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Abstract

Various approaches to studying the stability of solutions of nonlinear
PDEs lead to explicit formulae determining the stability or instability of
the wave for a wide range of classes of equations. However, these are
typically specialized to a particular equation and checking the stability
conditions may not be not straightforward. We present results for a large
class of problems that reduce the determination of spectral stability of a
wave to a simple task of locating zeros of explicitly constructed polyno-
mials. We study spectral stability of small-amplitude periodic waves in
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scalar Hamiltonian problems as a perturbation of the zero-amplitude case.
A necessary condition for stability of the wave is that the unperturbed
spectrum is restricted to the imaginary axis. Instability can come about
through a Hamiltonian-Hopf bifurcation, i.e., of a collision of purely imag-
inary eigenvalues of the Floquet spectrum of opposite Krein signature. In
recent work on the stability of small-amplitude waves the dispersion re-
lation of the unperturbed problem was shown to play a central role. We
demonstrate that the dispersion relation provides even more explicit in-
formation about wave stability: we construct a polynomial of half the
degree of the dispersion relation, and its roots directly characterize not
only collisions of eigenvalues at zero-amplitude but also an agreement or a
disagreement of their Krein signatures. Based on this explicit information
it is possible to detect instabilities of non-zero amplitude waves. In our
analysis we stay away from the possible instabilities at the origin of the
spectral plane corresponding to modulation or Benjamin-Fair instability.
Generalized KdV and its higher-order analogues are used as illustrating
examples.

1 Introduction

We study the spectral stability of small-amplitude periodic traveling waves in
scalar Hamiltonian partial differential equations:

ut = ∂x
δH

δu
. (1)

Here

u = u(x, t) = u(x+L, t), x ∈ [0, L], t > 0, and H =

∫ L

0

H(u, ux, . . . ) dx

is the Hamiltonian with density H. Without loss of generality, we let L = 2π.
This class of equations includes the Korteweg–de Vries (KdV), the generalized
and modified KdV equations, the Kawahara equation, and other equations that
arise in the study of dispersive problems in water waves, plasma physics etc.
[1, 13].

We assume that (1) has a trivial solution, i.e., δH/δu = 0 for u = 0, and H
has an expansion H = H0 +H1, where H0 is the quadratic part of H and H1

contains the higher order terms:

H0 = −1

2

∫ 2π

0

N∑
j=0

αj(∂
j
xu)2 . (2)

As a consequence, all linear terms in (1) are of odd degree, as even degree terms
would introduce dissipation. We assume that N is a finite positive integer, and
αj ∈ R. These assumptions exclude problems like the Whitham equation [7]
(N =∞) which remains a topic of investigation.
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The now-standard approach to examine the stability of waves in Hamiltonian
problems with symmetries is the theory developed by Vakhitov and Kolokolov
[25] and Grillakis, Shatah, and Strauss [9, 10], which allows for the determination
of spectral stability of waves of arbitrary amplitude. In that setup, spectral sta-
bility implies orbital (nonlinear) stability under certain conditions, emphasizing
the importance of the spectral information of the linearized problem. Exten-
sions of these results are found in [16, 18, 22, 23]. Periodic problems within
the same framework were considered in [15, 11]. The use of any of these results
relies on index theory requiring additional information about the PDE. That
information is typically provided, for instance, by assuming something about
the dimension of the kernel of the linearized problem. For small-amplitude
waves extra information is often obtained through a perturbation of the zero-
amplitude problem. We avoid index theory and study directly the collision of
eigenvalues. The parallel work [24] illustrates how small-amplitude information
is used to characterize the (in)stability of the waves. Here, we reduce the spec-
tral stability problem for small-amplitude waves to the investigation of zeros of
certain recurrently-defined polynomials, which appear in the theory of proper
polynomial mappings [3, p172] and in orthogonal polynomial theory [21, Chap-
ter 18]. To our knowledge, the connection between stability theory and these
polynomials is new to the literature.

Our approach allows us to rigorously analyze the stability of KdV-type equa-
tions, including the generalized KdV equation (gKdV), its higher order ana-
logues, and also the two-term balanced KdV equation. The results agree with
the existing literature of spectral stability of periodic waves for gKdV and in
the case of balanced high-order KdV equations they confirm and extend the
analytical and numerical predictions in [24]. Our method is closely related to
the results in [7], where the spectrum of small-amplitude periodic solutions of
Hamiltonian PDEs is determined directly from the dispersion relation of the
PDE linearized about the zero solution. Our theory adds to the results in [7],
and provides a simple and, importantly, a natural framework for studying the
spectral stability of waves by perturbative methods. We refer the reader to [7]
and [24] for a number of numerical illustrations of the results presented here for
KdV-type equations.

The spectral stability of small-amplitude waves bifurcating from the trivial
solution u = 0 at a critical velocity c = c0 can be examined using regular
perturbation theory of the spectrum of (1) linearized about u = 0 at c = c0. Our
assumptions guarantee that u = 0 is spectrally stable, i.e., the spectrum of the
linearized problem is restricted to the imaginary axis, since (1) is Hamiltonian.

In the periodic setting the whole spectrum of the zero-amplitude problem is
needed. However, Floquet theory [17] allows to decompose the continuous spec-
trum to an infinite union of sets of discrete eigenvalues of eigenvalue problems
parametrized by the Floquet multiplier µ. An important scenario for instabil-
ity of small-amplitude waves on the bifurcation branch comes about through
Hamiltonian-Hopf bifurcations [20, 26] producing symmetric pairs of eigenval-
ues off the imaginary axis, i.e., exponentially growing and therefore unstable
modes. Such bifurcations require non-simple eigenvalues of the linearized prob-

3



lem at zero amplitude, i.e., “collided eigenvalues”. Furthermore, such colliding
eigenvalues can split off from the imaginary axis only if they have opposite Krein
signatures [20, 19]. Note that we stay away from the origin of the spectral plane
and thus we do not consider modulation or Benjamin-Feir instability.

Both the location of the eigenvalues and their Krein signatures are charac-
terized by the dispersion relation of the linearized problem [7]. We show that
even the collision of eigenvalues and the agreement of their signatures is di-
rectly characterized by the dispersion relation. This characterization is through
the roots of a polynomial, which is a reduction of the dispersion relation to
a polynomial approximately half its degree. This is a surprising fact as it is
by no means clear why such a characterization is possible, as the collisions of
eigenvalues and their types are not itself objects that can be identified directly
algebraically, particularly with a simpler algebraic relation than the eigenvalues
themselves.

2 General Setting

We follow the steps outlined in Section III of [7]. We use a coordinate transfor-
mation x→ x− ct to a frame moving with the wave,

∂tu = ∂x
δH

δu
+ c∂xu = ∂x

(
δH

δu
+ cu

)
= ∂x

δHc

δu
, (3)

where Hc is the modified Hamiltonian. The quadratic part of Hc is

H0
c =

c

2

∫ 2π

0

u2 dx− 1

2

∫ 2π

0

N∑
j=0

αj(∂
j
xu)2 dx . (4)

Traveling wave solutions of (1) are stationary solutions U(x) of (3) and station-
ary points of Hc.

2.1 Perturbation from the trivial state. Dispersion rela-
tion

For all c ∈ R, eq. (3) has the trivial solution u(x, t) = 0. We linearize (3) about
the zero solution to obtain an equation for the perturbation v = v(x, t) from
the trivial state

∂tv = c∂xv −
N∑
j=0

(−1)jαj∂
2j+1
x v . (5)

We decompose v into a Fourier series in x, v =
∑∞
k=−∞ exp(ikx)v̂k, to obtain

decoupled evolution equations for each of the Fourier coefficients v̂k = v̂k(t):

∂tv̂k = −iΩ(k)v̂k k ∈ Z, (6)
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where Ω(k) is given by

Ω(k) = ω(k)− ck =

N∑
j=0

ηjk
2j+1 , ω(k) =

N∑
j=0

αjk
2j+1 , ηj = αj − cδj1 ,

(7)
is the dispersion relation of (5), obtained by letting v(x, t) = exp(ikx− iΩt) in
(5). Here ω = ω(k) is the dispersion relation in the original frame of reference
corresponding to (1)–(2). Note that ω(k) is an odd function.

