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Abstract

Singular value decompositions of matrices are widely used in numerical lin-

ear algebra with many applications. In this paper, we extend the notion of

singular value decompositions to finite complexes of real vector spaces. We

provide two methods to compute them and present several applications.

1 Introduction

For a matrix A ∈ Rm×k, a singular value decomposition (SVD) of A is

A = UΣV t

where U ∈ Rm×m and V ∈ Rk×k are orthogonal and Σ ∈ Rm×k is diagonal

with nonnegative real numbers on the diagonal. The diagonal entries of Σ, say

σ1 ≥ · · · ≥ σmin{m,k} ≥ 0 are called the singular values of A and the number

of nonzero singular values is equal to the rank of A. Many problems in numer-

ical linear algebra can be solved using a singular value decomposition such as

pseudoinversion, least squares solving, and low-rank matrix approximation.

A matrix A ∈ Rm×k defines a linear map A : Rk → Rm via x 7→ Ax denoted

Rm
✛

A
Rk.

Hence, matrix multiplication simply corresponds to function composition. For

example, if B ∈ Rℓ×m, then B ◦ A : Rk → Rℓ is defined by x 7→ BAx denoted

Rℓ
✛

B
Rm

✛

A
Rk.
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If B ◦A = 0, then this composition forms a complex denoted

0 ✛ Rℓ
✛

B
Rm

✛

A
Rk

✛ 0.

In general, a finite complex of finite dimensional R-vector spaces

0 ✛ C0
✛

A1

C1
✛

A2

. . . ✛

An−1

Cn−1
✛

An
Cn

✛ 0

consists of vector spaces Ci
∼= Rci and differentials given by matrices Ai so that

Ai ◦ Ai+1 = 0. We denote such a complex by C• and its ith homology group as

Hi = Hi(C•) =
kerAi

imageAi+1

with hi = dimHi. Complexes are standard tools that occur in many areas of

mathematics including differential equations, e.g., [AFW06,AFW10]. One of the

reasons for developing a singular value decomposition of complexes is to compute

the dimensions hi efficiently and robustly via numerical methods when each Ai is

only known approximately, say Bi. For example, if we know that rankAi = ri,
then hi could easily be computed via

ci = ri + ri+1 + hi.

One option would be to compute the singular value decomposition of each Bi in

order to compute the rank ri of Ai since the singular value decomposition is an ex-

cellent rank-revealing numerical method. However, simply decomposing each Bi

ignores the important information that the underlying matrices Ai form a complex.

The key point of this paper is that we can utilize information about the complex

to provide more specific information that reflects the structure it imposes.

Theorem 1.1 (Singular value decomposition of complexes). Let A1, . . . , An be a

sequence of matricesAi ∈ Rci−1×ci which define a complex C•, i.e. Ai ◦Ai+1 = 0.

Let ri = rankAi and hi = ci−(ri+ri+1). Then, there exists sequences U0, . . . , Un

and Σ1, . . . ,Σn of orthogonal and diagonal matrices, respectively, such that

U t
i−1 ◦ Ai ◦ Ui =




ri ri+1 hi

ri−1 0 0 0
ri Σi 0 0
hi−1 0 0 0


 := Σi

where all diagonal entries of Σi are strictly positive. Moreover, if every ri > 0
and at least one hi > 0, then the orthogonal matrices Ui can be chosen such that

detUi = 1, i.e., each Ui is a special orthogonal matrix.
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The diagonal entries of Σ1, . . . ,Σn are the singular values of the complex.

We develop two methods that utilize the complex structure to compute a sin-

gular value decomposition of C•. The successive projection method described in

Algorithm 3.1 uses the orthogonal projection

Pi−1 : Ci−1 → kerAi−1

together with the singular value decomposition of Pi−1 ◦Ai. The second method,

described in Algorithm 3.3, is based on the Laplacians

∆i = At
i ◦ Ai + Ai+1 ◦ A

t
i+1.

Both methods can be applied to numerical approximations Bi of Ai.

