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Abstract

Principal component regression (PCR) is a useful method for regularizing least squares approxima-
tions. Although conceptually simple, straightforward implementations of PCR have high computational
costs and so are inappropriate for large scale problems. In this paper, we propose efficient algorithms
for computing approximate PCR solutions that are, on one hand, high quality approximations to the
true PCR solutions (when viewed as minimizer of a constrained optimization problem), and on the other
hand entertain rigorous risk bounds (when viewed as statistical estimators). In particular, we propose an
input sparsity time algorithms for approximate PCR. We also consider computing an approximate PCR
in the streaming model, and kernel PCR. Empirical results demonstrate the excellent performance of our
proposed methods.

1 Introduction
Least squares approximations of the form

min
x∈Rd

‖Ax− b‖2

are fundamental building blocks in computational science and statistical data analysis, with applications
ranging from statistical data analysis to inverse problems. However, it is well appreciated, especially in the
aforementioned application areas, that regularization is often the key to achieving the best results.

One of the basic methods for regularizing least squares approximations is principal component regression
(PCR) [23, 27, 2]. Given a data matrix A, a right hand side b and a target rank k, PCR is computed by first
computing the coefficients VA,k corresponding to the top k principal components of A (i.e., to dominant
right invariant subspace of A), then regressing on AVA,k and b, and finally projecting the solution back to
the original space. In short, the PCR estimator is xk = VA,k(AVA,k)+b and regularization is achieved via
PCA based dimensionality reduction. While there is some criticism of PCR in the statistical literature [2, 24],
it is nevertheless a valuable tool in the toolbox of practitioners.

Up until recent breakthroughs on fast methods for least squares approximations, there was little penalty
in terms of computational complexity when switching from ordinary least squares (OLS) to PCR. Indeed,
the complexity of SVD based computation of the dominant invariant subspace is O(ndmin(n, d)), and this
matches the asymptotic complexity of straightforward computation of the OLS solution (i.e., via direct
methods). However, recent progress on fast sketching based algorithms for linear regression [17, 36, 31, 12, 44]
has created a gap: exact computation of the principal components still requires SVD so the overall complexity
is still O(ndmin(n, d)), even though the OLS stage is faster. The gap is not insubstantial: when learning
with large scale data (either large n, or large d), O(ndmin(n, d)) is often infeasible, but modern sketching
based linear regression methods are.
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1.1 Contributions
In this paper, we study the use of dimensionality reduction prior to computing PCR (so we can compute
PCR on a smaller input matrix). In particular, for a data matrix A, we relate the PCR solution of AR,
where R is any dimensionality reduction matrix, to the PCR solution of A. To do so, we study the notion
of approximate PCR both from an optimization perspective and from a statistical perspective, and provide
conditions on R that guarantee that after projecting the solution back to the full space (by multiplying by
RT) we have an approximate PCR solution with rigorous statistical risk bounds. These results are described
in Section 3.

We then leverage the aforementioned results to design fast, sketching based, algorithms for approximate
PCR. We propose algorithms specialized for the several cases (in the following, n is number of data points,
d is dimension of the data): large n (using left sketching), large d (using right sketching), and both n and d
large (using two-sided sketching). Furthermore, we propose an input-sparsity time algorithm for approximate
PCR. These results are described in Section 4.

We also consider computing approximate PCR in the streaming model, providing the first algorithm for
computing approximate PCR in a stream. We also provide a fast algorithm for approximate Kernel PCR
(polynomial kernel only). These results are described in Section 5.

Finally, empirical results (Section 6) clearly demonstrate the ability of our proposed algorithms to compute
approximate PCR solution, the correctness of our theoretical analysis, and the advantages of using our
techniques instead of simpler techniques like compressed least squares.

In general, unlike previous works on randomized methods for PCR (which we discuss in the next subsec-
tion), we analyze the use of sketching for PCR from a sketch-and-solve approach. We discuss the various
advantages and disadvantages of the sketch-and-solve approach in comparison to iterative based approaches,
in the next subsection.

1.2 Related Work
Recently matrix sketching, such as the use of random projections, has emerged as a powerful technique for
accelerating and scaling many important statistical learning techniques. See recent surveys by Woodruff [44]
and Mahoney et al. [46] for an extensive exposition on this subject. So far, there has been limited research
on the use of matrix sketching in the context of principal component regression.

One natural strategy for leveraging sketching in the context of PCR is to use approximate principal
components. Approximate principal components can be computed using fast sketching based algorithm for
approximate PCA (also known as ’randomized SVD’) [21, 44]. This was recently explored by Boutsidis and
Magdon-Ismail [7]. The authors show that the if the number of subspace iterations is sufficiently large, one
obtain a bound on the sub-optimality of the approximate solution and on the error of the solution vector.
We too bound the sub-optimality of our solutions, but instead of bounding the error of the solution vector,
we bound their distance to the right dominant subspace, or bound the distance of the projection to the left
dominant subspace.

Frostig et al. leverage fast randomized algorithms for ridge regression to design iterative algorithms for
principal component regression and principal component projection [18]. Forstig et al.’s results were later
improved by Allen-Zhu and Li [1]. Both of the aforementioned methods use iterations, while our work
explores the use of a sketch-and-solve approach. While it is true that better accuracies can be achieved using
iterative methods with sketching based accelerators [36, 5, 31, 20, 3], there are some advantages in using
a sketch-and-solve approach. In particular, sketch-and-solve algorithms are typically faster. However this
comes at the cost: sketch-and-solve algorithms typically provide cruder approximations. Nevertheless, it is
not uncommon for these cruder approximations to be sufficient in machine learning applications. Another
advantage of the sketch-and-solve approach is that it is more amenable to streaming and kernelization; we
consider both in this paper.
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Closely related to our work is recent work on Compressed Least Squares (CLS) [30, 25, 37, 38, 42]. In
particular, our statistical analysis (section 3.2) is inspired by recent statistical analysis of CLS [37, 38, 25].
Additionally, CLS is sometimes considered as a computationally attractive alternative to PCR [38, 42]. While
CLS certainly uses matrix sketching to compress the matrix, it also uses the compression to regularize the
problem. The mix between compression for scalability and compression for regularization reduces the ability
to fine tune the method to the needs at hand, and thus obtain the best possible results. In contrast, our
methods uses sketching primarily to approximate the principal components and as such serves as a means for
scalability only. We propose methods that are computationally as attractive as CLS, and are more faithful
to the behavior of PCR (in fact, CLS is a special case of one of our proposed algorithms). These advantages
over CLS are also evident in the experimental results reported in Section 6.

Principal component regression is a form of least squares regression with convex constraints (once the
dominant subspace has been found). Pilanchi and Wainwright recently explored the effect of regularization
on the sketch size for least squares regression [34, 35]. In the aforementioned papers, sketching is applied
only to the objective, while the constraint is enforced exactly. This is unsatisfactory in the context of PCR
since for PCR the constraints are gleaned from the input, and enforcing them is as expensive as solving the
problem exactly. In contrast, our method uses sketching not only to compress the objective function, but
also to approximate the constraint set.

Ridge regression (also known as Tikhonov regularization) is another popular and well studied method
for regularizing least squares solutions. It also closely related to PCR in the sense that the ridge term can
be viewed as a soft damping of the singular values. Recently several sketching-based algorithms have been
suggested to accelerate the solution of ridge regression [9, 4, 43, 10].

2 Preliminaries

2.1 Notation and Basic Definitions
We denote scalars using Greek letters or using x, y, . . . . Vectors are denoted by x,y, . . . and matrices by
A,B, . . . . The s × s identity matrix is denoted Is. We use the convention that vectors are column-vectors.
nnz (A) denotes the number of non-zeros in A. The notation α = (1±γ)β means that (1−γ)β ≤ α ≤ (1+γ)β,
and the notation α = β ± γ means that |α− β| ≤ γ.

Given a matrix X ∈ Rm×n, let X = UXΣXVT
X be a thin SVD of X, i.e. UX ∈ Rm×min(m,n) is a

matrix with orthonormal columns, ΣX ∈ Rmin(m,n)×min(m,n) is a diagonal matrix with the non-negative
singular values on the diagonal, and VX ∈ Rn×min(m,n) is a matrix with orthonormal columns. The thin
SVD decomposition is not necessarily unique, so when we use this notation we mean that the statement
is correct for any such decomposition. A thin SVD decomposition can be computed in O(mnmin(m,n)).
We denote the singular values of X by σmax(X) = σ1(X) ≥ · · · ≥ σmin(m,n)(X) = σmin(X), omitting the
matrix from the notation if the relevant matrix is clear from the context. For k ≤ min(m,n), we use UX,k

(respectively VX,k) to denote the matrix consisting of the first k columns of UX (respectively VX), and use
ΣX,k to denote the leading k × k minor of ΣX. We use UX,k+ (respectively VX,k+) to denote the matrix
consisting of the last min(m,n)−k columns of UX (respectively VX), and use ΣX,k+ to denote the lower-right
(min(m,n)− k)× (min(m,n)− k) block of ΣX. In other words,

UX =
[

UX,k UX,k+

]
ΣX =

[
ΣX,k 0

0 ΣX,k+

]
VX =

[
VX,k VX,k+

]
.

TheMoore-Penrose pseudo-inverse of X is X+ := VXΣ+
XUT

X where Σ+
X = diag

(
σ1(X)+, . . . , σmin(m,n)(X)+

)
with a+ = a−1 when a 6= 0 and 0 otherwise.

The stable rank of a matrix X is sr (X) := ‖X‖2F /‖X‖22. The k-th relative gap of a matrix X is

gapk (X) =
σ2
k − σ2

k+1

σ2
1

.
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For a subspace U , we use PU to denote the orthogonal projection matrix onto U , and PX for the projection
matrix on the column space of X (i.e. PX = Prange(X)). We have PX = XX+. The complementary
projection matrix is P⊥X = I−PX. A useful property of projection matrices is that if S ⊆ T then PSPT =
PTPS = PS . Furthermore, we note the following result.

