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Abstract

We offer a unified treatment of distinct measures of well-posedness
for homogeneous conic systems. To that end, we introduce a distance
to infeasibility based entirely on geometric considerations of the ele-
ments defining the conic system. Our approach sheds new light on and
connects several well-known condition measures for conic systems, in-
cluding Renegar’s distance to infeasibility, the Grassmannian condition
measure, a measure of the most interior solution, and other geometric
measures of symmetry and of depth of the conic system.
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1 Introduction

The focus of this work is the geometric interpretation and coherent unified
treatment of measures of well-posedness for homogeneous conic problems.
We relate these different measures via a new geometric notion of a distance
to infeasibility.

The development of condition measures in optimization was pioneered by
Renegar [32,34,35] and has been further advanced by a number of scholars.
Condition measures provide a fundamental tool to study various aspects
of problems such as the behavior of solutions, robustness and sensitivity
analysis [12, 28, 30, 33], and performance of algorithms [5, 21, 23, 29, 31, 35].
Renegar’s condition number for conic programming is defined in the spirit
of the classical matrix condition number of linear algebra, and is explicitly
expressed in terms of the distance to infeasibility, that is, the smallest per-
turbation on the data defining a problem instance that renders the problem
infeasible [34,35]. By construction, Renegar’s condition number is inherently
data-dependent. A number of alternative approaches for condition measures
are defined in terms of the intrinsic geometry of the problem and indepen-
dently of its data representation. Condition measures of this kind include
the symmetry measure studied by Belloni and Freund [3], the sigma measure
used by Ye [42], and the Grassmannian measure introduced by Amelunxen
and Bürgisser [1] which extends a construction of Belloni and Freund [6].
In addition, other condition measures such as the ones used by Goffin [24],
Cheung and Cucker [14], Cheung et al. [16], and by Peña and Soheili [31]
are defined in terms of most interior solutions.

At a fundamental level, a main goal of a condition measure is to capture
the “difficulty” or “tractability” of a problem. The variety of condition mea-
sures for optimization reflects the challenges in achieving this goal. This is
not surprising since the actual difficulty of a problem generally depends on
the representation and solution methods available. A particular condition
number would typically yield overly conservative bounds on quantities of
interest, such as geometric properties of the solution set or the convergence
rate of an algorithm, if those quantities are invariant under some transfor-
mations but the condition number is not. The development of various kinds
of condition measures can be attributed to this tension between condition
measures and invariance under different kinds of transformations. The cen-
tral goal of this paper is to shed new light on and relieve this tension. To
achieve that goal, we focus our attention on the following three minimal
components of a conic system: the convex cone and linear subspace that
define the conic system, and an underlying norm in the ambient space. Our
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approach enables us to uncover and highlight common ideas and differences
underlying the most popular condition measures for conic systems, reveals
some extensions, and establishes close relationships among them.

We define a data-independent distance to infeasibility that depends solely
on the above three minimal components (cone, linear subspace, and norm).
In the particular case when the norm is the Euclidean norm, the data-
independent distance to infeasibility coincides with the Grassmannian con-
dition measure introduced by Belloni and Freund [6] and further extended
by Amelunxen and Bürgisser [1]. The latter concept in turn is closely re-
lated to the angular separation criterion proposed by Flinth [22] to formalize
stability and robustness properties that lie at the heart of sparse signal re-
covery [2,8–11,13]. However, we should emphasize that our construction of
a data-independent distance to infeasiblity applies to any norm (not nec-
essarily Euclidean). The flexibility of working with non-Euclidean norms
and more general non-Euclidean geometries has led to major advances in
optimization, particularly in first-order algorithms [39, 40]. Non-Euclidean
norms typically fit the geometry of the problem more naturally, prime exam-
ples being the one-norm for the non-negative orthant and the nuclear norm
for the positive semidefinite cone. The flexibility in the choice of norms
is a main novelty in our construction and a key feature for most of our
developments. In particular, the flexibility in the choice of norm enables
us to establish a number of interesting connections with other geometric
properties of the conic systems such as a measure of symmetry and a mea-
sure of depth of the conic system. Our derivation of these connections in
turn provides new interesting insight into some canonical induced eigenvalue
mappings and induced norms associated to the cone defining the conic sys-
tem. The latter objects are tied to the structural properties of the cone and
play central roles in optimization models and algorithms. Two canonical
examples of induced norms and their duals are the infinity and one norms
in Rn induced by the non-negative orthant Rn+, and the operator norm and
nuclear norm in Sn induced by the positive semidefinite cone Sn+.

Our developments highlight the tradeoffs of different notions of condi-
tioning. That kind of insight in turn suggests preconditioning and recondi-
tioning techniques to improve the well-posedness of a problem. The former
type of technique (preconditioning) can be applied to preprocess the data
representing a problem so that the problem is “better posed”. Although
preprocessing procedures are routinely used by optimization solvers, they
are not always founded on a formal theory. The latter type of technique
(reconditioning) can be seen as an adaptive variant of preconditioning that
transforms a problem as new information is gathered. This type of recon-
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ditioning technique underlies a variety of rescaling algorithms such as the
rescaled perceptron algorithm of Dunagan and Vempala [19], the more re-
cent Chubanov’s rescaling and projection algorithm [17] and a number of
subsequent related developments [5,26,27,31,36]. Most of these algorithms
are based on alternating between a basic procedure and a rescaling procedure.
The basic procedure attempts to solve the problem and succeeds if the prob-
lem is well conditioned. If it does not succeed, then it provides guidance for
the rescaling procedure to recondition the problem so that the basic proce-
dure can be applied again to an equivalent but better conditioned problem.
A similar alternating principle also underlies a variety of increasingly popular
restarting techniques for first-order algorithms for convex optimization [37].