Organization of this paper is as follows. Section 2 proves Theorem 1.1 and

collects a number of basic facts along with defining the pseudoinverse of a com-

plex. Section 3 describes the algorithms mentioned above and illustrates them on

an example. Section 4 considers projecting an arbitrary sequence of matrices onto

a complex. Section 5 provides an application to computing Betti numbers of min-

imal free resolutions of graded modules over the polynomial ring Q[x0, . . . , xn]
which combines our method with ideas from [EMSS16].
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2 Basics

We start with a proof of our main theorem.

Proof of Theorem 1.1. For convenience, we set A0 = An+1 = 0 to compliment

A1, . . . , An that describe the complex. By the homomorphism theorem

(kerAi)
⊥ ∼= imageAi.

The singular value decomposition for a complex follows by applying singular

value decomposition to this isomorphism and extending an orthonormal basis of
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these spaces to orthonormal basis of Rci−1 and Rci . Since imageAi+1 ⊂ kerAi

we have an orthogonal direct sum

(kerAi)
⊥ ⊕ imageAi+1 ⊂ Rci

with

Hi := ((kerAi)
⊥ ⊕ imageAi+1)

⊥ = kerAi ∩ imageA⊥
i+1

∼=
kerAi

imageAi+1

.

With respect to these subspaces, we can decompose Ai as




(kerAi)
⊥ imageAi+1 Hi

(kerAi−1)
⊥ 0 0 0

imageAi Σi 0 0
Hi−1 0 0 0


.

Indeed, Ai has no component mapping to (imageAi)
⊥, which explains six of the

zero blocks, and kerAi = (kerAi)
⊥⊥ = imageAi+1 ⊕Hi explains the remaining

two. Take Ui to be the orthogonal matrix whose column vectors form the orthonor-

mal basis of the spaces (kerAi)
⊥ and imageAi+1 induced from the singular value

decomposition of (kerAi)
⊥ → imageAi and (kerAi+1)

⊥ → imageAi+1 ex-

tended by an orthogonal basis of Hi in the decomposition

(kerAi)
⊥ ⊕ imageAi+1 ⊕Hi = Rci.

The linear map Ai has, in terms of these bases, the description U t
i−1◦Ai◦Ui which

has the desired shape.

Finally, to achieve detUi = 1, we may, for 1 ≤ k ≤ ri, change signs of

the kth column in Ui and (ri−1 + k)th column of Ui−1 without changing the result

of the conjugation. If hi > 0, then changing the sign of any of the last hi columns

of Ui does not affect the result either. Thus, this gives us enough freedom to reach

detUi = 1 for all i = 0, . . . , n.

Corollary 2.1 (Repetition of eigenvalues). Suppose that A1, . . . An define a com-

plex with A0 = An+1 = 0. Let ∆i = At
i ◦ Ai + Ai+1 ◦ A

t
i+1 be the corresponding

Laplacians. Then, using the orthonormal bases described by the Ui’s from Theo-

rem 1.1, the Laplacians have the shape

∆i =





ri ri+1 hi

ri Σ2
i 0 0

ri+1 0 Σ2
i+1 0

hi 0 0 0



.
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In particular,

1. if ri = rankAi and σi
1 ≥ σi

2 ≥ . . . σi
ri

> 0 are the singular values of Ai,

then each (σi
k)

2 is both an eigenvalue ∆i and ∆i−1;

2. ker∆i = Hi.

Proof. The structure of ∆i follows immediately from the structure described in

Theorem 1.1. The remaining assertions are immediate consequences.

Let A+

i denote the Moore-Penrose pseudoinverse of the Ai. Thus, a singular

value decomposition

Ai = Ui−1 ◦




0 0 0
Σi 0 0
0 0 0



 ◦ U t
i yields A+

i = Ui ◦




0 Σ−1

i 0
0 0 0
0 0 0



 ◦ U t
i−1.

Proposition 2.2. Suppose that A1, . . . , An define a complex with A0 = An+1 = 0.