Theorem 1 (Theorem 2.3 in [40]). For any A and B with the same number of rows, the following statements
hold:

1. If rank (A) = rank (B), then the singular values of PAP⊥B and PBP⊥A are the same, so

‖PAP⊥B‖2 = ‖PBP⊥A‖2

2. Moreover the nonzero singular values σ of PAP⊥B correspond to pairs ±σ of eigenvalues of PB −PA,
so

‖PB −PA‖2 = ‖PAP⊥B‖2

3. If ‖PB −PA‖2 < 1, then rank (A) = rank (B).

2.2 Principal Component Regression and Principal Component Projection
In the Principal Component Regression (PCR) problem, we are given an input n-by-d data matrix A, a right
hand side b ∈ Rn, and a rank parameter k which is smaller or equal to the rank of A. Furthermore, we
assume that there is an non-zero eigengap at k: σk > σk+1. The goal is to find the PCR solution, xk, defined
as

xk := arg min
x∈range(VA,k)

‖Ax− b‖2. (1)

It is easy to verify that xk = VA,k(AVA,k)+b = VA,kΣ−1
A,kU

T
A,kb. The Principal Component Projection

(PCP) of b is bk := Axk = PUA,k
b.

Straightforward computation of xk and bk via the SVD takes O(ndmin(n, d)) operations1. We are
primarily interested in finding faster algorithms that compute an approximate PCR or PCP solution (we
formalize the terms ’approximate PCP/PCR’ in Section 3). Throughout the paper, we use A,b, and k as
the arguments of the PCR/PCP problem to be solved.

2.3 Matrix Perturbations and Distance Between Subspaces
Our analysis uses matrix perturbation theory extensively. We now describe the basics of this theory and the
results we use.

The principal angles θj ∈ [0, π/2] between two subspaces U and W are recursively defined by the identity

cos(θj) = max
u∈U

max
w∈W

uTw s.t. ‖u‖2 = 1, ‖w‖2 = 1,∀i < j.uT
i u = 0,wT

i w = 0 .

We use uj and wj to denote the vectors for which cos(θj) = uT
j wj . Let Θ(U ,W) denote the d× d diagonal

matrix whose jth diagonal entry is the jth principal angle, and as usual we allow writing matrices instead of
subspaces as short-hand for the column space of the matrix. Henceforth, when we write a function on Θ(·, ·),
i.e. sin(Θ(U,W)), we mean evaluating the function entrywise on the diagonal only. It is well known [19,

1The complexity when using iterative algorithms (e.g. Lanczos) to compute only the dominant invariant spaces depend
on several additional facts and in particular on spectral properties of the matrix and sparsity level. Thus, to avoid overly
complicating the discussion on computational complexity, we refrain from further discussion of iterative methods for computing
dominant eigenspaces
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section 6.4.3] that if U (respectively W) is a matrix with orthonormal columns whose column space is equal
to U (respectively W) then

σj(U
TW) = cos(θj).

The following lemma connects the tangent of the principal angles to the spectral norm of an appropriate
matrix.

Lemma 2 (Lemma 4.3 in [16]). Let Q ∈ Rn×s have orthonormal columns, and let W = ( Wk Wk+ ) ∈
Rn×n be an orthogonal matrix where Wk ∈ Rn×k with k ≤ s. If rank

(
WT

k Q
)

= k then

‖ tan Θ(Q,Wk)‖2 = ‖(WT
k+Q)(WT

k Q)‖2 .

Matrix perturbation theory studies how a perturbation of a matrix translate to perturbations of the
matrix’s eignevalues and eigenspaces. In order to bound the perturbation of an eigenspace, one needs some
notion of distance between two subspaces. One common distance metric between two subspaces is

d2(U ,W) := ‖PU −PW‖2 . (2)

If U and V have the same number of columns, and both have orthonormal columns, then

d2(U,V) =

√
1− σmin(UTV)2 = sin(θmax) = ‖ sin Θ(U,V)‖2

where θmax is the maximum principal angle between range (U) and range (V) [19, section 6.4.3].
A classical result that bounds the distance between the dominant subspaces of two symmetric matrices

in terms of the spectral norm of difference between the two matrices is the Davis-Kahan sin(Θ) theorem [15,
Section 2]. We need the following corollary of this theorem:

Theorem 3 (Corollary of Davis-Kahan sin Θ Theorem [15]). Let A, Ã ∈ Rn×n be two symmetric matrices,
both of rank at least k. Suppose that λk > λ̃k+1 where λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n are the eigenvalues
of A and Ã. We have

d2(VA,k,VÃ,k) ≤ ‖A− Ã‖2
λk − λ̃k+1

.

Proof. We use the following variant of the sin Θ Theorem (see [41, Theorem 2.16]): suppose a symmetric
matrix B has a spectral representation

B = XLXT + YMYT

where [X Y] is square orthonormal. Let the orthonormal matrix Z be of the same dimensions as X and
suppose that

R = BZ− ZN

where N is symmetric. Furthermore, suppose that the spectrum of N is contained in some interval [α, β] and
that for some δ > 0 the spectrum of M lies outside of [α− δ, β + δ]. Then,

‖ sin Θ(X,Z)‖2 ≤
‖R‖2
δ

.

We prove Theorem 3 by applying the aforementioned variant of the sin Θ Theorem with: B = Ã, X = VÃ,k,

Y = VÃ,k+, L = diag
(
λ̃1, . . . , λ̃k

)
, M = diag

(
λ̃k+1, . . . , λ̃n

)
, Z = VA,k, N = diag (λ1, . . . , λk), and

δ = λk − λ̃k+1 . It is easy to verify that the conditions of the sin Θ Theorem hold, so

‖ sin Θ(VA,k,VÃ,k)‖2 ≤
‖R‖2

λk − λ̃k+1

5



where R = ÃVA,k − VA,kN. We have AVA,k = VA,kN so ‖R‖2 = ‖(Ã − A)VA,k‖2 ≤ ‖Ã − A‖2.
Combining this inequality with the previous one and noting that d2(VA,k,VÃ,k) = ‖ sin Θ(VA,k,VÃ,k)‖2
completes the proof.

Under the conditions of Theorem 3, since A and Ã are symmetric matrices, Weyl’s inequality implies
that

d2(VA,k,VÃ,k) ≤ ‖A− Ã‖2
λk − λk+1 − ‖A− Ã‖2

as long as ‖A− Ã‖2 < λk − λk+1. Thus, if ‖A− Ã‖2 � λk − λk+1 then we can compute an approximation
to the k-dimensional dominant subspace of A by computing the k-dimensional dominant subspace of Ã.

3 PCR with Dimensionality Reduction
Our goal is to design algorithms which compute an approximate solution to the PCR or PCP problem. Our
strategy for designing such algorithms is to reduce the dimensions of A prior to computing the PCR/PCP
solution. Specifically, let R ∈ Rd×t be some matrix where t ≤ d, and define

xR,k := RVAR,k(ARVAR,k)+b . (3)

The rationale in Eq. (3) is as follows. First, A is compressed by computing AR (this is the dimensionality
reduction step). Then we compute the rank k PCR solution of AR and b; this is (ARVAR,k)+b. Finally,
the solution is projected back to the original space by multiplying by RVAR,k. Obviously, given R we
can compute xR,k in O(ndt) (and even faster, if A is sparse), so if t � min(n, d) there is a potential for
significant gain in terms of computational complexity provided it is possible to compute R efficiently as well.
Furthermore, if we design R to have some special structure that allows us to compute AR in O(nt2) time,
the overall complexity would reduce to O(nt2).

Of course, xR,k is not the PCR solution xk (unless R = VA,k). This suggests the following mathematical
question (which, in turn, leads to an algorithmic question): under which conditions on R is xR,k a good
approximation to the PCR solution xk? In this section, we derive general conditions on R that ensure
deterministically that xR,k is in some sense (which we formalize later in this section) a good approximation
of xk. The results in this section are non algorithmic and independent of the method in which R is computed.
In the next section we address the algorithmic question: how can we compute such R matrices efficiently?

We approach the mathematical question from two different perspectives: an optimization perspective
and a statistical perspective. In the optimization perspective, we consider PCR/PCP as an optimization
problem (Eq. (1)), and ask whether the value of the objective function of xR,k is close to optimal value of
the objective function, while upholding the constraints approximately (see Definition 4). In the statistical
perspective, we treat xk and xR,k as statistical estimators, and compare their excess risk under a fixed-design
model. Interestingly, the conditions we derive for R are the same for both perspectives.

Before proceeding, we remark that an important special case of (3) is when R has exactly k columns. In
that case, for brevity, we omit the subscript k from xR,k and notice that

xR = R(AR)+b . (4)

Eq. (4) is valid even if R has more than k columns and/or the columns are not orthonormal. Thus, an
established technique in the literature, frequently referred to as Compressed Least Squares (CLS) [30, 25, 37,
38, 42], is to generate a random R and compute xR. To avoid confusion, we stress the difference between
(3) and (4): in (3) we compute a PCR solution on the compressed matrix AR, while in (4) ordinary least
squares is used. These two strategies coincide when R has k columns. In this paper, we focus on Eq. (3) and
consider Eq. (4) only when it is a special case of Eq. (3) (when R has exactly k columns). For an analysis of
CLS from a statistical perspective, see recent work by Slawski [38].

6



3.1 Optimization Perspective
The PCR solution can be written as the solution of a constrained least squares problem:

xk = arg min
‖VT

A,k+x‖2 = 0

x ∈ range
(
AT)

‖Ax− b‖2.

In order to analyze a candidate solution x̃ from an optimization perspective, we need to decide how to
treat the constraints. One option is to require a candidate x̃ to be inside the feasible set. Indeed, Pilanci
and Wainwright recently considered sketching based methods for constrained least squares regression [34].
However, there is no evident way to impose VT

A,k+x = 0 without actually computing VA,k+, which is as
expensive as computing VA,k. Thus, if we require an approximate solution to be inside the feasible set,
we might as well compute the exact PCR solution. Thus, in our notion of approximate PCR, we relax the
constraints and require only that the approximate solution is close to meeting the constraint, i.e. we seek a
solution for which ‖Ax̃− b‖2 is close to ‖Axk − b‖2 and ‖VT

A,k+x̃‖2 is small.
Similarly, the if A has full rank the PCP solution can written as the solution of a constrained least squares

problem:
bk = arg min

‖UT
A,k+b̃‖2 = 0

b̃ ∈ range (A)

‖b̃− b‖2

Again, our notion of approximate PCP relaxes the constraint.
The discussion above motivates the following definition of approximate PCR/PCP.