We focus on the feasibility problems that can be represented as the inter-
section of a closed convex cone with a linear subspace. Feasibility problems
of this form are pervasive in optimization. The constraints of linear, semidef-
inite, and more general conic programming problems are written explicitly
as the intersection of a (structured) convex cone with a linear (or, more
generally, affine) subspace. The fundamental signal recovery property in
compressed sensing can be stated precisely as the infeasibility of a homo-
geneous conic system for a suitable choice of a cone and linear subspace as
explained in [2,13]. Our data-independent distance to infeasibility is a mea-
sure of proximity between the orthogonal complement of this linear subspace
and the dual cone. This distance depends only on the norm, cone, and linear
subspace. Specific choices of norms lead to interpretations of this distance
as the Grassmannian measure [1] as well as a measure of the most interior
solution [16]. Our approach also yields neat two-way bounds between the
sigma measure [42] and symmetry measure [3, 4] in terms of this geometric
distance. Our work is inspired by [1], and is similar in spirit to an abstract
setting of convex processes [7, Section 5.4] (also see [18]). For a more general
take on condition numbers for unstructured optimization problems and for
an overview of recent developments we refer the reader to [43].

The main sections of the paper are organized as follows. We begin by
defining our data-independent distance to infeasibility in Section 2, where
we also show that it coincides with the Grassmannian distance of [1] for the
Euclidean norm. In Section 3 we discuss Renegar’s distance to infeasibility
and show in Theorem 1 that the ratio of the geometric distance to infea-
sibility and Renegar’s distance is sandwiched between the reciprocal of the
norm of the matrix and the norm of its set-valued inverse, hence extend-
ing [1, Theorem 1.4] to general norms. In Section 4 we show that the cone
induced norm leads to the interpretation of the distance to infeasibility in
terms of the most interior solution (Proposition 3). We also provide further
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interpretation as eigenvalue estimates for the cone of positive semidefinite
matrices and for the nonnegative orthant.

In Section 5 we propose an extension of the sigma measure of Ye and
establish bounds relating the sigma measure and the distance to infeasibility
(Proposition 5). Section 6 relates our distance infeasibility and the sigma
measure to the symmetry measure used by Belloni and Freund via neat sym-
metric bounds in Theorem 2 and Corollary 1. Finally, Section 7 describes
extensions of our main developments via a more flexible choice of norms.

2 Data-independent distance to infeasibility

Let E be a finite dimensional real vector space with an inner product 〈·, ·〉,
endowed with a (possibly non-Euclidean) norm ‖ · ‖. Recall that the dual
norm ‖ · ‖∗ is defined for u ∈ E as

‖u‖∗ := max
‖x‖=1

〈u, x〉 .

Notice that by construction, the following Hölder’s inequality holds for all
u, x ∈ E

| 〈u, x〉 | ≤ ‖u‖∗ · ‖x‖. (1)

Let K ⊆ E be a closed convex cone. Given a linear subspace L ⊆ E,
consider the feasibility problem

find x ∈ L ∩K \ {0} (2)

and its alternative
find u ∈ L⊥ ∩K∗ \ {0}. (3)

Here K∗ denotes the dual cone of K, that is,

K∗ := {u ∈ E : 〈u, x〉 ≥ 0 ∀x ∈ K},

and L⊥ is the orthogonal complement of the linear subspace L,

L⊥ := {u ∈ E : 〈u, x〉 = 0 ∀x ∈ L}.

In what follows we assume that K ⊆ E is a closed convex cone that is
also regular, that is, int(K) 6= ∅ and K contains no lines. In our analysis
the cone K is fixed, and the linear subspace L is treated as the problem
instance. This is a standard approach that stems from the real-world models,
where the cone is a fixed object with well-known structure that encodes the
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model’s structure (for instance, the nonnegative orthant, the cone of positive
semidefinite matrices, copositive or hyperbolicity cone), and the problem
instance is encoded via the coefficients of a linear system that in our case
corresponds to the linear subspace.

Observe that (2) and (3) are alternative systems: one of them has a
strictly feasible solution if and only if the other one is infeasible. When
neither problem is strictly feasible, they both are ill-posed: each problem
becomes infeasible for arbitrarily small perturbations of the linear subspace.

The main object of this paper is the following data-independent distance
to infeasibility of (2):

ν(L) := min
u∈K∗,y∈L⊥
‖u‖∗=1

‖u− y‖∗. (4)

Observe that ν(L) ≥ 0 and L ∩ int(K) 6= ∅ if and only if ν(L) > 0. Fur-
thermore, ν(L) is the distance between the space L⊥ and the set {u ∈
K∗ : ‖u‖∗ = 1}, or equivalently between L⊥ and {u ∈ K◦ : ‖u‖∗ = 1} for
K◦ = −K∗, as illustrated in Figure 1. Since both (2) and (3) are defined

K

K◦

L

L⊥

ȳ

ū

Figure 1: Illustration of ν(L) when ν(L) > 0. Here ū and ȳ denote the
points attaining the minimum in (4), so that ν(L) = ‖ū− ȳ‖∗.

via a cone and a linear subspace, there is a natural symmetric version of
distance to infeasibility for (3) obtained by replacing K∗, L⊥ and ‖ · ‖∗ in
(4) with their primal counterparts.

