Singular value decomposition of complexes

Danielle A. Brake, Jonathan D. Hauenstein, Frank-Olaf Schreyer, Andrew J. Sommese, and Michael E. Stillman

May 19, 2018

Abstract

Singular value decompositions of matrices are widely used in numerical linear algebra with many applications. In this paper, we extend the notion of singular value decompositions to finite complexes of real vector spaces. We provide two methods to compute them and present several applications.

1 Introduction

For a matrix $A \in \mathbb{R}^{m \times k}$, a singular value decomposition (SVD) of A is

$$
A=U \Sigma V^{t}
$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{k \times k}$ are orthogonal and $\Sigma \in \mathbb{R}^{m \times k}$ is diagonal with nonnegative real numbers on the diagonal. The diagonal entries of Σ, say $\sigma_{1} \geq \cdots \geq \sigma_{\min \{m, k\}} \geq 0$ are called the singular values of A and the number of nonzero singular values is equal to the rank of A. Many problems in numerical linear algebra can be solved using a singular value decomposition such as pseudoinversion, least squares solving, and low-rank matrix approximation.

A matrix $A \in \mathbb{R}^{m \times k}$ defines a linear map $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ via $x \mapsto A x$ denoted

$$
\mathbb{R}^{m} \stackrel{A}{\leftrightharpoons} \mathbb{R}^{k} .
$$

Hence, matrix multiplication simply corresponds to function composition. For example, if $B \in \mathbb{R}^{\ell \times m}$, then $B \circ A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}$ is defined by $x \mapsto B A x$ denoted

$$
\mathbb{R}^{\ell} \stackrel{B}{\rightleftarrows} \mathbb{R}^{m} \stackrel{A}{\leftrightarrows} \mathbb{R}^{k} .
$$

If $B \circ A=0$, then this composition forms a complex denoted

$$
0 \longleftarrow \mathbb{R}^{\ell} \stackrel{B}{\longleftarrow} \mathbb{R}^{m} \stackrel{A}{\longleftarrow} \mathbb{R}^{k} \longleftarrow 0 .
$$

In general, a finite complex of finite dimensional \mathbb{R}-vector spaces

$$
0 \longleftarrow C_{0} \stackrel{A_{1}}{\longleftarrow} C_{1} \stackrel{A_{2}}{\longleftarrow} \ldots \stackrel{A_{n-1}}{\longleftarrow} C_{n-1} \stackrel{A_{n}}{\longleftarrow} C_{n} \longleftarrow 0
$$

consists of vector spaces $C_{i} \cong \mathbb{R}^{c_{i}}$ and differentials given by matrices A_{i} so that $A_{i} \circ A_{i+1}=0$. We denote such a complex by C_{\bullet} and its $i^{\text {th }}$ homology group as

$$
H_{i}=H_{i}\left(C_{\bullet}\right)=\frac{\operatorname{ker} A_{i}}{\text { image } A_{i+1}}
$$

with $h_{i}=\operatorname{dim} H_{i}$. Complexes are standard tools that occur in many areas of mathematics including differential equations, e.g., AFW06, AFW10]. One of the reasons for developing a singular value decomposition of complexes is to compute the dimensions h_{i} efficiently and robustly via numerical methods when each A_{i} is only known approximately, say B_{i}. For example, if we know that rank $A_{i}=r_{i}$, then h_{i} could easily be computed via

$$
c_{i}=r_{i}+r_{i+1}+h_{i} .
$$

One option would be to compute the singular value decomposition of each B_{i} in order to compute the rank r_{i} of A_{i} since the singular value decomposition is an excellent rank-revealing numerical method. However, simply decomposing each B_{i} ignores the important information that the underlying matrices A_{i} form a complex.

The key point of this paper is that we can utilize information about the complex to provide more specific information that reflects the structure it imposes.

Theorem 1.1 (Singular value decomposition of complexes). Let A_{1}, \ldots, A_{n} be a sequence of matrices $A_{i} \in \mathbb{R}^{c_{i-1} \times c_{i}}$ which define a complex C_{\bullet}, i.e. $A_{i} \circ A_{i+1}=0$. Let $r_{i}=\operatorname{rank} A_{i}$ and $h_{i}=c_{i}-\left(r_{i}+r_{i+1}\right)$. Then, there exists sequences U_{0}, \ldots, U_{n} and $\Sigma_{1}, \ldots, \Sigma_{n}$ of orthogonal and diagonal matrices, respectively, such that

$$
U_{i-1}^{t} \circ A_{i} \circ U_{i}=\begin{aligned}
& r_{i} \\
& r_{i-1} \\
& r_{i} \\
& h_{i-1}
\end{aligned}\left(\begin{array}{ccc}
0 & 0 & 0 \\
\Sigma_{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right):=\bar{\Sigma}_{i}
$$

where all diagonal entries of Σ_{i} are strictly positive. Moreover, if every $r_{i}>0$ and at least one $h_{i}>0$, then the orthogonal matrices U_{i} can be chosen such that $\operatorname{det} U_{i}=1$, i.e., each U_{i} is a special orthogonal matrix.