Then, A+

i+1 ◦ A
+

i = 0 and

idRci − (A+

i ◦ Ai + Ai+1 ◦ A
+

i+1)

defines the orthogonal projection of Rci onto the homology Hi.

Proof. We know that A+

i ◦Ai defines the projection onto (kerAi)
⊥ and Ai+1◦A

+

i+1

defines the projection onto imageAi+1. The result follows immediately since

these spaces are orthogonal and Hi = ((kerAi)
⊥ ⊕ imageAi+1)

⊥.

We call

0 ✲ Rc0
A+

1
✲ Rc1

A+

2
✲ . . .

A+
n
✲ Rcn ✲ 0.

the pseudoinverse complex of

0 ✛ Rc0 ✛

A1

Rc1 ✛

A2

. . . ✛

An
Rcn ✛ 0.

Remark 2.3. If the matrices Ai have entries in a subfield K ⊂ R, then the pseu-

doinverse complex is also defined over K. This follows since the pseudoinverse

is uniquely determined by the Penrose relations [Pen55]:

Ai ◦ A
+
i ◦ Ai = Ai, Ai ◦ A

+
i = (Ai ◦ A

+
i )

t,
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A+

i ◦ Ai ◦ A
+

i = A+

i , A+

i ◦ Ai = (A+

i ◦ Ai)
t,

which form an algebraic system of equations for the entries of A+

i with a unique

solution whose coefficients are in K. In particular, this holds for K = Q.

If the entries of the matrices are in the finite field Fq, the pseudoinverse of Ai

is well defined over Fq with respect to the dot-product on Fci
q and F

ci−1

q if

kerAi ∩ (kerAi)
⊥ = 0 ⊂ Fci

q and imageAi ∩ (imageAi)
⊥ = 0 ⊂ Fci−1

q .

We have implemented the computation of the pseudoinverse complex for dou-

ble precision floating-point numbers R53, the rationals Q, and finite fields Fq in

our Macaulay2 package SVDComplexes.

3 Algorithms

We present two algorithms for computing a singular value decomposition of a

complex followed by an example.

Algorithm 3.1 (Successive projection method).

INPUT: A sequences B1, . . . , Bn of floating point matrices which are approxi-

mations of a complex A1, . . . , An; a threshold b for which we took b = 10−4 as

default value in our implementation.

OUTPUT: Integers r1, . . . rn and floating point approximations U0, . . . , Un of or-

thogonal matrices which approximate the singular value decomposition of the cor-

responding complex.

1. Set r0 = 0, Q0 = 0 and P0 = idC0
.

2. For i from 1 to n do

a. Compute the (ci−1 − ri−1)× ci matrix B̃i = Pi−1 ◦Bi.

b. Compute the singular value decomposition of B̃i, i.e. the diagonal matrix

Σ̃i of the singular values σi
1 ≥ σi

2 ≥ . . . and orthogonal matrices Ũi−1, Ṽ
t
i

such that

B̃i = Ũi−1 ◦ Σ̃i ◦ Ṽ
t
i .

6
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c. Decide how many singular values of Σ̃i are truly non-zero, e.g. for ni =
min{ci−1 − ri−1, ci} and for a threshold b, say b = 10−6, take

ri =

{
min{j < ni | bσ

i
j ≥ σi

j+1}, if this set is non-empty

ni else

d. Decompose

Ṽ t
i =

(
Qi

Pi

)

into submatrices consisting of the first ri and last ci − ri rows of Ṽ t
i . (So Pi

defines an approximation of the orthogonal projection Ci → kerAi if our

guess for ri was correct.)

e. Define

U t
i−1 =

(
Qi−1

Ũ t
i−1 ◦ Pi−1

)
.

f. If i = n then Un = Ṽ t
n .

3. Return U0, . . . , Un and r1, . . . , rn.

Proof of concept. We will show that the algorithm gives a good approximation,

provided that

i) the approximation Bi of Ai is sufficiently good,

ii) we make the correct decisions in step 2.c and

iii) we compute with high enough precision.