When the norm ‖ · ‖ is Euclidean, that is, ‖v‖ = ‖v‖∗ = ‖v‖2 =
√
〈v, v〉,

the distance to infeasibility (4) coincides with the Grassmann distance to ill-
posedness defined by Amelunxen and Bürgisser [1]. To see this, first observe
that the Euclidean norm is naturally related to angles. Given x, y ∈ E \ {0}
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let ∠(x, y) := arccos 〈x,y〉
‖x‖2‖y‖2 ∈ [0, π]. Given a linear subspace L ⊆ E and a

closed convex cone C ⊆ E, let

∠(L,C) := min{∠(x, v) : x ∈ L \ {0}, v ∈ C \ {0}} ∈ [0, π/2].

Proposition 1. If ‖ · ‖ = ‖ · ‖2 then

ν(L) = sin∠(L⊥,K∗).

Proof. Since ∠(L⊥,K∗) ∈ [0, π/2] we have

sin∠(L⊥,K∗) = min
u∈K∗,y∈L⊥

u,y 6=0

sin∠(y, u) = min
u∈K∗,y∈L⊥
‖u‖2=1

‖u− y‖2 = ν(L).

Proposition 1 and [1, Proposition 1.6] imply that when ‖ · ‖ = ‖ · ‖2
the distance to infeasibility ν(L) matches the Grassmann distance to ill-
posedness of [1]. The flexibility in the choice of norm in E is a main feature
in our construction of ν(L) as some norms are naturally more compatible
with the cone. Suitable choice of norms generally yield sharper results in
various kinds of analyses. In particular, in condition-based complexity es-
timates an appropriately selected norm typically leads to tighter bounds.
The articles [15,31] touch upon this subject, and consistently in [12] a sup-
norm is deemed a convenient choice for the perturbation analysis of linear
programming problems.

We will rely on the following characterization of ν(L).

Proposition 2. If L is a linear subspace of E and L∩ int(K) 6= ∅ then the
distance to infeasibility (4) can be equivalently characterized as

ν(L) = min
u∈K∗
‖u‖∗=1

max
x∈L
‖x‖≤1

〈u, x〉 .

Proof. The construction of the dual norm and Sion’s minimax theorem [38]
imply that for all u ∈ E

min
y∈L⊥

‖u− y‖∗ = min
y∈L⊥

max
x∈E
‖x‖≤1

〈u− y, x〉 = max
x∈E
‖x‖≤1

min
y∈L⊥

〈u− y, x〉 . (5)

Next, observe that for all x ∈ E

min
y∈L⊥

〈−y, x〉 =

{
−∞ if x 6∈ L
0 if x ∈ L. (6)
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Putting (5) and (6) together we get

min
y∈L⊥

‖u− y‖∗ = max
x∈L
‖x‖≤1

〈u, x〉 .

Therefore ν(L) = min
u∈K∗,y∈L⊥
‖u‖∗=1

‖u− y‖∗ = min
u∈K∗
‖u‖∗=1

max
x∈L
‖x‖≤1

〈u, x〉 .

We conclude this section by briefly noting two natural variants ν(L) and
V(L) of ν(L). To ease our exposition, we defer a more detailed discussion
of these variants to Section 7. The variant ν(L) is obtained by normalizing
y instead of u, that is,

ν(L) := min
u∈K∗,y∈L⊥
‖y‖∗=1

‖u− y‖∗.

The second variant incorporates additional flexibility by allowing the use of
different norms in the normalization of u and in the difference y−u, that is,

V(L) := min
u∈K∗,y∈L⊥
‖u‖∗=1

|||u− y|||∗.

where ||| · ||| is an additional norm in E.

3 Renegar’s distance to infeasibility

We next relate the condition measure ν(·) with the classical Renegar’s dis-
tance to infeasibility. A key conceptual difference between Renegar’s ap-
proach and the approach used above is that Renegar [34,35] considers conic
feasibility problems where the linear spaces L and L⊥ are explicitly defined
as the image and the kernel of the adjoint of some linear mapping.

For a linear mapping A : F → E between two normed real vector spaces
F and E consider the conic systems (2) and (3) defined by taking L = Im(A).
These two conic systems can respectively be written as

Ax ∈ K \ {0} (7)

and
A∗w = 0, w ∈ K∗ \ {0}. (8)

Here A∗ : E → F denotes the adjoint operator of A, that is, the linear
mapping satisfying 〈y,Aw〉 = 〈A∗y, w〉 for all y ∈ E,w ∈ F.
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Let L(F,E) denote the set of linear mappings from F to E. Endow
L(F,E) with the operator norm, that is,

‖A‖ := max
w∈F
|w|≤1

‖Aw‖,

where | · | is the norm in F .
Let A ∈ L(F,E) be such that (7) is feasible. The distance to infeasibility

of (7) is defined as

dist(A, I) := inf
{
‖A− Ã‖ : Ãx ∈ K \ {0} is infeasible

}
= inf

{
‖A− Ã‖ : Ã∗w = 0 for some w ∈ K∗ \ {0}

}
.

Observe that (7) is strictly feasible if and only if dist(A, I) > 0.
Given A ∈ L(F,E), let A−1 : Im(A) ⇒ F be the set-valued mapping

defined via x 7→ {w ∈ F : Aw = x} and

‖A−1‖ := max
x∈Im(A)
‖x‖≤1

min
w∈A−1(x)

|w|.

The following result is inspired by and extends [1, Theorem 1.4] and [6,
Theorem 3.1]. More precisely, [1, Theorem 1.4] and [6, Theorem 3.1] coincide
with Theorem 1 in the special case ‖ · ‖ = ‖ · ‖2.

Theorem 1. Let A ∈ L(F,E) be such that (7) is strictly feasible and let
L := Im(A). Then

1

‖A‖
≤ ν(L)

dist(A, I)
≤ ‖A−1‖.