The diagonal entries of $\Sigma_{1}, \ldots, \Sigma_{n}$ are the singular values of the complex.
We develop two methods that utilize the complex structure to compute a singular value decomposition of C_{\bullet}. The successive projection method described in Algorithm 3.1 uses the orthogonal projection

$$
P_{i-1}: C_{i-1} \rightarrow \operatorname{ker} A_{i-1}
$$

together with the singular value decomposition of $P_{i-1} \circ A_{i}$. The second method, described in Algorithm 3.3, is based on the Laplacians

$$
\Delta_{i}=A_{i}^{t} \circ A_{i}+A_{i+1} \circ A_{i+1}^{t} .
$$

Both methods can be applied to numerical approximations B_{i} of A_{i}.
Organization of this paper is as follows. Section 2 proves Theorem 1.1 and collects a number of basic facts along with defining the pseudoinverse of a complex. Section 3 describes the algorithms mentioned above and illustrates them on an example. Section 4 considers projecting an arbitrary sequence of matrices onto a complex. Section 5 provides an application to computing Betti numbers of minimal free resolutions of graded modules over the polynomial ring $\mathbb{Q}\left[x_{0}, \ldots, x_{n}\right]$ which combines our method with ideas from [EMSS16].

Acknowledgement. DAB and JDH was supported in part by NSF grant ACI1460032. JDH was also supported by Sloan Research Fellowship BR2014-110 TR14. AJS was supported in part by NSF ACI-1440607. FOS is grateful to Notre Dame for its hospitality when developing this project. This work is a contribution to his Project 1.6 of the SFB-TRR 195 'Symbolic Tools in Mathematics and their Application" of the German Research Foundation (DFG). MES was supported in part by NSF grant DMS-1502294 and is grateful to Saarland University for its hospitality during a month of intense work on this project.

2 Basics

We start with a proof of our main theorem.
Proof of Theorem [1.1] For convenience, we set $A_{0}=A_{n+1}=0$ to compliment A_{1}, \ldots, A_{n} that describe the complex. By the homomorphism theorem

$$
\left(\operatorname{ker} A_{i}\right)^{\perp} \cong \text { image } A_{i} .
$$

The singular value decomposition for a complex follows by applying singular value decomposition to this isomorphism and extending an orthonormal basis of
these spaces to orthonormal basis of $\mathbb{R}^{c_{i-1}}$ and $\mathbb{R}^{c_{i}}$. Since image $A_{i+1} \subset \operatorname{ker} A_{i}$ we have an orthogonal direct sum

$$
\left(\operatorname{ker} A_{i}\right)^{\perp} \oplus \text { image } A_{i+1} \subset \mathbb{R}^{c_{i}}
$$

with

$$
H_{i}:=\left(\left(\operatorname{ker} A_{i}\right)^{\perp} \oplus \text { image } A_{i+1}\right)^{\perp}=\operatorname{ker} A_{i} \cap \text { image } A_{i+1}^{\perp} \cong \frac{\operatorname{ker} A_{i}}{\operatorname{image} A_{i+1}}
$$

With respect to these subspaces, we can decompose A_{i} as

$$
\begin{aligned}
& \quad\left(\operatorname{ker} A_{i-1}\right)^{\perp} \\
& \operatorname{image} A_{i} \\
& H_{i-1}
\end{aligned}\left(\begin{array}{ccc}
0 & \text { image } A_{i+1} & H_{i} \\
0 & 0 & 0 \\
\Sigma_{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Indeed, A_{i} has no component mapping to (image $\left.A_{i}\right)^{\perp}$, which explains six of the zero blocks, and $\operatorname{ker} A_{i}=\left(\operatorname{ker} A_{i}\right)^{\perp \perp}=\operatorname{image} A_{i+1} \oplus H_{i}$ explains the remaining two. Take U_{i} to be the orthogonal matrix whose column vectors form the orthonormal basis of the spaces $\left(\operatorname{ker} A_{i}\right)^{\perp}$ and image A_{i+1} induced from the singular value decomposition of $\left(\operatorname{ker} A_{i}\right)^{\perp} \rightarrow$ image A_{i} and $\left(\operatorname{ker} A_{i+1}\right)^{\perp} \rightarrow$ image A_{i+1} extended by an orthogonal basis of H_{i} in the decomposition

$$
\left(\operatorname{ker} A_{i}\right)^{\perp} \oplus \text { image } A_{i+1} \oplus H_{i}=\mathbb{R}^{c_{i}} .
$$

The linear map A_{i} has, in terms of these bases, the description $U_{i-1}^{t} \circ A_{i} \circ U_{i}$ which has the desired shape.

Finally, to achieve $\operatorname{det} U_{i}=1$, we may, for $1 \leq k \leq r_{i}$, change signs of the $k^{\text {th }}$ column in U_{i} and $\left(r_{i-1}+k\right)^{\text {th }}$ column of U_{i-1} without changing the result of the conjugation. If $h_{i}>0$, then changing the sign of any of the last h_{i} columns of U_{i} does not affect the result either. Thus, this gives us enough freedom to reach $\operatorname{det} U_{i}=1$ for all $i=0, \ldots, n$.

Corollary 2.1 (Repetition of eigenvalues). Suppose that $A_{1}, \ldots A_{n}$ define a complex with $A_{0}=A_{n+1}=0$. Let $\Delta_{i}=A_{i}^{t} \circ A_{i}+A_{i+1} \circ A_{i+1}^{t}$ be the corresponding Laplacians. Then, using the orthonormal bases described by the U_{i} 's from Theorem 1.1 the Laplacians have the shape

$$
\left.\Delta_{i}=\begin{array}{l}
\\
r_{i} \\
r_{i+1} \\
h_{i}
\end{array} \begin{array}{ccc}
r_{i} & r_{i+1} & h_{i} \\
\Sigma_{i}^{2} & 0 & 0 \\
0 & \Sigma_{i+1}^{2} & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

In particular,

1. if $r_{i}=\operatorname{rank} A_{i}$ and $\sigma_{1}^{i} \geq \sigma_{2}^{i} \geq \ldots \sigma_{r_{i}}^{i}>0$ are the singular values of A_{i}, then each $\left(\sigma_{k}^{i}\right)^{2}$ is both an eigenvalue Δ_{i} and Δ_{i-1};
2. $\operatorname{ker} \Delta_{i}=H_{i}$.