By induction on i we will see that Pi defines an approximation of the orthogonal

projection Ci → kerAi. Since V t
i is approximately orthogonal

(
Qi

Pi

)
◦
(
Qt

i P t
i

)
≈

(
idri 0
0 idci−ri

)

where idk denotes a k × k identity matrix, we additionally conclude that Qi is an

approximation of the orthogonal projection Ci → (kerAi)
⊥. This is trivially true

in case i = 0, since A0 = 0.

7



For the induction step from i − 1 to i, we note that Bi ≈ Ai and imageAi ⊂
kerAi−1 implies that Qi−1 ◦ Bi ≈ 0. So Ai and Pi−1 ◦ Bi = B̃i have the same

‘large’ singular values. From

B̃i = Ũi ◦ Σ̃i ◦ V
t
i

and

V t
i =

(
Qi

Pi

)

we conclude the assertion that Pi defines approximately the orthogonal projection

Ci → kerAi under the assumption, that our choice of ri is correct. Moreover,

U t
i−1 ◦ Ai ◦ Ui ≈ U t

i−1 ◦Bi ◦ Ui

=

(
Qi−1

Ũ t
i−1 ◦ Pi−1

)
◦Bi ◦

(
Qt

i P t
i ◦ Ũi

)

≈

(
0

Ũ t
i−1 ◦ B̃i

)
◦
(
Qt

i P t
i ◦ Ũi

)

≈




0

Ũ t
i−1 ◦ Ũi−1 ◦ Σ̃i ◦

(
Qi

Pi

)


 ◦
(
Qt

i P t
i ◦ Ũi

)

≈




0

Σ̃i ◦

(
idri 0

0 idci−riŨi

)




≈




0 0
Σi 0
0 0




since

Σ̃i ◦

(
0

idci−ri

)
≈ 0.

This shows that the desired approximation holds.

Remark 3.2. To get more confidence in the correctness of the computation of

r1, . . . , rn we can alter step 2.c. A natural approach is to start with two ap-

proximations B1, . . . , Bn and B′
1, . . . , B

′
n in different precisions, and to determine

r1, . . . rn as the number of stable singular values, i.e. the singular values which

have approximately the same value in both computations.
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Our second method quite frequently does not need approximation in two dif-

ferent precisions. It is based on computing with the Laplacians

∆i = At
i ◦ Ai + Ai+1 ◦ A

t
i+1.

Note that ker∆i
∼= Hi.

Algorithm 3.3 (Laplacian method).

INPUT: A sequence B1, . . . , Bn of floating points approximations of a complex

A1, . . . , An, whose Laplacians have no multiple eigenvalues; a threshold b for

the relative precision for equality of eigenvalues. In our implementation we took

b = 10−4 as the default value.

OUTPUT: Integers r1, . . . rn and floating point approximations U0, . . . , Un of or-

thogonal matrices which approximate the singular value decomposition of the cor-

responding complex.

1. Compute diagonalisations Di of the symmetric semi-positive matrices

∆′
i = Bt

i ◦Bi +Bi+1 ◦B
t
i+1

and orthogonal matrices U ′
i ∈ SO(ci) such that

∆′
i = U ′

i ◦Di ◦ U
′t
i

2. If some Di has a non-zero eigenvalue with higher multiplicity abort.

3. Let ri be the number of eigenvalues values which occur up to a chosen

relative precision both in Di−1 and Di.

4. Compute the corresponding ci × ci permutation matrices Pi, which put the

ri + ri+1 common diagonal entries of Di into the first positions and set

U ′′
i = U ′

i ◦ Pi.

5. Compute

U ′′t
i−1 ◦Bi ◦ U

′′
i ≈




0 0 0
Σ′

i 0 0
0 0 0





where the ri × ri matrix Σ′
i is approximately a diagonal matrix.
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6. Let Σi be the diagonal matrix whose entries are the absolute values of the

diagonal entries of Σ′
i.

7. Inductively, for i from 1 to n change the signs of the eigenvectors given by

the columns of U ′′
i to obtain orthogonal matrices Ui such that

U t
i−1 ◦Bi ◦ Ui ≈




0 0 0
Σi 0 0
0 0 0


 =: Σi.