Proof. First, we prove dist(A, I) ≤ ν(L)‖A‖. To that end, let ū ∈ K∗ be
such that ‖ū‖∗ = 1 and ν(L) = max

x∈L
‖x‖≤1

〈ū, x〉 as in Proposition 2. Then

|A∗ū|∗ = max
w∈F
|w|≤1

〈ū, Aw〉 ≤ ν(L)‖A‖. (9)

Let v̄ ∈ E be such that ‖v̄‖ = 1 and 〈ū, v̄〉 = ‖ū‖∗ = 1. Now construct
∆A : F → E as follows

∆A(w) := −〈A∗ū, w〉 v̄.

Observe that ‖∆A‖ = |A∗ū|∗ · ‖v̄‖ ≤ ν(L)‖A‖ (by (9)) and ∆A∗ : E → F is
defined by

∆A∗(y) = −〈y, v̄〉A∗ū.
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In particular (A+∆A)∗ū = A∗ū−〈ū, v̄〉A∗ū = 0 and ū ∈ K∗\{0}. Therefore

dist(A, I) ≤ ‖∆A‖ ≤ ν(L)‖A‖.

Next, we prove ν(L) ≤ ‖A−1‖ dist(A, I). To that end, suppose Ã ∈ L(F,E)
is such that ker(Ã∗) ∩ K∗ \ {0} 6= ∅. Let ū ∈ K∗ be such that ‖ū‖∗ = 1
and Ã∗(ū) = 0. From the construction of ‖A−1‖, it follows that for all
x ∈ L = Im(A) there exists w ∈ A−1(x) such that |w| ≤ ‖A−1‖ · ‖x‖. Since
ū ∈ K∗ and ‖ū‖∗ = 1, Proposition 2 implies that

ν(L) ≤ max
x∈Im(A)
‖x‖≤1

〈ū, x〉 ≤ max
w∈F

|w|≤‖A−1‖

〈ū, Aw〉 = ‖A−1‖ · |A∗ū|∗.

Next, observe that |A∗ū|∗ = |(Ã−A)∗ū|∗ ≤ ‖Ã−A‖ because ‖ū‖∗ = 1 and
Ã∗ū = 0. Thus ν(L) ≤ ‖A−1‖ ·‖Ã−A‖. Since this holds for all Ã ∈ L(F,E)
such that ker(Ã∗) ∩K∗ \ {0} 6= ∅ it follows that

ν(L) ≤ ‖A−1‖ dist(A, I).

Proposition 7 in Section 7 below discusses an analogue of Theorem 1 for
the case when L = ker(A) for some linear map A : E → F . We defer that
discussion to Section 7 because Proposition 7 relies on the variant ν(L) of
ν(L).

4 Induced norm and induced eigenvalue mappings

In addition to our assumption that K ⊆ E is a regular closed convex cone,
throughout the sequel we assume that e ∈ int(K) is fixed. We next describe
a norm ‖ · ‖e in E and a mapping λe : E → R induced by the pair (K, e).
These norm and mapping yield a natural alternative interpretation of ν(L)
as a measure of the most interior solution to the feasibility problem x ∈
L ∩ int(K) when this problem is feasible.

Define the norm ‖ · ‖e in E induced by (K, e) as follows (see [15])

‖x‖e := min{α ≥ 0 : x+ αe ∈ K, −x+ αe ∈ K}.

For the special case of the nonnegative orthant Rn+ this norm has a natural

interpretation: it is easy to check that for e =
[
1 · · · 1

]T
we obtain

‖ · ‖e = ‖ · ‖∞. The geometric interpretation is shown in Figure 2. Define
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x

−x

e

x+ eR+

−x+ eR+

‖x‖e = ‖x‖∞

x

−x

e

x+ eR+

−x+ eR+

‖x‖e = ‖x‖∞

Figure 2: Induced norm for the nonnegative orthant.

the eigenvalue mapping λe : E → R induced by (K, e) as follows

λe(x) := max{t ∈ R : x− te ∈ K}.

Observe that x ∈ K ⇔ λe(x) ≥ 0 and x ∈ int(K) ⇔ λe(x) > 0. Further-
more, observe that when x ∈ K

λe(x) = max{r ≥ 0 : v ∈ E, ‖v‖e ≤ r ⇒ x+ v ∈ K}.

Thus for x ∈ K, λe(x) is a measure of how interior x is in the cone K.
It is easy to see that ‖u‖∗e = 〈u, e〉 for u ∈ K∗. In analogy to the standard

simplex, let

∆(K∗, e) := {u ∈ K∗ : ‖u‖∗e = 1} = {u ∈ K∗ : 〈u, e〉 = 1}.

It is also easy to see that the eigenvalue mapping λe has the following alter-
native expression

λe(x) = min
u∈∆(K∗,e)

〈u, x〉 .

The next result readily follows from Proposition 2 and convex duality.

Proposition 3. If ‖ · ‖ = ‖ · ‖e, then for any linear subspace L ⊆ E

ν(L) = min
u∈∆(K∗,e)

max
x∈L
‖x‖≤1

〈x, u〉 = max
x∈L
‖x‖≤1

min
u∈∆(K∗,e)

〈x, u〉 = max
x∈L
‖x‖≤1

λe(x).

