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Abstract

A new strategy based on numerical homogenization and Bayesian techniques for solving
multiscale inverse problems is introduced. We consider a class of elliptic problems which vary at
a microscopic scale, and we aim at recovering the highly oscillatory tensor from measurements of
the fine scale solution at the boundary, using a coarse model based on numerical homogenization
and model order reduction. We provide a rigorous Bayesian formulation of the problem, taking
into account different possibilities for the choice of the prior measure. We prove well-posedness
of the effective posterior measure and, by means of G-convergence, we establish a link between
the effective posterior and the fine scale model. Several numerical experiments illustrate the
efficiency of the proposed scheme and confirm the theoretical findings.
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1 Introduction

Inverse problems for partial differential equations (PDEs) play an important role in the sciences
and the engineering, with numerous applications as geoscience or medical imaging for example. In
this work we are interested in PDEs characterized by the presence of variations on a very fine scale,
which can be found for example in the study of composite materials or pourous media. Let Ω ∈ ❘d,
d ≥ 2, be an open, bounded, connected set with sufficiently regular boundary ∂Ω, and consider the
problem of finding uε ∈ H1(Ω) such that

− ∇ · (Aε∇uε) = 0 in Ω ,

uε = g on ∂Ω .
(1)

The tensor Aε = Aε(x), x ∈ Ω, belongs to M(α, β, Ω), 0 < α < β, where

M(α, β, Ω) :=
{A ∈ L∞(Ω, Symd) : α|ξ|2 ≤ A(x)ξ · ξ , |A(x)ξ| ≤ β|ξ| ∀ξ ∈ ❘d and a. e. in Ω} ,

and Symd denotes the class of d × d symmetric real valued matrices. The superscript in Aε

(respectively uε) emphasizes that the tensor (the solution) varies on a fine scale proportional to ε,
which is usually much smaller than the domain Ω considered for application. The inverse problem
we are interested in, is to recover the highly oscillatory tensor Aε based on observations originating
from (1). Often standard numerical techniques such as the Finite Element Method (FEMs) are
not appropriate to approximate (1) since mesh resolution at the finest scale is required to provide
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a reliable solution. Mesh resoultion down to the ε scale can be prohibitively expensive when ε
is small. This issue is even more dramatic when solving inverse problems, since one typically
needs multiple evaluations of (1), and thus an alternative approach is required. From the theory
of homogenization [11, 13, 17] we know that there exists an effective tensor A0 such that (up to
a subsequence) the solution of (1) converges in a weak sense to the solution u0 ∈ H1(Ω) of the
problem

− ∇ · (A0∇u0) = 0 in Ω ,

u0 = g on ∂Ω ,
(2)

where A0 is referred to as the homogenized tensor. An explicit form of A0 is usually not known, and
so numerical homogenization [1,2,5] is needed to obtain the homogenized solution u0 based on data
defining problem (1). Our strategy to efficiently retrieve the conductivity Aε, based on observations
originating from (1), relies on the reduced model (2). In [4] we analyzed and solved the inverse
problem in the case where the observed quantities were defined by the Dirichlet to Neumann map
associated to (1),

ΛAε : g ∈ H1/2(∂Ω) 7→ Aε∇uε · ν|∂Ω ∈ H−1/2(∂Ω) , (3)

where ν denotes the exterior unit normal to ∂Ω.

In this paper, as in [4], we consider a class of parametrized multiscale locally periodic tensors of
the form Aε

σ∗(x) = A(σ∗(x), x/ε), where σ∗ : Ω → ❘. We assume that the map (t, x) 7→ A(t, x/ε),
t ∈ [σ−, σ+], x ∈ Ω, is known while σ∗ : Ω → ❘ has to be determined to recover the whole tensor.
A typical example of this setting could be represented by a multi-phase medium, whose constituent
materials are known, but their respective volume fraction or marcoscopic orientation are unknown.
Departing from [4], where in order to ensure well-posedness we solved the problem by means of
Tikhonov regularization, we recast here the problem into a statistical framework, and develop a
multiscale numerical method based on Bayesian techniques. In addition in contrast to [4], instead of
considering observed data as living in some functional space, e.g. H−1/2(∂Ω), we consider discrete
quantities in ❘ represented by the average of the normal flux at the boundary measured on different
locations Γj ⊂ ∂Ω, j = 1, . . . , J , J ∈ ◆. For a survey on the Bayesian approach for inverse problems,
we mention [12,19]. For a rigorous Bayesian formulation of the inverse conductivity problem, known
also as electrical impedance tomography (EIT), we also mention [14]. We mention that Bayesian
multiscale inverse problems have also been addressed in [18]. The contribution of this paper can be
summarized as follows:

• because of the prohibitive cost of the forward problem in a multiscale context, we introduce
an effective forward problem and a related effective posterior measure. The modeling error
introduced in this framework can be quantified in terms of G − convergence and we provide
an offline algorithm to correct for the model discrepancy;

• our numerical algorithm makes use of multiscale methods and model order reduction techniques
to tackle computationally challenging multi-dimensional multiscale problems;

• our methodology allows to effectively recover a multiscale conductivity tensor through partial
observations on the boundary of the domain.

Following [12, 19], we give a rigorous Bayesian formulation of the multiscale problem, and prove
the well-posedness of the effective posterior measure for our setting. We employ different kind
of prior measures, considering log-Gaussian and level set priors. Moreover, we establish a link
between the effective posterior measure and the fine scale model in terms of Hellinger distance,
using G-convergence, to quantify the discrepancy between the homogenized data and the data
originating from (1). The numerical method builds on the reduced basis heterogenenous multiscale
method developed in [3]. Finally, inspired by [9], we approximate numerically the modelling error
distribution and we verify that including the modelling error distribution in the definition of the
posterior measure can improve significantly the results, especially when ε is relatively large.
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The outline of the work is as follows. In Section 2 we describe our setting for the observed data and
we recall some useful tools for the Bayesian approach to inverse problems. In Section 3 we state
some preliminary results on well-posedness of the posterior measure and homogenization theory and
we introduce two types of prior measures that will be used throughout the work. Our main results
are presented in Section 4. We prove existence and well-posedness of the effective posterior, and
establish the convergence of the Hellinger distance between the effective posterior and the posterior
measure based on the full fine scale model. In Section 5 we give a brief survey on the Markov chain
Monte Carlo method used to sample from the posterior distribution, while in Section 6 we explain
how to approximate numerically (2) by a model order reduction multiscale method. Numerical
experiments that illustrate our multiscale inverse method and confirm our theoretical findings are
presented in Section 7.

2 Preliminaries: problem definition, homogenization and G-
convergence

Let Ω be an open and bounded set in ❘d. We consider a class of parametrized multiscale locally
periodic tensors of the type Aε

σ∗(x) = A(σ∗(x), x/ε), where σ∗ : Ω → ❘. Our aim is to recover Aε
σ∗

from measurements originating from the model

− ∇ · (Aε
σ∗ · ∇uε) = 0 in Ω ,

u0 = g on ∂Ω .
(4)

Our unknown is represented by σ∗, while we assume to know the map (t, x) 7→ A(t, x/ε), t ∈ [σ−, σ+],
x ∈ Ω. Let us consider then the following admissible set for the unknown σ∗ : Ω → ❘

U := {σ ∈ L∞(Ω) : σ− ≤ σ(x) ≤ σ+} .

We consider J ∈ ◆ boundary portions of ∂Ω, and we denote them as Γj ∈ ∂Ω, j = 1, . . . , J ,
Γi ∩ Γj = ∅ for i 6= j. These portions of the boundary represents the locations at which the
measurements are carried out. Moreover the same experiment is reproduced for L ∈ ◆ different
Dirichlet data, which we denote as gl, l = 1, . . . , L. Hence we have J × L observations. Then we
may introduce the forward operator F ε : U → ❘

JL, F ε(σ) = vec({fε
jl(σ)}1≤j≤J

1≤l≤L

),

fε
jl(σ) =

∫

Γj

ΛAε
σ
gl · φj ds , j = 1, . . . , J , l = 1, . . . , L , (5)

where ΛAε
σ

is the Dirichlet to Neumann map (3) associated to the tensor Aε
σ(x) = A(σ(x), x/ε), and

φj ∈ H1/2(∂Ω) such that supp(φj) ⊆ Γj for all j = 1, . . . , J . In the following setting, we assume to

Ω
Γj

Figure 1: Picture representing the computational domain Ω and the boundary portions Γj used to
compute the observations.