2.2 Non-zero amplitude branches

Next, we discuss non-zero amplitude periodic solution branches of (3) bifurcat-
ing from the trivial state. A requirement for this is that a non-trivial stationary
solution of (6) exists, i.e., Ω(k) = 0, for k ∈ N, since we have imposed that the
solutions are 2π periodic. Thus

c = ck =
ω(k)

k
, k ∈ N. (8)

For simplicity, we assume that a unique bifurcating branch emanates from c =
ck. The solutions with k > 1 are 2π/k periodic. We focus on k = 1, i.e.,
c = ω(1). The cases with k > 1 may be treated analogously (see Section 5.2 for
a discussion of the k ≥ 2 in the context of gKdV equation).

2.3 Floquet theory at zero amplitude

Using Floquet theory [4, 17] the spectral stability of the non-trivial solution
U = U(x) of (3) on the bifurcation branch starting at c is determined by the
growth rates of perturbations of the form

v(x, t) = eλtV (x), V (x) = eiµ̃x
∞∑

n=−∞
ane

inx . (9)

Here µ̃ ∈ (−1/2, 1/2] is the Floquet exponent. Using (6) for the zero-amplitude
case,

λ = λ(µ̃)n = −iΩ(n+ µ̃) = −iω(n+ µ̃) + i(n+ µ̃)c, n ∈ Z . (10)

The expression (10) is an explicit expression for the spectrum of the linearized
stability problem for solutions of zero amplitude. Next, we examine how the
spectrum of the linearization changes as the solution bifurcates away from zero
amplitude.

2.4 Collisions of eigenvalues, Hamiltonian-Hopf bifurca-
tions

After Floquet decomposition (9), the elements of the spectrum become eigenval-
ues of the µ̃-parameterized operator obtained by replacing ∂x → ∂x + iµ̃ in the
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linear stability problem. The eigenfunctions associated with these eigenvalues
are (quasi)periodic and are bounded on the whole real line, see [17, 6] for details.
For zero amplitude, the spectrum (10) is on the imaginary axis. Instabilities for
small amplitude come about through collisions of purely imaginary eigenvalues
at zero amplitude for a fixed value of µ̃. Away from the origin, eigenvalues gener-
ically split off from the axis through the Hamiltonian-Hopf bifurcations [20, 26]
as the solution amplitude increases. Each such Hamiltonian-Hopf bifurcation
produces a pair of eigenvalues off the imaginary axis that is symmetric with re-
spect to the imaginary axis, thus yielding an exponentially growing eigenmode.

From (10), it is easy to detect eigenvalue collisions away from the origin.

They correspond to solutions of λ
(µ̃)
n1 = λ

(µ̃)
n2 6= 0, n1, n2 ∈ Z, n1 6= n2, µ̃ ∈

(−1/2, 1/2], i.e.,

−iΩ(n1+µ̃) = −iω(n1+µ̃)+i(n1+µ̃)c = −iω(n2+µ̃)+i(n2+µ̃)c = −iΩ(n2+µ̃) ,
(11)

where c = c1 is given by (8) with k = 1. Solving this equation results in values

of µ̃ and n1 for which λ
(µ̃)
n1 is an eigenvalue colliding with another one. Typically

this is done by solving (11) for µ̃ for different fixed n1.

2.5 Krein signature

A necessary condition for two eigenvalues colliding on the imaginary axis to
cause a Hamiltonian-Hopf bifurcation is that the eigenvalues have opposite Krein
signatures. The Krein signature is the sign of the energy of the eigenmode associ-
ated with the eigenvalue. For a collision of eigenvalues to produce an instability
this energy needs to be indefinite: a definite sign would entail bounded level
sets of the energy, leading to perturbations remaining bounded.

For Hamiltonian systems with quadratic part given by (4) the eigenmode

of the form v(x, t) = an exp
[
i(n+ µ̃)x+ λ

(µ̃)
n t
]

+ c.c., where c.c. stands for

complex conjugate of the preceding term, contributes to H0
c the relative energy

(see [7])

H0
c |(n,µ̃) ∼ −|ap|2

Ω(n+ µ̃)

n+ µ̃
.

Thus the Krein signature of λ
(µ̃)
n is given by

κ(λ(µ̃)n ) = − sign

(
Ω(n+ µ̃)

n+ µ̃

)
.

A simple characterization of agreement of the signatures of two colliding eigen-

values λ
(µ̃)
n1 and λ

(µ̃)
n2 immediately follows.

Proposition 1. Let two eigenvalues λ
(µ̃)
n1 = λ

(µ̃)
n2 = λ 6= 0, n1 6= n2, of the Bloch

wave decomposition (9) of (5) coincide, i.e., (11) holds. Then the product of
Krein signatures of the eigenvalues is characterized by the sign of the quantity

q = q(µ̃)n1,n2
=

Ω(n1 + µ̃)

n1 + µ̃
· Ω(n2 + µ̃)

n2 + µ̃
=

|λ|2

(n1 + µ̃)(n2 + µ̃)
(12)
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Let Z = Z
(µ̃)
n1,n2 = (n1 + µ̃)(n2 + µ̃). Since λ 6= 0 the sign of Z characterizes an

agreement of Krein signatures of the coinciding eigenvalues:

κ(λ(µ̃)n1
)κ(λ(µ̃)n2

) = sign(q) = sign [(n1 + µ̃)(n2 + µ̃)] = sign(Z) . (13)

We denote

µ := n2 + µ̃, and 4n := n1 − n2 . (14)

Here 4n > 0. Then Z = µ(4n+µ) and the collision condition (11) reduces to

Ω(4n+ µ) = Ω(µ) . (15)

3 Recurrent Sequences of Polynomials

Before we revisit (15) in the next section, we need to define some particular
recurrent sequences of polynomials.

Lemma 1. Let a, b ∈ C, m ∈ N0, and

tm = am + (−b)m .

Then
tm+1 = (a− b)tm + (ab)tm−1 , m ≥ 1.

Proof.

tm+1 = (a−b)(am+(−1)mbm)+ab(am−1+(−1)m−1bm−1) = (a−b)tm+(ab)tm−1 .

Since t0 = 2 and t1 = a−b, by induction all tm can be written as polynomials
in the two variables a−b and ab, tm = tm(a−b, ab). Further, tm is a homogeneous
polynomial in a and b of degree m. We introduce sm by tm = (a − b)msm(γ),
i.e.,

sm = sm(γ) :=
tm(a− b, ab)

(a− b)m
, with γ :=

ab

(a− b)2
. (16)

The sequence sm is characterized recursively by

sm+1 = sm + γsm−1 , m ≥ 1, s0 = 2, s1 = 1, (17)

which shows that sm is a polynomial in γ of degree m/2 (m even) or (m− 1)/2
(m odd). One can easily see that

s2(γ) = 1 + 2γ, s3(γ) = 1 + 3γ, s4(γ) = 1 + 4γ + 2γ2, s5(γ) = 1 + 5γ + 5γ2 ,

s6(γ) = 1 + 6γ + 9γ2 + 3γ3, s7(γ) = 1 + 7γ + 14γ2 + 7γ3 .

7



Solving the recurrence relationship,

sm(γ) = ψm+ + ψm− , m ≥ 0, ψ± :=
1

2

(
1±

√
1 + 4γ

)
. (18)

That implies
sm(0) = 1, sm(−1/4) = 21−m. (19)

Note that sm(γ) is increasing on (−1/4, 0) as

s′m(γ) =
m√

1 + 4γ
(ψm−1+ − ψm−1− ) > 0 . (20)

A few lemmas characterizing the behavior of sm(γ) are proved in the Appendix.

4 Reduction of the Equation for Signatures of
Colliding Eigenvalues

We prove that for scalar Hamiltonian problems (3)–(4) of order 2N + 1, the
polynomial equation (15) characterizing the collision of eigenvalues with indices
n+ µ and µ at zero-amplitude resulting in Hamiltonian-Hopf bifurcations, and
thus instability of non-zero amplitude periodic waves, can be expressed as a
polynomial of degree N in a real variable γ with coefficients independent of µ,
where γ is defined as

γ :=
µ(4n+ µ)

(4n)2
. (21)

Theorem 1. Let

Ω := Ω(k) =

N∑
j=0

ηjk
2j+1 ,

be an odd polynomial of degree 2N + 1, ηj ∈ C for j = 0, . . . , N . Then

Ω(4n+ µ)− Ω(µ) =

N∑
j=0

ηj(4n)2j+1s2j+1 (γ) , (22)

where the polynomial s2j+1 = s2j+1(γ) of degree j is defined recurrently by (17).