Definition 4 (Approximate PCR and PCP). An estimator x̃ is an (ε, υ)-approximate PCR of rank k if

‖Ax̃− b‖2 = ‖Axk − b‖2 ± ε‖b‖2

and ‖VT
A,k+x̃‖2 ≤ υ‖b‖2. An estimator b̃ is an (ε, υ)-approximate PCP of rank k if

‖b̃− b‖2 = ‖bk − b‖2 ± ε‖b‖2

and ‖UT
A,k+b̃‖2 ≤ υ‖b‖2.

Before proceeding, a few remarks are in order.

1. Imposing no constraints on x̃ (or b̃) does not make sense: we can always form or approximate the
ordinary least squares solution and it will demonstrate a smaller objective value. Indeed, the main
motivation for using PCR to impose some form of regularization, so it is crucial the definition of
approximate PCR/PCP have some form of regularization built-in.

2. We require only additive error on the objective function, while relative error bounds are usually viewed
as more desirable. For approximate PCR, requiring relative error bounds is likely unrealistic: since
it is possible that b = Axk, any algorithm that provides a relative error bound must search inside a
space that contains range (VA,k). This is a strong restriction (and plausibly one that actually requires
computing VA,k ).

3. Approximate PCR implies approximate PCP: if x̃ is an (ε, ν)-approximate PCR then Ax̃ is an (ε, σk+1ν)-
approximate PCP.

4. Our notion of approximate PCP is somewhat similar to the notion of approximate PCP proposed
recently by Allen-Zhu and Li [1].
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5. Yet another notion of approximate PCR appears in [7, Theorem 5]. They too, consider an additive error
on objective function, but instead of considering the distance to the dominant subspace they bound
the distance of the approximate solution to the true solution. We remark that a bound on ‖xk − x̃‖2
trivially implies a bound on ‖VT

A,k+x̃‖2.

6. Arguably, it would have been preferable to require the approximate PCR solution x̃ to be such that ‖xk−
x̃‖2 is small (relative to ‖xk‖2). However, be believe that providing such guarantees with reasonable
sketch sizes requires iterations. In this paper, we focus predominately on algorithms that do not require
iterations (the only exception being the input sparsity algorithm in subsection 4.3).

We are now ready to state general conditions on R that ensure deterministically that xR is an approximate
PCR, and conditions on R that ensure deterministically that AxR,k is an approximate PCP.

Theorem 5. Suppose that R ∈ Rd×s where s ≥ k. Assume that ν ∈ (0, 1).

1. If d2 (UAR,k,UA,k) ≤ ν then AxR,k is an (ν, ν)-approximate PCP.

2. If s = k, R has orthonormal columns (i.e., RTR = Ik) and d2 (R,VA,k) ≤ ν(1 + ν2)−1/2 then xR is

an
(
σk+1

σk
ν, ν

(
√

1−ν2−ν)σk

)
-approximate PCR.

Before proving this theorem, we state a theorem which is a corollary of a more general result proved
recently by Drineas et al. [16], and then proceed to proving a couple of auxiliary lemmas.

Theorem 6 (Corollary of Theorem 2.1 in [16]). Let A be an m×n matrix with singular value decomposition
A = UAΣAVT

A . Let k ≥ 0 and let R ∈ Rd×k be any matrix such that VT
A,kR has full rank. Then,

‖ sin Θ(AR,UA,k)‖2 ≤ ‖ΣA,k+‖2 · ‖Σ−1
A,k‖2 · ‖ tan Θ(R,VA,k)‖2

Lemma 7. Assume rank (A) ≥ k. If R ∈ Rd×k has orthonormal columns and d2 (R,VA,k) ≤ ν then the
following bounds hold:

‖VT
A,k+R‖2 ≤ ν (5)

σmin (AR) ≥ σk
(√

1− ν2 − ν
)

(6)

Furthermore, if ν < 1 then rank (AR) = k.

Proof. Since both VA,k and R have orthonormal columns, d2 (R,VA,k) ≤ ν implies that the square of the
singular values of VT

A,kR lie inside the interval [1−ν2, 1]. The eigenvalues of RTVA,kV
T
A,kR are exactly the

square of the singular values of VT
A,kR, so the eigenvalues of Ik−RTVA,kV

T
A,kR lie in [0, ν2]. Let Z be any

matrix with orthonormal columns that completes VA to a basis (i.e. VAVT
A + ZZT = Id) and is orthogonal

to VA (i.e., VT
AZ = 0). Note that Z can be an empty matrix if d ≤ n. Denote VA,k⊥ =

[
VA,k+ Z

]
. We

have

‖VT
A,k⊥R‖2 =

√
‖RTVA,k⊥VT

A,k⊥R‖2

=
√
‖Ik −RTVA,kV

T
A,kR‖2

≤ ν

where we used the fact that VA,kV
T
A,k + VA,k⊥VT

A,k⊥ = Id. We now note that VT
A,k+R is a submatrix of

VT
A,k⊥ so ‖VT

A,k+R‖2 ≤ ‖VT
A,k⊥R‖2 ≤ ν. This establishes the first part of the theorem.
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As for the second part, recall the following identities: 1) for any matrix X and Y of the same size:
σmin (X±Y) ≥ σmin (X) − σmax (Y) [22, Theorem 3.3.19], 2) if the number of rows in X and Y is at least
as large as the number of columns, and XY is defined, then σmin (XY) ≥ σmin (X)σmin (Y). We have

σmin (AR) = σmin(AVA,kV
T
A,kR + AVA,k+VT

A,k+R)

≥ σmin(AVA,kV
T
A,kR)− σmax(AVA,k+VT

A,k+R)

≥ σmin(AVA,k)σmin(VT
A,kR)− σmax(AVA,k+)σmax(VT

A,k+R)

= σkσmin(VT
A,kR)− σk+1σmax(VT

A,k+R)

≥ σk
√

1− ν2 − σk+1ν

≥ σk(
√

1− ν2 − ν)

where the first equality follows from the fact that A(VA,kV
T
A,k + VA,k+VT

A,k+) = A. When ν < 1 we have
σmin(AR) > 0, so indeed the rank of AR is k.

Lemma 8. Assume rank (A) ≥ k. Suppose that R ∈ Rd×k has orthonormal columns, and that d2 (R,VA,k) ≤
ν(1 + ν2)−1/2 < 1. We have

d2(UAR,UA,k) ≤ σk+1

σk
ν .

Proof. Since rank (A) ≥ k and ν(1 + ν2)−1/2 < 1, according to Lemma 7 the matrix AR has full rank.
According to Theorem 1 and the fact that PAR and PUA,k

are orthogonal projections we have

d2 (UAR,UA,k) = d2 (AR,UA,k) = ‖PAR −PUA,k
‖2 = ‖P⊥ARPUA,k

‖2 (7)

Combining Theorem 6 and Eq. (7), we bound:

d2 (AR,UA,k) = ‖P⊥ARPUA,k
‖2

= ‖(I−PAR)UA,k‖2
= ‖ sin Θ(AR,UA,k)‖2
≤ ‖ΣA.k+‖2 · ‖Σ−1

A.k‖2 · ‖ tan Θ(R,VA,k)‖2
=

σk+1

σk
· ‖ tan Θ(R,VA,k)‖2

≤ σk+1

σk
ν

where the last inequality follows from the fact that Θ(R,VA,k) is a diagonal matrix whose diagonal values are
the inverse cosine of the singular values of RTVA,k, and these, in turn, are all larger than

√
1− ν2(1 + ν2)−1.

We are now ready to prove Theorem 5.

Proof of Theorem 5. We need to show both the additive error bounds on the objective function, and the
error bound on the constraints. We start with the additive error bounds on the objective function, both for
PCP (first part of the theorem) and for PCR (second part of the theorem). We have

AxR,k = ARVAR,k (ARVAR,k)
+

b = PUAR,k
b

and
Axk = AVA,k(AVA,k)+b = PUA,k

b .

9



Thus,

‖AxR,k − b‖2 = ‖Axk − b + AxR,k −Axk‖2
= ‖Axk − b‖2 ± ‖AxR,k −Axk‖2
= ‖Axk − b‖2 ± ‖(PUAR,k

−PUA,k
)b‖2

= ‖Axk − b‖2 ± d2(UAR,k,UA,k) · ‖b‖2

In the first part of the theorem, we have d2 (UAR,k,UA,k) ≤ ν, while the second part of the theorem we
have UAR,k = UAR (since AR has k columns) and Lemma 8 ensures that d2 (UAR,k,UA,k) ≤ νσk+1/σk.
Either way, the additive error bounds of the theorem are met.

We now bound the infeasibility of the approximate solution for the PCP guarantee (first part of the
theorem):

‖UT
A,k+AxR,k‖2 = ‖UT

A,k+AxR,k −UT
A,k+Axk + UT

A,k+Axk‖2
≤ ‖UT

A,k+ (AxR,k −Axk) ‖2 + ‖UT
A,k+Axk‖2

≤ ‖AxR,k −Axk‖2
≤ d2 (UAR,k,UA,k) ‖b‖2
≤ ν‖b‖2

where we used the fact that Axk ∈ range (UA,k) so UT
A,k+Axk = 0.

We now bound the infeasibility of the approximate solution for the PCR guarantee (second part of the
theorem):

‖VT
A,k+xR‖2 = ‖VT

A,k+R(AR)+b‖2
≤ ‖VT

A,k+R‖2 · ‖(AR)+‖2 · ‖b‖2

≤ ν(√
1− ν2 − ν

)
σk
‖b‖2

where we used Lemma 7 to bound ‖VT
A,k+R‖2 and ‖(AR)+‖2.

3.2 Statistical Perspective
We now consider xR,k from a statistical perspective. We use a similar framework to the one used in the
literature to analyze CLS [37, 38, 42]. That is, we consider a fixed design setting in which the rows of A,
a1, . . . ,an ∈ Rd, are considered as fixed, and b’s entries, b1, . . . , bn ∈ R, are

bi = fi + ξi

where f1, . . . , fn are fixed values and the noise terms ξ1, . . . , ξn are assumed to be independent random values
with zero mean and σ2 variance. We denote by f ∈ Rn the vector whose ith entry is fi . The goal is to
recover f from b (i.e., de-noise b).

The optimal predictor Ax? of f given A is a minimizer of

min
x∈Rd

E
[
‖Ax− b‖22/n

]
where here, and in subsequent expressions, the expectation is with respect to the noise ξ (if there are multiple
minimizers, x? is the minimizer with minimum norm). It is easy to verify that Ax? = PAf .