Proof. The structure of Δ_{i} follows immediately from the structure described in Theorem 1.1. The remaining assertions are immediate consequences.

Let A_{i}^{+}denote the Moore-Penrose pseudoinverse of the A_{i}. Thus, a singular value decomposition

$$
A_{i}=U_{i-1} \circ\left(\begin{array}{ccc}
0 & 0 & 0 \\
\Sigma_{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \circ U_{i}^{t} \quad \text { yields } \quad A_{i}^{+}=U_{i} \circ\left(\begin{array}{ccc}
0 & \Sigma_{i}^{-1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \circ U_{i-1}^{t} .
$$

Proposition 2.2. Suppose that A_{1}, \ldots, A_{n} define a complex with $A_{0}=A_{n+1}=0$. Then, $A_{i+1}^{+} \circ A_{i}^{+}=0$ and

$$
i d_{\mathbb{R}^{c_{i}}}-\left(A_{i}^{+} \circ A_{i}+A_{i+1} \circ A_{i+1}^{+}\right)
$$

defines the orthogonal projection of $\mathbb{R}^{c_{i}}$ onto the homology H_{i}.
Proof. We know that $A_{i}^{+} \circ A_{i}$ defines the projection onto $\left(\operatorname{ker} A_{i}\right)^{\perp}$ and $A_{i+1} \circ A_{i+1}^{+}$ defines the projection onto image A_{i+1}. The result follows immediately since these spaces are orthogonal and $H_{i}=\left(\left(\operatorname{ker} A_{i}\right)^{\perp} \oplus \text { image } A_{i+1}\right)^{\perp}$.

We call

$$
0 \longrightarrow \mathbb{R}^{c_{0}} \xrightarrow{A_{1}^{+}} \mathbb{R}^{c_{1}} \xrightarrow{A_{2}^{+}} \ldots \xrightarrow{A_{n}^{+}} \mathbb{R}^{c_{n}} \longrightarrow 0 .
$$

the pseudoinverse complex of

$$
0 \longleftarrow \mathbb{R}^{c_{0}} \stackrel{A_{1}}{\longleftarrow} \mathbb{R}^{c_{1}} A_{2} \ldots \stackrel{A_{n}}{\longleftarrow} \mathbb{R}^{c_{n}} \longleftarrow 0 .
$$

Remark 2.3. If the matrices A_{i} have entries in a subfield $K \subset \mathbb{R}$, then the pseudoinverse complex is also defined over K. This follows since the pseudoinverse is uniquely determined by the Penrose relations [Pen55]:

$$
A_{i} \circ A_{i}^{+} \circ A_{i}=A_{i}, \quad A_{i} \circ A_{i}^{+}=\left(A_{i} \circ A_{i}^{+}\right)^{t},
$$

$$
A_{i}^{+} \circ A_{i} \circ A_{i}^{+}=A_{i}^{+}, \quad A_{i}^{+} \circ A_{i}=\left(A_{i}^{+} \circ A_{i}\right)^{t},
$$

which form an algebraic system of equations for the entries of A_{i}^{+}with a unique solution whose coefficients are in K. In particular, this holds for $K=\mathbb{Q}$.

If the entries of the matrices are in the finite field \mathbb{F}_{q}, the pseudoinverse of A_{i} is well defined over \mathbb{F}_{q} with respect to the dot-product on $\mathbb{F}_{q}^{c_{i}}$ and $\mathbb{F}_{q}^{c_{i-1}}$ if
$\operatorname{ker} A_{i} \cap\left(\operatorname{ker} A_{i}\right)^{\perp}=0 \subset \mathbb{F}_{q}^{c_{i}}$ and image $A_{i} \cap\left(\text { image } A_{i}\right)^{\perp}=0 \subset \mathbb{F}_{q}^{c_{i-1}}$.
We have implemented the computation of the pseudoinverse complex for double precision floating-point numbers \mathbb{R}_{53}, the rationals \mathbb{Q}, and finite fields \mathbb{F}_{q} in our Macaulay 2 package SVDComplexes.

3 Algorithms

We present two algorithms for computing a singular value decomposition of a complex followed by an example.

Algorithm 3.1 (Successive projection method).
INPUT: A sequences B_{1}, \ldots, B_{n} of floating point matrices which are approximations of a complex A_{1}, \ldots, A_{n}; a threshold b for which we took $b=10^{-4}$ as default value in our implementation.
OUTPUT: Integers $r_{1}, \ldots r_{n}$ and floating point approximations U_{0}, \ldots, U_{n} of orthogonal matrices which approximate the singular value decomposition of the corresponding complex.