8. Return U0, . . . , Un and r1, . . . , rn.

Proof of concept. We show that we the algorithm produces a good approxima-

tion in case

i) the Laplacians ∆i = At
i ◦Ai +Ai+1 ◦A

t
i+1 have no non-zero multiple eigen-

values,

ii) the approximations Bi of the Ai are good enough; in particular, the disturbed

non-zero eigenvalues stay apart,

iii) the disturbed zero eigenvalues do not accidentally coincide up to a large rel-

ative precision, and

iv) we compute with high enough precision.

Indeed, by ii) and iii) we determine the ranks in step 3 correctly. So in step 5 we

will reach approximately a diagonal matrix, and it remains to adjust the signs.

Remark 3.4. For the choice of the thresholds b in Algorithm 3.1 and Algorithm

3.3 we have only experimental evidence. In particular our default value 10−4 has

no justification, not even heuristically. We leave it as an open problem to derive

a justified choice, which might depend also on the ranks ci = rankCi of the

R-vector spaces in the complex.

Example 3.5. We consider the complex

0 ✛ R3
✛

A1

R5
✛

A2

R5
✛

A3

R3
✛ 0

10



defined by the matrices



14 −4 16 3 −9

14 −5 20 9 1

4 1 −4 −12 −24


 ,




−43 −50 −27 −51 9

12 −24 36 0 −12

35 34 27 39 −9

−3 −10 3 −6 −1

−11 −10 −9 −12 3




,




−8 −16 −12

−5 −1 −15

−1 13 −14

12 12 28

−1 25 −24




.

The SVD normal form of the complex is given by the matrices



34.489 0 0 0 0

0 28.714 0 0 0

0 0 0 0 0


 ,




0 0 0 0 0

0 0 0 0 0

114.08 0 0 0 0

0 47.193 0 0 0

0 0 0 0 0




,




0 0 0

0 0 0

45.993 0 0

0 35.209 0

0 0 0




.

So each of the matrices Ai has rank 2, and all homology groups Hi are 1-

dimensional.

The transformation into the normal form is given by the orthogonal matrices



−.6553 .2393 −.7165

−.7549 −.1745 .6322

.0262 .9551 .2950


 ,




−.5694 .1646 −.7702 −.1318 .1950

.1862 .0303 .0679 −.9710 .1301

−.7448 −.1213 .6010 −.0706 .2537

−.2631 −.4289 −.0790 −.1821 −.8411

.1309 −.8794 −.1862 .0404 .4162




,




.5019 −.1770 .2288 .5338 .6160

.5257 .6126 .3335 .1127 −.4738

.3586 −.7250 .3461 −.3015 −.3677

.5735 .0970 −.5972 −.5061 .2210

−.1195 .2417 .6000 −.5961 .4604




,



−.2525 −.2843 −.9249

.1813 −.9528 .2434

−.9505 −.1062 .2921




which we have printed here with 4 valid digits only. In other words, the diagram

0 R3
oo R5A1

oo R5A2
oo R3A3

oo 0oo

0 R3
oo

U0

OO

R5

Σ1

oo

U1

OO

R5

Σ2

oo

U2

OO

R3

Σ3

oo

U3

OO

0oo

commutes (up to the chosen precision). The first matrix A+
1 of the pseudoinverse

11



complex over R53 printed with 6 valid digits is




.0121907 .0114627 .0050431
−.00328525 −.00426002 .00115014
.013141 .0170401 −.00460058
.00142545 .00836608 −.0144655
−.00981498 .00248076 −.0291523




which is an approximation of




5978/490373 5621/490373 2473/490373
−1611/490373 −2089/490373 564/490373
6444/490373 8356/490373 −2256/490373
699/490373 8205/980746 −14187/980746

−4813/490373 2433/980746 −28591/980746




Remark 3.6. This simple example is pretty stable against errors. If we disturb

the entries of the matrices in the complex arbitrarily by an relative error of ≤
10−3, then taking 10−2 as a threshold the algorithms predicts the dimension of the

homology groups still correctly, see SVDComplexes.