dispose of a finite number of observations, corrupted by some noise, so that

z = F ε(σ∗) + e , e ∼ N (0, Ce) , (6)

where Ce is a given covariance matrix. Based on these measurements we would like to recover σ∗.
Let X be a Banach space, and P some map P : θ ∈ X 7→ σ ∈ U . The introduction of X and P will
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be useful later on to build different kind of prior measures on the admissible set U . Introducing this
abstract framework is also useful to perform a rigorous analysis about the validity of our approach,
which will be carried out in Section 3. Let us define the potential function Φε : X ×❘JL → ❘,
which measures the distance between the observed data and the values produced by the observation
model for some θ ∈ X as

Φε(θ, z) = 1
2 ||z − Gε(θ)||2Ce

(7)

= 1
2(z − Gε(θ))⊤C−1

e (z − Gε(θ)) ,

where Gε = F ε ◦ P . Simply trying to minimize (7) leads to an ill posed problem. To ensure
well posedness we may add some regularization term (e.g. Tikhonov regularization) or recast
the problem into a statistical framework, where all the quantities involved are treated as random
variables (Bayesian approach). Differently from standard regularization techniques which produce
as solution a single point estimate of the unknown, with the statistical approach the solution is
represented by a probability measure, so called the posterior probability measure. The posterior
measure can then be used to infer about the parameter values and quantify their uncertainties. In
Bayesian theory, it is assumed that all the prior informations we dispose about the unknown we
are seeking for, can be described by what is called the prior measure, which we denote here as µpr.
Using (6) and applying Bayes’ formula we obtain that the posterior measure of θ given z, denoted
as µε(θ|z), is related to µpr through the Radon-Nikodym derivative

dµε(θ|z)
dµpr(θ) ∝ exp(−Φε(θ, z)) . (8)

Unfortunately trying to explore µε(θ|z) via sampling techniques as Markov chain Monte Carlo
methods (MCMC) is infeasible, due to the high computational effort needed to evaluate the model
Gε even for few realizations of θ ∈ X. Hence, to drastically reduce the computational cost we
combine the inverse problem with a coarse graining strategy. To do so let us recall briefly some
results from homogenization theory [7, 13,17], in particular the concept of G-convergence.

Definition 1. Let {Aε}ε>0 be a sequence of matrices in M(α, β, Ω). We say that {Aε}ε>0 G-
converges to the matrix A0 ∈ M(α, β, Ω) if and only if for every function f ∈ H−1(Ω), g ∈ H1/2(∂Ω),
the solution uε of

− ∇ · (Aε∇uε) = f in Ω ,

uε = g on ∂Ω .
(9)

is such that
uε ⇀ u0 weakly in H1(Ω) ,

where u0 is the unique solution of

− ∇ · (A0∇u0) = f in Ω ,

u0 = g on ∂Ω .
(10)

A consequence of G-convergence is the weak convergence of the flux

Aε∇uε ⇀ A0∇u0 weakly in (L2(Ω))d .

Theorem 1. (See for example [11,17]). One has the following compactness result. Let {Aε}ε>0
be a sequence of matrices in M(α, β, Ω). Then there exists a subsequence {Aε′}ε′>0 and a matrix
A0 ∈ M(α, β, Ω) such that {Aε′}ε′>0 G-converges to A0.

In particular we consider for a σ ∈ U the sequence of Y -periodic matrices defined by

Aε
σ(x) = A(σ(x), x/ε) = A(σ(x), y) , A(σ(x), ·) ∈ M(α, β, Y ) , ∀x ∈ Ω ,

Aε
σ(x) = {aε

ij(x)}1≤i,j≤d a.e. on ❘d ,
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where

aε
ij(x) = aij(σ(x), x/ε) = aij(σ(x), y) , aij(σ(x), ·) is Y -periodic , ∀x ∈ Ω , ∀i, j = 1, . . . , d ,

and Y denotes the reference unit cell (0, 1)d. Such tensors are usually referred to as locally periodic
in the literature. In this particular case we have that the whole sequence {Aε

σ}ε>0 G-converges to
the tensor A0

σ ∈ M(α, β, Ω), A0
σ(x) = A0(σ(x)) = {a0

ij(σ(x))}1≤i,j≤d, which is elliptic and is given
by

a0
ij(σ(x)) = 1

|Y |

∫

Y

aij(σ(x), y) dy − 1
|Y |

d∑

k=1

∫

Y

aik(σ(x), y)∂χj

∂yk
dy ∀ i, j = 1, . . . , d .

The micro functions χj , j = 1, . . . , d, are defined to be the unique solutions of the cell problems:
find χj ∈ W 1

per(Y ) such that
∫

Y

A(σ(x), y)∇yχj · ∇yv dy =
∫

Y

A(σ(x), y)ej · ∇yv dy , ∀v ∈ W 1
per(Y ) , (11)

where {ej}d
j=1 is the canonical basis of ❘d and

W 1
per(Y ) = {v ∈ H1

per(Y ) :
∫

Y

v dy = 0} ,

and H1
per(Y ) is defined as the closure of C∞

per(Y ) for the H1-norm (where C∞
per(Y ) denotes the

subset of C∞(❘d) of periodic functions in Y ).

Hence using homogenization theory, we may introduce the operator F 0 : U → ❘
JL, F 0(σ) =

vec({f0
jl(σ)}1≤j≤J

1≤l≤L

),

f0
jl(σ) =

∫

Γj

ΛA0
σ
gl · φj ds , j = 1, . . . , J, l = 1, . . . , L , (12)

where ΛA0
σ

is the Dirichlet to Neumann map associated to the tensor A0
σ, the homogenized tensor

associated to Aε
σ. Then we can define a new potential function Φ0 : X ×❘JL → ❘, as

Φ0(θ, z) = 1
2 ||z − G0(θ)||2Ce

, (13)

G0 : F 0 ◦ P , where P is a map such that P : X → U . As for the full fine scale model we can invoke
Bayes’ formula to define a posterior measure µ0(θ|z) associated to the potential function (13) which
satisfies

dµ0(θ|z)
dµpr(θ) ∝ exp(−Φ0(θ, z)) . (14)

We note that this new measure is much easier to explore via sampling techniques since the
homogenized forward model F 0 : U → ❘

JL can be approximated efficiently and indipendently on ε.

3 Well-posedness of the posterior measure

In this section we recall some theoretical results about existence and well-posedness of the posterior
measure. It is important to underline that existence and well-posedness of the posterior measure is
typically determined from continuity properties of the forward operator entering in the definition of
the potential function. Then it is necessary to build prior measures such that every proposal lies in
the function space on which the continuity properties of the forward operator are satisfied. Hence,
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some analysis on regularity properties of the forward operator is needed. This is carried on in what
follows. We assume to have a prior Gaussian measure µpr = N (θpr, Cpr) defined on a Banach space
X. Let µ0(θ|z) be a posterior measure that we assume as in Section 2 to satisfy

dµ0(θ|z)
dµpr(θ) = 1

C0(z) exp(−Φ0(θ, z)) , (15)

where Φ0(θ, z) is the potential defined in (13) and C0(z) is the normalization constant

C0(z) =
∫

X

exp(−Φ0(θ, z))µpr(dθ) ,

so that µ0(θ|z) is actually a probability measure.

Definition 2. Let µ1 and µ2 be two probability measures on a Banach space X. Assume µ1 and
µ2 are both absolutely continuous with respect to a common reference measure µ, defined on the
same measure space. Then the Hellinger distance between µ1 and µ2 is defined as

d2
Hell(µ1, µ2) = 1

2

∫

X



√

dµ1

dµ
−
√

dµ2

dµ




2

dµ .

The next theorem gives sufficient conditions on Φ0 : X × ❘JL → ❘ and µpr for the posterior
measure defined in (15) to be well-defined.

Theorem 2. (Theorem 2.3 from [14]). Assume the function Φ0 : X ×❘JL → ❘ and the probability
measure µpr on the probability space (X, Σ) satisfy the following properties:

1. For every r > 0 there is a K = K(r) such that for all θ ∈ X and for all z ∈ ❘JL such that
max{||θ||X , ||z||Ce} < r

0 ≤ Φ0(θ, z) ≤ K .

2. For any fixed z ∈ ❘JL the function Φ0(·, z) : X → ❘ is continuous µpr-almost surely on the
probability space (X, Σ, µpr).

3. For z1, z2 ∈ ❘JL with max{||z1||Ce , ||z2||Ce} < r and for every θ ∈ X, there exists C =
C(r, ||θ||X) such that

|Φ0(θ, z1) − Φ0(θ, z2)| ≤ C||z1 − z2||Ce
.

Then the posterior measure µ0(θ|z) given by (15) is a well-defined probability measure and it is
Lipschitz in the data z, with respect to the Hellinger distance: if µ0(θ|z1) and µ0(θ|z2) are two
measures corresponding to data z1 and z2, then there is a constant C = C(r) > 0 such that, for all
z1, z2 with max{||z1||Ce , ||z||Ce} < r,

dHell(µ0(θ|z1), µ0(θ|z2)) ≤ C||z1 − z2||Ce .