1. Set $r_{0}=0, Q_{0}=0$ and $P_{0}=\mathrm{id}_{C_{0}}$.
2. For i from 1 to n do
a. Compute the $\left(c_{i-1}-r_{i-1}\right) \times c_{i}$ matrix $\widetilde{B}_{i}=P_{i-1} \circ B_{i}$.
b. Compute the singular value decomposition of \widetilde{B}_{i}, i.e. the diagonal matrix $\widetilde{\Sigma}_{i}$ of the singular values $\sigma_{1}^{i} \geq \sigma_{2}^{i} \geq \ldots$ and orthogonal matrices $\widetilde{U}_{i-1}, \widetilde{V}_{i}^{t}$ such that

$$
\widetilde{B}_{i}=\widetilde{U}_{i-1} \circ \widetilde{\Sigma}_{i} \circ \widetilde{V}_{i}^{t} .
$$

c. Decide how many singular values of $\widetilde{\Sigma}_{i}$ are truly non-zero, e.g. for $n_{i}=$ $\min \left\{c_{i-1}-r_{i-1}, c_{i}\right\}$ and for a threshold b, say $b=10^{-6}$, take

$$
r_{i}= \begin{cases}\min \left\{j<n_{i} \mid b \sigma_{j}^{i} \geq \sigma_{j+1}^{i}\right\}, & \text { if this set is non-empty } \\ n_{i} & \text { else }\end{cases}
$$

d. Decompose

$$
\widetilde{V}_{i}^{t}=\binom{Q_{i}}{P_{i}}
$$

into submatrices consisting of the first r_{i} and last $c_{i}-r_{i}$ rows of \widetilde{V}_{i}^{t}. (So P_{i} defines an approximation of the orthogonal projection $C_{i} \rightarrow \operatorname{ker} A_{i}$ if our guess for r_{i} was correct.)
e. Define

$$
U_{i-1}^{t}=\binom{Q_{i-1}}{\widetilde{U}_{i-1}^{t} \circ P_{i-1}} .
$$

f. If $i=n$ then $U_{n}=\widetilde{V}_{n}^{t}$.
3. Return U_{0}, \ldots, U_{n} and r_{1}, \ldots, r_{n}.

Proof of concept. We will show that the algorithm gives a good approximation, provided that
i) the approximation B_{i} of A_{i} is sufficiently good,
ii) we make the correct decisions in step 2.c and
iii) we compute with high enough precision.

By induction on i we will see that P_{i} defines an approximation of the orthogonal projection $C_{i} \rightarrow \operatorname{ker} A_{i}$. Since V_{i}^{t} is approximately orthogonal

$$
\binom{Q_{i}}{P_{i}} \circ\left(\begin{array}{ll}
Q_{i}^{t} & P_{i}^{t}
\end{array}\right) \approx\left(\begin{array}{cc}
\operatorname{id}_{r_{i}} & 0 \\
0 & \mathrm{id}_{c_{i}-r_{i}}
\end{array}\right)
$$

where id_{k} denotes a $k \times k$ identity matrix, we additionally conclude that Q_{i} is an approximation of the orthogonal projection $C_{i} \rightarrow\left(\operatorname{ker} A_{i}\right)^{\perp}$. This is trivially true in case $i=0$, since $A_{0}=0$.

For the induction step from $i-1$ to i, we note that $B_{i} \approx A_{i}$ and image $A_{i} \subset$ $\operatorname{ker} A_{i-1}$ implies that $Q_{i-1} \circ B_{i} \approx 0$. So A_{i} and $P_{i-1} \circ B_{i}=\widetilde{B}_{i}$ have the same 'large' singular values. From

$$
\widetilde{B}_{i}=\widetilde{U}_{i} \circ \widetilde{\Sigma}_{i} \circ V_{i}^{t}
$$

and

$$
V_{i}^{t}=\binom{Q_{i}}{P_{i}}
$$

we conclude the assertion that P_{i} defines approximately the orthogonal projection $C_{i} \rightarrow \operatorname{ker} A_{i}$ under the assumption, that our choice of r_{i} is correct. Moreover,

$$
\begin{aligned}
U_{i-1}^{t} \circ A_{i} \circ U_{i} & \approx U_{i-1}^{t} \circ B_{i} \circ U_{i} \\
& =\binom{Q_{i-1}}{\widetilde{U}_{i-1}^{t} \circ P_{i-1}} \circ B_{i} \circ\left(\begin{array}{ll}
Q_{i}^{t} & P_{i}^{t} \circ \widetilde{U}_{i}
\end{array}\right) \\
& \approx\binom{0}{\widetilde{U}_{i-1}^{t} \circ \widetilde{B}_{i}} \circ\left(\begin{array}{ll}
Q_{i}^{t} & P_{i}^{t} \circ \widetilde{U}_{i}
\end{array}\right) \\
& \approx\binom{0}{\widetilde{U}_{i-1}^{t} \circ \widetilde{U}_{i-1} \circ \widetilde{\Sigma}_{i} \circ\binom{Q_{i}}{P_{i}}} \circ\left(\begin{array}{ll}
Q_{i}^{t} & P_{i}^{t} \circ \widetilde{U}_{i}
\end{array}\right) \\
& \approx\left(\begin{array}{cc}
0 & \\
\widetilde{\Sigma}_{i} \circ\left(\begin{array}{cc}
\operatorname{id}_{r_{i}} & 0 \\
0 & \operatorname{id}_{c_{i}-r_{i}} \widetilde{U}_{i}
\end{array}\right)
\end{array}\right) \\
& \approx\left(\begin{array}{cc}
0 & 0 \\
\Sigma_{i} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

since

$$
\widetilde{\Sigma}_{i} \circ\binom{0}{\operatorname{id}_{c_{i}-r_{i}}} \approx 0
$$

This shows that the desired approximation holds.
Remark 3.2. To get more confidence in the correctness of the computation of r_{1}, \ldots, r_{n} we can alter step 2.c. A natural approach is to start with two approximations B_{1}, \ldots, B_{n} and $B_{1}^{\prime}, \ldots, B_{n}^{\prime}$ in different precisions, and to determine $r_{1}, \ldots r_{n}$ as the number of stable singular values, i.e. the singular values which have approximately the same value in both computations.