Proposition 3 in particular implies that when L∩int(K) 6= ∅ the quantity
ν(L) can be seen as a measure of the most interior point in L∩ int(K). We
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next illustrate Proposition 3 in two important cases. The first case is E = Rn

with the usual dot inner product, K = Rn+ and e =
[
1 · · · 1

]T ∈ Rn+. In
this case ‖ · ‖e = ‖ · ‖∞, ‖ · ‖∗e = ‖ · ‖1, (Rn+)∗ = Rn+ and ∆(Rn+, e) is the
standard simplex ∆n−1 := {x ∈ Rn+ :

∑n
i=1 xi = 1}. Thus λe(x) = min

i=1,...,n
xi

and for ‖ · ‖ = ‖ · ‖e we have

ν(L) = max
x∈L
‖x‖≤1

min
j=1,...,n

xj . (10)

The second special case is E = Sn with the trace inner product, K = Sn+
and e = I ∈ int(Sn+). In this case ‖·‖e and ‖·‖∗e are respectively the operator
norm and the nuclear norm in Sn. More precisely

‖X‖e = max
i=1,...,n

|λi(X)|, ‖X‖∗e =
n∑
i=1

|λi(X)|,

where λi(X), i = 1, . . . , n are the usual eigenvalues of X. Furthermore,
(Sn+)∗ = Sn+ and ∆(Sn+, I) is the spectraplex {X ∈ Sn+ :

∑n
i=1 λi(X) = 1}.

Thus λe(x) = minj=1,...,n λj(X). In addition, in a nice analogy to (10), for
‖ · ‖ = ‖ · ‖e we have

ν(L) = max
X∈L
‖X‖≤1

min
j=1,...,n

λj(X). (11)

5 Sigma measure

The induced eigenvalue function discussed in Section 4 can be defined more
broadly. Given v ∈ K \ {0} define λv : E → [−∞,∞) as follows

λv(x) := max{t : x− tv ∈ K}.

Define the sigma condition measure of a linear subspace L ⊆ E as follows

σ(L) := min
v∈K
‖v‖=1

max
x∈L
‖x‖≤1

λv(x). (12)

The quantity σ(L) can be interpreted as a measure of the depth of L ∩K
within K along all directions v ∈ K. Proposition 3 and Proposition 5(c)
below show that σ(L) coincides with the measure ν(L) of the most interior
point in L ∩K when ‖ · ‖ = ‖ · ‖e.

The construction (12) of σ(L) can be seen as a generalization of the
sigma measure introduced by Ye [42]. Observe that L ∩ int(K) 6= ∅ if and
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only if σ(L) > 0. Furthermore, in this case Proposition 5 below shows that
the quantities σ(L) and ν(L) are closely related. To that end, we rely on
the following analogue of Proposition 2.

Proposition 4. Let L ⊆ E be a linear subspace. Then

σ(L) = min
v∈K,y∈L⊥,u∈K∗
‖v‖=1,〈u,v〉=1

‖u− y‖∗. (13)

Proof. Assume v ∈ K is fixed. The construction of λv implies that

max
x∈L
‖x‖≤1

λv(x) = max
x∈L,t∈R

‖x‖≤1,x−tv∈K

t

= max
x∈L,t∈R
‖x‖≤1

min
u∈K∗

(t+ 〈u, x− tv〉)

= min
u∈K∗

max
x∈L,t∈R
‖x‖≤1

(t+ 〈u, x− tv〉) (14)

= min
u∈K∗
〈u,v〉=1

max
x∈L
‖x‖≤1

〈u, x〉

= min
u∈K∗,y∈L⊥
〈u,v〉=1

‖u− y‖∗,

where on the second line we used the von Neumann minimax theorem [41]
(also see [25, Theorem 11.1]), and the last step follows from the identity

max
x∈L,‖x‖≤1

〈u, x〉 = min
y∈L⊥

‖u−y‖∗ established in the proof of Proposition 2. We

thus get (13) by taking minimum in (14) over the set {v ∈ K : ‖v‖ = 1}.

Proposition 5. Let L ⊆ E be a linear subspace such that L ∩ int(K) 6= ∅.

(a) For any norm ‖ · ‖ in E the following holds

1 ≤ min
v∈K,u∈K∗
‖v‖=1,〈u,v〉=1

‖u‖∗ ≤ σ(L)

ν(L)
≤ 1

min
u∈K∗
‖u‖∗=1

max
v∈K
‖v‖=1

〈u, v〉
.

(b) If ‖ · ‖ = ‖ · ‖2 then

1 ≤ σ(L)

ν(L)
≤ 1

cos(Θ(K∗,K))
.

where
Θ(K∗,K) := max

u∈K∗\{0}
min

v∈K\{0}
∠(u, v).

In particular, if K∗ ⊆ K then ν(L) = σ(L).
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(c) If ‖ · ‖ = ‖ · ‖e then
σ(L) = ν(L).

Proof. (a) The first inequality is an immediate consequence of Hölder’s in-
equality (1). Next, from Proposition 4 it follows that σ(L) = ‖ū− ȳ‖∗
for some v̄ ∈ K, ȳ ∈ L⊥, ū ∈ K∗ with ‖v̄‖ = 1, 〈ū, v̄〉 = 1. Thus from
the construction of ν(L) we get

ν(L) ≤ ‖ū− ȳ‖
∗

‖ū‖∗
≤ σ(L)

min
v∈K,u∈K∗
‖v‖=1,〈u,v〉=1

‖u‖∗

and hence the second inequality follows.

For the third inequality assume ν(L) = ‖û− ŷ‖∗ for some û ∈ K∗, ŷ ∈
L⊥ with ‖û‖∗ = 1. Then by Proposition 4 we get

σ(L) = min
v∈K,y∈L⊥,u∈K∗
‖v‖=1,〈u,v〉=1

‖u− y‖∗ ≤ inf
v∈K,y∈L⊥,
‖v‖=1,〈û,v〉6=0

∥∥∥∥ û

〈û, v〉
− y
∥∥∥∥∗

= inf
v∈K,y∈L⊥,
‖v‖=1,〈û,v〉6=0

‖û− y‖∗

〈û, v〉
=

min
y∈L⊥

‖û− y‖∗

max
v∈K
‖v‖=1

〈û, v〉

≤ ‖û− ŷ‖∗

max
v∈K
‖v‖=1

〈û, v〉
.