10



Given an estimator θ = θ(A,b) of x? (which we assume is a random variable since b is a random varaible),
its excess risk is define as

E(θ) := E
[
‖Aθ −Ax?‖22/n

]
.

The ordinary least square estimator (OLS) x̂ is simply a solution to minx∈Rd ‖Ax− b‖2: x̂ := A+b. Simple
calculations show that

E(x̂) = σ2rank (A) /n .

Thus, if the rank of A is large, which is usually the case when d � n, then the excess risk might be large
(and it does not asymptotically converge to 0 if rank (A) = Ω(n)). This motivates the use of regularization
(e.g., PCR). Indeed, the excess risk of the PCR estimator xk can be bounded [38]:

E(xk) ≤
‖VT

Ax?‖2∞ ·
∑min(n,d)
i=k+1 σ2

i

n
+
σ2k

n
. (8)

In many scenarios, xk has a significantly reduced excess risk in comparison to the excess risk of x̂ (see [38]
for a discussion). This motivates the use of PCR when d is large.

In this section, we analyze the excess risk of xR,k based on properties of R. The bounds are based on the
following identity [38]2: for any M of appropriate size

E(xM) = E(M(AM)+b) =
1

n
‖(I−PAM)Ax?‖22︸ ︷︷ ︸

B(xM)

+ σ2 rank (AM)

n︸ ︷︷ ︸
V(xM)

. (9)

In the above, B(xM) can be viewed as a bias term, and V(xM) can be viewed as a variance term. Eq. (8) is
obtained by bounding the bias term B(xk), although our results lead to a bound on E(xk) that is tighter in
some cases (Corollary 11). An immediate corollary of (9) is the following bound for xR,k:

E(xR,k) =
1

n
‖(I−PARVAR,k

)Ax?‖22 +
σ2k

n
. (10)

The following results addresses the case where R has k orthonormal columns. The conditions are the
same as the first part of Theorem 5 (optimization perspective analysis).

Theorem 9. Assume that rank (A) ≥ k. Suppose that R ∈ Rd×k has orthonormal columns, and that
d2(R,VA,k) ≤ ν(1 + ν2)−1/2 < 1. Then,

E(xR) ≤
(1 + ν) · ‖x?‖22 · σ2

k+1

n
+
σ2k

n

For the proof, we need the following theorem due to Halko et al. [21].

Theorem 10 (Theorem 9.1 in [21]). Let A be an m × n matrix with singular value decomposition A =
UAΣAVT

A .Let k ≥ 0. Let R be any matrix such that VT
A,kR has full row rank. Then we have

‖(Im −PAR)A‖22 ≤ ‖ΣA,k+‖22 + ‖ΣA,k+VT
A,k+R

(
VT

A,kR
)+ ‖22

Proof of Theorem 9. The condition that d2(R,VA,k) ≤ ν(1 + ν2)−1/2 < 1 ensures that VT
A,kR has full rank,

and that ‖ tan Θ(R,VA,k)‖22 ≤ ν (since Θ(R,VA,k) is a diagonal matrix whose diagonal values are the inverse
cosine of the singular values of RTV, and these, in turn, are all larger than

√
1− ν2(1 + ν2)−1). Thus we

have,
2However, no proof of (9) appears in [38], so for completeness we include a proof in the appendix.
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B(xR) =
1

n
‖(I−PAR)Ax?‖22

≤ 1

n
‖x?‖22 ·

(
‖ΣA,k+‖22 + ‖ΣA,k+VT

A,k+R
(
VT

A,kR
)+

‖22
)

≤ 1

n
‖x?‖22

(
σ2
k+1 + σ2

k+1‖V
T
A,k+R

(
VT

A,kR
)+

‖22
)

=
1

n
‖x?‖22

(
σ2
k+1 + σ2

k+1‖ tan Θ (R,VA,k) ‖22
)

≤
(1 + ν) · ‖x?‖22 · σ2

k+1

n

where in the first inequality we used Theorem 10 and for the second equality we used Lemma 2. The result
now follows from the fact that rank (AR) ≤ k.

Corollary 11. For the PCR solution xk we have

E(xk) ≤
‖x?‖22 · σ2

k+1

n
+
σ2k

n
.

Next, we consider the general case where R does not necessarily have orthonormal columns, and potentially
has more than k columns. The conditions are the same as the second part of Theorem 5 (optimization
perspective).

Theorem 12. Suppose that R ∈ Rd×s where s ≥ k. Assume that rank (AR) ≥ k. If d2 (UAR,k,UA,k) ≤
ν < 1 then,

E(xR,k) ≤ E(xk) +
(2ν + ν2)‖f‖22

n
.

Proof. Since AR has rank at least k, we have PARVAR,k
= PUAR,k

. From (10), the fact that Ax? = PAf ,
and PARVAR,k

PA = PARVAR,k
(since the range of ARVAR,k is contained in the range of A) we have

B(xR,k) =
1

n
‖(I−PARVAR,k

)Ax?‖22

=
1

n
‖(PA −PARVAR,k

)f‖22

=
1

n
‖(PA −PUA,k

+ PUA,k
−PARVAR,k

)f‖22

=
1

n

(
‖(PA −PUA,k

)f‖22 + ‖(PUA,k
−PUAR,k

)f‖22 + 2(PAf −PUA,k
f)T(PUA,k

f −PARVAR,k
f)
)

≤ B(xk) + d2 (UAR,k,UA,k)
2 ‖f‖22

n
+

2

n

∣∣fT(PA −PUA,k
)T(PUA,k

−PARVAR,k
)f
∣∣

For the cross-terms, we bound

∣∣fT(PA −PUA,k
)T(PUA,k

−PARVAR,k
)f
∣∣ =

∣∣fT (PAPUA,k
−PAPARVAR,k

−PUA,k
PUA,k

+ PUA,k
PARVAR,k

)
f
∣∣

=
∣∣fT (PUA,k

−PUAR,k
−PUA,k

+ PUA,k
PUAR,k

)
f
∣∣

= fT (I−PUA,k

)
PUAR,k

f

= fTP⊥UA,k
PUAR,k

f

≤ ‖P⊥UA,k
PUAR,k

‖2 · ‖f‖22

12



Since both UAR,k and UA,k are full rank, we have (Theorem 1)

‖P⊥UA,k
PUAR,k

‖2 = ‖PUA,k
−PUAR,k

‖2 = d2 (UAR,k,UA,k)

Thus, we find that

B(xR,k) ≤ B(xk) + (2ν + ν2)
‖f‖22
n

.

We reach the bound in the theorem statement by adding the variance V(xR,k), which is equal to the variance
of xk because the ranks are equal.

Discussion. Theorem 9 shows that if R is a good approximation to VA,k, then there is a small relative
increase to the bias term, while the variance term does not change. Since we are mainly interested in keeping
the asymptotic behavior of the excess risk (as n goes to infinity), a fixed ν of modest value suffices. However,
for this result to hold, R has to have exactly k columns and those columns should be orthonormal. Without
these restrictions, we need to resort to Theorem 12. In that theorem, we get (if the conditions are met) only
an additive increase in the bias term. Thus if, for example, ‖f‖22/n→ c as n→∞ for some constant c, then
ν should tend to 0 as n goes to infinity, but a constant value should suffice if n is fixed.

4 Sketched PCR and PCP
In the previous section, we considered general conditions on R which ensure that xR,k is an approximate
solution to the PCR/PCP problem. In this section, we propose algorithms to generate R for which these
conditions hold. The main technique we employ is matrix sketching. The idea is to first multiply the data
matrix A by some random transformation (e.g., a random projection), and extract an approximate subspace
from the compressed matrix.

4.1 Dimensionality Reduction using Sketching
The compression (multiplication by a random matrix) alluded in the previous paragraph can be applied
either from the left side, or the right side, or both. In left sketching, which is more appropriate if the input
matrix has many rows and a modest amount of columns, we propose to use R = VSA,k where S is some
sketching matrix (we discuss a couple of options shortly). In right sketching, which is more appropriate if
the input matrix has many columns and a modest amount of rows, we propose to use R = GT where G is
some sketching matrix. Two sided sketching, R = GTVSAGT,k , is aimed for the case that the number of
columns and the number of rows are large.

The sketching matrices, S and G, are randomized dimensionality reduction transformations. Quite a few
sketching transforms have been proposed in the literature in recent years. For concreteness, we consider two
specific cases, though our results hold for other sketching transformations as well (albeit some modifications
in the bounds might be necessary). The first, which we refer to as ’subgaussian map’, is a random matrix
in which every entry of the matrix is sampled i.i.d from some subgaussian distribution (e.g. N(0, 1)) and
the matrix is appropriately scaled (however, scaling is not necessary in our case). The second transform is
a sparse embedding matrix, in which each column is sampled uniformly and independently from the set of
scaled identity vectors and multiplied by a random sign. We refer to such a matrix as a CountSketch
matrix [8, 44].

Both transformations described above, and a few other, have, provided enough rows are used, with high
probability the following property which we refer to as approximate Gram property.

Definition 13. Let X ∈ Rm×n be a fixed matrix. For ε, δ ∈ (0, 1/2), a distribution D on matrices with m
columns has the (ε, δ)-approximate Gram matrix property for X if

Pr
S∼D

(
‖XTSTSX−XTX‖2 ≥ ε‖X‖22

)
≤ δ .
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Recent results by Cohen et al. [14]3 show that when S has independent subgaussian entries, then as long
as the number of rows in S is Ω((sr (X) + log(1/δ))/ε2) then we have (ε, δ)-approximate Gram property for
X. If S is a CountSketch matrix, then as long as the number of rows in S is Ω(sr (X)

2
/(ε2δ)) then we

have (ε, δ)-approximate Gram property for X [14].
We first describe our results for the various modes of sketching, and then discuss algorithmic issues and

computational complexity.

Theorem 14 (Left Sketching). Let ν, δ ∈ (0, 1/2) and denote

ε =
ν(1 + ν2)−1/2

1 + ν(1 + ν2)−1/2
· gapk (A) .