Proof. The claim follows immediately by (16) and Lemma 1 by setting a :=
4n+ µ and b := µ:

Ω(a)−Ω(b) =

N∑
j=0

ηj(a
2j+1−b2j+1) =

N∑
j=0

ηjt2j+1(a−b, ab) =

N∑
j=0

ηj(4n)2j+1s2j+1(γ) .
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As before, the collision condition (15) expressed using (22) is solved for γ
for different fixed values of 4n. After solving for γ, it is necessary to check
that γ gives rise to a real value of µ by solving the quadratic equation with the
unknown µ:

µ(µ+4n) = γ(4n)2 .

Thus

µ1,2 =
−4n±

√
(4n)2 + 4γ(4n)2

2
=
4n
2

(
−1±

√
1 + 4γ

)
. (23)

By Proposition (1) we are interested in negative values of γ that characterize
a possible coincidence of two eigenvalues of opposite signature, as γ has by
(21) the same sign as Z in (13). Then any root γ ∈ [−1/4, 0) corresponds to
a collision of two eigenvalues of opposite signature. If γ < −1/4, γ does not
correspond to a collision of two purely imaginary eigenvalues as µ is not real.
If γ > 0 then there is a collision of two eigenvalues of the same signature. If
γ = 0 the collision is located at the origin of the spectral plane, i.e., it does not
correspond to the Hamiltonian-Hopf bifurcation.

We have proved the following main theorem characterizing the spectral sta-
bility of small-amplitude traveling waves of (1).

Theorem 2. Consider a scalar 2π-periodic Hamiltonian partial differential
equation of the form (1) and assume that u = 0 is a spectrally stable solution.
Let (7) be the dispersion relation of the equation linearized about u = 0 in a
reference frame moving with the velocity c. Then a branch of traveling wave so-
lutions of (1) with velocity c bifurcates from the trivial solution at c = ω(1), see
(8). A necessary condition for a Hamiltonian-Hopf bifurcation at zero-amplitude
characterizing a loss of spectral stability of small-amplitude solutions on the bi-
furcating branch is that

N∑
j=0

ηj(4n)2j+1s2j+1(γ) = 0 (24)

has a root γ, γ ∈ [−1/4, 0).

5 Generalized KdV Equations

As a simple example illustrating an application of Theorem 2 to study spectral
stability of small-amplitude periodic traveling waves, we consider the generalized
KdV equation (gKdV)

∂tv + α∂3xv + ∂xf(v) = 0 , (25)

and the generalized higher-order KdV equation (p ≥ 2)

∂tv + α∂2p+1
x v + ∂xf(v) = 0 . (26)
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Here we assume f(0) = 0 and periodic boundary conditions, x ∈ [0, 2π]. Within
this work we study high-frequency instabilities, staying away from the origin in
the spectral plane, i.e., we do not discuss the modulational or Benjamin-Feir
instability.

For simplicity we consider (25) first and then discuss the case of (26) as
the reduction process and the results are completely analogous. We will pay
particular attention to the case of KdV equation with f(v) = v2 in (25).

For a detailed history of stability results of periodic traveling waves for KdV,
mKdV (equation (25) with f(u) = u3), and gKdV we refer the reader to [2, 15],
see also [11, 14, 5], see also [7], Section 3.1, for numerical results illustrating
the theory developed here. The results in the literature can be shortly sum-
marized as: periodic traveling waves are spectrally stable away from the origin
of the spectral plane (with the exception of cn solutions to mKdV), and also
nonlinearly orbitally stable with respect to certain classes of perturbations. The
techniques used to prove the results for KdV are based on its integrability.

The dispersion relation of the linearization of (25) in the traveling frame is

Ω = Ω(k) = ck + αk3 . (27)

Branches of small-amplitude waves are bifurcating from the trivial solution for
the critical values of c for which Ω(k) = 0 for a nonzero integer value of k:

ck = −αk2 . (28)

Let us now fix k ∈ Z/{0} and set c = ck. The condition for a collision of
eigenvalues (15) has the form

c4n+ α
[
(4n)3 + 34nµ(4n+ µ)

]
= 0 . (29)

According to Theorem 2 equation (29) can be rewritten in the form (24), i.e.,

c(4n) + α(4n)3(1 + 3γ) = 0 . (30)

The root γ of (30) that characterizes the nature of collisions of eigenvalues at
zero amplitude is given by

γ = − c

3α(4n)2
− 1

3
=

1

3

(
k2

(4n)2
− 1

)
. (31)

The condition −1/4 ≤ γ < 0 can be expressed as

−3

4
≤ k2

(4n)2
− 1 < 0, i.e.,

1

4
(4n)2 ≤ k2 < (4n)2 ,

or equivalently

k2 < (4n)2 ≤ 4k2 , and thus |k| < |4n| ≤ 2|k| . (32)

It is easy to see that in this special case the equality in the upper bound in (32)
corresponds to a collision of eigenvalues λ with indices n1 + µ̃ = 1 and n2 + µ̃ =
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−1 in (10). But Ω(1) = Ω(−1) = 0 for (27–28). Thus the collision of opposite
signature eigenvalues corresponding to the root γ = −1/4 in this particular case
is located at the origin of the spectral plane and thus it is not associated with
the Hamiltonian-Hopf bifurcation. Thus the instability condition is

|k| < |4n| < 2|k| . (33)

Since the stability results are independent of α without loss of generality we
assume α = 1 in the rest of this section.

5.1 gKdV Equation. Solutions with base period 2π2π2π

First, we consider KdV, i.e., f(x) = u2, as the linear analysis is identical for
all f(x) satisfying f(0) = 0 and the characterization of the collision condition
in Theorem 2 does not dependent on the form of nonlinearity. In that case,
the solution branch indexed by k = 1 bifurcating at c1 = −1 from the trivial
solution corresponds to the cnoidal waves with base-period 2π, see [7], Section
3.1, for the solution formula, numerical results, and analysis. The condition
(33) implies that collisions of eigenvalues with opposite Krein signature at zero-
amplitude happen only for two eigenmodes of the form (9) with Fourier indices
n1, n2, 4n = n1 − n2, where 1 < 4n < 2. As no such 4n exists the small-
amplitude cnoidal waves of base-period 2π are spectrally stable (away from the
origin of the spectral plane). This is in agreement with the results obtained in
[2] and [7], Section 3.1, step 5. The same result is true for any nonlinearity
f(x), including the case of mKdV, and thus, not accounting for a possible
modulational instability, small-amplitude periodic traveling waves with base
period 2π are spectrally stable for gKdV (25).

5.2 KdV Equation. Solutions with base period 2π/k2π/k2π/k

We discuss the case k ≥ 2. Solutions on the branch bifurcating from the trivial
solution at ck = −k2 also correspond in the case of KdV to the cnoidal wave
solutions, as the cnoidal waves comprise all periodic traveling waves to KdV.
However, these solutions are subharmonic compared to the solutions on the
branch with index k = 1, i.e., their base-period is 2π/k. One way to see this is
to consider (25) with f(v) = v2 in the frame traveling with velocity c:

vt + αvxxx + (v2)x + cvx = 0 . (34)

We set

y =
x

k
, τ =

t

k3
, u = k2v, c̃ = k2c. (35)

Then (34) transforms to

uτ + αuyyy + (u2)y + c̃u = 0 . (36)

Thus any solution v(x, t) of (34) with the base period 2π traveling with velocity
c corresponds 1-to-1 to a solution u(y, τ) of (36) with the base period 2π/k
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traveling with velocity c̃ = ck2. The k-repetition of 2π/k-periodic solution of
(36) is also a 2π-periodic solution of (36) that is equivalent to (34) with c = ck.
This relation allows to identify through (35) the branch of 2π periodic solutions
of (34) bifurcating at c = ck with the branch of solutions of the same equation
bifurcating at c = c1, i.e., the branch of solutions of (34) bifurcating at c = ck
consists of properly rescaled multicopies of the solutions of the same equation
located on the branch bifurcating at c = c1. Therefore perturbations that are
subharmonic for k = 1 are co-periodic for k ≥ 2, etc. This leads to more
eigenvalue collisions for k ≥ 2 than for k = 1 since the co-periodic spectrum,
e.g. the spectrum for k ≥ 2 for the Floquet multiplier µ = 0 includes (after
a proper rescaling) the union of the spectrum for k = 1 and µ = 0, µ = 1/k,
µ = 2/k, . . . .