We consider the case where µpr is a Gaussian probability measure on the Banach space X = C0(Ω),
and we will show in Section 4 that assumptions 1-3 are satisfied by µpr and G0 = F 0 ◦ P , where
P : θ ∈ C0(Ω) 7→ σ ∈ U is some map such that if ||θ − θn||L∞(Ω) → 0, then P (θn) → P (θ) either
uniformly or in measure. In particular we consider two different definitions of P , which we denote
as P1 and P2, described in what follows.
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3.1 Prior measure

The map P1 is simply defined as P1(θ) = exp(θ). By continuity of P1 we see that if θ ∈ C0(Ω) and
{θn}n>0 ⊂ C0(Ω) is a sequence such that ||θ − θn||L∞(Ω) → 0, then ||P1(θ) − P1(θn)||L∞(Ω) → 0.
Moreover note that since θ is distributed according to a Gaussian measure, P1(θ) is distributed
according to a log-Gaussian measure.
The map P2, which in [16] is referred to as level set prior, is defined instead in the following way.
Let n ∈ ◆ and fix constants −∞ = c0 < . . . < cn = ∞. Given θ : Ω → ❘, define Ωi ⊆ Ω as

Ωi = {x ∈ Ω : ci−1 ≤ θ(x) < ci} , i = 1, . . . , n ,

so that Ω = ∪n
i=1Ωi and Ωi ∩ Ωj = ∅ for i 6= j. Let us also define the level sets

Ω0
i = Ωi ∩ Ωi+1 = {x ∈ Ω : θ(x) = ci} , i = 1 . . . , n − 1 .

Now given some strictly positive functions f1, . . . , fn ∈ C0(Ω), we define the map P2 : C0(Ω) → U
as

P2(θ) =
n∑

i=1
fi✶Ωi .

In particular we will consider fi which are constant on Ω. For the continuity of the map P2, we
have the following theorem (we denote by |Ωj | the measure of Ωj).

Proposition 1. (Proposition 2.6 and 2.8 in [16]). Let {θn}n>0 ⊂ C0(Ω) converge to some
θ ∈ C0(Ω) uniformly. Then {P2(θn)}n>0 converges to P2(θ) in Lq(Ω), 1 ≤ q < ∞, if and only
if |Ω0

i | = 0 for all i = 1, . . . , n − 1. Let µpr be a Gaussian probability measure on C0(Ω) and let
θ ∼ µpr. Then |Ω0

i | = 0 µpr-almost surely for i = 1, . . . , n − 1.

4 Main results

Here we discuss our main contributions. We recall first a regularity result for the class of d × d
symmetric matrix functions t → A0(t) which was obtained in [4] based on continuity assumptions
on the class of d × d (fine scale) symmetric matrix functions (t, y) → A(t, y), y = x/ε. Afterwards,
we study the continuity of the forward operator G0 : X → ❘

JL, and we analyse the modelling error
switching from multiscale observations to the ones produced by the homogenized model.

Theorem 3. (See [4]). Let x/ε = y ∈ Y . Consider the class of d × d symmetric matrix functions
(t, y) 7→ A(t, y), where aij is Y -periodic, ∀i, j = 1, . . . , d, t ∈ [σ−, σ+], 0 < σ− < σ+. Assume that
there exist E1, α, β > 0 such that

A ∈ W 1,∞([σ−, σ+] × Y, Symd) , ||A||W 1,∞([σ−,σ+];W 1,∞(Y )) ≤ E1 . (16)
∂tA ∈ W 1,∞([σ−, σ+] × Y, Symd) , ||∂tA||W 1,∞([σ−,σ+];W 1,∞(Y )) ≤ E1 . (17)
α|ξ|2 ≤ A(t, y)ξ · ξ , |A(t, y)ξ| ≤ β|ξ|, for a.e. y ∈ Y and ∀t ∈ [σ−, σ+], ξ ∈ ❘d . (18)
∂tA(t, y)ξ · ξ ≥ E−1

1 |ξ|2, for a.e. y ∈ Y and ∀t ∈ [σ−, σ+] , ξ ∈ ❘d. (19)

Then there exist E2, α, β > 0 such that homogenized map t 7→ A0(t) satisfies

|∂tA
0(t)| + |∂2

t A0(t)| ≤ E2 , ∀t ∈ [σ−, σ+] . (20)
α|ξ|2 ≤ A0(t)ξ · ξ , |A0(t)ξ| ≤ β|ξ| , ∀t ∈ [σ−, σ+] , ξ ∈ ❘d . (21)
∂tA

0(t)ξ · ξ ≥ E−1
2 |ξ|2 , ∀t ∈ [σ−, σ+] , ξ ∈ ❘d . (22)

4.1 Continuity of the forward operator

The following theorem establish the continuity of our forward operator.
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Theorem 4. Let the assumptions of Theorem 3 be satisfied. Let the sequence {σn}n>0 ⊂ U converge
to some σ ∈ U either uniformly or in measure. Then the sequence {ΛA0

σn
g}n>0 converges to ΛA0

σ
g

in H−1/2(∂Ω).

Proof. The first part pf the result has been proved in [4]. For convenience we briefly recall the
arguments. Let us define w = A0

σ∇u0(σ) − A0
σn

∇(σn). Observing that w ∈ H(Ω, div) and using
the continuity of the map w ∈ H(Ω, div) 7→ w · ν ∈ H−1/2(∂Ω) we know that

||w · ν||H−1/2(∂Ω) ≤ ||w||L2(Ω) .

Using Cauchy-Schwarz inequality and (20)-(21) we obtain
∫

Ω

|w|2 dx =
∫

Ω

A0
σn

(∇u0(σ) − ∇u0(σn)) · w dx

+
∫

Ω

(A0
σ − A0

σn
)∇u0(σ) · w dx

≤β||∇u0(σ) − ∇u0(σn)||L2(Ω)||w||L2(Ω)

+ C2



∫

Ω

|σ − σn|2|∇u0(σ)|2 dx




1/2

||w||L2(Ω) . (23)

It follows from the weak formulation of u0(σ) and u0(σn) that, for all v ∈ H1
0 (Ω), we have that

∫

Ω

(A0
σ∇u0(σ) − A0

σn
∇u0(σn)) · ∇v dx = 0 .

Then
∫

Ω

A0
σ(∇u0(σ) − ∇u0(σn)) · ∇v dx =

∫

Ω

(A0
σn

− A0
σ)∇u0(σn) · ∇v dx .

By choosing v = u0(σ)−u0(σn) ∈ H1
0 (Ω) and using Cauchy-Schwarz inequality, (20), (21) we obtain

||∇u0(σ) − ∇u0(σn)||L2(Ω) ≤ α−1E2



∫

Ω

|σ − σn|2|∇u0(σn)|2 dx




1/2

. (24)

Inserting (24) into (23) we obtain

||w||L2(Ω) ≤ E2(1 + α−1β)



∫

Ω

|σ − σn|2|∇u0(σ)|2 dx




1/2

, (25)

and by using Holder’s inequality and Lax-Milgram we finally obtain

||w||L2(Ω) ≤ E2(1 + α−1β)||σ − σn||L∞(Ω)||∇u0(σ)||L2(Ω)

≤ E2α−1β(1 + α−1β)||g||H1/2(∂Ω)||σ − σn||L∞(Ω) . (26)

Now, if ||σ − σn||L∞(Ω) → 0 the result follows from (26). On the other hand if |σ − σn| → 0
in measure, since |Ω| < ∞ and ∇u0(σ) ∈ (L2(Ω))d, we have also that the integrand of (25)
|σ − σn|2|∇u0(σ)|2 → 0 in measure (see corollary 2.2.6 in [8] for example). Now, since |σ − σn|
is uniformly bounded by assumptions, the whole integrand is bounded by a scalar multiple of
|∇u0(σ)|2. Therefore by applying the Lebesgue’s dominated convergence theorem, we obtain that
|σ − σn|2|∇u0(σ)|2 → 0 in L1(Ω), and the result follows.
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Remark 1. The Lebesgue’s dominated convergence theorem is stated for sequences converging almost
everywhere. However, convergence almost everywhere can be replaced in this case by convergence
in measure, since |Ω| < ∞.

Remark 2. The result given in Theorem 4 is stronger than the one we obtained in Lemma 4.1
in [4], since it states continuity of the flux with respect to the convergence in measure of {σn}n>0
to σ. There continuity of the flux with respect to the Lr(Ω) topology on U , with 1 ≤ r < ∞, was
obtained by asking for higher regularity of the solution u0.

We can deduce the following corollary that establishes the contnuity of the effective forward operator.

Corollary 1. Let the assumptions of Theorem 3 be satisfied. Let the sequence {σn}n>0 ⊂ U
converge to some σ ∈ U either uniformly or in measure. Then the sequence {F 0(σn)}n>0 converges
to F 0(σ).