Our second method quite frequently does not need approximation in two different precisions. It is based on computing with the Laplacians

$$
\Delta_{i}=A_{i}^{t} \circ A_{i}+A_{i+1} \circ A_{i+1}^{t} .
$$

Note that ker $\Delta_{i} \cong H_{i}$.
Algorithm 3.3 (Laplacian method).
INPUT: A sequence B_{1}, \ldots, B_{n} of floating points approximations of a complex A_{1}, \ldots, A_{n}, whose Laplacians have no multiple eigenvalues; a threshold b for the relative precision for equality of eigenvalues. In our implementation we took $b=10^{-4}$ as the default value.
OUTPUT: Integers $r_{1}, \ldots r_{n}$ and floating point approximations U_{0}, \ldots, U_{n} of orthogonal matrices which approximate the singular value decomposition of the corresponding complex.

1. Compute diagonalisations D_{i} of the symmetric semi-positive matrices

$$
\Delta_{i}^{\prime}=B_{i}^{t} \circ B_{i}+B_{i+1} \circ B_{i+1}^{t}
$$

and orthogonal matrices $U_{i}^{\prime} \in S O\left(c_{i}\right)$ such that

$$
\Delta_{i}^{\prime}=U_{i}^{\prime} \circ D_{i} \circ U_{i}^{\prime t}
$$

2. If some D_{i} has a non-zero eigenvalue with higher multiplicity abort.
3. Let r_{i} be the number of eigenvalues values which occur up to a chosen relative precision both in D_{i-1} and D_{i}.
4. Compute the corresponding $c_{i} \times c_{i}$ permutation matrices P_{i}, which put the $r_{i}+r_{i+1}$ common diagonal entries of D_{i} into the first positions and set $U_{i}^{\prime \prime}=U_{i}^{\prime} \circ P_{i}$.
5. Compute

$$
U_{i-1}^{\prime \prime t} \circ B_{i} \circ U_{i}^{\prime \prime} \approx\left(\begin{array}{ccc}
0 & 0 & 0 \\
\Sigma_{i}^{\prime} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where the $r_{i} \times r_{i}$ matrix Σ_{i}^{\prime} is approximately a diagonal matrix.
6. Let Σ_{i} be the diagonal matrix whose entries are the absolute values of the diagonal entries of Σ_{i}^{\prime}.
7. Inductively, for i from 1 to n change the signs of the eigenvectors given by the columns of $U_{i}^{\prime \prime}$ to obtain orthogonal matrices U_{i} such that

$$
U_{i-1}^{t} \circ B_{i} \circ U_{i} \approx\left(\begin{array}{ccc}
0 & 0 & 0 \\
\Sigma_{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=: \bar{\Sigma}_{i} .
$$

8. Return U_{0}, \ldots, U_{n} and r_{1}, \ldots, r_{n}.

Proof of concept. We show that we the algorithm produces a good approximation in case
i) the Laplacians $\Delta_{i}=A_{i}^{t} \circ A_{i}+A_{i+1} \circ A_{i+1}^{t}$ have no non-zero multiple eigenvalues,
ii) the approximations B_{i} of the A_{i} are good enough; in particular, the disturbed non-zero eigenvalues stay apart,
iii) the disturbed zero eigenvalues do not accidentally coincide up to a large relative precision, and
iv) we compute with high enough precision.

Indeed, by ii) and iii) we determine the ranks in step 3 correctly. So in step 5 we will reach approximately a diagonal matrix, and it remains to adjust the signs.

Remark 3.4. For the choice of the thresholds b in Algorithm 3.1 and Algorithm 3.3 we have only experimental evidence. In particular our default value 10^{-4} has no justification, not even heuristically. We leave it as an open problem to derive a justified choice, which might depend also on the ranks $c_{i}=\operatorname{rank} C_{i}$ of the \mathbb{R}-vector spaces in the complex.

Example 3.5. We consider the complex

$$
0 \longleftarrow \mathbb{R}^{3} \stackrel{A_{1}}{\longleftarrow} \mathbb{R}^{5} \stackrel{A_{2}}{\longleftarrow} \mathbb{R}^{5} \stackrel{A_{3}}{\leftrightharpoons} \mathbb{R}^{3} \longleftarrow 0
$$

defined by the matrices

$$
\left(\begin{array}{ccccc}
14 & -4 & 16 & 3 & -9 \\
14 & -5 & 20 & 9 & 1 \\
4 & 1 & -4 & -12 & -24
\end{array}\right),\left(\begin{array}{ccccc}
-43 & -50 & -27 & -51 & 9 \\
12 & -24 & 36 & 0 & -12 \\
35 & 34 & 27 & 39 & -9 \\
-3 & -10 & 3 & -6 & -1 \\
-11 & -10 & -9 & -12 & 3
\end{array}\right),\left(\begin{array}{ccc}
-8 & -16 & -12 \\
-5 & -1 & -15 \\
-1 & 13 & -14 \\
12 & 12 & 28 \\
-1 & 25 & -24
\end{array}\right) .
$$

The SVD normal form of the complex is given by the matrices

$$
\left(\begin{array}{ccccc}
34.489 & 0 & 0 & 0 & 0 \\
0 & 28.714 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
114.08 & 0 & 0 & 0 & 0 \\
0 & 47.193 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
45.993 & 0 & 0 \\
0 & 35.209 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

So each of the matrices A_{i} has rank 2, and all homology groups H_{i} are 1dimensional.