Suppose that S is sampled from a distribution that provides a (ε, δ)-approximate Gram matrix for A. Then

for R = VSA,k, with probability 1− δ, the approximate solution xR is a
(
σk+1

σk
ν, ν

(
√

1−ν2−ν)σk

)
-approximate

PCR and

E(xR) ≤
(1 + ν) · ‖x?‖22 · σ2

k+1

n
+
σ2k

n
Thus if, for example, S is a CountSketch matrix, then the conditions are met when the number of rows

in S is

Ω

(
sr (A)

2

gapk (A)
2
ν2δ

)
rows. In another example, if S is a subgaussian map, then the conditions are met when the number of rows
in S is

Ω

(
sr (A) + log(1/δ)

gapk (A)
2
ν2

)
.

Proof. Due to Theorems 5 and 9, it suffices to show that that d2 (R,VA,k) ≤ ν(1 + ν2)−1/2. Under the
conditions of the theorem, with probability of at least 1− δ we have ‖ATSTSA−ATA‖2 ≤ ε‖A‖22. If that
is indeed the case, ATSTSA has rank at least k since ATSTSA and ATA are symmetric matrices and we
know that σ2

i

(
ATSTSA

)
= σ2

i

(
ATA

)
±‖ATSTSA−ATA‖2 (Weyl’s Theorem and the fact that σ2

k > εσ2
1).

Furthermore, since ν > 0 we have ε < gapk (A), and Theorem 3 implies that

d2(R,VA,k) ≤ ‖ATA−ATSTSA‖2
(σ2
k − σ2

k+1)− ‖ATA−ATSTSA‖2

≤ ε

gapk (A)− ε
≤ ν(1 + ν2)−1/2 .

Thus, we have shown that with probability 1− δ we have d2 (R,VA,k) ≤ ν(1 + ν2)−1/2, as required.

Theorem 15 (Right Sketching). Let ν, δ ∈ (0, 1/2) and denote

ε =
ν

1 + ν
· gapk (A) .

Suppose that G is sampled from a distribution that provides a (ε, δ)-approximate Gram matrix for AT. Then
for R = GT, with probability 1− δ, the approximate solution AxR,k is an (ν, ν)-approximate PCP and

E(xR,k) ≤ E(xk) +
(2ν + ν2)‖f‖22

n
3Theorem 1 in [14] with k = sr (X) .
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Thus if, for example, G is a CountSketch matrix, then the conditions are met when the number of
rows in G is

Ω

(
sr (A)

2

gapk (A)
2
ν2δ

)
rows. In another example, if G is a subgaussian map, then the conditions are met when the number of rows
in G is

Ω

(
sr (A) + log(1/δ)

gapk (A)
2
ν2

)
.

Proof. Due to Theorem 5 it suffices to show that that d2 (UAR,k,UA,k) ≤ ν. Under the conditions of the
Theorem, with probability of at least 1 − δ we have ‖AGTGAT − AAT‖2 ≤ ε‖A‖22. If that is indeed
the case, AGTGAT has rank at least k since AGTGAT and AAT are symmetric matrices and we know
that σ2

i

(
AGTGAT) = σ2

i

(
AAT) ± ‖AGTGAT −AAT‖2 (Weyl’s Theorem and the fact that σ2

k > εσ2
1).

Furthermore, since ν > 0 we have ε < gapk (A), and Theorem 3 implies

d2(UAR,k,UA,k) ≤ ‖AGTGAT −AAT‖2
(σ2
k − σ2

k+1)− ‖AGTGAT −AAT‖2

≤ ε

gapk (A)− ε
≤ ν .

Thus, we have shown that with probability 1− δ we have d2 (UAR,k,UA,k) ≤ ν, as required.

Theorem 16 (Two Sided Sketching). Let ν, δ ∈ (0, 1/2) and denote

ε2 =
ν

2(1 + ν/2)
· gapk (A) .

Suppose that G is sampled from a distribution that provides a (ε2, δ/2)-approximate Gram matrix for AT.
Denote

ε1 =
ν(1 + ν2/4)−1/2/2

1 + ν(1 + ν2/4)−1/2/2
· gapk

(
AGT)

and uppose that S is sampled from a distribution that provides a (ε1, δ/2)-approximate Gram matrix for AGT.
Then for R = GTVSAGT,k with probability 1 − δ the approximate solution AxR,k is an (ν, ν)-approximate
PCP and

E(xR,k) ≤ E(xk) +
(2ν + ν2)‖f‖22

n

Thus if, for example, S is a CountSketch matrix and G is a subgaussian map, then the conditions hold
when the numbers of rows of S is

Ω

(
sr
(
AGT)2

gapk
(
AGT)2 ν2δ

)
and the number of rows in G is

Ω

(
sr (A) + log(1/δ)

gapk (A)
2
ν2

)
.

Proof. Due to Theorem 5 it suffices to show that that d2 (UAR,k,UA,k) ≤ ν.
Under the conditions of the Theorem, with probability of at least 1− δ/2 we have ‖(AGT)TSTSAGT−

(AGT)TAGT‖2 ≤ ε1‖AGT‖22, and with probability of at least 1 − δ/2 we have ‖AGTGAT −AAT‖2 ≤
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ε2‖A‖22. Thus, both inequalities hold with probability of at least 1 − δ. If that is indeed the case,
AGTGAT has rank at least k since AGTGAT and AAT are symmetric matrices and we know that
σ2
i

(
AGTGAT) = σ2

i

(
AAT) ± ‖AGTGAT − AAT‖2 (Weyl’s Theorem and the fact that σ2

k > ε2σ
2
1).

Moreover, (AGT)TSTSAGT has rank at least k since (AGT)TSTSAGT and AGTGAT are symmetric
matrices and we know that σ2

i

(
(AGT)TSTSAGT) = σ2

i

(
AGTGAT)±‖(AGT)TSTSAGT−AGTGAT‖2

(Weyl’s Theorem and the fact that σ2
k

(
AGT) > ε1σ

2
1

(
AGT)). Since ν > 0 we have ε1 < gapk

(
AGT) and

Theorem 3 implies

d2(VAGTVSAGT,k
,VAGT,k) ≤ ‖(AGT)TSTSAGT − (AGT)TAGT‖2

σ2
k

(
AGT)− σ2

k+1

(
AGT)− ‖(AGT)TSTSAGT − (AGT)TAGT‖2

≤ ε1‖AGT‖22
σ2
k

(
AGT)− σ2

k+1

(
AGT)− ε1‖AGT‖22

=
ε1

gapk
(
AGT)− ε1

≤ ν(1 + ν2/4)−1/2/2

From Lemma 8 (with AGT) we get that d2(UAGTVSAGT,k
,UAGT,k) ≤ σk+1(AGT)

σk(AGT)
(ν/2) ≤ ν/2.

We now bound

d2 (UAR,k,UA,k) ≤ d2

(
UAR,k,UAGT,k,k

)
+ d2

(
UAGT,k,UA,k

)
≤ ν

where we similarly use Theorem 15 to bound d2(UAGT,k,UA,k) ≤ ν/2.
Thus, we have shown that with probability 1− δ we have d2 (UAR,k,UA,k) ≤ ν, as required.

4.2 Fast Approximate PCR/PCP
A prototypical algorithm for approximate PCR/PCP is to compute xR,k with some choice of sketching-based
R. There are quite a few design choices that need to be made in order to turn this prototypical algorithm
into a concrete algorithm, e.g. whether to use left, right or two sided sketching to form R, and which sketch
transform to use. There are various tradeoffs, e.g. using CountSketch results in faster sketching, but
usually requires larger sketch sizes. Furthermore, in computing xR,k there are also algorithmic choices to be
made with respect to choosing the order of matrix multiplications: in computing (ARVAR,k)+b should we
first compute AR and then multiply by VAR,k, or vice versa? Likely, there is no one size fit all algorithm,
and different profiles of the input matrix (in particular, the size and sparsity level) call for a different variant
of the prototypical algorithm.

Table 1 summarizes the running time complexity of several design options. In order to better make sense
between these different choices, we first summarize the running time complexity of various design choices
using the optimal implementation (from an asymptotic running-time complexity perspective). To make the
discussion manageable, we consider only subgaussian maps and CountSketch. Furthermore, for the sake
of the analysis, we make some assumptions and adopt some notational conventions. First, we assume that
computing B+c for some B ∈ Rm×n and c is done via straightforward methods based on QR or SVD
factorizations, and as such takes O(mnmin(m,n)). We consider using fast sketch-based approximate least
squares algorithms in the next subsection. Next, we let the sketch sizes be parameters in the complexity. In
the discussion, we use our theoretical results to deduce reasonable assumptions on how these parameters are
set, and thus to reason about the final complexity of sketched PCR/PCP. We denote the number of rows in
the left sketch matrix S by s1 for a subgaussian map, and s2 for CountSketch. We denote the number of
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xR,k CLS

Left sketching subgaussian S s1 · nnz (A) + s1dmin(s1, d) + nk2 N/A
R = VSA,k CountSketch S k · nnz (A) + s2dmin(s2, d) + nk2 N/A

Right sketching subgaussian G t1 · nnz (A) + nt1 min(n, t1) + t1kmin(n, d) t1 · nnz (A) + nt1 min(n, t1)

R = GT CountSketch G nnz (A) + nt2 min(n, t2) + t2kmin(n, d) nnz (A) + nt2 min(n, t2)

Two sided CountSketch nnz (A) + s2k2 + kmin(nt2,nnz (A)) + nk2 N/A
R = GTVSAGT,k G and S

Table 1: Computational complexity of computing xR,k and CLS for various options R. For brevity, we omit
the O() from the notation.

rows in the left sketch matrix G by t1 for a subgaussian map, and t2 for CountSketch. Finally, we assume
nnz (A) ≥ max(n, d), and that all sketch sizes are greater than k.

Table 1 also lists, where relevant, the complexity of the CLS solution xR.

Discussion. We first compare the computational complexity of CLS to the computational complexity of
our proposed right sketching algorithm. For both choices of G we have for sketched PCP an additional term
of O(tkmin(n, d)). However, close inspection reveals that this term is dominated by the term O(ntmin(n, t)).
Thus our proposed algorithm has the same asymptotic complexity as CLS for the same sketch size. However,
our algorithm does not mix regularization and compression and comes with stronger theoretical guarantees.