Proof. We have that

||F 0(σ) − F 0(σn)||Ce
≤ C

J∑

j=1

L∑

l=1

∫

Γj

∣∣(ΛA0
σ

− ΛA0(σn))gl · φj

∣∣ ds

≤ C sup
l

||(ΛA0
σ

− ΛA0
σn

)gl||H−1/2(∂Ω) sup
j

||φj ||H1/2(∂Ω) ,

and the result follows from Theorem 4.

Finally we establish that the posterior measure (14) based on the potential function Φ0 is well
defined and Lipschitz contnuous in the data with respect to the Hellinger distance.

Corollary 2. Let the assumptions of Theorem 3 be satisfied. Let µpr be a Gaussian probability
measure on C0(Ω), and let P : θ ∈ C0(Ω) 7→ σ ∈ U be defined as P1 or P2 in Section 3.1. Then
the function Φ0 : C0(Ω) ×❘JL → ❘ defined in (13), with G0 = F 0 ◦ P : C0(Ω) → ❘

JL satisfies
assumptions 1-3 of Theorem 2.

Proof. We have that F 0 : U → ❘
JL is bounded, since from Corollary 1 we obtain

||F 0(σ)||Ce ≤ ||F 0(σU )||Ce + ||F 0(σ) − F 0(σU )||Ce

≤ max{1, ||F 0(σU )||Ce
}(||σ||L∞(Ω) + c) ,

for some σU ∈ U such that ||σU ||L∞(Ω) = c. In case P = P1 then we have that

||G0(θ)||Ce
≤ C(|| exp(θ)||L∞(Ω) + c) (27)
≤ C(exp(||θ||L∞(Ω)) + c) , (28)

while if P = P2, ||G0(θ)||Ce
is bounded by a constant since P2 is uniformly bounded. Using the

triangle inequality we have that

Φ0(θ, z) ≤ C(||z||2Ce
+ ||G0(θ)||2Ce

)

and therefore assumption 1 follows. To fulfill assumption 3 we note that we have

|Φ0(θ, z1) − Φ0(θ, z2)| = 1
2 |〈z1 + z2 − 2G0(θ), z1 − z2〉Ce |

≤ C(||z1||Ce
+ ||z2||Ce

+ 2||G0(θ)||Ce
)||z1 − z2||Ce

and the result follows. It remains to show that assumption 2 is also satisfied. Assume that P is
some map such that if ||θ − θn||L∞(Ω) → 0 then P (θn) → P (θ) uniformly or in measure. Then by
Corollary 1 we have that G0 = F 0 ◦ P is continuous at θ. The continuity assumption on P is true
for P = P1. By Proposition 1 it is true for P = P2 at the points where the level sets have measure
zero. However since we are assuming θ ∼ µpr and µpr is a Gaussian probability measure on C0(Ω),
it follows from Proposition 1 that θ has µpr-almost surely this property and therefore assumption 3
is satisfied also in the case P = P2.
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Remark 3. Using the same arguments, we can prove that when P = P1 also for Gε(θ) we have that

||Gε(θ)||Ce
≤ C(exp(||θ||L∞(Ω)) + c) ,

while when P = P2, ||Gε(θ)||Ce
is bounded by a constant independent of θ. Hence the posterior

measure (8) based on the potential function Φε is also well defined and Lipschitz contnuous in the
data with respect to the Hellinger distance.

4.2 Modelling error and convergence analysis

Before moving to the numerical aspects of the problem, an investigation of the validity of our
approach is necessary. First we observe that (6) can be rewritten as

z = F 0(σ∗) + (F ε(σ∗) − F 0(σ∗))︸ ︷︷ ︸
m(σ∗)

+e , e ∼ N (0, Ce) .
(29)

The quantity m(σ∗) represents the modelling error capturing the mismatch between the full
multiscale model and the homogenized one. In particular (29) suggests that the observed data
originating from the full multiscale model can be seen as data originating from the homogenized
model, which are affected by two sources of errors: the noise and the modelling error. Both sources
of errors can affect our predictions and we must take them into account when solving inverse
problems to obtain good approximations of the unknown, especially when ε is relatively large. For
the modelling error we can show that we have in our case that m(σ) → 0 as ε → 0 for every σ ∈ U ,
as stated in the following theorem.

Theorem 5. Let {Aε
σ}ε>0 be a sequence of matrices in M(α, β, Ω) which G-converges to the matrix

A0
σ ∈ M(α, β, Ω), and let m(σ) = vec({m̃jl(σ)}1≤j≤J

1≤l≤L

), where

m̃jl(σ) =
∫

Γj

(ΛAε
σ

− ΛA0
σ
)gl · φj ds , j = 1, . . . , J , l = 1, . . . , L ,

where Γj ⊂ ∂Ω for all j = 1, . . . , L, Γi ∩Γj = ∅ for i 6= j, and φj , gl ∈ H1/2(∂Ω) for all j = 1, . . . , J ,
supp(φj) ⊆ Γj for all j = 1, . . . , J . Then ||m(σ)||Ce

→ 0 as ε → 0.

Proof. We have that for arbitrary j and l and ∀σ ∈ U

|m̃jl(σ)| =

∣∣∣∣∣∣∣

∫

Γj

(ΛAε
σ

− ΛA0
σ
)gl · φj ds

∣∣∣∣∣∣∣
.

Since supp(φj) ⊆ Γj , we have that

|m̃jl(σ)| =

∣∣∣∣∣∣

∫

∂Ω

(ΛAε
σ

− ΛA0
σ
)gl · φj ds

∣∣∣∣∣∣
,

and using integration by parts

|m̃jl(σ)| =

∣∣∣∣∣∣

∫

Ω

(Aε
σ∇uε − A0

σ∇u0) · ∇φ̃j dx

∣∣∣∣∣∣
, (30)

where φ̃j is some function in H1(Ω) whose trace is φj . From G-convergence of Aε
σ to A0

σ we know
that (30) converges to zero as ε → 0.
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Corollary 3. Let µε(θ|z) and µ0(θ|z) be defined as in 8 and 14 respectively. Then we have that

dHell(µ0(θ|z), µε(θ|z)) → 0 as ε → 0 .

Proof. From the definition of the Hellinger distance we have that

2d2
Hell(µ0, µε) =

∫

C0(Ω)

(√
dµ0

dµpr
−
√

dµε

dµpr

)2

µpr(dθ)

=
∫

C0(Ω)

(
1√
C0

exp
(

−1
2Φ0(θ, z)

)
− 1√

Cε
exp

(
−1

2Φε(θ, z)
))2

µpr(dθ) , (31)

where C0 and Cε are the two normalization constants such that µ0(θ|z) and µε(θ|z) are probability
measures, i.e.,

C0 =
∫

C0(Ω)

exp(−Φ0(θ, z))µpr(dθ) , Cε =
∫

C0(Ω)

exp(−Φε(θ, z))µpr(dθ) .

Let us notice that

|C0 − Cε| ≤
∫

C0(Ω)

∣∣exp(−Φ0(θ, z)) − exp(−Φε(θ, z))
∣∣µpr(dθ)

≤
∫

C0(Ω)

∣∣Φ0(θ, z) − Φε(θ, z)
∣∣µpr(dθ) . (32)

From (31) we get that

2d2
Hell(µ0, µε) ≤ I1 + I2 ,

where

I1 = 1
C0

∫

C0(Ω)

(
exp

(
−1

2Φ0(θ, z)
)

− exp
(

−1
2Φε(θ, z)

))2
µpr(dθ) ,

I2 =
(

1√
C0

− 1√
Cε

)2
Cε.

We have that

I1 ≤ 1
4C0

∫

C0(Ω)

(Φ0(θ, z) − Φε(θ, z))2µpr(dθ) ,

and

I2 ≤ 1
4 max

{
(C0)−3, (Cε)−3} (C0 − Cε)2

≤ C

∫

C0(Ω)

(Φ0(θ, z) − Φε(θ, z))2µpr(dθ) ,

where we have used (32). Using the definition of Φ0 and Φε we find

2d2
Hell(µ0, µε) ≤ C

∫

C0(Ω)

(Φ0(θ, z) − Φε(θ, z))2µpr(dθ)

≤ C

∫

C0(Ω)

(2||z||Ce
+ ||G0(θ)||Ce

+ ||Gε(θ)||Ce
)2||G0(θ) − Gε(θ)||2Ce

µpr(dθ) .
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From Theorem 5 we have that lim
ε→0

||G0(θ) − Gε(θ)||Ce = 0. We also have that (see Corollary 2) if
P = P1 both ||G0(θ)||Ce

and ||Gε(θ)||Ce
are bounded by some scalar multiple of (exp(||θ||L∞(Ω))+1),

which is square integrable. Otherwise if P = P2 both ||G0(θ)||Ce
and ||Gε(θ)||Ce

are bounded by
a constant since P2 is uniformly bounded, and again square integrability follows. Then by the
Lebesgue’s dominated convergence theorem it follows that dHell(µ0, µε) → 0 as ε → 0.