The transformation into the normal form is given by the orthogonal matrices

$$
\begin{gathered}
\left(\begin{array}{ccc}
-.6553 & .2393 & -.7165 \\
-.7549 & -.1745 & .6322 \\
.0262 & .9551 & .2950
\end{array}\right),\left(\begin{array}{cccccc}
-.5694 & .1646 & -.7702 & -.1318 & .1950 \\
.1862 & .0303 & .0679 & -.9710 & .1301 \\
-.7448 & -.1213 & .6010 & -.0706 & .2537 \\
-.2631 & -.4289 & -.0790 & -.1821 & -.8411 \\
.1309 & -.8794 & -.1862 & .0404 & .4162
\end{array}\right), \\
\left(\begin{array}{ccccc}
.5019 & -.1770 & .2288 & .5338 & .6160 \\
.5257 & .6126 & .3335 & .1127 & -.4738 \\
.3586 & -.7250 & .3461 & -.3015 & -.3677 \\
.5735 & .0970 & -.5972 & -.5061 & .2210 \\
-.1195 & .2417 & .6000 & -.5961 & .4604
\end{array}\right),\left(\begin{array}{ccc}
-.2525 & -.2843 & -.9249 \\
.1813 & -.9528 & .2434 \\
-.9505 & -.1062 & .2921
\end{array}\right)
\end{gathered}
$$

which we have printed here with 4 valid digits only. In other words, the diagram

commutes (up to the chosen precision). The first matrix A_{1}^{+}of the pseudoinverse
complex over \mathbb{R}_{53} printed with 6 valid digits is

$$
\left(\begin{array}{ccc}
.0121907 & .0114627 & .0050431 \\
-.00328525 & -.00426002 & .00115014 \\
.013141 & .0170401 & -.00460058 \\
.00142545 & .00836608 & -.0144655 \\
-.00981498 & .00248076 & -.0291523
\end{array}\right)
$$

which is an approximation of

$$
\left(\begin{array}{ccc}
5978 / 490373 & 5621 / 490373 & 2473 / 490373 \\
-1611 / 490373 & -2089 / 490373 & 564 / 490373 \\
6444 / 490373 & 8356 / 490373 & -2256 / 490373 \\
699 / 490373 & 8205 / 980746 & -14187 / 980746 \\
-4813 / 490373 & 2433 / 980746 & -28591 / 980746
\end{array}\right)
$$

Remark 3.6. This simple example is pretty stable against errors. If we disturb the entries of the matrices in the complex arbitrarily by an relative error of \leq 10^{-3}, then taking 10^{-2} as a threshold the algorithms predicts the dimension of the homology groups still correctly, see SVDComplexes.

4 Projection

One application of using the singular value decomposition of a complex is to compute the pseudoinverse complex as described in Section2. In this section, we consider projecting a sequence of matrices onto a complex.

Algorithm 4.1 (Projection to a complex).
INPUT: A sequence B_{1}, \ldots, B_{n} of $c_{i-1} \times c_{i}$ matrices and a sequence h_{0}, \ldots, h_{n} of desired dimension of homology groups.
OUTPUT: A sequence A_{1}, \ldots, A_{n} of matrices which define a complex with desired homology, if possible.

1. Set $r_{0}=0$ and compute r_{1}, \ldots, r_{n+1} from $c_{i}=r_{i}+r_{i+1}+h_{i}$ recursively. If $r_{i}<0$ for some i or $r_{n+1} \neq 0$, then return the error message: "The rank conditions cannot be satisfied."
2. Set $Q_{0}=0$ and $P_{0}=\mathrm{id}_{C_{0}}$.
3. For $i=1, \ldots, n$
a. Compute the $\left(c_{i-1}-r_{i-1}\right) \times c_{i}$ matrix $\widetilde{B}_{i}=P_{i-1} \circ B_{i}$.
b. Compute the singular value decomposition

$$
\widetilde{B}_{i}=\widetilde{U}_{i-1} \circ \widetilde{\Sigma}_{i} \circ \widetilde{V}_{i}^{t}
$$

c. Define

$$
\bar{\Sigma}_{i}=\begin{aligned}
& r_{i-1} \\
& r_{i} \\
& h_{i-1}
\end{aligned}\left(\begin{array}{ccc}
r_{i} & r_{i+1} & h_{i} \\
0 & 0 & 0 \\
\Sigma_{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

as a block matrix where Σ_{i} is a diagonal matrix with entries the largest r_{i} singular values of \widetilde{B}_{i}.
d. Decompose

$$
\widetilde{V}_{i}^{t}=\binom{Q_{i}}{P_{i}}
$$

into submatrices consisting of the first r_{i} and last $c_{i}-r_{i}$ rows of \widetilde{V}_{i}^{t}.
e. Define

$$
U_{i-1}^{t}=\binom{Q_{i-1}}{\widetilde{U}_{i-1}^{t} \circ P_{i-1}} .
$$

f. If $i=n$, then $U_{n}=\tilde{V}_{n}^{t}$.
4. Set $A_{i}=U_{i-1} \circ \bar{\Sigma}_{i} \circ U_{i}^{t}$ and return A_{1}, \ldots, A_{n}.

Remark 4.2. By construction, it is clear that Algorithm4.1 computes a complex. We leave it as an open problem to compute the "closest" complex to the given matrices B_{1}, \ldots, B_{n}.
Example 4.3. In our package RandomComplexes, we have implemented several methods to produce complexes over the integers. The first function randomChainComplex takes as input a sequences h and r of desired dimension of homology groups and ranks of the matrices. It uses the LLL algorithm [LLL82] to produce example of desired moderate height. It runs fast for complexes of ranks $c_{i} \leq 100$ but is slow for larger examples because of the use of the LLL-algorithm. Example 3.5 was produced this way.

We test Algorithms 3.1 and 3.3 to verify the desired dimension of the homology groups. Table 1 compares the timings of these two algorithms on various examples of this sort.