Figure 1: Illustration of the relation (39) of the spectrum σ(2) (left) and σ(1)

(right) for KdV equation. Individual curves correspond to different values of n
with the index n indicated. The spectrum partitions σµ correspond to all λ for a

given µ. Displayed are λ = λ
(µ)
n values for µ = −0.4 (k = 2, left) and µ = −0.2

and µ = 0.3 (k = 1, right). For better visibility we have removed the branches
with indices n, −2 ≤ n ≤ 3 (k = 2) and −1 ≤ n ≤ 1 (k = 1), all undisplayed
branches lie close to the horizontal axis. Note the scaling factor 8 on the λ axis
(left) for σ(2) compared to σ(1) (right).

As an illustration consider the case k = 2. The spectrum of the linearized
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problem is given by

σ(2) =
⋃

µ∈(−1/2,1/2]

σ(k=2)
µ =

{
λ(µ)n ; λ(µ)n = −i

[
4(n+ µ)− (n+ µ)3

]
, n ∈ Z

}
.

(37)
On the other hand, the spectrum for k = 1 is given by

σ(1) =
⋃

µ∈(−1/2,1/2]

σ(k=1)
µ =

{
λ(µ)n ; λ(µ)n = −i

[
(n+ µ)− (n+ µ)3

]
, n ∈ Z

}
.

(38)
It is easy to see (see Fig. 1 for a visualization) that for all µ ∈ (−1/2, 1/2]

1

8
σ(k=2)
µ = σ

(k=1)
µ/2 ∪ σ(k=1)

µ/2+1/2 . (39)

Here multiplication of the set by a scalar means multiplication of each of its
elements by the scalar and we use the periodicity σµ = σµ+1 for all µ ∈ R to

properly define the second term σ
(k=1)
µ/2+1/2.

The condition (33) indicates that there are collisions of the eigenvalues of
opposite signature at zero amplitude for modes of the form (9) for Fourier indices
n1, n2, with 4n = n1 − n2 satisfying 4n ∈ {k + 1, . . . , 2k − 1} and that is for
k ≥ 2 a non-empty set. Generically, this would imply spectral instability of
the waves. However, none of these collisions unfold for non-zero amplitude to a
Hamiltonian-Hopf bifurcation. Such bifurcations are not possible as according
to [2] all periodic traveling wave solutions to KdV are spectrally stable. As a
collision of eigenvalues of opposite Krein signature is only a necessary condition
for a Hamiltonian-Hopf bifurcation, the analysis presented here does not allow
to see this phenomenon directly. Some indication can be found in the fact that
these new collisions at c = ck correspond to collisions of opposite signature
eigenvalues arising from different components (as opposed to from the same
component) of the union on the right hand side of (39). The different spectrum
partitions and associated eigenspaces do not interact with each other, see [8]
and [Kollár & Miller, preprint 2018] for a throughout discussion of avoided
Hamiltonian-Hopf bifurcations.

It is possible to see within the analysis presented here that the collisions of
the opposite Krein signature eigenvalues of the 2π/k periodic solutions are just
an artifact of the 2π periodic setting, i.e., when one considers the stability of
the 2π/k periodic solutions as the stability of its k-repetition in the 2π periodic
frame in (34). Due to the periodic character of the solution the stability of such
a k-repetition is equivalent to the stability of a single 2π/k periodic repetition
in (36). But we have proved above that the waves with period L considered on
the interval [0, L] are spectrally stable (this corresponds to k = 1 for (34) where
we have set without loss of generality L = 2π). Therefore the 2π/k periodic
waves are spectrally stable and all collisions at zero amplitude of (34) at c = ck
are only due to multi-coverage of the spectrum σ(k) as in (39).

The same argument can be used for gKdV with the nonlinearity f(v) = vn,
n ≥ 2. However, in regard to the spectral stability of small-amplitude waves
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lying on branches bifurcating at c = ck for k ≥ 2 for a general f(v), f(0) = 0, we
can only conclude that there are collisions of the opposite signature eigenvalues
at zero amplitude. A lack of a transformation analogous to (35), that requires
existence of a positive r such that f(au) = arf(u) for all a ∈ R, does not allow
to rule out the potential Hamiltonian-Hopf bifurcations.

5.3 Higher-order gKdV Equation

A similar analysis can be performed for the higher-order gKdV equation (26).
In that case Ω(k) = −ck + (−1)p+1αkp and ck = (−1)pαkp−1. The relation
Ω(n+ µ) = Ω(µ) reduces to a polynomial equation of degree p for γ. Similarly
as for p = 1 it is possible for p = 2 to explicitly show that all the waves on the
branch k = 1 are spectrally stable, as none of the roots of Ω(4n + µ) = Ω(µ)
in terms of γ are located in the interval (−1/4, 0). To see this one needs to
determine for which integer values of 4n the roots of

−k4 + (4n)4
(
1 + 5γ + 5γ2

)
= 0

lie in the interval γ ∈ (−1/4, 0). A short calculation reveals that the condition
reduces to |k| < |4n| < 2|k|, i.e. the same condition as for p = 1 analyzed
above leading to stability for k = 1. The same statement can be proved for any
p ≥ 1 for which the equation for γ has the form

−k2p + (4n)2ps2p+1(γ) = 0 . (40)

There s2p+1(−1/4) = 2−2p and s2p+1(0) = 1 by (19), and also s2p+1(γ) is con-
tinuous on [−1/4, 0] and increasing on (−1/4, 0) by (20). Therefore the roots of
(40) lie in the interval γ ∈ (−1/4, 0) if and only if |k| < |4n| < 2|k|. Hence the
small-amplitude periodic traveling wave solutions to (26) with the base period
2π (k = 1) are spectrally stable, except perhaps with respect to modulational
perturbations. The question of spectral stability of small-amplitude wave solu-
tions to (26) with the base period 2π/k, k ≥ 2 is not addressed here.

6 Balanced Higher Order KdV equations

We demonstrate the full power of Theorem 2 on a more complicated example.
Here we explicitly characterize stability regions for small-amplitude periodic
traveling wave solutions of KdV-type equations with two balanced linear terms
of odd order:

ut = ∂xf(u) +A∂2q+1
x u+B ∂2p+1

x u, (41)

subject to periodic boundary conditions. Here p > q are positive integers,
A,B ∈ R are non-zero coefficients, and f(u) is a smooth function of u and its
spatial derivatives with f(0) = 0, containing no linear terms. The literature
on this topic is limited. Most relevant is [12], where f(u) ∼ u2 (the Kawahara
equation), and the period of the solutions is not fixed. It is concluded there that
for solutions for which the amplitude scales as the 1.25-th power of the speed,
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solutions are spectrally stable. No conclusion is obtained for other solutions.
Our investigation does not require this scaling, nor does it restrict the type of
nonlinearity. Also relevant is [15], where the typical stability approach of [11] is
extended to systems with singular Poisson operator like (1), but the theory is
not applied to (41). A mostly numerical investigation of equations like (41) is
undertaken in [24]. As stated, our theory builds almost exclusively on [7] and
our rigorous results agree with numerical results in [24] where the special case
p = 2, q = 1, and A,B > 0 was considered.

Traveling wave solutions u = U(x− ct) with wave velocity c satisfy

−cU ′ = ∂xf(U) +AU (2q+1) +BU (2p+1).

The spectral stability of small-amplitude waves that bifurcate at zero amplitude
from the trivial solution U = 0 is characterized by the growth of the solutions
of the linear equation

vt = cvx +Av(2q+1)x +Bv(2p+1)x, (42)

with dispersion relation

Ω = Ωp,q(k) = −ck −A(−1)qk2q+1 −B(−1)pk2p+1 = −ck − αk2q+1 + βk2p+1,

where we have introduced

α = A(−1)q, β = −B(−1)p. (43)

Without loss of generality, we assume that α > 0. If not, the transformation
x → −x (i.e., k → −k), and c → −c can be used to switch the sign of α. The
scaling symmetry of the equation allows us to equate α = 1 hereafter. The
choice of opposite signs in front of α and β in (43) is intuitive: if α and β
have opposite sign the Hamiltonian energy (4) is definite and all eigenvalues
have the same signature. This rules out Hamiltonian-Hopf bifurcations and the
spectral instabilities following from them. In other words, the interesting case
for our considerations is that both α and β are positive. Lastly, since we study
bifurcations from the first Fourier mode k = 1, c = β − α = β − 1.