The interpretation of the result is that when ε is small we can neglect the modelling error, since it
will be close to zero, and we do not need to take into account its probability distribution in the
inversion process. However for larger values of ε, the mismatch between the observations and the
data produced by the homogenized model might not be negligible, and using the coarse grained
approach without taking into account the modelling error distribution may lead to bad predictions.
In order to avoid that, we can correct the likelihood function, by approximating the probability
distribution of the modelling error. We do so by using Algorithm 1 proposed in [9], which aims at
approximating the mean m and the covariance Cm of the modelling error distribution.

Algorithm 1: Approximation of modelling error distribution
input : prior measure, sample size M , map P : θ 7→ σ
output : mean m and covariance Cm of the modelling error

1 Draw from the prior measure a sample of realizations S = {θ1, . . . , θM }
2 for i = 1, . . . , M do
3 mi = Gε(θi) − G0(θi) = F ε(P (θi)) − F 0(P (θi))
4 end
5 m = 1

M

∑M
i=1 mi

6 Cm = 1
M

∑M
i=1(m − mi)(m − mi)⊤

We assume a Gaussian distribution for the modelling error, so that m ∼ N (m, Cm) for all σ, and
we can rewrite (29) as

z = F 0(σ∗) + e , e ∼ N (m, Ce + Cm) . (33)

Then as illustrated in Algorithm 1 the modelling error distribution is approximated offline. Only M
evaluations of the full multiscale model are needed. Hence, we use this approximation to modify the
cost functional as in (34), and sample from the posterior by evaluating only the coarse homogenized
model. We note that in (33) to apply the Bayesian framework for inverse problem, we still assume
the independence of e and θ, despite the introduction of the modelling error in e. Nevertheless the
practical uselfulness of such algorithm has been shown in numerous works (see [6,9]). Then we may
define the new likelihood as

Φ0(θ, z) = 1
2 ||z − G0(θ)||2Ce+Cm

, (34)

where z = z −m. Note that conclusions about existence and well-posedness of the posterior measure
are still valid under this definition of the potential function, which is equivalent to the one in (13),
apart from the fact that observations z are shifted by m, and the covariance matrix is given by
Ce + Cm.

5 Numerical approximation of the posterior density

The output of the Bayesian approach consists in the posterior measure. However in practice
numerical sampling is needed to approximate the distribution, in order to obtain some meaningful
informations (such as expected value or variance of the unknown, confidence intervals). As mentioned
in Section 3.1 we consider as prior a Gaussian measure µpr = N (θpr, Cpr) on C0(Ω), and a map
Pi : C0(Ω) → U , i = 1, 2, such that each draw from µpr is mapped into the admissible set
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U . In numerical experiments to reduce the dimensionality of the unknown we use a truncated
Karhunen-Loève expansion. Indeed, each draw θ ∼ N (θpr, Cpr) can be represented as

θ = θpr +
∞∑

k=1

√
λkξkϕk ,

where {ϕk, λk}∞
k=1 is an orthonormal set of eigenfunctions and eigenvalues of Cpr, and {ξk}∞

k=1 is an
i.i.d. sequence with ξ1 ∼ N (0, 1). We can then consider the truncated Karhunen-Loève expansion

θK = θpr +
K∑

k=1

√
λkξkϕk (35)

= θK(ξ) ,

where ξ = (ξ1, . . . , ξK)⊤, and {ϕk, λk}K
k=1 is the orthonormal set of eigenfunctions and eigenvalues

of Cpr corresponding to the K largest eigenvalues. The unknown parameter is then parametrized
by the K coeffiecients {ξk}K

k=1, which are a priori i.i.d. as N (0, 1), and the inverse problem consists
in approximating the posterior distribution of the K coefficients by sampling from the posterior
density π0(ξ|z) which is given by

π0(ξ|z) ∝ exp
(

−1
2 ||z − G0(θK(ξ))||2Ce

− 1
2(θK(ξ) − θpr)⊤C−1

pr (θK(ξ) − θpr)
)

= exp
(

−1
2 ||z − G0(θK(ξ))||2Ce

− 1
2ξ⊤ξ

)
. (36)

To sample from the posterior density we employ the Marcov chain Monte Carlo techniques (MCMC).
Many algorithms belonging to the family of MCMC sampling methods are available in the literature.
We decide to use the Metropolis Hastings (MH) method, which we illustrate just below. With this
approach at each iteration we generate a new candidate η ∈ ❘K from a proposal density q(ξk, η),
q : ❘K ×❘K → ❘

+, where ξk is the current value of the variable. This new candidate is accepted
with probability

a(ξk, η) = min
{

1,
π0(η|z)q(η, ξk)
π0(ξk|z)q(ξk, η)

}
. (37)

Otherwise the candidate is rejected and the chain remains at the current position ξk. Note that if
the proposal density is symmetric, i.e. q(ξk, η) = q(η, ξk), (37) reduces to

a(ξk, η) = min
{

1,
π0(η|z)
π0(ξk|z)

}
.

In our experiments we consider the random walk proposal distribution to explore the density. Then

q(ξk, η) ∝ exp
(

− 1
2s2 (η − ξk)⊤(η − ξk)

)
, (38)

which is symmetric, and leads to Algorithm 2. The approximation of the target distribution
improves as the numbers of samples Nsample increases, and asymptotic convergence is guaranteed as
Nsample → ∞ under certain regularity properties of the target distribution and the proposal density.
Therefore the results may be strongly dependent on the number of samples required, but also on
the proposal density. In particular is a difficult task to establish when a sample is large enough. At
the same time another general issue for MH is the choice of s in (38), whose magnitude affects the
speed at which the posterior distribution is explored and the number of rejected realizations.

6 Numerical approximation of the forward model

At each MH iteration we need to evaluate π0(η|z) where η is a new candidate point, and π0 is
the posterior density given in (36). Hence, given σ = P (θK(η)), where P : C0(Ω) → U is one of
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Algorithm 2: Metropolis Hastings (MH)
input : posterior density π0(ξ|z), starting point ξ1 ∈ ❘K , number of samples desired Nsample,

symmetric proposal density N (0, s2I)
output : sample of realization S ∈ ❘K×Nsample

1 Initialization: k = 1, S = ξ1

2 while k < Nsample do
3 η = ξk + sw, w ∼ N (0, I)

4 a(ξk, η) = min
{

1,
π0(η|z)
π0(ξk|z)

}

5 Draw u ∼ U([0, 1])
6 if a(ξk, η) > u then
7 accept: ξk+1 = η
8 else
9 reject: ξk+1 = ξk

10 end
11 S = S ∪ ξk+1, k = k + 1
12 end

two maps introduced in Section 3.1, what remains to be discussed is how to evaluate F 0(σ). The
procedure can be substantially split in two parts:

1. Solve for each l = 1, . . . , L
− ∇ · (A0

σ∇u0) = 0 in Ω ,

u0 = gl on ∂Ω ,

where A0
σ is the homogenized tensor corresponding to Aε

σ(x) = A(σ(x), x/ε).

2. Approximate the boundary fluxes, and evaluate (12).

6.1 Numerical homogenization

Since given Aε
σ the analytic solution for the corresponding A0

σ is often not known, numerical
homogenization is needed. We employ the Finite Element Heterogeneous Multiscale Method (FE-
HMM) which approximates the homogenized problem originating from (9) taking as input only
the multiscale data. For a detailed analysis about FE-HMM we refer to [1, 2, 5]. We state here the
simplest version involving only piecewise linear macro and micro simplicial elements. The method
is based on a macro finite element space

S1(Ω, TH) = {vH ∈ H1(Ω) : vH |K ∈ P1(K) , ∀K ∈ TH} ,

where TH is a partition of Ω in simplicial elements K of diameter HK , and P1(K) is the space of
linear polynomials on K. Then the homogenized tensor is approximated at each integration point
by solving a micro problem on a sampling domain Kδ = xK + (−δ/2, δ/2)d, (δ ≥ ε). For a sampling
domain Kδ we define a micro finite element space

S1(Kδ, Th) = {vh ∈ W (Kδ) : vh|T ∈ P1(T ) ∀T ∈ Th} .

where

W (Kδ) = W 1
per = {v ∈ H1

per(Kδ);
∫

Kδ

v dx = 0}

in case we ask for periodic coupling, or

W (Kδ) = H1
0 (Kδ)
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for a coupling with Dirichlet boundary conditions. Let uH be the approximate solution to prob-
lem (10). The numerical method reads as follows: find uH ∈ S1(Ω, TH), uH = g on ∂Ω, such
that

BH(uH , vH) = FH(vH) ∀vH ∈ S1
0(Ω, TH) ,

where S1
0(Ω, TH) = S1(Ω, TH) ∩ H1

0 (Ω), and

BH(vH , wH) :=
∑

K∈TH

|K|
|Kδ|

∫

Kδ

A(σ(xK), x/ε)∇vh
K · ∇wh

K dx , (39)

and

FH(vH) :=
∑

K∈TH

|K|(fvH)(xK) .