$c_{0}, \ldots c_{3}$	h_{0}, \ldots, h_{3}	Alg. $3.1(\mathrm{sec})$	Alg.[3.3(sec)
$7,21,28,14$	$2,3,2,1$.00211	.0110
$8,27,35,17$	$3,6,4,2$.00225	.0182
$9,33,42,20$	$4,9,6,3$.00254	.0294
$10,39,49,23$	$5,12,8,4$.00291	.0647
$11,45,56,26$	$6,15,10,5$.00355	.1090
$12,51,63,29$	$7,18,12,6$.00442	.1150

Table 1: Comparison of timings using Algorithms 3.1 and 3.3 .

Example 4.4. Our second series of examples is constructed from Stanley-Reisner simplicial complexes of randomly chosen square free monomial ideals. In the specific cases below, we selected N square free monomials at random in a polynomial ring with k variables which are summarized in Table 2, Algorithm 3.3 does not apply to these examples since repeated eigenvalues occur.

5 Application to syzygies

We conclude with an application concerning the computation of Betti numbers in free resolutions. Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be the standard graded polynomial ring and M a finitely generated graded S-module. Then, by Hilbert's syzygy theorem, M has a finite free resolution:

$$
0 \longleftarrow M \longleftarrow F_{0} \stackrel{\varphi_{1}}{\longleftarrow} F_{1} \stackrel{\varphi_{2}}{\longleftarrow} \ldots \stackrel{\varphi_{c}}{\longleftarrow} F_{c} \longleftarrow 0
$$

by free graded S-modules $F_{i}=\sum_{j} S(-i-j)^{b_{i j}}$ of length $c \leq n+1$. Here $S(-\ell)$ denotes the free S-module with generator in degree ℓ.

If we choose in each step a minimal number of homogenous generators, i.e., if $\varphi_{i}\left(F_{i}\right) \subset\left(x_{0}, \ldots x_{n}\right) F_{i-1}$, then the free resolution is unique up to an isomorphism. In particular, the Betti numbers $b_{i j}$ of a minimal resolution are numerical invariants of M. On the other hand, for basic applications of free resolutions such as the computation of Ext and Tor-groups, any resolution can be used.

Starting with a reduced Gröbner basis of the submodule $\varphi_{1}\left(F_{1}\right) \subset F_{0}$ there is, after some standard choices on orderings, a free resolution such that at each step the columns of φ_{i+1} form a reduced Gröbner basis of $\operatorname{ker} \varphi_{i}$. This resolution is uniquely determined however, in most cases, highly nonminimal. An algorithm to compute this standard nonminimal resolution was developed in [EMSS16] which

Table 2: Comparison of timings using Algorithm 3.1.
turned out to be much faster then the computation of a minimal resolution by previous methods.

The following forms the examples which we use as test cases.
Proposition 5.1 (Graded Artinian Gorenstein Algebras). Let $f \in \mathbb{Q}\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree d. In $S=\mathbb{Q}\left[\partial_{0}, \ldots, \partial_{n}\right]$, consider the ideal $I=\langle D \in S \mid D(f)=0\rangle$ of constant differential operators which annihilate f. Then, $A_{f}^{\perp}:=S / I$ is an artinian Gorenstein Algebra with socle in degree d.

For more information on this topic see, e.g., [RS00].
Example 5.2. Let $f=\ell_{1}^{4}+\ldots+\ell_{18}^{4} \in \mathbb{Q}\left[x_{0}, \ldots, x_{7}\right]$ be the sum of $4^{\text {th }}$ powers of 18 sufficiently general chosen linear forms ℓ_{s}. The Betti numbers $b_{i j}$ of the minimal resolution $M=A_{f}^{\perp}$ as an S-module are zero outside the range $i=0, \ldots, 8, j=0, \ldots, 4$. In this range, they take the values:

$j \backslash i$	0	1	2	3	4	5	6	7	8
0	1	.	.	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
1	\cdot	18	42	\cdot	.	\cdot	.	.	\cdot
2	\cdot	10	63	288	420	288	63	10	.
3	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	42	18	.
4	\cdot	1							

which, for example, says that $F_{2}=S(-3)^{42} \oplus S(-4)^{63}$. We note that the symmetry of the table is a well-known consequence of the Gorenstein property.

On the other hand the Betti numbers of the uniquely determined nonminimal resolution are much larger:

$j \backslash i$	0	1	2	3	4	5	6	7	8
0	1	\cdot	\cdot
1	.	18	55	75	54	20	3	.	.
2	.	23	145	390	580	515	273	80	10
3	.	7	49	147	245	245	147	49	7
4	.	1	7	21	35	35	21	7	1

To deduce from this resolution the Betti numbers of the minimal resolution, we can use the formula

$$
b_{i j}=\operatorname{dim} \operatorname{Tor}_{i}^{S}(M, \mathbb{Q})_{i+j} .
$$

For example, to deduce $b_{3,2}=288$, we have to show that the $5^{\text {th }}$ constant strand of the nonminimal resolution

has homology only in one position.
The matrices defining the differential in the nonminimal resolution have polynomial entries whose coefficients in \mathbb{Q} can have very large height such that the computation of the homology of the strands becomes infeasible. There are two options, how we can get information about the minimal Betti numbers:

- Pick a prime number p which does not divided any numerator of the normalized reduced Gröbner basis and then reduce modulo p yielding a module $M(p)$ with the same Hilbert function as M. Moreover, for all but finitely many primes p, the Betti numbers of M as an $\mathbb{Q}\left[x_{0}, \ldots, x_{n}\right]$-module and of $M(p)$ as $\mathbb{F}_{p}\left[x_{0}, \ldots, x_{n}\right]$-module coincide.
- Pass from a normalized reduced Gröbner basis of $\varphi_{1}\left(F_{1}\right) \subset F_{0}$ to a floatingpoint approximation of the Gröber basis. Since in the algorithm for the computation of the uniquely determined nonminimal resolution (EMSS16], the majority of ground field operations are multiplications, we can hope that this computation is numerically stable and that the singular value decompositions of the linear strands will detect the minimal Betti numbers correctly.

