictly identical to the specific case described in Section 3. From there, it
is then sufficient to check Assumptions (Ã) and (B) once again thanks to
Assumptions 1, 2, and 3, but in a more general pathwise context.

First, we define the extended level-indexed process as well as its state space.
To do so, Definition 3.1 is generalized as follows. The extended state space
F ∪ {∂} is now defined by

F :=
{
y[0,s] ∈ Cstop(R+, {0 6 ξ 6 1})
such that s < +∞, ξ(y0) = 0 and ∀s′ ∈ [0, s) , ξ(ys′) < ξ(ys)} ,

(G.1)

which is the set of trajectories where the maximum value of ξ is reached
only at the endpoint. This specific choice of the state space F is adapted to
the following construction of the level-indexed process. An initial condition
X0 := y[0,s] ∈ F being given, we define the level-indexed process as

Xh :=

{
Y[0,S(ξ(ys)+h)∧1] ifS(ξ(ys)+h)∧1 < SA,

∂ ifS(ξ(ys)+h)∧1 > SA.

34



In the above, we have taken as initial condition Y[0,s] = y[0,s] in order to define
the underlying Feller process Y . Note that in the simpler, usual case, where
the initial condition is X0 = y0 ∈ {ξ = 0}, then

Xt =

{
Y[0,St] ifSt < SA,

∂ ifSt > SA.

As before, this rather complicated definition of X is required in order to
interpret it as a time homogeneous Markov process.

Lemma G.1. The set F defined by (G.1) is a Borel subset of the Polish space
Cstop (R+, {0 6 ξ 6 1}). (Xh)h>0 is a càdlàg process taking values in F ∪ ∂,
which is time homogeneous Markov with respect to its natural filtration.

Proof. First, F can be constructed using the countable intersection of open
subsets of the form

{
y[0,s] ∈ Cstop (R+, {0 6 ξ 6 1}) , ξ(ys′) < ξ(ys) ∀s′ 6 0 ∨ (s− 1/q)

}
,

where q ∈ N
⋆. As a consequence F is a Borel subset.

Second, as in Section 3, the time homogeneous Markov property is a direct
consequence of the strong Markov property of Y .

We now wish to check Assumptions (Ã) and (B) in order to prove the path-
wise CLT Theorem 2.13.

Lemma G.2. Under Assumptions 1, 2, and 3, Assumptions (Ã) and (B)
hold true for the pathwise level-indexed process X .

Proof. The fact that Assumption (B) follows from Assumption 3 has already
been established in Lemma D.4.

Assumption (Ã)(i) in the pathwise case is similar to the proof of Lemma D.2,
which follows from Lemma D.1, namely the fact that St− = St almost surely.
Let us give some details. Let X0 = y[0,s0] be a given initial condition with
initial level t0 = ξ(ys0). The topology of the space Cstop(R+, {0 6 ξ 6 1})
implies that the mapping s 7→ y[0,s] ∈ F which spans the same trajectory with
different end times is continuous at s = s1 if s 7→ ys is. As a consequence,
as in Lemma D.2, since Y is a continuous trajectory, and t 7→ St is a càdlàg
increasing process, X is also càdlàg and has a jump at h only if S(t0+h)∧1 has
one. The proof then follows from Lemma D.1.
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The only new technical point is to check Assumption (Ã)(ii), that is to say
the continuity of

y[0,s] 7→ E
[
ψ(Y[0,S1])1S1<SA

|Y[0,s] = y[0,s]
]
,

where y[0,s] ∈ F , ψ is continuous and bounded on Cstop (R+, {0 6 ξ 6 1}).
This is a pathwise version of Lemma D.3, and in fact a consequence of the
pathwise continuity property stated in Lemma A.6 which follows from As-
sumption 2. Indeed the latter states that if limn y

n
[0,sn] = y[0,s] is a converg-

ing sequence of initial conditions in F , and ψ̃ is a continuous functional on

Cstop(R+, {0 6 ξ 6 1}) then E

[
ψ̃(Y[0,S1∧SA])|Y[0,s] = yn[0,sn]

]
is converging to

the corresponding limit. It remains to remark that Assumption (Ã)(ii) is
precisely this continuity property for the functional

{
ψ̃(y[0,s]) = ψ(y[0,s]) if ξ(ys) = 1

ψ̃(y[0,s]) = 0 if ys ∈ Ā

which is indeed continuous under the Cstop topology.

Note that we have assumed that S1 ∧ SA < +∞ according to Assumption 3.
Otherwise, ψ̃ must be extended by 0, the continuity of the extension following
from Lemma E.1.
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[9] F. Cérou, A. Guyader, T. Lelièvre, and D. Pommier. A multiple replica
approach to simulate reactive trajectories. The Journal of Chemical
Physics, 134(5):054108, 2011.

[10] P. Del Moral. Feynman-Kac formulae, Genealogical and interacting
particle systems with applications. Probability and its Applications.
Springer-Verlag, New York, 2004.

[11] E.B. Dynkin and R.J. Vanderbei. Stochastic waves. Trans. Amer. Math.
Soc., 275(2):771–779, 1983.

[12] S.N. Ethier and T.G. Kurtz. Markov processes. John Wiley & Sons,
1986.

[13] P. Glasserman and Y. Wang. Counterexamples in importance sampling
for large deviations probabilities. Ann. Appl. Probab., 7(3):731–746,
1997.

[14] A. Guyader, N. Hengartner, and E. Matzner-Løber. Simulation and
Estimation of Extreme Quantiles and Extreme Probabilities. Applied
Mathematics and Optimization, 64:171–196, 2011.

[15] G. Hummer. From transition paths to transition states and rate coeffi-
cients. J. Chem. Phys., 120(2):516–523, 2004.

37



[16] J. Jacod and A.N. Shiryaev. Limit theorems for stochastic processes,
volume 288. Springer-Verlag, Berlin, second edition, 2003.

[17] H. Kahn and T.E. Harris. Estimation of particle transmission by random
sampling. National Bureau of Standards Appl. Math. Series, 12:27–30,
1951.

[18] O. Kallenberg. Foundations of Modern Probability. Probability and Its
Applications. Springer New York, 2002.

[19] H. Louvin, E. Dumonteil, T. Lelièvre, M. Rousset, and C.M. Diop.
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