In (39) vh
K (respectively wh

K) denotes the solution to the micro problem: find vh
K such that

vh
K − vH ∈ S1(Kδ, Th) and

∫

Kδ

Aε
σ∇vh

K · ∇zh dx = 0 ∀zh ∈ S1(Kδ, Th) . (40)

6.2 Model order reduction

The main cost of the FE-HMM comes from the repeated solution of cell problems, whose number
increases as we refine the macro mesh to obtain an appropriate approximation of the homogenized
solution. This is particularly undesirable when solving inverse problems, since by using e.g. MH
method one needs multiple evaluations of the cost functional for different realizations of the
parameters of interest. We therefore combine the reduced basis methodology with the FE-HMM to
drastically reduce the computational effort. For a detailed description and analysis of the method,
called the Reduced Basis Finite Element Heterogeneous Multiscale Method (RB-FE-HMM), we
mention [3]. The main idea is the following. During what is called the offline stage we select a small
number N of carefully precomputed micro solutions to construct a small subspace of microscopic
functions which we call SN (Y ). Then in the online stage we use these precomputed solutions
to obtain fast evaluations of the homogenized tensor at the macroscopic quadrature points. The
basis of SN (Y ) are selected by using a greedy procedure. We randomly define a training set
ΞT rain = {(tn, ηn) : 1 ≤ n ≤ NT rain, 1 ≤ ηn ≤ d}, where tn ∈ [σ−, σ+], while ηn corresponds to
the unit vector eηn

of the canonical basis of ❘d. Let us note that if we map the domain Kδ into
the reference domain Y = (0, 1)d through x = GxK

(y) = xK + δ(y − 1/2), we can define

BH(vH , wH) :=
∑

K∈TH

|K|A0,h(σ(xK))∇vH(xK) · ∇wH(xK) , (41)

with

(A0,h
σ (xK))ik =

∫

Y

AxK
(∇χi,h

K + ei) · (∇χk,h
K + ek) dy , (42)

where AxK
= A(σ(xK), GxK

(y)), and χi,h
K (respectively χk,h

K ) is the solution of the micro problem

b(χi,h
K , zh) : =

∫

Y

AxK
∇χi,h

K · ∇zh dy

= −
∫

Y

AxK
ei · ∇zh dy =: li(zh) ∀zh ∈ S1(Y, Th) .

(43)
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It can be shown [3] that

1
|Kδ|

∫

Kδ

A(σ(xK), x/ε)∇vh
K · ∇wh

K dx = A0,h(σ(xK))∇vH(xK) · ∇wH(xK) . (44)

To select the micro problems in the offline stage, we start by computing the first basis function by
solving the micro problem

∫

Y

A(tn, y)∇ζh
1 · ∇vh dy = −

∫

Y

A(tn, y)eηn
· ∇vh dy = ∀vh ∈ S1(Y, Th) , (45)

where (tn, ηn) is some point randomly drawn from ΞT rain, and we initialize the space S1(Y ) =
span{ζh

1 }. We then successively we continue to add new basis functions to S1(Y ) until convergence
of an a posteriori error indicator below a certain tolerance. The output of the offline stage is then
the reduced space

SN (Y ) = span{ζh
1 , . . . , ζh

N } .

An efficient way to both implement the greedy algorithm and compute residuals for the a posteriori
error control is crucial. A crucial assumption is that for a given tn ∈ [σ−, σ+], the tensor A(tn, y) is
available in the affine form

A(tn, y) =
Q∑

q=1
Θq(tn)Aq(y) , ∀y ∈ Y , (46)

where Θq : [σ−, σ+] → ❘, q = 1 , . . . , Q. In case the tensor is not directly available in the form (46),
a greedy algorithm, called the empirical interpolation method (EIM), can be applied to obtain an
affine approximation of the tensor [15]. Once SN (Y ) has been constructed, we can then define a
macro method similar to the FE-HMM. The method reads: find uH,RB ∈ S1(Ω, TH), uH,RB = g on
∂Ω, such that

BH,RB(uH,RB , vH) =
∫

Ω

fvH dx ∀vH ∈ S1
0(Ω, TH) , (47)

where

BH,RB(vH , wH) :=
∑

K∈TH

|K|A0,N (σ(xK))∇vH(xK) · wH(xK) , (48)

and

(A0,N (σ(xK)))ik =
∫

Y

A(σ(xK), y)(∇χi,N
K + ei) · (∇χk,N

K + ek) dy .

Here χi,N
K is the solution of (43) in the reduced basis space. Thanks to the affine representation

of the tensor Aε
σ, solving the micro problems in the reduced space consists with solving a small

N × N linear system, which leads to a significant computational speed-up compared to classical
numerical homogenization [3].

6.3 Approximate boundary flux computation

Once the approximated solution uH,RB has been computed, what is left is to evaluate boundary
fluxes to obtain data defined through (12). To do so we employ a method based on a Galerkin
projection, which we have introduced and analysed in [4]. For completeness, we briefly illustrate the
algorithm. We assume the domain Ω to be a polygonal domain. We suppose that the approximate
flux at the corners of Ω is specified from direct calculation with the given Dirichlet data (see [10]
for details). We next introduce the following subspace of S1(Ω, TH) :

S1
c (Ω, TH) = {vH ∈ S1(Ω, TH) : vH = 0 at the corners of Ω} .
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Let us denote as S1(∂Ω, TH), the finite dimensional space of functions which are restrictions on
the boundary of functions in S1

c (Ω, TH). Suppose we have computed the approximate solutions
uH,RB and we want to approximate the boundary flux across ∂Ω. The approximate flux can be
constructed by assembling the function ΛH

A0,N
σ

g ∈ S1(∂Ω, TH), such that
∫

∂Ω
ΛH

A0,N
σ

g · vH ds = BH,RB(uH,RB , vH) −
∫

Ω

fvH dx (49)

∀vH ∈ S1
c (Ω, TH), where

BH,RB(vH , wH) =
∑

K∈TH

|K|A0,N (σ(xK))∇vH · ∇wH .

Let us remark that uH,RB has been already computed, and so constructing ΛH
A0,N

σ
g leads to solving

a linear systems whose unknowns are the values of the boundary flux at the nodes of ∂Ω.

6.4 Summary of the numerical procedure to solve the multiscale inverse
problem

The numerical scheme for solving the multiscale inverse problem given the perturbed observations
z ∈ ❘JL can be then summarized as follows.

1. Compute in an offline stage a reduced space of precomputed microscopic functions as described
in Section 6.

2. Compute in an offline stage the set {ϕk, λk}K
k=1 of eigenfunctions and eigenvalues of the prior

covariance Cpr, so that for a point ξ ∈ RK we have that

θK(ξ) = θpr +
K∑

k=1

√
λkξkϕk ,

and σK(ξ) = P (θK(ξ)), where P = P1 or P = P2.

3. Sample online from the posterior distribution. In particular for a new realization η, in order
to evaluate π0(η|z), do the following for each l = 1, . . . , L.

• Solve (47), (48) for σ = σK(η).
• Approximate the corresponding flux at the boundary by solving (49) and evaluate (12).

7 Numerical experiments

In this section we will present some numerical experiments to illustrate our multiscale Bayesian
algorithm for inverse problems. We start by explaining how observed data are collected. We
then solve the inverse problem for different macroscopic parametrizations. At first, we consider
an affine parametrization of the form Aε(x) = σ∗(x)Bε(x) = σ∗(x)B(x/ε), so that the function
σ∗ controls the amplitude of the characteristic micro oscillations. Let us point out that for this
choice we have that A0(x) = σ∗(x)B0, and thus the use of reduced basis methods for solving
the forward problem is not required. This simple problem allows us to perform numerous tests
to quantify the sensitivity of the method with respect to the several parameters involved in the
approximation, such as ε, the size of the microscopic oscillations, K, the number of terms in the
truncated Karhunen-Loève expansion, and L, the number Dirichlet data. Then we will consider
two different non-affine macroscopic parametrizations, one controlling the orientation of the micro
oscillations, the other the volume fraction of a fictious layered material. For these problems we
make the following choice of parameters for the RB-FE-HMM offline stage: h/ε = 1/64, δ = ε,
tolRB = 10−11, where tolRB is a prescribed tolerance used as stopping criterion for the greedy
algorithm employed to select the reduced basis functions.
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7.1 Set-up

The computational domain is the unit square

Ω = {x = (x1, x2) : 0 < x1, x2 < 1} .