Hence

σ(L) ≤ ‖û− ŷ‖∗

max
v∈K
‖v‖=1

〈û, v〉
≤ ν(L)

min
u∈K∗
‖u‖∗=1

max
v∈K
‖v‖=1

〈u, v〉

and the third inequality follows.

(b) The first inequality follows from part (a). For the second inequality
observe that since cos(·) is decreasing in [0, π]

cos(Θ(K∗,K)) = min
u∈K∗\{0}

max
v∈K\{0}

cos(∠(u, v))

= min
u∈K∗\{0}

max
v∈K\{0}

〈u, v〉
‖u‖2 · ‖v‖2

= min
u∈K∗
‖u‖2=1

max
v∈K
‖v‖2=1

〈u, v〉 .
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The second inequality then follows from part (a) as well.

If in addition K∗ ⊆ K then Θ(K∗,K) = 0 and consequently σ(L)
ν(L) = 1.

(c) Since ‖ · ‖ = ‖ · ‖e, we have ‖e‖ = 1 and ‖u‖∗ = 〈u, e〉 for all u ∈ K∗.
Thus min

u∈K∗
‖u‖∗=1

max
v∈K
‖v‖=1

〈u, v〉 ≥ min
u∈K∗
‖u‖∗=1

〈u, e〉 = 1. Therefore from part (a) it

follows that σ(L)
ν(L) = 1.

The following example shows that the upper bound in Proposition 5(b)
is tight.

Example 1. Let E = R2 be endowed with the dot inner product and let K :=
{(x1, x2) ∈ E : sin(φ)x2 ≥ cos(φ)|x1|} where φ ∈ (0, π/2), L = {(x1, x2) ∈
E : x1 = 0}, and ‖ · ‖ = ‖ · ‖2. Then K∗ = {(x1, x2) ∈ E : cos(φ)x2 ≥
sin(φ)|x1|} and ν(L) = sin(φ). If φ ∈ (0, π/4) then σ(L) = 1/(2 cos(φ)) and
Θ(K,K∗) = π/2− 2φ. Hence for φ ∈ (0, π/4)

σ(L)

ν(L)
=

1

2 sin(φ) cos(φ)
=

1

sin(2φ)
=

1

cos(π/2− 2φ)
=

1

cos(Θ(K,K∗))
.

On the other hand, if φ ∈ [π/4, π/2) then σ(L) = sin(φ) = ν(L), and
Θ(K,K∗) = 0.

6 Symmetry measure

Next, we will consider a symmetry measure that has been used as a measure
of conditioning [3,4]. This measure is defined as follows. Given a set S in a
vector space such that 0 ∈ S, define

sym(0, S) := max{t ≥ 0 : w ∈ S ⇒ −tw ∈ S}. (15)

Observe that sym(0, S) ∈ [0, 1] with sym(0, S) = 1 precisely when S is
perfectly symmetric around 0. Furthermore, it is easy to see that

sym(0, S) = min
v∈S

max
x∈S
{t ≥ 0 : x+ tv = 0}. (16)

Define the analogous symmetry measure of the cone K around the linear
subspace L as

Sym(L,K) := min
v∈K
‖v‖≤1

max
x∈K
‖x‖≤1

{t ≥ 0 : x+ tv ∈ L}. (17)

The following proposition shows the equivalence between Sym(L,K) and
the symmetry measure defined in [3, 4].
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Proposition 6. let L ⊆ E be a linear subspace and A : E → F be such that
ker(A) = L. Then

Sym(L,K) = sym(0, S)

for S := {Ax : x ∈ K, ‖x‖ ≤ 1}.

Proof. The construction of S together with (16) and (17) imply that

sym(0, S) = min
v∈K
‖v‖≤1

max
x∈K
‖x‖≤1

{t ≥ 0 : Ax+ tAv = 0}

= min
v∈K
‖v‖≤1

max
x∈K
‖x‖≤1

{t ≥ 0 : x+ tv ∈ L}

= Sym(L,K).

Observe that L∩ int(K) 6= ∅ if and only if Sym(L,K) > 0. It is also easy
to see that Sym(L,K) ∈ [0, 1] for any linear subspace L and Sym(L,K) = 1
precisely when K is perfectly symmetric around L in the following sense:
for all v ∈ K there exists x ∈ K such that x+ v ∈ L and ‖x‖ ≤ ‖v‖.

The following result relating the symmetry and sigma measures is a
general version of [20, Proposition 22].

Theorem 2. Let L ⊆ E be a linear subspace such that L∩ intK 6= ∅. Then

Sym(L,K)

1 + Sym(L,K)
≤ σ(L) ≤ Sym(L,K)

1− Sym(L,K)
,

with the convention that the right-most expression above is +∞ if Sym(L,K) =
1. If there exists e ∈ int(K∗) such that ‖z‖ = 〈e, z〉 for all z ∈ K then

Sym(L,K)

1 + Sym(L,K)
= σ(L).