Next, in order to compare subgaussian maps to CountSketch, we first make some simplified assumptions
on the required approximation quality ν, the relative eigengap gapk (A), and the rank parameter k: ν is fixed,
gapk (A) is bounded from below by a constant, and we have k = O(sr (A)). The first assumptions is justified
if we are satisfied with fixed sub-optimality in the objective (optimization perspective), or a small constant
multiplicative increase in excess risk if left sketching is used, or n is fixed (statistical perspective). The first
assumption is somewhat less justified from a statistical point of view when n → ∞ and right sketching is
used. The rationale behind the second assumption is that the PCR/PCP problem is in a sense ill-posed if
there is a tiny eigengap. The third assumption is motivated by the fact that the stable rank is a measure of
the number of large singular values, which are typically singular values that correspond to the signal rather
than noise. With these assumptions, our theoretical results establish that s1, t1 = O(k) and s2, t2 = O(k2)
suffice. It is important to stress that we make these assumptions only for the sake of comparing the different
sketching options, and we do not claim that these assumptions always hold, or that our proposed algorithms
work only when these assumptions hold.

For left sketching, with these assumptions, we have complexity of O(knnz (A) + k2 max(n, d)) for sub-
gaussian maps and O(knnz (A) + dk2 min(k2, d) + nk2) for CountSketch. Clearly, better asymptotic
complexity is achieved with subgaussian maps. For right sketching, with these assumptions, we have com-
plexity of O(knnz (A) + nk2) for subgaussian sketch and O(nnz (A) + nk2 min(n, k2)) for CountSketch.
The complexity in terms of the input sparsity nnz (A), which is arguably the dominant term, is better for
CountSketch. For two sided sketching, we have complexity O(nnz (A) + k4 + kmin(nk2,nnz (A)) +nk2).

If n � d and nnz (A) = O(n) (sparse input matrix, and constant amount of non zero features per data
point), left sketching gives better asymptotic complexity. If n � d and nnz (A) = nd (full data matrix),
left sketching has better complexity unless d � k3. Furthermore, left sketching gives stronger theoretical
guarantees. Thus, for n � d we advocate the use of left sketching. If d � n and nnz (A) = O(d) (sparse
input matrix), right sketching with a subgaussian maps always has better complexity than left sketching,
and potentially (but not always) right sketching with CountSketch has even better complexity. If d � n
and nnz (A) = nd (full data matrix), right sketching with subgaussian maps has the same complexity as left
sketching, and potentially (but not always) right sketching with CountSketch has even better complexity
(if d is sufficiently larger than n). Thus, for d � n we advocate the use of right sketching. If n ≈ d (both
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Algorithm 1 Input Sparsity Approximate PCP
1: Input: A ∈ Rn×d, b ∈ Rn, k ≤ min(n, d), s, t ≥ k, ε ∈ (0, 1)
2:
3: Generate two CountSketch matrices S ∈ Rs×n and G ∈ Rt×n.
4: Remove from G any row that is zero.
5: C← AGT.
6: D← SC.
7: Compute VD,k, the k dominant right invariant space of G (via SVD).
8: For the analysis (no need to compute): R = GTVD,k.
9: Solve minγ ‖CVD,kγ −b‖2 to ε/d accuracy using input-sparsity least squares regression (see [12, section

7.7]). (Do not compute CVD,k. In each iteration, multiplying a vector by CVD,k is performed by first
multiplying by VD,k and then by C.)

10: Return y← GT(VD,kγ̃), where γ̃ is the output of the previous step.

very large), and nnz (A) = n then it is possible to have O(nk2) with all three options (left, right and two
sided), as long as k2 ≤ n. A similar conclusion is achieved if n ≈ d and nnz (A) = nd, but if k2 � n then
two sided sketch is better.

4.3 Input Sparsity Approximate PCP
In this section, we propose an input-sparsity algorithm for approximate PCP. In ’input-sparsity algorithm’,
we mean an algorithm whose running time is O(nnz (A) log(d/ε) + poly (k, s, t, log(1/ε)), where ε is some
accuracy parameter (see formal theorem statement).

The basic idea is to use two sided sketching, with an additional modification of using input sparsity
algorithms to approximate (AR)+b = arg minγ ‖ARγ − b‖2. Specifically, we propose to use the algorithm
recently suggested by Clarkson and Woodruff [12]. A pseudo-code description of our input sparsity approxi-
mate PCP algorithm is listed in Algorithm 1. We have the following statement about the algorithm.

Theorem 17. Run Algorithm 1 with ε, s, t, k as parameters. Under exact arithmetic4, after

O(nnz (A) log(d/ε) + log(d/ε)tk + sk2 + t3k + k3 log2 k)

operations, with probability 2/3, the algorithm will return a y such that

‖y − xR‖22 ≤ ε‖xR‖22 .

Proof. Denote B = AR, and consider using the iterative method described in [12, section 7.7] to approxi-
mately solve minγ ‖Bγ−b‖2. Denote the optimal solution by γR, and the solution that our algorithm found
by γ̃. Theorem 7.14 in [12] states that after the O(log(d/ε)) iterations the algorithm would have returned γ̃
such that

‖BZ(γ̃ − γR)‖22 ≤ (ε/d)‖BZγR‖22 (11)

for some invertible Z found by the algorithm. Furthermore, κ(BZ) = O(1) where κ(·) is the condi-
tion number (ratio between the largest singular value and smallest). Eq. (11) implies that ‖γ̃ − γR‖22 ≤
κ(BZ)2(ε/d)‖γR‖22 = O(ε/d)‖γR‖22. Now, noticing that xR = RγR and y = Rγ̃, we find that

‖y − xR‖22 ≤ O(ε/d)κ(R)2‖xR‖22 .

We now need to bound κ(R) = κ(GTVSAGT,k) = κ(GT) where G is a CountSketch matrix. Since G has
a single non zero in each column, then ‖GT‖22 ≤ ‖G

T‖2F ≤ d. Furthermore, since we removed zero column
4The results are likely too optimistic for inexact arithmetic. We leave the numerical analysis to future work.
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from GT, for any x the vector GTx has in one of its coordinates any coordinate of x, so σmin(GT) ≥ 1. So
we found that κ(GT)2 ≤ d. We conclude that

‖y − xR‖22 ≤ O(ε)‖xR‖22 .

Adjusting ε to compensate for the constants completes the proof.

5 Extensions

5.1 Streaming Algorithm
We now consider computing an approximate PCR/PCP in the streaming model. We consider a one-pass
row-insertion streaming model, in which the rows of A, a1,a2, . . . ,an, and the corresponding entries in b,
b1, b2, . . . , bn, are presented one-by-one and once only (i.e., in a stream). The goal is to use o(n) memory (so
A cannot be stored in memory). The relevant resources to be bounded for numerical linear algebra in the
streaming model are storage, update time (time spent per row), and final computation time (at the end of
the stream) [11]. Our goal is to bound these by O(poly (d)) .

Our proposed streaming algorithm for approximate PCP uses left sketching. It is easy to verify that if S
is a subgaussian map or CountSketch, then R = VSA,k can be computed in the streaming model: one has
to update SA as new rows are presented (O(d) update for CountSketch, and O(sd) for subgaussian map),
and once the final row has been presented, factorizing SA and extracting R can be done in O(sdmin(s, d))
which is polynomial in d if s is polynomial in d. However, to compute xR one has to compute (AR)+b, and
storing AR in memory requires Ω(n) memory. To circumvent this issue we propose to introduce another
sketching matrix T, and approximate (AR)+b via (TAR)+b . Thus, for R = VSA,k we approximate xR

by x̃R = R(TAR)+b. It is easy to verify that x̃R can be computed in the streaming model (by forming and
updating TA while computing R).

More generally, for any R which can be computed in the streaming model, we can also compute in the
streaming model the following approximation of xR,k:

x̃R,k := RVAR,k(TARVAR,k)+Tb .

The next theorem, establishes conditions on T that guarantee that x̃R,k is a an approximate PCR/PCP.

Theorem 18. Suppose that R ∈ Rd×s with s ≥ k. Assume that ν ∈ (0, 1). Suppose that T provides a
O(ν)-distortion subspace embedding for range

([
UAR,k UA,k b

])
that is

‖UAR,kx1 + UA,kx2 + bx3‖22 = (1±O(ν))(‖x1‖22 + ‖x2‖22 + x3
3)

for every x1,x2 ∈ Rk and x3 ∈ R. Then,

1. If d2 (UAR,k,UA,k) ≤ ν then Ax̃R,k is an (O(ν), O(ν))-approximate PCP.

2. If s = k and R has orthonormal columns (i.e., RTR = Ik) and d2 (R,VA,k) ≤ ν(1 + ν2)−1/2 then x̃R

is an (O(ν), O(ν/σk))-approximate PCR.

The subspace embedding conditions on T are met with probability of at least 1 − δ if, for example, T is a
CountSketch matrix with O(k2/ν2δ) rows.

Proof. We need to show both the additive error bounds on the objective function, and the error bound on
the constraints. We start with the additive error bounds on the objective function for both for PCP (first
part of the theorem) and for PCR (second part of the theorem). The lower bound on ‖Ax̃R,k − b‖2 follows
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immediately from the fact that x̃R,k ∈ range (RVAR,k) and the fact that xR,k is a minimizer of ‖Ax−b‖2
subject to x ∈ range (RVAR,k). For the upper bound, we observe

‖Ax̃R,k − b‖2 ≤ (1 +O(ν)) ‖TARVAR,k(TARVAR,k)+Tb−Tb‖2
≤ (1 +O(ν)) ‖TARVAR,k(ARVAR,k)+b−Tb‖2
≤ (1 +O(ν)) ‖AxR,k − b‖2
≤ ‖AxR,k − b‖2 +O(ν)‖b‖2

where in the first and third inequality we used the fact that T provides a subspace embedding for range ([ARVAR,k b])
and in the second inequality we used the fact that (TARVAR,k)+Tb is a minimizer of ‖TARVAR,kx−Tb‖2.
Bounds on ‖AxR,k − b‖2 (Theorem 5) now imply the additive bound.

We now bound the constraint for the PCR guarantee (second part of the theorem). Let

C = (TUAR,k)+((TUAR,k)T)+ .