We approximate the solution to problem (1) by means of the Finite Element Method (FEMs) using
a very fine discretization hobs << ε. The forward homogenized problem is instead computed using
a macro mesh size H = 1/64. The problem is solved for different Dirchlet conditions {gl}L

l=1. In
particular we take {gl}L

l=1 = {
√

λlϕl}L
l=1, where {(λl, ϕl)}L

l=1 are the L eigenpairs corresponding to
the L smallest eigenvalues associated to the one dimensional discrete Laplacian operator. Each
gl is then projected on the boundary ∂Ω to define the corresponding Dirichlet condition. This
procedure ensures that the functions {gl}L

l=1 are smooth and orthonormal, so that each experiment
contributes differently one from another. Moreover ||∇gl||L2(∂Ω) < C, where C is a constant
independent of L. Finally, we consider J = 12 boundary portions Γj ⊂ ∂Ω, three for each side of
the computational domain as shown in Figure 1. Each Γj has length equal to 0.2. The functions
φj appearing in (5) are hat functions with supp(φj) = Γj which take value one at the midpoint of
each Γj . Once the observed data have been computed, they are perturbated by the noise given
by e = 10−4w, w ∼ N (0, I). Let pi and pj two nodes of the macro triangulation TH , and let NH

the total number of nodes defining TH . Note that NH = H−2. The covariance matrix in the prior
measure µpr = N (θpr, Cpr) is then Cpr ∈ ❘NH ×NH defined as

(Cpr)ij = γ exp
(

−||pi − pj ||
λ

)
, γ, λ ∈ ❘+ , (50)

while the prior mean θpr is some function in C0(Ω). We set different values for γ, λ and θpr

depending on the macroscopic parametrization we want to retrieve. In particular λ > 0 is a
correlation length that describes how the values at different positions of the functions supported by
the prior measure are related, while γ > 0 is the amplitude scaling factor.

7.2 2D affine parametrization (amplitude of oscillations)

In this first set of numerical experiments we consider the tensor Aε
σ∗ given by

a11(σ∗(x), x/ε) = σ∗(x)
(

cos2
(

2πx1
ε

)
+ 1
)

,

a22(σ∗(x), x/ε) = σ∗(x)
(

sin
(

2πx2
ε

)
+ 2
)

,

a12(σ∗(x), x/ε) = a21(σ∗(x), x/ε) = 0 ,

where

σ∗(x) = 1.3 + 0.3✶D1 − 0.4✶D2 ,

and
D1 = {x = (x1, x2) : (x1 − 5/16)2 + (x2 − 11/16)2 ≤ 0.025} ,

D2 = {x = (x1, x2) : (x1 − 11/16)2 + (x2 − 5/16)2 ≤ 0.025} .

The task of the problem is to retrieve the function σ∗, which is shown together with the component
aε

11 of the tensor, ε = 1/64, in Figure 2.

Sensitivity with respect to ε

We start by studying how different choices of ε can affect our predictions. The computations are
reported in Figure 4. We briefly describe the setting. We compute numerically by means of a
resolved FEM synthetic observations for different values of ε = {1/4, 1/8, 1/16, 1/8, 1/64}, for L = 6
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(a) σ∗. (b) aε
11 , ε = 1/64.

Figure 2: Representation of the true spatial field σ∗ and the first component of the highly oscillating
tensor for Problem 7.2.

different Dirichlet conditions. We consider a truncated Karhunen-Loève expansion with K = 60.
The prior measure µpr on θ ∈ C0(Ω) is N (θpr, Cpr), with θpr = log 1.3 and Cpr defined in (50) with
γ = 0.05 and λ = 0.5. In particular the choice of θpr = log 1.3 is such that the resulting log-normal
distribution on the admissible set U has median 1.3. For µpr measure on C0(Ω) and P : C0(Ω) → U ,
we denote as P #µpr the pushed forward prior on the admissible set U under P . We then push
each draw θ into the admissible set through the function P1 : θ 7→ exp(θ). Example of realizations
from the pushed forward prior P #

1 µpr are show in Figure 3. We draw then 2 × 105 samples from

Figure 3: Four samples from the prior density used in Problem 7.2.

the posterior distribution (36) using MH. The parameters s is set to 0.01. The starting point is
ξ1 = 0 ∈ ❘K . With this choice of the parameters we obtain an acceptance rate of about 27% for
all choices of ε. In Figure 4 we plot for each ε the quantities P1(❊[θK(ξ)], ❊[P1(θK(ξ))], and the
variance Var[P1(θK(ξ))]. The first quantity is produced by computing first the mean on the Banach
space C0(Ω) and then pushing it into the admissible set U through P1 : C0(Ω) → U . Moreover we
also show the approximation of the posterior density for the first three coefficients in the truncated
Karhunen-Loève expansion. We notice that with ε = 1/4 we get inaccurate predictions about the
quantity of interest, while already with ε = 1/8 the approximation of the posterior mean is in good
agreement with Figure 2. The source of error for large ε comes from the discrepancy between the
multiscale model from where the observations are obtained and the homogenized model used for
solving the inverse problem.

Approximation of the modelling error distribution

As seen in Figure 4 for large values of ε the modelling error (the discrepancy between the fine scale
and the homogenized problems) pollutes the posterior prediction. Therefore, we perform again the
same experiment for ε = 1/4, but taking into account the modelling error as described in Section 4.2.
We approximate the modelling error distribution, by computing its mean and covariance using
Algorithm 1 and include these quantities into the posterior density definition according to 34. We
perform the experiment for various number of sample sizes M to approximate the modelling error
distribution, namely M = {5, 10, 20}. The parameters such as K and L are identical to the previous
numerical test. Numerical results are shown in Figure 5. In particular we can observe how already
with M = 5 we can manage to significantly improve the results reported in Figure 4 for ε = 1/4.
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Figure 4: Comparison of numerical approximations of the posterior density for Problem 7.2, obtained
with different values of ε. From left to right the plotted quantities are P1(❊[θ]), ❊[P1(θ)], Var[P1(θ)],
and the posterior density of the three first coefficients of the truncated Karhunen-Loève expansion,
corresponding to ε = {1/4, 1/8, 1/16, 1/32, 1/64}. The length scale ε decreases from the top to the
bottom. The other parameters are H = 1/64, L = 6, K = 60.

Sensitivity with respect to L (number of Dirichlet data)

Next we investigate the sensitivity of the approximated solution with respect to the parameter
L, denoting the number of different Dirichlet conditions used to produce the observations. The
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Figure 5: Comparison of numerical approximations of the posterior density for Problem 7.2 obtained
with ε = 1/4, for different values of M , the sample size used to approximate the modelling error
distribution. From left to right the plotted quantities are P1(❊[θ]), ❊[P1(θ)], Var[P1(θ)], and the
posterior density of the three first coefficients of the truncated Karhunen-Loève expansion. The
value of M is 5 in the first row, 10 in the second one, and 20 in the third row. The other parameters
are H = 1/64, L = 6, K = 60.

setting is the same as in the previous numerical experiments, except that ε is fixed and equal to
1/64, while L = {2, 4, 6}. Numerical results are shown in Figure 6. We notice that for L = 2 the
variance is significantly larger than for L = 4 or L = 6, which indicates more uncertainty about
the approximated solution. This is also visible from the approximation of the posterior density
obtained for the three first coefficients of the Karhunen-Loève expansion.

Sensitivity with respect to K (number of terms in the truncated KL expansion)

Finally we examine how the size of the truncated Karhunen-Loève expansion affects our predictions.
We perform experiments for K = {10, 20, 30, 40, 50, 60}, while L and ε are fixed, set to 6 and 1/64
respectively. In particular we mention that for smaller K, a coarser mesh can be used for the
forward discrete problem, leading to a significant saving of the computational cost. The results are
shown in Figure 7. We can observe how the lowest Karhunen-Loève modes are able to determine
the main geometric structure of the parameter of interest, while by increasing the number of
eigenvalues/eigenfunctions we obtain a better sampling of the quantity of interest. This can be
noticed from the plot of the posterior mean and variance we obtain with K = {40, 50, 60}. Such a
result suggests the possibility of investigating the implementation of a Metropolis-Hastings algorithm
on multiple levels, with an approximation of the distribution of the lowest modes on a coarse mesh,
while performing fewer samples for the highest modes on a finer mesh to guarantee a proper sample
of the posterior density.
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Figure 6: Comparison of numerical approximations of the posterior density for Problem 7.2 obtained
for different values of L, the number of Dirchlet data. From left to right the plotted quantities
are P1(❊[θ]), ❊[P1(θ)], Var[P1(θ)], and the posterior density of the three first coefficients of the
truncated Karhunen-Loève expansion. In the first row L = 2, in the second one L = 4. For L = 6
see last row in Figure 4. The other parameters are H = 1/64, ε = 1/64, K = 60.