According to Theorem 1, eigenvalue collisions at zero-amplitude are charac-
terized by the roots γ of

4nR(γ) := −c4n− (4n)2q+1s2q+1(γ) + β(4n)2p+1s2p+1(γ) = 0.

This is rewritten as

β
[
(4n)2ps2p+1(γ)− 1

]
−
[
(4n)2qs2q+1(γ)− 1

]
= 0. (44)

Our goal is to find the parameter range (β,4n) for which the root γ of (44)
satisfies γ ∈ [−1/4, 0). The results obtained in the next section are graphically
summarized in Fig. 2.
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Figure 2: Spectral stability regimes of the small-amplitude 2π periodic traveling
waves for the Kawahara equation (41), p = 2, q = 1, α = 1, k = 1. Unstable
pairs (4n, β) are indicated by the dashed line segments, stable pairs (4n, β)
are above the curve β = β−1/4(4n) and below the curve β = β0(4n) given by
(45)–(46) for 4n ≥ 3, by (58) for 4n = 2, and by (53) for 4n = 1.

An important role is played by the interval end points γ = 0 and γ = −1/4.
By (19) for γ = 0 we have

β((4n)2p − 1)− ((4n)2q − 1) = 0

and therefore we set

β0 = β0(4n) =
(4n)2q − 1

(4n)2p − 1
. (45)

On the other hand (44) reduces for γ = −1/4 by (19) to

β−1/4 = β−1/4(4n) =

[(
4n
2

)2q

− 1

]
/

[(
4n
2

)2p

− 1

]
. (46)

It follows immediately from Lemma 3 that for4n ≥ 3, β0(4n) < β−1/4(4n),
since this inequality may be rewritten as f2p,2q(4n) < f2p,2q(2) (in the notation
of the Lemma).
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6.1 Collisions of eigenvalues of opposite signature

Since the thresholds γ = 0 and γ = −1/4 correspond, respectively, to β =
β0(4n) and β = β−1/4(4n), where β0(4n) < β−1/4(4n), one may conjecture
(for 4n ≥ 3, since for 4n = 1, 2 either β0 or β−1/4 is not defined) that collisions
of eigenvalues of opposite Krein signature happen for β ∈ (β0(4n), β−1/4(4n)].1

For β < β0(4n) one expects collisions of eigenvalues of the same signature and
finally for β > β−1/4(4n) one expects no collisions as the roots µ of (23) are
not real (see Fig. 3). As we prove next, this is true. The cases 4n = 1 and
4n = 2 are treated separately.

See [24] for detailed numerical results (wave profiles and Fourier coefficients,
spectrum diagrams) in the case p = 2, q = 1 and f(u) = u2 (Kawahara
equation), particularly numerical simulations at non-zero amplitude confirm-
ing presence of Hamiltonian-Hopf bifurcations (and thus spectral instability)
that completely agree with the collisions of opposite Krein signature eigenval-
ues at zero-amplitude described here. In the numerical experiments all such
collisions studied actually yielded the bifurcation.

Figure 3: Parameter regimes for β, β ≤ β0(4n), β ∈ (β0(4n), β−1/4(4n)], and
β > β−1/4(4n).

Theorem 3. Case 4n ≥ 3. Let p, q, p > q, be positive integers and let 4n
is an integer, 4n ≥ 3. The presence and character of collisions of eigenvalues
of the linearized problem (42) at zero amplitude at c = c1 = β − α depends on
the difference of the indices of the Fourier modes 4n of the perturbation in the
following way:

(i) If 4n is such that β < β0(4n), then there is a collision of eigenvalues of
the same signature, i.e., there is a root of (44) with γ > 0 and there is no
root with γ ∈ [−1/4, 0);

(ii) If 4n is such that β0(4n) < β ≤ β−1/4(4n), then there is a collision of
eigenvalues of opposite signature, i.e., there is a root γ of (44) such that
γ ∈ [−1/4, 0);

(iii) If4n is such that β−1/4(4n) < β, then there is no collision of eigenvalues,
i.e., all roots γ of (44) satisfy γ < −1/4.

1Such a result would follow from monotonicity properties of the location of roots γ with
respect to β. Alternatively, we use an argument that proves that β0 and β−1/4 are the bounds
of the stability region.
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Proof. Part (ii). We show that for all 4n ≥ 3 and β0(4n) < β ≤ β−1/4(4n)
there exists γ ∈ [−1/4, 0) satisfying R(γ) = 0. Therefore by (44), in such a
parameter regime there is a collision of eigenvalues of opposite Krein signature.

It is easy to see that

R(0) = β[(4n)2p − 1]− [(4n)2q − 1] > β0[(4n)2p − 1]− [(4n)2q − 1] = 0,

and,

R(−1/4) = β

(
(4n)2p

22p
− 1

)
−
(

(4n)2q

22q
− 1

)
≤ β−1/4

(
(4n)2p

22p
− 1

)
−
(

(4n)2q

22q
− 1

)
= 0.

Thus R(0) > 0 ≥ R (−1/4) and the polynomial R(γ) has a real root γ ∈
[−1/4, 0).

Part (i). Since β < β0(4n) < β−1/4(4n) the same argument as in Part (ii)
yields R(−1/4) < 0. Also,

R(0) = β[(4n)2p − 1]− [(4n)2q − 1] < β0[(4n)2p − 1]− [(4n)2q − 1] = 0 .

We prove that R(γ) = β[(4n)2ps2p+1(γ)− 1]− [(4n)2qs2q+1(γ)− 1] < 0 for all
γ ∈ [−1/4, 0]. By Lemma 4 for 4n ≥ 3 and p ≥ 1,

(4n)2ps2p+1(γ) ≥ 32p

22p+1
> 1 .

Thus for all γ ∈ [−1/4, 0) and β < β0,

R(γ) = β[(4n)2ps2p+1(γ)− 1]− [4n)2qs2q+1(γ)− 1]

< β0(4n)[(4n)2ps2p+1(γ)− 1]− [(4n)2qs2q+1(γ)− 1] . (47)

We prove that the right-hand side of (47) is non-positive. This is equivalent to

β0(4n) =
(4n)2q − 1

(4n)2p − 1
≤ (4n)2qs2q+1(γ)− 1

(4n)2ps2p+1(γ)− 1
, (48)

or to

s2q+1 ≥ s2p+1[1−θ(4n)]+θ(4n) , where θ(n) :=
(n)2p − (n)2q

(n)2p+2q − (n)2q
. (49)

Clearly 0 < θ(n) < 1. Since s2p+1 < 1 it suffices to prove (49) for 4n that
maximizes θ(4n),4n ≥ 2. However, by Lemma 3 for p > q ≥ 1, maxn≥2 θ(n) =
θ(2) and it suffices to prove s2q+1 ≥ s2p+1(1− θ(2)) + θ(2), i.e.,

s2q+122q(22p − 1) ≥ s2p+122p(22q − 1) + 22p − 22q.
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Therefore (48) follows directly from Lemma 7 as it is equivalent for p > q ≥ 1
to

22qs2q+1 − 1

22q − 1
≥ 22ps2p+1 − 1

22p − 1
.

Hence we proved R(γ) < 0 for all γ ∈ [−1/4, 0]. On the other hand R(γ)
is an even order polynomial with a positive leading coefficient, i.e., R(γ) → ∞
as γ → ∞. Therefore there exists γ0 > 0 such that R(γ0) = 0. Such a root
corresponds by (23) to a real value of µ. Therefore in this regime there is a
collision of two eigenvalues of the same signature.

Part (iii). Note that R(0) > 0. We show that R(γ) > 0 for γ ≥ −1/4. First,

R(−1/4) = β

(
n2p

22p
− 1

)
−
(
n2q

22q
− 1

)
> β−1/4

(
n2p

22p
− 1

)
−
(
n2q

22q
− 1

)
= 0 .

For γ ≥ −1/4,

R(γ) = β
[
(4n)2ps2p+1(γ)− 1

]
−
[
(4n)2qs2q+1(γ)− 1

]
> β−1/4

[
(4n)2ps2p+1(γ)− 1

]
−
[
(4n)2qs2q+1(γ)− 1

]
, (50)

since, by Lemma 4, (4n)2ps2p+1(γ) ≥ 1.
We prove that

(4n/2)q − 1

(4n/2)p − 1
≥ (4n)qsq+1(γ)− 1

(4n)psp+1(γ)− 1
, (51)

for any p > q. From (50), with p → 2p and q → 2q, we obtain R(γ) > 0 for
γ ≥ −1/4.