4 Projection

One application of using the singular value decomposition of a complex is to

compute the pseudoinverse complex as described in Section 2. In this section, we

consider projecting a sequence of matrices onto a complex.

Algorithm 4.1 (Projection to a complex).

INPUT: A sequence B1, . . . , Bn of ci−1 × ci matrices and a sequence h0, . . . , hn

of desired dimension of homology groups.

OUTPUT: A sequence A1, . . . , An of matrices which define a complex with de-

sired homology, if possible.

1. Set r0 = 0 and compute r1, . . . , rn+1 from ci = ri + ri+1 + hi recursively.

If ri < 0 for some i or rn+1 6= 0, then return the error message: “The rank

conditions cannot be satisfied.”

2. Set Q0 = 0 and P0 = idC0
.

12
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3. For i = 1, . . . , n

a. Compute the (ci−1 − ri−1)× ci matrix B̃i = Pi−1 ◦Bi.

b. Compute the singular value decomposition

B̃i = Ũi−1 ◦ Σ̃i ◦ Ṽ
t
i .

c. Define

Σi =




ri ri+1 hi

ri−1 0 0 0
ri Σi 0 0
hi−1 0 0 0




as a block matrix where Σi is a diagonal matrix with entries the largest ri
singular values of B̃i.

d. Decompose

Ṽ t
i =

(
Qi

Pi

)

into submatrices consisting of the first ri and last ci − ri rows of Ṽ t
i .

e. Define

U t
i−1 =

(
Qi−1

Ũ t
i−1 ◦ Pi−1

)
.

f. If i = n, then Un = Ṽ t
n .

4. Set Ai = Ui−1 ◦ Σi ◦ U
t
i and return A1, . . . , An.

Remark 4.2. By construction, it is clear that Algorithm 4.1 computes a complex.

We leave it as an open problem to compute the “closest” complex to the given

matrices B1, . . . , Bn.

Example 4.3. In our package RandomComplexes, we have implemented several

methods to produce complexes over the integers. The first function randomChain-

Complex takes as input a sequences h and r of desired dimension of homology

groups and ranks of the matrices. It uses the LLL algorithm [LLL82] to produce

example of desired moderate height. It runs fast for complexes of ranks ci ≤ 100
but is slow for larger examples because of the use of the LLL-algorithm. Example

3.5 was produced this way.

We test Algorithms 3.1 and 3.3 to verify the desired dimension of the homol-

ogy groups. Table 1 compares the timings of these two algorithms on various

examples of this sort.

13
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c0, . . . c3 h0, . . . , h3 Alg. 3.1 (sec) Alg. 3.3 (sec)

7, 21, 28, 14 2, 3, 2, 1 .00211 .0110

8, 27, 35, 17 3, 6, 4, 2 .00225 .0182

9, 33, 42, 20 4, 9, 6, 3 .00254 .0294

10, 39, 49, 23 5, 12, 8, 4 .00291 .0647

11, 45, 56, 26 6, 15, 10, 5 .00355 .1090

12, 51, 63, 29 7, 18, 12, 6 .00442 .1150

Table 1: Comparison of timings using Algorithms 3.1 and 3.3.

Example 4.4. Our second series of examples is constructed from Stanley-Reisner

simplicial complexes of randomly chosen square free monomial ideals. In the

specific cases below, we selected N square free monomials at random in a poly-

nomial ring with k variables which are summarized in Table 2. Algorithm 3.3

does not apply to these examples since repeated eigenvalues occur.

5 Application to syzygies

We conclude with an application concerning the computation of Betti numbers

in free resolutions. Let S = K[x0, . . . , xn] be the standard graded polynomial

ring and M a finitely generated graded S-module. Then, by Hilbert’s syzygy

theorem, M has a finite free resolution:

0 ✛ M ✛ F0
✛

ϕ1

F1
✛

ϕ2

. . . ✛

ϕc

Fc
✛ 0

by free graded S-modules Fi =
∑

j S(−i− j)bij of length c ≤ n+1. Here S(−ℓ)
denotes the free S-module with generator in degree ℓ.