Since (TUAR,k)T and (TUAR,k)+ have the same row space, and TUAR,k has more rows than columns,
C is non-singular and we have C(TUAR,k)T = (TUAR,k)+. Since T provides a subspace embedding
for UAR,k, all the singular values of TUAR,k belong to the interval [1 − O(ν), 1 + O(ν)]. We conclude
that ‖C − Ik‖2 ≤ O(ν). We also have (TUAR,kΣAR,k)+ = Σ−1

AR,k(TUAR,k)+ since TUAR,k has linearly
independent columns (since it provides a subspace embedding), and ΣAR,k has all linearly independent rows.
Thus,

‖UT
A,k+Ax̃R,k‖2 = ‖UT

A,k+Ax̃R,k −UT
A,k+UA,kU

T
A,kT

TTb‖2
≤ ‖Ax̃R,k −UA,kU

T
A,kT

TTb‖2
= ‖UAR,k(TUAR,k)+Tb−UA,kU

T
A,kT

TTb‖2
= ‖UAR,kC(TUAR,k)TTb−UA,kU

T
A,kT

TTb‖2
≤ (1 +O(ν)) · ‖UAR,kCUT

AR,kT
T −UA,kU

T
A,kT

T‖2 · ‖b‖2
≤ (1 +O(ν))

2 · ‖UAR,kCUT
AR,k −UA,kU

T
A,k‖2‖b‖2

≤ (1 +O(ν)) ·
(
‖UAR,k (C− Ik) UT

AR,k‖2 + ‖UAR,kU
T
AR,k −UA,kU

T
A,k‖2

)
· ‖b‖2

≤ (1 +O(ν)) ·
(
‖UAR,k (C− Ik) UT

AR,k‖2 + ν
)
· ‖b‖2

= (1 +O(ν)) · (‖ (C− Ik) ‖2 + ν) · ‖b‖2
≤ (1 +O(ν)) · (O(ν) + ν) · ‖b‖2
= O(ν) · ‖b‖2

We now bound the constraint for the PCR guarantee (second part of the theorem). To that end, and
observe:
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‖VT
A,k+x̃R,k‖2 ≤ ‖VT

A,k+RVAR,k(TARVAR,k)+Tb‖2
≤ ‖VT

A,k+R‖2 · ‖(TUAR,kΣAR,k)+Tb‖2

≤ ν · (1 +O(ν)) · ‖b‖2
σmin (TUAR,kΣAR,k)

≤ ν · (1 +O(ν)) ‖b‖2
(1−O(ν))σmin (UAR,kΣAR,k)

≤ O(ν) · ‖b‖2
σmin (AR)

≤ O(ν)

σk
· ‖b‖2

where we used the fact that T provides a subspace embedding for range
([

UAR,k b
])
, and used Lemma 7

to bound ‖VT
A,k+R‖2 and ‖(AR)+‖2.

5.2 Approximate Kernel PCR
For simplicity, we consider only the homogeneous polynomial kernel K(x, z) = (xTz)q. The results trivially
extend to the non-homogeneous polynomial kernel Kn(x, z) = (xTz + c)q by adding a single feature to each
data point. We leave to future work the development of similar techniques for other kernels (e.g. Gaussian
kernel).

Let φ : Rd → Rdq be the function that maps a vector z = (z1, . . . , zd) to the set of monomials formed
by multiplying q entries of z, i.e. φ(z) = (zi1zi2 · · · ziq )i1,...,iq∈{1,...,d}. For a data matrix A ∈ Rd and a
response vector b ∈ Rn, let Φ ∈ Rn×dq be the matrix obtained by applying φ to the rows of A, and consider
computing the rank k PCR solution Φ and b, which we denote by xK,k. The corresponding prediction
function is fK,k(z) := φ(z)TxK,k. While xK,k is likely a huge vector (since xK,k ∈ Rdq ), and thus expensive to
compute, in kernel PCR we are primarily interested in having an efficient method to compute fK,k(z) given
a ’new’ z. We can accomplish this via the kernel trick, as we now show.

We assume that Φ has full row rank (this holds if all data points are different). Let a1, . . . ,an be the
rows of A. As usual with PCR, we have xK,k = VΦ,kΣ−1

Φ,kU
T
Φ,kb. Since VΦ,k = ΦTUΦ,kΣ−1

Φ,k we have

fK,k(z) = φ(z)TΦTUΦ,kΣ−2
Φ,kUΦ,kb = (K(z,a1) · · · K(z,an))αK,k (12)

where αK,k := UΦ,kΣ−2
Φ,kU

T
Φ,kb. In the above, we used the fact that for any x and z we have φ(x)Tφ(z) =

(xTz)q = K(x, z). Let K ∈ Rn×n be the kernel matrix (also called Gram matrix ) defined by Kij = K(ai,aj).
It is easy to verify that K = ΦΦT, so we can compute K in O(n2(d + q)) (and without forming Φ, which
is a huge matrix). We also have K = UΦΣ2

ΦUT
Φ so αk = UK,kΣ−1

K,kU
T
K,kb. Thus, we can compute αK,k in

O(n2(d+ q + n)) time. Once we have computed αk, using (12) we can compute fK,k(z) for any z in O(ndq)
time.

In order to compute an approximate kernel PCR, we introduce a right sketching matrix R ∈ Rdq×t. Such
a matrix R is frequently referred to, in the context of kernel learning, as a randomized feature map. We
use the TensorSketch feature map [32, 33]. The feature map is defined as follows. We first randomly
generate q 3-wise independent hash functions h1, . . . , hq ∈ {1, . . . , d} → {1, . . . , t} and q 4-wise independent
sign functions g1, . . . , gq : {1, . . . , d} → {−1,+1}. Next, we define H : {1, . . . , d}q → {1, . . . , t} and G :
{1, . . . , t}q → {−1,+1}:

H(i1, . . . , iq) := h1(i1) + · · ·+ hq(iq) mod t

G(i1, . . . , iq) = g1(i1) · g2(i2) · · · · · gq(iq)

21



To define R, we index the rows of R by {1, . . . , d}q and set row (i1, . . . , iq) to be equal to G(i1, . . . , iq) ·
eH(i1,...,iq), where ej denote the jth identity vector. A crucial observation that makes TensorSketch useful,
is that via the representation using h1, . . . , hq and g1, . . . , gq we can compute RTφ(z) in time O(q(nnz (z) +
t log t)) (see Pagh [32] for details). Thus, we can compute ΦR in time O(q(nnz (A) + nt log t)).

Consider right sketching PCR on Φ and k with a TensorSketch R as the sketching matrix. The
approximate solution is

xK,R,k := RVΦR,k(ΦRVΦR,k)+b = RγK,R,k

where γK,R,k := VΦR,k(ΦRVΦR,k)+b. We can compute γR,k in O(q(nnz (A) + nt log t) + nt2) time. The
predication function is

fK,R,k(z) := φ(z)TxK,R,k = (RTφ(z))TγK,R,k

so once we have γK,R,k we can compute fK,R,k(z) in O(q(nnz (z) + t log t)) time. Thus, the method is
attractive from a computational complexity point of view if t � n or d � n and d � t. The following
theorem bound the excess risk of xK,R,k.

Theorem 19. Let (ν, δ) ∈ (0, 1/2). Let λ1 ≥ · · · ≥ λn denote the eigenvalues of K. If R is a TensorSketch
matrix with

t = Ω

(
3qTr (K)

2

(λk − λk+1)2ν2δ

)
columns, then with probability of at least 1− δ

E(xK,R,k) ≤ E(xK,k) +
(2ν + ν2)‖f‖22

n

where f is the expected value of b (recall the statistical framework in section 3.2).

Before proving this theorem, we remark that the bound on the size of the sketch is somewhat disappointing
in the sense that it is useful only if d� n (since Tr (K) is likely to be large). However, this is only a bound,
and possibly a pessimistic one. Furthermore, once the feature expanded data has been embedded in Euclidean
space (via TensorSketch), it can be further compressed using standard Euclidean space transforms like
CountSketch and subgaussian maps (this is sometimes referred to as two-level sketching), or compression
can be applied from the left. We leave the task of improving the bound and exploring additional compression
techniques to future research.

Proof. The square singular values of Φ are exactly the eigenvalues of K, so Theorem 15 asserts that the
conclusions of the theorem hold if RT provides (ε, δ)-approximate Gram matrix for Φ where ε = O(ν(λk −
λk+1)/λ1). To that end, we combine the analysis of Avron et al. [6] of TensorSketch with more recent
results due to Cohen et al. [14]. Although not stated as a formal theorem, as part of a larger proof, Avron
et al. show that TensorSketch has an OSE-moment property that together with the results of Cohen et
al. [14] imply that indeed the (ε, δ)-approximate Gram property holds for the specified amounts of columns
in R.

6 Experiments
In this section we report experimental results, on real data, that illustrate and support the main results of
the paper, and demonstrate the ability of our algorithms to find appropriately regularized solutions.
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Datasets. We experiment with three datasets, two regression datasets (Twitter Buzz and E2006-tfidf )
and one classification dataset (Gisette).

Twitter Social Media Buzz [26] is a regression dataset in which the goal is to predict the popularity of
topics as quantified by its mean number of active discussions given 77 predictor variables such as number
of authors contributing to the topic over time, average discussion lengths, number of interactions between
authors etc. We pre-process the data in a manner similar to previous work [29, 37]. That is, several of the
original predictor variables, as well as the response variable are log-transformed prior to analysis. We then
center and scale to unit norm. Finally, we add quadratic interactions which yielding a total of 3080 predictor
variables (after preprocessing, the data matrix is 583250-by-3080). We used this dataset to explore only
sub-optimality of the objective and constraint satisfaction, as we have found that the generalization error is
very sensitive to selection of the test set (when splitting a subset of the data to training and testing).

E2006-tfidf [28] is regression dataset where the features are extracted from SEC-mandated financial
reports published annually by a publicly traded company, and the quantity to be predicted is volatility of
stock returns, an empirical measure of financial risk. We use the standard training-test split available with
the dataset5. We use this dataset only for testing generalization. The only pre-processing we performed was
subtracting the mean from the response variable, and reintroducing it when issuing predictions.

The Gisette dataset is a binary classification dataset that is a constructed from the MNIST dataset. The
goal is to separate the highly confusable digits ’4’ and ’9’. The dataset has 6000 data-points, each having 5000
features. We use the standard training-test split available with the dataset (this dataset was downloaded from
the same website as the E2006-tfidf dataset). We convert the binary classification problem to a regression
problem using standard techniques (regularized least squares classification). We use this dataset only for
testing generalization.