Denote m = 4n/2 ≥ 1 and uj = 2jsj+1 for j ≥ 0 to rewrite (51) as

uq ≤ up(1− ω(m)) + ω(m) , where ω(m) =
mp −mq

mp+q −mq
. (52)

By Lemma 3, the sequence ω(m) ∈ (0, 1), is non-increasing for m ≥ 1. Also,
by Lemma 4, up = 2psp+1 ≥ 1, and (52) follows from uq ≤ up[1− ω(1)] + ω(1),
where ω(1) = (p− q)/p. Equation (52) reduces to (uq − 1)/q ≤ (up − 1)/p, for
p > q ≥ 1. In terms of sq(γ) this is equivalent to

2qsq+1(γ)− 1

q
≤ 2psp+1(γ)− 1

p
, for p > q ≥ 1,

which follows for γ ≥ −1/4 from Lemma 8, since monotonicity of the positive se-

quence
2msm+1 − 1

m(m+ 1)
directly implies monotonicity of the sequence

2msm+1 − 1

m
.

Thus R(γ) > 0 for all γ ≥ −1/4 and R(γ) has no roots in [−1/4,∞) and
there are no collisions of eigenvalues in this regime.
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For 4n = 1, we use a similar argument. For 4n = 1 and γ = 0, R(0) = 0.
Hence γ = 0 is always a root of R(γ) = 0, corresponding to the relation2

Ω(1) = 0 = Ω(0). For p > q > 0, denote

β
(4n=1)
0 =

2q + 1

2p+ 1
, and β

(4n=1)
−1/4 =

1− 2−2q

1− 2−2p
. (53)

Theorem 4. Case 4n = 1. Let p, q be positive integers with p > q. For the
linearized problem (42) at zero amplitude with c = c1, the presence and the
character of eigenvalue collisions depend on the difference 4n of the indices of
the Fourier modes of the perturbation as follows:

(i) for β < β
(4n=1)
0 , eigenvalues of the same signature collide, i.e., there is a

root of (44) with γ > 0 and there is no root with γ ∈ [−1/4, 0);

(ii) for β
(4n=1)
0 < β < β

(4n=1)
−1/4 , eigenvalues of opposite signature collide, i.e.,

there is a root γ of (44) so that γ ∈ [−1/4, 0);

(iii) for β
(4n=1)
−1/4 < β, eigenvalues do not collide, i.e., γ < −1/4, for all roots

γ of (44).

Proof. First, we show that β
(4n=1)
0 < β

(4n=1)
−1/4 , which follows from the function

f(y) = (1 − 2−y)/(1 + y) being decreasing for y > 2. Its derivative has the
numerator (1 + y)2−y ln 2 + 2−y − 1, which is negative at y = 2, and itself has
a derivative that is negative for y > 2.

Next, for β ≤ β(4n=1)
−1/4 ,

R(−1/4) = β (s2p+1(−1/4)− 1)− (s2q+1(−1/4)− 1) = β(2−2p − 1)− (2−2q − 1)

≥ β
(n=1)
−1/4 (2−2p − 1)− (2−2q − 1) = 0 , (54)

where equality holds only for β = β
(4n=1)
−1/4 . On the other hand, if β > β

(4n=1)
−1/4

then R(−1/4) < 0. Further, for γ = 0 and all values of β, R(0) = 0. Finally,
for γ ∈ [−1/4, 0)

R′(0) = β(2p+ 1)− (2q + 1).

Therefore, for β < β
(4n=1)
0 ,

R(0) = 0, R′(0) < 0, (55)

and, for β > β
(4n=1)
0 ,

R(0) = 0, R′(0) > 0.

Note that R(0) = R′(0) = 0 for β = β
(4n=1)
0 .

Part (i). By (54) one hasR(−1/4) > 0, and by (55)R(0) = 0 andR′(0) < 0.
We prove that R(γ) > 0 for all γ ∈ [−1/4, 0). Thus R = R(γ) does not have

2These eigenvalues are present due to symmetries; they do not leave the imaginary axis.
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any roots in (−1/4, 0). Moreover, R(γ) is an odd-degree polynomial with a
positive leading coefficient, R(γ)→∞ as γ →∞ and R(0) = 0 and R′(0) < 0.
Therefore R has a positive root.

Assume γ ∈ [−1/4, 0) and β < β
(4n=1)
0 . Then, using (61),

R(γ) = β(s2p+1(γ)−1)−(s2q+1(γ)−1) > β
(4n=1)
0 (s2p+1(γ)−1)−(s2q+1(γ)−1) .

To establish R(γ) > 0 it is enough to prove

β
(4n=1)
0 ≤ s2q+1(γ)− 1

s2p+1(γ)− 1
, for γ ∈ [−1/4, 0). (56)

By Lemma 4 one has sm(γ) < 1 for m ≥ 2, γ ∈ [−1/4, 0). Hence (56) can be
rewritten as

s2p+1(γ)− 1

2p+ 1
≥ s2q+1(γ)− 1

2q + 1
,

which follows for p > q > 0 and γ ∈ [−1/4, 0) from Lemma 9. Therefore
R(γ) > 0 for γ ∈ [−1/4, 0).
Part (ii). By (54) one has R(−1/4) > 0, and by (55) R(0) = 0, R′(0) > 0.
Therefore there exist a γ ∈ (−1/4, 0) such that R(γ) = 0.
Part (iii). In this case R(−1/4) < 0, and by (55) R(0) = 0 and R′(0) > 0. We
prove that R(γ) < 0 for γ ∈ [−1/4, 0) and R(γ) > 0 for γ > 0. Therefore R(γ)
does not have a non-zero root for γ ≥ −1/4.

First assume that γ ∈ [−1/4, 0). Then β > β
(4n=1)
−1/4 implies, using (61),

R(γ) = β(s2p+1(γ)−1)−(s2q+1(γ)−1) < β
(4n=1)
−1/4 (s2p+1(γ)−1)−(s2q+1(γ)−1) .

It suffices to prove

β
(4n=1)
−1/4 ≥ s2q+1(γ)− 1

s2p+1(γ)− 1
, for γ ∈ [−1/4, 0), (57)

to establish R(γ) < 0. The inequality (57) is rewritten as

s2p+1(γ)− 1

2−2p − 1
≥ s2q+1(γ)− 1

2−2q − 1
,

which follows from Lemma 10. Thus R(γ) < 0 for γ ∈ [−1/4, 0).

Next, we assume γ > 0. With β > β
(4n=1)
−1/4 and using (62),

R(γ) = β(s2p+1(γ)−1)−(s2q+1(γ)−1) > β
(n=1)
−1/4 (s2p+1(γ)−1)−(s2q+1(γ)−1) .

It suffices to prove
s2p+1(γ)− 1

2−2p − 1
≤ s2q+1(γ)− 1

2−2q − 1
,

which follows from Lemma 10. Thus R(γ) > 0 for γ > 0.
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It is easy to see that for 4n = 2, R(−1/4) = 0. Thus γ = −1/4 is a root of
R(γ) = 0 for all β. It corresponds to the fact that Ω(−1) = 0 = Ω(1), i.e., there
is a collision of two eigenvalues of opposite Krein signature at the origin for all β.
This collision is due to the symmetries of the problem and these eigenvalues do
not leave the imaginary axis in the weakly nonlinear regime. Thus this collision
does not affect stability. We focus on the remaining roots of R(γ) = 0.

We denote

β
(4n=2)
0 =

22q − 1

22p − 1
, and β

(4n=2)
−1/4 =

(2q + 1)2q

(2p+ 1)2p
. (58)

The inequality β
(4n=2)
0 < β

(4n=2)
−1/4 follows similarly to β

(4n=1)
0 < β

(4n=1)
−1/4 , in

the proof of the previous theorem.

Theorem 5. Case 4n = 2. Let p, q, p > q, be positive integers. For the
linearized problem (42) at zero amplitude at c = c1 the presence and the char-
acter of collisions of eigenvalues depends on the Fourier-mode parameter n of
the perturbation in the following way:

(i) for β < β
(4n=2)
0 , eigenvalues of the same signature collide, i.e. there is a

root of (44) with γ > 0 and there is no root with γ ∈ (−1/4, 0);

(ii) for β
(4n=2)
0 < β < β

(4n=2)
−1/4 , eigenvalues of the opposite signature collide,

i.e. there is a root γ of (44) such that γ ∈ (−1/4, 0);

(iii) for β
(4n=2)
−1/4 < β, eigenvalues do not collide, i.e. all roots γ of (44) satisfy

γ ≤ −1/4.