Proof. To ease notation, let s := Sym(L,K) and σ := σ(L). First we
show that σ ≥ s

1+s . To that end, suppose v ∈ K, ‖v‖ = 1 is fixed. The
construction (17) implies that there exists z ∈ K, ‖z‖ ≤ 1 such that z+sv ∈
L. Observe that z + sv 6= 0 because z, v ∈ K are non-zero and s ≥ 0. Thus
x := 1

‖z+sv‖(z + sv) ∈ L, ‖x‖ = 1 and

λv(x) ≥ s

‖z + sv‖
≥ s

‖z‖+ s‖v‖
≥ s

1 + s
.

Since this holds for any v ∈ K, ‖v‖ = 1, it follows that σ ≥ s
1+s .
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Next we show that σ ≤ s
1−s . Assume s < 1 as otherwise there is nothing

to show. Let v ∈ K, ‖v‖ = 1 be such that

max
x∈K
‖x‖≤1

{t ≥ 0 : x+ tv ∈ L} < 1. (18)

At least one such v exists because s = Sym(L,K) < 1.
It follows from the construction of σ(L) that there exists x ∈ L, ‖x‖ = 1

such that λv(x) ≥ σ > 0. In particular, x−σv ∈ K. Furthermore, x−σv 6= 0
as otherwise v = 1

σx ∈ L and x+ v ∈ L which would contradict (18). Thus
z := x−σv

‖x−σv‖ ∈ K, ‖z‖ = 1 and z + σ
‖x−σv‖v ∈ L with σ

‖x−σv‖ ≥
σ

1+σ . Since

this holds for any v ∈ K, ‖v‖ = 1 satisfying (18), it follows that s ≥ σ
1+σ or

equivalently σ ≤ s
1−s .

Next consider the special case when there exists e ∈ int(K∗) such that
‖z‖ = 〈e, z〉 for all z ∈ K. In this case, ‖x − σv‖ = 〈e, x− σv〉 = 〈e, x〉 −
〈e, σv〉 = ‖x‖ − σ‖v‖ = 1 − σ in the previous paragraph and so the second
inequality can be sharpened to s ≥ σ

1−σ or equivalently σ ≤ s
1+s .

We also have the following relationship between the distance to infeasi-
bility and the symmetry measure.

Corollary 1. Let L ⊆ E be a linear subspace such that L ∩ int(K) 6= ∅.
Then

min
u∈K∗
‖u‖∗=1

max
v∈K
‖v‖=1

〈u, v〉 · Sym(L,K)

1 + Sym(L,K)
≤ ν(L) ≤ Sym(L,K)

1− Sym(L,K)
.

In particular, if ‖ · ‖ = ‖ · ‖2 then

cos(Θ(K∗,K)) · Sym(L,K)

1 + Sym(L,K)
≤ ν(L) ≤ Sym(L,K)

1− Sym(L,K)
.

Proof. This is an immediate consequence of Proposition 5 and Theorem 2.

7 Variants ν(L) and V(L) of ν(L)

Consider the following variant of ν(L) that places the normalizing constraint
on y ∈ L⊥ instead of u ∈ K∗:

ν(L) := min
u∈K∗,y∈L⊥
‖y‖∗=1

‖y − u‖∗.
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It is easy to see that ν(L) = ν(L) = sin∠(L⊥,K∗) when ‖ · ‖ = ‖ · ‖2.
However, ν(L) and ν(L) are not necessarily the same for other norms. This
fact highlights one of the interesting nuances of non-Euclidean norms.

Like ν(L), its variant ν(L) is closely related to Renegar’s distance to
infeasibility as stated in Proposition 7 below. Suppose A : E → F is a
linear mapping and consider the conic systems (2) and (3) defined by taking
L = ker(A), that is,

Ax = 0, x ∈ K \ {0}, (19)

and
A∗w ∈ K∗ \ {0}. (20)

In analogy to dist(A, I), define dist(A, I) as follows

dist(A, I) := inf
{
‖A− Ã‖ : Ãx = 0, x ∈ K \ {0} is infeasible

}
= inf

{
‖A− Ã‖ : Ã∗w ∈ K∗ for some w ∈ F \ {0}

}
.

A straightforward modification of the proof of Theorem 1 yields Propo-
sition 7. We note that this proposition requires that A be surjective. This
is necessary because dist(A, I) = 0 whenever A is not surjective whereas
‖A‖, ‖A−1‖, and ν(L) may all be positive and finite. The surjectivity of
A can be evidently dropped if the definition of dist(A, I) is amended by
requiring Im(Ã) = Im(A).

Proposition 7. Let A ∈ L(E,F ) be a surjective linear mapping such that
(19) is strictly feasible and let L := ker(A). Then

1

‖A‖
≤ ν(L)

dist(A, I)
≤ ‖A−1‖.

Proof. First, we prove dist(A, I) ≤ ν(L)‖A‖. To that end, let ȳ ∈ L⊥ and
ū ∈ K∗ be such that ‖ȳ‖∗ = 1 and ν(L) = ‖ȳ− ū‖∗. Since ȳ ∈ L⊥ = Im(A∗)
and ‖ȳ‖∗ = 1, it follows that ȳ = A∗v̄ for some v̄ ∈ F with |v̄|∗ ≥ 1/‖A‖.
Let z̄ ∈ F be such that |z̄| = 1 and 〈v̄, z̄〉 = |v̄|∗ = 1. Now construct
∆A : E → F as follows

∆A(x) :=
〈ū− ȳ, x〉
|v̄|∗

z̄.

Observe that ‖∆A‖ = ‖ȳ − ū‖∗/|v̄|∗ ≤ ν(L)‖A‖, and ∆A∗ : F → E is
defined by

∆A∗(w) =
〈w, z̄〉
|v̄|∗

(ū− ȳ).
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In particular (A + ∆A)∗v̄ = A∗v̄ + (ū − ȳ) = ū ∈ K∗ and v̄ ∈ F \ {0}.
Therefore

dist(A, I) ≤ ‖∆A‖ ≤ ν(L)‖A‖.