Example 5.3. We experimented with artinian graded Gorenstein algebras constructed from randomly chosen forms $f \in \mathbb{Q}\left[x_{0}, \ldots, x_{7}\right]$ in 8 variables which were the sum of $n 4^{\text {th }}$ powers of linear forms where $11 \leq n \leq 20$. This experiment showed that roughly 95% the Betti table computed via floating-point arithmetic coincided with one computed over a finite field. The reason for this was that the current implementation uses only double precision floating-point computations which caused difficulty in detecting zero singular values correctly. This would be improved following Remark ??

We now consider a series of examples related to the famous Green's conjecture on canonical curves which was proved in a landmark paper [Voi05] for generic curves. In $S=\mathbb{Q}\left[x_{0}, \ldots, x_{a}, y_{0}, \ldots, y_{b}\right]$, consider the homogeneous ideal J_{e} generated by the 2×2 minors of

$$
\left(\begin{array}{cccc}
x_{0} & x_{1} & \ldots & x_{a-1} \\
x_{1} & x_{2} & \ldots & x_{a}
\end{array}\right) \text { and }\left(\begin{array}{cccc}
y_{0} & y_{1} & \ldots & y_{b-1} \\
y_{1} & y_{2} & \ldots & y_{b}
\end{array}\right)
$$

together with the entries of the $(a-1) \times(b-1)$ matrix

$$
\left(\begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{2} & x_{3} \\
\vdots & \vdots & \vdots \\
x_{a-2} & x_{a-1} & x_{a}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & e_{2} \\
0 & -e_{1} & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
y_{0} & y_{1} & \ldots & y_{b-2} \\
y_{1} & y_{2} & \ldots & y_{b-1} \\
y_{2} & y_{3} & \ldots & y_{b}
\end{array}\right)
$$

for some parameters $e_{1}, e_{2} \in \mathbb{Q}$. Then, by [ES18], J_{e} is the homogeneous ideal of an arithmetically Gorenstein surface $X_{e}(a, b) \subset \mathbb{P}^{a+b+1}$ with trivial canonical bundle. Moreover, the generators of J_{e} form a Gröbner basis. To verify the generic Green's conjecture for curves of odd genus $g=2 a+1$, it suffices to prove, for some values $e=\left(e_{1}, e_{2}\right) \in \mathbb{Q}^{2}$, that $X_{e}(a, a)$ has a "natural" Betti table, i.e., for each k there is at most one pair (i, j) with $i+j=k$ and $b_{i j}\left(X_{e}(a, a)\right) \neq 0$. For special values of $e=\left(e_{1}, e_{2}\right)$, e.g., $e=(0,-1)$, it is known that the resolution is not natural, see [ES18].

Example 5.4. For $a=b=6$, our implementation computes the following Betti numbers for the nonminimal resolution: as

\mid	0	1	2	3	4	5	6	7	8	9	10
1	\cdot	\cdot
\mid	.	55	320	930	1688	2060	1728	987	368	81	8
\mid	.	.	39	280	906	1736	2170	1832	1042	384	83
	8										
.	.	.	1	8	28	56	70	56	28	8	1

For $e=(2,-1)$ and $e=(0,-1)$, our implementation correctly computes the following Betti numbers, respectively, of the minimal resolutions:

0	1	2	3	4	5	6	7	8	9	10	11
1
.	55	320	891	1408	1155
.	1155	1408	891	320	55	.
.	.	-	1
1	-	.	.
.	55	320	900	1488	1470	720	315	80	9	.	.
		9	80	315	720	1470	1488	900	320	55	.
.	-	-	-	.	-	1

Each of these computations took several minutes. To consider larger examples, more efficient algorithms and/or implementations for computing the singular value decomposition of a complex are needed.

References

[AFW06] D.N. Arnold, R.S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006), 1-155.
[AFW10] , Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281-354.
[EMSS16] B. Eröcal, O. Motsak, F.-O. Schreyer, and A. Steenpaß, Refined algorithms to compute syzygies, J. Symbolic Comput. 74 (2016), 308-327.
[ES18] D. Eisenbud and F.-O. Schreyer, Equation and syzygies of $K 3$ carpets and union of scrolls, preprint, arXiv:1804.08011 (2018).
[LLL82] A.K. Lenstra, H.W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515-534.
[M2] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
[Pen55] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
[RS00] K. Ranestad and F.-O. Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147-181.
[Voi05] C. Voisin, Green's canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005), no. 5, 1163-1190.

Author Addresses:
Danielle A. Brake
Department of Mathematics, University of Wisconsin - Eau Claire, Eau Claire WI 54702
brakeda@uwec.edu
Jonathan D. Hauenstein
Department of Applied and Computational Mathematics and Statistics, University
of Notre Dame, Notre Dame IN 46556
hauenstein@nd.edu
Frank-Olaf Schreyer
Mathematik und Informatik, Universität des Saarlandes, Campus E2 4, D-66123
Saarbrücken, Germany
schreyer@math.uni-sb.de
Andrew J. Sommese
Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame IN 46556
sommese@nd.edu
Michael E. Stillman
Department of Mathematics, Cornell University, Ithaca NY 14853
mike@math.cornell.edu