Proof. Part (i). We prove that R(γ) < 0, for γ ∈ (−1/4, 0). First, R(γ) is an
odd-degree polynomial and R(γ)→∞ as γ →∞ and R(0) = 0 and R′(0) < 0.
Thus R has a root γ > 0.

Assume γ ∈ [−1/4, 0) and β < β
(4n=2)
0 . Then

R(γ) = β(22ps2p+1(γ)− 1)− (22qs2q+1(γ)− 1)

< β
(4n=2)
0 (22ps2p+1(γ)− 1)− (22qs2q+1(γ)− 1) .

To establish R(γ) < 0 it suffices to prove

β
(4n=2)
0 ≤ 22qs2q+1(γ)− 1

22ps2p+1(γ)− 1
, for γ ∈ (−1/4, 0].

This inequality is rewritten as

22ps2p+1(γ)− 1

22p − 1
≤ 22qs2q+1(γ)− 1

22q − 1
,

which follows from Lemma 7. Therefore R(γ) < 0 for γ ∈ (−1/4, 0].
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Part (ii). First,

R(0) = β(22ps2p+1(0)− 1)− (22qs2q+1 − 1) = β(22p − 1)− (22q − 1)

> β
(4n=2)
0 (22p − 1)− (22q − 1) = 0.

Next we show that limγ→−1/4+ R
′(γ) < 0. Indeed, for γ > −1/4, we have

R′(γ) = β
2p+ 1√
1 + 4γ

22p(ψ2p
+ − ψ

2p
− )− 22q(ψ2q

+ − ψ
2q
− )

< β
(n=2)
−1/4

2p+ 1√
1 + 4γ

22p(ψ2p
+ − ψ

2p
− )− 2q + 1√

1 + 4γ
22q(ψ2q

+ − ψ
2q
− )

as ψ2
+ > ψ2

− ≥ 0. The result follows from l’Hopital’s rule, since

lim
γ→−1/4+

(2q + 1)22q(ψ2q
+ (γ)− ψ2q

− (γ))

(2p+ 1)22p(ψ2p
+ (γ)− ψ2p

− (γ))

= lim
γ→−1/4+

2q(2q + 1)22q 1√
1+4γ

(ψ2q−1
+ (γ) + ψ2q−1

− (γ))

2p(2p+ 1)22p 1√
1+4γ

(ψ2p−1
+ (γ) + ψ2p−1

− (γ))

= lim
γ→−1/4+

2q(2q + 1)22qs2q−1(γ)

2p(2p+ 1)22ps2p−1(γ)

=
2q(2q + 1)22q2−(2q−2)

2p(2p+ 1)22p2−(2p−2)
=

2q(2q + 1)

2p(2p+ 1)
= β

(4n=2)
−1/4 .

Thus R(γ) < 0 for γ ∈ (−1/4,−1/4+ε), ε > 0, small. Since R(0) > 0, there
exists γ ∈ (−1/4, 0) so that R(γ) = 0.
Part (iii). We show that R(γ) > 0 for γ > −1/4. One has

R(γ) = β(22ps2p+1(γ)− 1)− (22qs2q+1(γ)− 1)

> β
(4n=2)
−1/4 (22ps2p+1(γ)− 1)− (22qs2q+1(γ)− 1) .

We show that

β
(4n=2)
−1/4 =

2q(2q + 1)

2p(2p+ 1)
≥ 22qs2q+1(γ)− 1

22ps2p+1(γ)− 1
,

which is equivalent to

22ps2p+1(γ)− 1

2p(2p+ 1)
≥ 22qs2q+1(γ)− 1

2q(2q + 1)
.

This inequality follows from Lemma 8. Therefore R(γ) = 0 has no roots γ >

−1/4 for β > β
(4n=2)
−1/4 .

Appendix

Lemma 2. Let α > 0. The function

g(x) =
xαx

αx − 1
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is increasing on (0,∞).

Proof. The condition g′(x) > 0 is equivalent to αx = ex lnα > 1 + x lnα. This
follows directly from the Taylor expansion of ex at x = 0 with equality reached
for x = 0.

Lemma 3. Let a > b > 0. Define

f(n) = fa,b(n) =
na−b − 1

na − 1
.

We define f(1) = limn→1 f(n) = (a− b)/a. Then f(n) is a decreasing function
on [1,∞).

Proof. The inequality f ′(n) < 0 is equivalent to a(nb − 1) < b(na − 1), i.e.,

a

b
<
na − 1

nb − 1
. (59)

The estimate (59) for n > 1 follows from the fact that the function

h(n) =
na − 1

nb − 1
, a > b > 0,

is increasing on [1,∞), where h(1) = limn→1 h(n) = a/b. The inequality h′(n) >
0 reduces to

ana

na − 1
>

bnb

nb − 1
,

which holds for a > b > 0 and n > 1 by Lemma 2. Lemma 3 follows by
continuity of h(n) at n = 1.

Lemma 4. Let sm(γ) be as above. Then

sm(γ) ≥ 2−(m−1), for all γ ≥ −1/4 and m ≥ 0, (60)

sm(γ) < 1, for all γ ∈ [−1/4, 0) and m ≥ 2, (61)

sm(γ) > 1, for all γ > 0 and m ≥ 2. (62)

Proof. First, for γ ≥ −1/4, sm(γ) is an increasing function of γ since s′m(γ) =
(m/
√

1 + 4γ)
(
ψm−1+ (γ)− ψm−1− (γ)

)
> 0. The inequality (60) follows from this

and sm(−1/4) = 21−m.
Equation (61) follows from the fact that ψ± ∈ (0, 1) for γ ∈ [−1/4, 0). Hence

sm+1(γ) < sm(γ) for all m ≥ 0. Then s1(γ) = 1 yields the claim.
Finally, we prove (62). For m = 2 and m = 3, s2(γ) = 1 + 2γ > 1, and

s3(γ) = 1 + 3γ > 1 for γ > 0. Then (62) follows directly from (17).

Lemma 5. For all m ≥ 0 and γ ≥ −1/4,

sm+2(γ) ≥ −γsm(γ), (63)

sm+1(γ) ≥ sm(γ)/2, (64)

sm+1(γ) ≤ [1 +m(1 + 4γ)] sm(γ)/2. (65)
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Proof. The inequality (63) is equivalent to sm+2 − sm+1 + (sm+1 + γsm) ≥ 0.
Using the recurrence relation (17), it reduces to 2sm+2−sm+1 ≥ 0, i.e., 2sm+2 ≥
sm+1, m ≥ 0. Thus (63) and (64) are equivalent except for (64) with m = 0,
which is trivially satisfied (2s1 = 2 = s0). Also note that sm(γ) ≥ 0 for m ≥ 0
and γ ≥ 0 and (63) is satisfied for γ ≥ 0. In the rest of the proof of (63), we
assume that m ≥ 1 and γ ∈ [−1/4, 0). We shift m → m + 1 in (64), m ≥ 0,
which becomes (

ψ+ −
1

2

)
ψm+1
+ +

(
ψ− −

1

2

)
ψm+1
− ≥ 0 . (66)

Since ψ− = 1− ψ+ for γ ∈ [−1/4, 0), (66) is equivalent to(
ψ+ −

1

2

)[
ψm+1
+ − ψm+1

−
]
≥ 0 ,

which is satisfied for γ ∈ [−1/4, 0) since ψ+ ≥ 1/2 and ψ+ > ψ−. This proves
(64) and (63).

We turn to (65). Note that (65) holds for m = 0. For m ≥ 1, first we
consider γ ≥ 0. Using (17),

2(sm + γsm−1) ≤ [m(1 + 4γ) + 1] sm,

i.e.,
2γsm−1 ≤ [m(1 + 4γ)− 1] sm = (m− 1)sm + 4mγsm. (67)

But m ≥ 1 and sm ≥ 0. Therefore (m − 1)sm ≥ 0 and (67) follows from
2γsm−1 ≤ 4mγsm, i.e., sm ≥ sm−1/2m, which holds, according to (64).

Next, consider γ ∈ [−1/4, 0). We write (65) as 2sm+1 − sm ≤ m(1 + 4γ)sm,
and use (18) to obtain

ψm+

(
ψ+ −

1

2

)
+ ψm−

(
ψ− −

1

2

)
≤ m(1 + 4γ)

2
(ψm+ + ψm− ) .