Next, we prove ν(L) ≤ ‖A−1‖·dist(A, I). To that end, suppose Ã ∈ L(E,F )
is such that Ã∗w̄ ∈ K∗ for some w̄ ∈ F \ {0}. Since A is surjective, A∗ is
one-to-one and thus A∗w̄ 6= 0. Without loss of generality, we may assume
that ‖A∗w̄‖∗ = 1 and so |w̄|∗ ≤ ‖A−1‖. It thus follows that

ν(L) ≤ min
u∈K∗

‖A∗w̄ − u‖ ≤ ‖A∗w̄ − Ã∗w̄‖∗ ≤ ‖A−1‖ · ‖Ã−A‖.

Since this holds for all Ã ∈ L(E,F ) such that Ã∗w ∈ K∗ for some w ∈
F \ {0}, it follows that

ν(L) ≤ ‖A−1‖ · dist(A, I).

Next, consider an extension V(L) of ν(L) obtained by de-coupling the
normalizing constraint of u ∈ K∗ from the norm defining its distance to
L⊥. More precisely, suppose ||| · ||| is an additional norm in the space E and
consider the following extension of ν(L)

V(L) := min
u∈K∗,y∈L⊥
‖u‖∗=1

|||y − u|||∗.

Proceeding as in Proposition 2, it is easy to see that V(L) = min
u∈K∗
‖u‖∗=1

max
x∈L
|||x|||≤1

〈u, x〉 .

Thus only the restriction of ||| · ||| to Lmatters for V(L). The following propo-
sition considers a special case when this additional flexibility is particularly
interesting.

Proposition 8. Suppose L = Im(A) for some linear map A : F → E.
Define the norm ||| · ||| in L as follows

|||x||| := min
w∈A−1(x)

|w|, (21)

where | · | denotes the norm in F . Then

V(L) = dist(A, I).
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Proof. This follows via a straightforward tweak of the proof of Theorem 1.

The additional flexibility of V(L) also yields the following extension of
Proposition 3: If ‖·‖ = ‖·‖e for some e ∈ int(K) then for any linear subspace
L ⊆ E and any additional norm ||| · ||| in L

V(L) = max
x∈L
|||x|||≤1

λe(x).

The construction of σ(L) can be extended in a similar fashion by de-
coupling the normalizing constraints of v ∈ K and x ∈ L. More precisely,
let ||| · ||| be an additional norm in L and consider the following extension of
σ(L):

Σ(L) := min
v∈K
‖v‖=1

max
x∈L
|||x|||≤1

λv(x).

The additional flexibility of Σ(L) readily yields the extension of Propo-
sition 5 to the more general case where ν(L) and σ(L) are replaced with
V(L) and Σ(L) respectively for any additional norm ||| · ||| in L.

Finally, consider the extension V(L) of ν(L) obtained by de-coupling the
normalizing constraint of y ∈ L⊥ from the norm defining its distance to
K∗. Suppose ||| · ||| is an additional norm in the space L⊥ and consider the
following extension of ν(L):

V(L) := min
u∈K∗,y∈L⊥
|||y|||∗=1

‖y − u‖∗.

To illustrate the additional flexibility of V(L) consider the special case when
L = ker(A) for some surjective linear mapping A : E → F and define the
norm ||| · ||| in L⊥ as follows

|||x||| := |Ax|, (22)

where | · | denotes the norm in F . A straightforward tweak of the proof of
Proposition 7 shows that V(L) = dist(A, I) for this choice of norm.

8 Conclusion

We propose an approach to integrate a variety of proposed condition mea-
sures for a homogeneous conic system of the form

find x ∈ L ∩K \ {0}.
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Our approach hinges on the following concept of data-independent distance
to infeasibility:

ν(L) := min
u∈K∗,y∈L⊥
‖u‖∗=1

‖u− y‖∗.

This quantity is based solely on the following three minimal components
associated to a linear conic system: the cone K, linear subspace L, and
some underlying norm ‖ · ‖ in the ambient space.

The data-independent distance to infeasibility ν(L) is a non-Euclidean
generalization of the Grassmannian condition measure introduced by Belloni
and Freund [6], and further extended by Amelunxen and Bürgisser [1]. The
non-Euclidean flexibility allows us to establish a number of novel and inter-
esting relationships among several popular condition measures whose exact
relationship with each other was not fully understood before. These mea-
sures include our new data-independent distance to infeasibility, Renegar’s
data-dependent condition measure, the Grassmanian condition measure, a
measure of symmetry, a measure of most interior solution, and a measure
of depth. The latter two measures are constructed via some canonical in-
duced eigenvalue mappings and induced norm that feature key structural
properties of the underlying cone.

Our main results provide valuable insight into the tradeoffs of different
notions of conditioning and thus pave the road for improved algorithmic
developments that are more effectively adept to the intrinsic difficulty of a
problem instance. In particular, our results readily suggest preconditioning
and reconditioning techniques like those that underlie a variety of recent
rescaling algorithms.

The following two natural variants of ν(L) offer additional flexibility and
enable a tighter integration among different condition measures. The first
one places the normalization on y ∈ L⊥ instead of u ∈ K∗:

ν(L) := min
u∈K∗,y∈L⊥
‖y‖∗=1

‖u− y‖∗.

The second one adds a dimension of flexibility by allowing the use of different
norms for the normalization of u ∈ K∗ and the difference u− y:

V(L) := min
u∈K∗,y∈L⊥
‖u‖∗=1

|||u− y|||∗.
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