Baselines. A first reference are the performance of plain PCR. For small problems, the dominant right
subspace needed to compute the PCR solution can be computed via MATLAB’s dense SVD routine. For
larger problems, we compute the dominant right subspace using a PRIMME [39, 45], a state-of-the-art
iterative algorithm for SVD. As additional reference, we also report results of two alternative algorithms:
CLS and the iterative algorithm of Frostig et al. [18]. Both in the discussion, and in the graphs, we refer
to the algorithm Frostig et al. as “Iterative-PCR”. We use the implementation of Iterative-PCR supplied
by the authors,6 for which we used the default parameters, except for the “tol” parameter, which we set to
10−6 instead of the default 10−3. We found that the use of tol=10−3 produces results that generalize poorly,
while the use of tol=10−6 produces much better results. However, the running time of Iterative-PCR with
tol=10−6 is considerably higher the the running time for tol=10−3. Iterative-PCR controls singular vector
truncation via a cut-off parameter λ, while in our experiments we set k (the number of principal components
that are kept). We achieve this effect by setting λ = (σ2

k(A)+σ2
k+1(A))/2 (when we report running times, we

do not include the time to compute the singular values). Finally, we remark that based of the documentation,
the algorithm analyzed by Frostig et al. [18] does not completely correspond to the default parameters of
the implementation of Iterative-PCR supplied by the authors (e.g., the default parameter for the “method”
parameter is “LANCZOS”, while “EXPLICIT” corresponds the algorithm analyzed in [18]).

Sub-optimality of objective and constraint satisfaction. We explore the Twitter Buzz dataset from
the optimization perspective, namely measure the sub-optimality in the objective (vs. PCR) and constraint
satisfaction. Since n � d, we use left sketching with subgaussian maps. We perform each experiment five
times and report the median value. Error bars, when present, represent the minimum and maximum value of
five runs. In the top panel, we use a fixed k = 60 and vary the sketch size (left sketching only), while in the
bottom panel we vary k and set sketch size to be s = 4k. The left panel explores the value of the objective

5We downloaded the dataset from the LIBSVM website, https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
6https://github.com/cpmusco/fast-pcr
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Figure 1: Sub-optimality of objective and constraint satisfaction for the Twitter Buzz dataset.

function, appropriately normalized (divided by ‖Axk − b‖2 for fixed k, and divided by ‖b‖2 for varying k).
The right panel explores the regularization effect by examining the value of the constraints ‖VT

A,kxk‖2/‖b‖2.
In the left panel, we see that value of the objective for the sketched PCR solution follows the value of

objective for the PCR solution. In general, as the sketch size increases, the variance in the objective value
reduces (top left graph). The normalized value of the constraint for sketched PCR is rather small (as a
reference we note that ‖VT

A,kxOLS‖2/‖b‖2 = 0.4165), and generally decreases when the sketch size increases
(top right graph), but increases with k for a fixed ratio between s and k (bottom right graph). Furthermore,
the results of sketched PCR are very similar to the results of iterative PCR (bottom panel), while running
time is considerably shorter (see Table 2).

The role of the constraints as a regularizer are illustrated by the results for CLS (for fixed k we use
t = 4k). As expected, CLS achieves lower objective value at the price of larger constraint infeasibility. The
values of ‖VT

A,kxCLS‖2/‖b‖2 are much smaller than the OLS value, but much larger than the values for
sketched PCR. Furthermore, it is hard to control the regularization effect for CLS: when sketch size increases
the objective decreases and the constraint increases (compare to PCR and sketched PCR, top panel).

Generalization results. We also explored the prediction error and the tradeoffs between compression
and regularization. We perform each experiment five times and report the median value. Error bars, when
present, represent the minimum and maximum value of those five runs.

We report the Mean Square Error (MSE) of predictions for the E2006.tfidf dataset in Figure 2. We
compare CLS, iterative-PCR, right sketching and two-sided sketching (the matrix is too large for exact PCR,
and d � n so right sketching is more appropriate). In the left panel we fix k = 600 and vary the sketch
size. The MSE decreases as the sketch size increases for both sketching methods. For CLS, initially the MSE
decreases and is close to the MSE of the two sketching methods, but for large sketch sizes the MSE starts to
go up, likely due to decreased level of regularization. We note that the minimum MSE achieved by CLS is
larger than achieved by both sketching methods. A similar phenomenon is observed when we vary the value
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Figure 2: Mean squared error of predictions for the E2006.tfidf dataset.
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Figure 3: Classification error for the Gisette dataset.

of k in the right panel.
We report the classification error for the Giesette dataset in Figure 3. In the left panel we fix k = 400 and

vary the sketch size. As a reference, the error rate of exact PCR (with k = 400) is 2.8% and the error rate
for OLS is 9.3%. Left sketching has error rate very close to the error rate of exact PCR, especially when s is
large enough. Right sketching does not perform as well as left sketching, but it too achieves low error rate
for large s. For both methods, the error rate drops as the sketch sizes increase, and the variance reduces.
For CLS the error rate and variance initially drops as the sketch size increases, but eventually, when sketch
size is large enough, the error rate and the variance increases. This is hardly surprising: as the sketch size
increase, CLS approaches OLS. This is due to the fact that CLS uses the compression to regularize, and when
the sketch size is large there is little regularization. In the right panel, we vary the value of k and set s = 4k
(left sketching) and t = 4k (right sketching and CLS). Left sketch and PCR consistently achieve about the
same error rate. For small values of t, CLS performs well, but when t is too large the error starts to increase.
In contrast, right sketching continues to perform well with large values of k. Again, we see that CLS mixes
compression and regularization, and one cannot use a large sketch size and modest amount of regularization
with CLS.

Running time. In Table 2 we report a sample of the various running times of the different algorithms.
All experiments were conducted using MATLAB, although the sketching routines were written in C. Running
times were measured on a machine with a 6-core Intel Xeon Processor E5-1650 v4 CPU and 128 GB of main
memory, running Ubuntu 16.04. For plain PCR, we report running time using PRIMME, which we ran with
default parameters and no preconditioner. For PRIMME, we cap the number of iterations at 100,000, and
write “FAIL” in the table if the PRIMME failed to convergence within that cap. For iterative PCR we also

25



Table 2: Running times (in seconds). For sketched PCR, we report in brackets the type of sketching used
(left, right, or two-sided).

CLS (t = 400) PRIMME-PCR Iter-PCR
(tol=10−3,
iter=10)

Iter-PCR
(tol=10−6)

Sketched-PCR

Twitter, k = 82 21.2 1730 742 4067 4.7 (left)
Twitter, k = 152 48.9 5907 1278 7759 8.4 (left)
E2006, k = 1000 100 14694 140 601 150 (two sided)
E2006, k = 2000 270 FAIL 320 791 815 (two sided)
Gisette, k = 400 2.0 497 7.1 30.3 0.2 (left)
Gisette, k = 1000 9.3 FAIL 9.3 39.4 0.9 (left)

report running times when we set tol to the default value, and reduce the max number of iteration from 40
to 10. This results in much faster running time, but much degraded generalization (not reported), e.g. for
E2006 the test MSE for Iter-PCR (tol=10−3, iter=10) is 0.32. With respect to running time, iterative-PCR is
competitive with sketched PCR only for E2006, but with worse classification error. Using PRIMME for PCR
is not competitive with sketched PCR. However, we stress that we experimented with only three datasets, so
the comparison is not comprehensive.

7 Conclusions and Future work
In this paper, we studied the use of sketching to accelerate the solution of PCR and PCP. In particular, for
a data matrix A, we relate the PCR/PCP solution of AR, where R is any dimensionality reduction matrix,
to the PCR/PCP solution of A. We presented a notion of approximate PCR/PCP, motivated both from
an optimization perspective and from a statistical perspective, and provide conditions on R that guarantee
rigorous theoretical bounds. We then leverage the aforementioned results to design fast, sketching based,
algorithms for approximate PCR/PCP, and demonstrate empirically the utility of our proposed algorithms.
Throughout, our focus in this paper has been on algorithms that use the “sketch-and-solve” approach.

There are multiple ways in which the current work can be extended, and the theoretical results improved.
We have presented two notions of approximation: approximate PCR and approximate PCP. Our results
for approximate PCR use only dimensionality reduction matrices R whose number of columns is equal to
the target rank. It is natural to conjecture that the use of dimensionality reduction matrices with an higher
number of columns will lead to stronger PCR bounds, but we prove only PCP bounds. The underlying reason
is that our bounds for PCR are based on analyzing the distance between the column space of R and the
column space of VA,k . However, once the number of columns in R is different from the number of columns
in VA,k, the definition of d2(R,VA,k) is no longer applicable. One possible strategy for analyzing PCR
when R has more than k columns might be to use a generalization of the distance between two subspaces
that allows subspaces of different size; see [47] for such generalizations. Another crucial component will then
be to generalize the Davis-Kahan theorem to bound such distances. We conjecture it is possible to derive
algorithms that depend on gaps between σk and σk+l, where l is some oversampling parameter, as opposed
to the smaller gap between σk and σk+1. We leave this for future work.

Another interesting direction is in finding other ways to identify a valid approximate dominant subspace.
If we consider the statistical perspective and inspect Eq. 9, we see that all we need is to find a subspace
S ⊆ range (A) of rank k such that ‖(I − PS)A‖F is small, while our theoretical results try to achieve a
stronger bound: having the dominant subspaces align. One possible way for finding such a S is using so-called
Projection-cost Preserving Sketches [13]. We leave this for future work.
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A Bias-Variance Decomposition for E(xR)

The following appears, without proof, in [38]. For completeness, we include a proof.

Claim 20. The excess risk of xR can be bounded as follows:

E(xR) =
1

n
‖ (I−PAR) Ax?‖22︸ ︷︷ ︸

B(xR)

+ σ2 rank (AR)

n︸ ︷︷ ︸
V(xR)

.

Proof. The column space of AR is contained in the column space of A, so we have PAR = PARPA. We
now observe,

E(xR) =
1

n
E
[
‖AxR −Ax?‖22

]
=

1

n
E
[
‖PARb−PAf‖22

]
=

1

n
E
[
‖PARf −PAf‖22

]
+

1

n
E
[
‖PARξ‖22

]
=

1

n
E
[
‖PARPAf −PAf‖22

]
+ σ2 rank (AR)

n

=
1

n
‖ (I−PAR) Ax?‖22 + σ2 rank (AR)

n

where in the third line we used the fact that expected value of ξ is 0, and in the fourth line we used that fact
that for any matrix M and random vector y with independent entries with 0 mean and σ2 variance we have
E
[
yTMy

]
= Tr (M).
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