If we choose in each step a minimal number of homogenous generators, i.e.,

if ϕi(Fi) ⊂ (x0, . . . xn)Fi−1, then the free resolution is unique up to an isomor-

phism. In particular, the Betti numbers bij of a minimal resolution are numerical

invariants of M . On the other hand, for basic applications of free resolutions such

as the computation of Ext and Tor-groups, any resolution can be used.

Starting with a reduced Gröbner basis of the submodule ϕ1(F1) ⊂ F0 there is,

after some standard choices on orderings, a free resolution such that at each step

the columns of ϕi+1 form a reduced Gröbner basis of kerϕi. This resolution is

uniquely determined however, in most cases, highly nonminimal. An algorithm to

compute this standard nonminimal resolution was developed in [EMSS16] which
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k N c0 c1 c2 . . . Alg 3.1

h0 h1 h2 . . . (sec)

8 20 8 27 44 30

1 0 0 1 .00185

9 21 9 35 74 85 46

1 0 0 0 0 .0036

10 23 10 45 118 190 173 69

1 0 0 0 3 0 .0198

11 26 11 55 165 326 431 361 156 19

1 0 0 0 0 0 2 0 .241

12 30 12 66 218 474 694 664 375 101

1 0 0 0 0 0 2 0 1.29

13 35 13 78 286 712 1253 1553 1291 639 141

1 0 0 0 0 0 0 6 1 39.7

14 41 14 91 364 996 1948 2741 2687 677 559 75

1 0 0 0 0 0 0 7 0 0 355.

Table 2: Comparison of timings using Algorithm 3.1.

turned out to be much faster then the computation of a minimal resolution by

previous methods.

The following forms the examples which we use as test cases.

Proposition 5.1 (Graded Artinian Gorenstein Algebras). Let f ∈ Q[x0, . . . , xn]
be a homogeneous polynomial of degree d. In S = Q[∂0, . . . , ∂n], consider the

ideal I = 〈D ∈ S | D(f) = 0〉 of constant differential operators which annihi-

late f . Then, A⊥
f := S/I is an artinian Gorenstein Algebra with socle in degree d.

For more information on this topic see, e.g., [RS00].

Example 5.2. Let f = ℓ41 + . . . + ℓ418 ∈ Q[x0, . . . , x7] be the sum of 4th pow-

ers of 18 sufficiently general chosen linear forms ℓs. The Betti numbers bij of

the minimal resolution M = A⊥
f as an S-module are zero outside the range

i = 0, . . . , 8, j = 0, . . . , 4. In this range, they take the values:

j \ i 0 1 2 3 4 5 6 7 8

0 1 . . . . . . . .

1 . 18 42 . . . . . .

2 . 10 63 288 420 288 63 10 .

3 . . . . . . 42 18 .

4 . . . . . . . . 1

15



which, for example, says that F2 = S(−3)42 ⊕ S(−4)63. We note that the sym-

metry of the table is a well-known consequence of the Gorenstein property.

On the other hand the Betti numbers of the uniquely determined nonminimal

resolution are much larger:

j \ i 0 1 2 3 4 5 6 7 8

0 1 . . . . . . . .

1 . 18 55 75 54 20 3 . .

2 . 23 145 390 580 515 273 80 10

3 . 7 49 147 245 245 147 49 7

4 . 1 7 21 35 35 21 7 1

To deduce from this resolution the Betti numbers of the minimal resolution, we

can use the formula

bij = dimTorSi (M,Q)i+j.

For example, to deduce b3,2 = 288, we have to show that the 5th constant strand

of the nonminimal resolution

0 ✛ Q1
✛ Q49

✛ Q390
✛ Q54

✛ 0

has homology only in one position.