Using ψ+ + ψ− = 1,(
ψ+ −

1

2

)
(ψm+ − ψm− ) ≤ m(1 + 4γ)

2
(ψm+ + ψm− ) .

Since

ψ+ −
1

2
=

√
1 + 4γ

2
,

Equation (65) is equivalent to

(ψm+ − ψm− ) ≤ m
√

1 + 4γ(ψm+ + ψm− ),

or
ψm+

(
1−m

√
1 + 4γ

)
≤ ψm−

(
1 +m

√
1 + 4γ

)
. (68)
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Both ψ+ and 1 +m
√

1 + 4γ are positive, and

ψ−
ψ+

=
1−
√

1 + 4γ

1 +
√

1 + 4γ
=

1 + 2γ −
√

1 + 4γ

−2γ
.

It follows that proving (68) is equivalent to proving

1−m
√

1 + 4γ

1 +m
√

1 + 4γ
≤
(

1 + 2γ −
√

1 + 4γ

−2γ

)m
. (69)

We prove (69) by induction for m ≥ 0. For m = 0, (69) is trivially satisfied.
Assume that (69) holds for m. Using this, we have to show that (69) holds for
m+ 1. This amounts to showing that

1−m
√

1 + 4γ

1 +m
√

1 + 4γ

1 + 2γ −
√

1 + 4γ

−2γ
≥ 1− (m+ 1)

√
1 + 4γ

1 + (m+ 1)
√

1 + 4γ
. (70)

Multiplying (70) by all (positive) denominators simplifies to an inequality which
holds for all γ ∈ [−1/4, 0):

m(m+ 1)(1 + 4γ)3/2
(

1−
√

1 + 4γ
)
≥ 0.

Lemma 6. For all m ≥ 2,

−γ(2m − 1)sm−1(γ) + sm+1(γ) ≥ 1 , for γ ∈ [−1/4, 0]. (71)

−γ(2m − 1)sm−1(γ) + sm+1(γ) ≤ 1 , for γ ≥ 0. (72)

Proof. We prove(71) using induction. For m = 2 and m = 3

−γ(22 − 1)s1(γ) + s3(γ) = −3γ + 1 + 3γ = 1,

−γ(23 − 1)s2(γ) + s4(γ) = 1− 3γ(1 + 4γ) ≥ 1.

Assume (71) holds for some m ≥ 3, i.e.,

−γ(2m − 1)sm−1 + sm+1 ≥ 1. (73)

By Lemma 5, sm + γsm−2 ≥ 0. Using (17) this becomes sm−1 + 2γsm−2 ≥ 0.
After multiplication by 2m − 1 > 0, we obtain the equivalent form

(2m − 1)sm−1 + 2γ(2m − 1)sm−2 = (2m − 1)sm−1 + γ(2m+1 − 2)sm−2 ≥ 0,

which, using (17), is rewritten as

2msm−1 + γ(2m+1 − 1)sm−2 − sm ≥ 0. (74)
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Multiplying (74) by −γ ≥ 0 and adding (73) gives

−γ(2m+1 − 1)(sm−1 + γsm−2) + (sm+1 + γsm) ≥ 1,

which is rewritten as

−γ(2m+1 − 1)sm + sm+2 ≥ 1 .

This concludes the proof of the second induction step.
Next we prove (72). The statement is true for m = 2 and m = 3:

−γ(22−1)s1(γ)+s3(γ) = 1 , −γ(23−1)s2(γ)+s4(γ) = 1−3γ−12γ2 ≤ 1.

Assume (72) holds for some m ≥ 3, i.e.,

−γ(2m − 1)sm−1 + sm+1 ≤ 1. (75)

By Lemma 5, sm + γsm−2 ≥ 0 or equivalently sm−1 + 2γsm−2 ≥ 0, so that

(2m − 1)sm−1 + 2γ(2m − 1)sm−2 = (2m − 1)sm−1 + γ(2m+1 − 2)sm−2 ≥ 0.

This is rewritten as

2msm−1 + γ(2m+1 − 1)sm−2 − sm ≥ 0.

We reverse this inequality by multiplying it by −γ ≤ 0, and add (75) to it to
obtain

−γ(2m − 1)sm−1 + sm+1 − γ2msm−1 − γ(2m+1 − 1)γsm−2 + γsm ≤ 1,

which reduces to
−γ(2m+1 − 1)sm + sm+2 ≤ 1 .

This concludes the proof of the second induction step.

Lemma 7. The sequence

2msm+1(γ)− 1

2m − 1
, m ≥ 1,

is non-increasing in m for γ ∈ [−1/4, 0].

Proof. We prove that for m ≥ 1,

2msm+1 − 1

2m − 1
≥ 2m+1sm+2 − 1

2m+1 − 1
.

Using the recurrence relation (17), this is equivalent to

sm+1 ≥ γ(2m+1 − 2)sm + 1 ⇐⇒ sm+2 − γ(2m+1 − 1)sm ≥ 1,

which follows directly from Lemma 6.

27



Lemma 8. The sequence

2msm+1(γ)− 1

m(m+ 1)
, m ≥ 1,

is nondecreasing in m for γ ≥ −1/4.

Proof. We use induction to show that for m ≥ 1

2msm+1 − 1

m(m+ 1)
≤ 2m+1sm+2 − 1

(m+ 1)(m+ 2)
,

or equivalently, for m ≥ 1,

(m+ 2)2msm+1 ≤ m2m+1sm+2 + 2 . (76)

The inequality (76) holds for m = 1 as 6s2 = 6(1 + 2γ) = 4(1 + 3γ) + 2 =
4s3 + 2. Using (17) to expand sm+2 in (76) we obtain

(m+ 2)2msm+1 ≤ m2m+1(sm+1 + γsm) + 2,

and (76) is equivalent to

2msm+1 − γm2m+1sm ≤ (m− 1)2msm+1 + 2 .

It suffices to prove that

2msm+1 − γm2m+1sm ≤ (m+ 1)2m−1sm , (77)

since the induction assumption (76) for m → m− 1 implies (m + 1)2m−1sm ≤
(m − 1)2msm+1 + 2. But (77) follows directly from (65) of Lemma 5 as it is
equivalent to 2sm+1 ≤ [1 +m(1 + 4γ)] sm.

Finally, we prove two lemmas that provide bounds for growth of the sequence
{sm(γ)− 1}.

Lemma 9. The sequence

(sm(γ)− 1)/m, m ≥ 3,

is non-decreasing in m for γ ∈ [−1/4, 0).

Proof. The statement is equivalent to (m+ 1)sm ≤ msm+1 + 1, which we prove
by induction. First, for m = 3 we have 4s3 < 3s4 + 1, i.e., 4(1 + 3γ) <
3(1 + 4γ + 2γ2) + 1 which holds for γ 6= 0.

Assume that the statement holds for m→ m−1, i.e., msm−1 ≤ (m−1)sm+1,
which is equivalent to sm ≤ m(sm − sm−1) + 1. Thus sm ≤ mγsm−2 + 1.
However, for γ ∈ [−1/4, 0) and m ≥ 2 one has 0 < sm−1 < sm−2 and thus
sm ≤ mγsm−1 + 1. The claim follows by an application of (17) to sm−1.
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Lemma 10. The sequence

(sm+1(γ)− 1)/(2−m − 1), m ≥ 1,

is (i) non-decreasing in m, for γ ∈ [−1/4, 0); (ii) non-increasing in m, for
γ > 0.

Proof. First, we prove (i), which is equivalent to (2m+1−2)sm+2 +1 ≤ (2m+1−
1)sm+1. Using (17) in the form sm+2 = sm+1 + γsm, this reduces to sm+1 −
2γ(2m−1)sm ≥ 1. This follows directly from a combination of −γ(2m−1)sm−1+
sm+1 ≥ 1, which holds for all m ≥ 2, and γ ∈ [−1/4, 0) by Lemma 6 and
sm−1 ≤ 2sm (see (64)).

Next we prove (ii) by an analogous argument. We have to show that (2m+1−
2)sm+2+1 ≥ (2m+1−1)sm+1, which reduces (by (17) in the form sm+2 = sm+1+
γsm) to sm+1−2γ(2m−1)sm ≤ 1. This follows from −γ(2m−1)sm−1+sm+1 ≤ 1
(by Lemma 6) and sm−1 ≤ 2sm (by (64)) for all m ≥ 2.
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