7.3 2D non-affine parametrization (orientation of oscillations)

Now we consider the case where the function σ∗ controls the angle of the oscillations which
characterize the full tensor Aε

σ∗ . The tensor is defined as

a11(σ∗(x), x/ε) = sin
(

4πe1
⊤Qx

ε

)
+ 1.5 ,

a22(σ∗(x), x/ε) = cos2
(

2πe2
⊤Qx

ε

)
+ 1 ,

a12(σ∗(x), x/ε) = a21(σ∗(x), x/ε) = 0 ,

(51)

where Q = Q(σ∗(x)) is a rotation matrix depending on σ∗ : Ω → ❘

Q(σ∗(x)) =
(

cos(2πσ∗(x)) sin(2πσ∗(x))
− sin(2πσ∗(x)) cos(2πσ∗(x))

)
, (52)

and
σ∗(x) = a + b✶D , D ⊂ Ω , a, b ∈ ❘ .

We consider the case where D is the circle defined as

D = {x = (x1, x2) : (x1 − 1/3)2 + (x2 − 1/3)2 ≤ 0.05} .

In Figure 8 we show the function σ∗ and the first component of the tensor aε
11. From (51)-(52) it

can be observed that different values of a, b for σ∗ can lead to the same rotation of the oscillations,
and in general to the same tensor Aε

σ∗ . To ensure uniqueness we assume to know a priori the
values of a, b. We take a = 1 and b = 0.25. Our task is thus to recover the region D ⊂ Ω. To do
so we consider as admissible set for the unknown the one defined through the level set function
P2 : C0(Ω) → U introduced in Section 3.1. The prior measure on C0(Ω) is defined as in 50 with
θpr = 1, γ = 0.025, and λ = 0.5. Each draw from µpr is then mapped into U through P2 defined as

P2(θ) = 1✶Ω1 + 1.25✶Ω2 ,
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Figure 7: Comparison of numerical approximations of the posterior density for Problem 7.2 obtained
for different values of K, the number of coefficients in the truncated Karhunen-Loève expansion.
From left to right the plotted quantities are P1(❊[θ]), ❊[P1(θ)], Var[P1(θ)], and the posterior
density of the three first coefficients of the truncated Karhunen-Loève expansion, corresponding to
K = {10, 20, 30, 40, 50}. The parameter K increases from the top to the bottom. For K = 60 see
last row in Figure 4. The other parameters are H = 1/64, ε = 1/64, L = 6.

where
Ω1 = {x ∈ Ω : −∞ < θ(x) ≤ 1} , Ω2 = {x ∈ Ω : 1 < θ(x) < ∞} ,
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(a) σ∗. (b) aε
11 , ε = 1/64.

Figure 8: Representation of the true spatial field σ∗ and the first component of the highly oscillating
tensor for the non-affine case Problem 7.3 (orientation of oscillations).

so that Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅. Four examples of draws from the pushed forward prior P #
2 µpr are

reported in Figure 9. We obtain data for ε = 1/64 and approximate the modelling error distribution

Figure 9: Four samples from the level set prior used in Problem 7.3.

by using Algorithm 1 with M = 20. The parameters K and L are set to 60 and 6 respectively.
Then we approximate the posterior by using Metropolis-Hastings by drawing 4 × 105 samples using
s = 0.02. For this choice of the parameters we get an acceptance ratio during the sampling of
about 73%. In Figure 10 we plot the quantities P2(❊[θ]), ❊[P2(θ)], and Var[P2(θ)]. In particular
P2(❊[θ]) preserves the binary field property of the admissible set, while the estimate ❊[P2(θ)] gives
a better understanding of the uncertainty across the interface where the discontinuity takes place.
This uncertainty is also reflected by the plot of the variance Var[P2(θ)]. The numerical results show
good agreement with Figure 8.
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Figure 10: Numerical results for the non-affine parametrization Problem 7.3 (orientation of os-
cillations). From left to right the plotted quantities are P2(❊[θ]), ❊[P2(θ)], Var[P2(θ)], and the
posterior density of the three first coefficients of the truncated Karhunen-Loève expansion. The
values of the parameters are H = 1/64, ε = 1/64, M = 20, L = 6, K = 60.
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7.4 2D non-affine parametrization (volume fraction)

We conclude the numerical experiments by considering the case where Aε represents the conductivity
of a hypothetical two phase layered material. In this case the macroscopic function σ∗ : Ω → [0, 1]
determines the volume fraction of each component. Then tensor is defined as

a11(σ∗(x), x/ε) = a22(σ∗(x), x/ε) =
{

2 if 0 ≤ (x2 mod ε)/ε < σ∗(x)
1 if σ∗(x) ≤ (x2 mod ε)/ε < 1 ,

a12(σ∗(x), x/ε) = a21(σ∗(x), x/ε) = 0 .

(53)

We consider the case where σ∗ is defined as

σ∗(x) =
n∑

i=1
ci✶Di

, Di ⊂ Ω , ci ∈ [0, 1] ,

Di ∩ Dj = ∅ for i 6= j, ∪n
i=1Di = Ω. Again we assume to know a priori the values {ci}n

i=1 that the
function σ∗ can take, and our goal is to recover the different regions {Di}n

i=1. We note that knowing
the range of possible values for σ∗ allows us to efficiently use the RB method and in particulaer the
EIM algorithm. For our problem we set n = 4, c1 = 0.8, c2 = 0.6, c3 = 0.4, c4 = 0.2, and we make
the following choice for the sets {Di}4

i=1

D1 = {x = (x1, x2) : 0 ≤ x1 ≤ 0.25} ,

D2 = {x = (x1, x2) : 0.25 < x1 ≤ 0.5} ,

D3 = {x = (x1, x2) : 0.5 < x1 ≤ 0.75} ,

D4 = {x = (x1, x2) : 0.75 < x1 ≤ 1} .

The true field σ∗ and the first component of the multiscale tensor are shown in Figure 11. We

(a) σ∗. (b) aε
11 , ε = 1/64.

Figure 11: Representation of the true spatial field σ∗ and the first component of the highly oscillating
tensor for the non-affine case Problem 7.4 (volume fraction).

consider for this last numerical experiment a macro discretization with mesh size H = 1/32, and a
Gaussian prior measure µpr on C0(Ω) as for the previous numerical tests, with θpr = 0.5, γ = 0.05,
λ = 0.5. The function P2 : C0(Ω) → U , is instead defined as

P2(θ) = c1✶Ω1 + c2✶Ω2 + c3✶Ω3 + c4✶Ω4 ,

where
Ω1 = {x ∈ Ω : 0.6 < θ(x) < ∞} ,

Ω2 = {x ∈ Ω : 0.4 < θ(x) ≤ 0.6} ,

Ω3 = {x ∈ Ω : 0.2 < θ(x) ≤ 0.4} ,

Ω4 = {x ∈ Ω : −∞ < θ(x) ≤ 0.2} .

Four samples from the prior P #
2 µpr are shown in Figure 12. To solve the problem the observations

are obtained for ε = 1/64. The modelling error distribution is approximated offline by using
Algorithm 1 with M = 20. The parameter K and L are set to 60 and 6 respectively. We draw
4 × 105 samples from the posterior distribution using Algorithm 2 setting s = 0.01, leading to an
acceptance ratio of 44%. The numerical results are shown in Figure 13, and are in good agreement
with Figure 11.
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Figure 12: Four samples from the level set prior used in Problem 7.4.
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Figure 13: Numerical results for the non-affine parametrization Problem 7.4 (volume fraction).
From left to right the plotted quantities are P2(❊[θ]), ❊[P2(θ)], Var[P2(θ)], and the posterior density
of the three first coefficients of the truncated Karhunen-Loève expansion. H = 1/32, ε = 1/64,
M = 20, L = 6, K = 60

Conclusion

We have presented a new strategy for solving Bayesian multiscale inverse problems based on
numerical homogenization and model order reduction. Our method allows to recover the full fine
scale tensor under the assumption that the microscopic structure of the fine scale tensor is known
to us but its macroscopic behaviour is unknown. Practical examples include multi-phase mediums,
whose constituents are known, but their respective volume fraction or macroscopic orientation
are unknown. We then proved the existence and well-posedness of the effective posterior measure
obtained by homogenization of the forward operator. By means of G-convergence we showed that
the fine scale posterior measure converges to the homogenized posterior mesure. At fixed size of the
microstructure, we discussed a procedure to account for the modelling error. We also proposed an
efficient algorithm to sample from the posterior measure combining numerical homogenization and
reduced basis techniques. Several numerical examples illustrating the efficiency of the proposed
method and confirming our theoretical findings were also given.
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