The matrices defining the differential in the nonminimal resolution have poly-

nomial entries whose coefficients in Q can have very large height such that the

computation of the homology of the strands becomes infeasible. There are two

options, how we can get information about the minimal Betti numbers:

• Pick a prime number p which does not divided any numerator of the nor-

malized reduced Gröbner basis and then reduce modulo p yielding a mod-

ule M(p) with the same Hilbert function as M . Moreover, for all but finitely

many primes p, the Betti numbers of M as an Q[x0, . . . , xn]-module and

of M(p) as Fp[x0, . . . , xn]-module coincide.

• Pass from a normalized reduced Gröbner basis of ϕ1(F1) ⊂ F0 to a floating-

point approximation of the Gröber basis. Since in the algorithm for the

computation of the uniquely determined nonminimal resolution [EMSS16],

the majority of ground field operations are multiplications, we can hope that

this computation is numerically stable and that the singular value decompo-

sitions of the linear strands will detect the minimal Betti numbers correctly.
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Example 5.3. We experimented with artinian graded Gorenstein algebras con-

structed from randomly chosen forms f ∈ Q[x0, . . . , x7] in 8 variables which were

the sum of n 4th powers of linear forms where 11 ≤ n ≤ 20. This experiment

showed that roughly 95% the Betti table computed via floating-point arithmetic

coincided with one computed over a finite field. The reason for this was that the

current implementation uses only double precision floating-point computations

which caused difficulty in detecting zero singular values correctly. This would be

improved following Remark ??.

We now consider a series of examples related to the famous Green’s conjecture

on canonical curves which was proved in a landmark paper [Voi05] for generic

curves. In S = Q[x0, . . . , xa, y0, . . . , yb], consider the homogeneous ideal Je gen-

erated by the 2× 2 minors of

(
x0 x1 . . . xa−1

x1 x2 . . . xa

)
and

(
y0 y1 . . . yb−1

y1 y2 . . . yb

)

together with the entries of the (a− 1)× (b− 1) matrix




x0 x1 x2

x1 x2 x3

...
...

...

xa−2 xa−1 xa






0 0 e2
0 −e1 0
1 0 0






y0 y1 . . . yb−2

y1 y2 . . . yb−1

y2 y3 . . . yb




for some parameters e1, e2 ∈ Q. Then, by [ES18], Je is the homogeneous ideal

of an arithmetically Gorenstein surface Xe(a, b) ⊂ Pa+b+1 with trivial canonical

bundle. Moreover, the generators of Je form a Gröbner basis. To verify the generic

Green’s conjecture for curves of odd genus g = 2a + 1, it suffices to prove, for

some values e = (e1, e2) ∈ Q2, that Xe(a, a) has a “natural” Betti table, i.e., for

each k there is at most one pair (i, j) with i + j = k and bij(Xe(a, a)) 6= 0. For

special values of e = (e1, e2), e.g., e = (0,−1), it is known that the resolution is

not natural, see [ES18].

Example 5.4. For a = b = 6, our implementation computes the following Betti

numbers for the nonminimal resolution: as

| 0 1 2 3 4 5 6 7 8 9 10 11

| 1 . . . . . . . . . . .

| . 55 320 930 1688 2060 1728 987 368 81 8 .

| . . 39 280 906 1736 2170 1832 1042 384 83 8

| . . . 1 8 28 56 70 56 28 8 1
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For e = (2,−1) and e = (0,−1), our implementation correctly computes the

following Betti numbers, respectively, of the minimal resolutions:

| 0 1 2 3 4 5 6 7 8 9 10 11

| 1 . . . . . . . . . . .

| . 55 320 891 1408 1155 . . . . . .

| . . . . . . 1155 1408 891 320 55 .

| . . . . . . . . . . . 1

| 1 . . . . . . . . . . .

| . 55 320 900 1488 1470 720 315 80 9 . .

| . . 9 80 315 720 1470 1488 900 320 55 .

| . . . . . . . . . . . 1

Each of these computations took several minutes. To consider larger exam-

ples, more efficient algorithms and/or implementations for computing the singular

value decomposition of a complex are needed.
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