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Abstract

We elucidate the structure of (P6, C4)-free graphs by showing that ev-
ery such graph either has a clique cutset, or a universal vertex, or belongs
to several special classes of graphs. Using this result, we show that for
any (P6, C4)-free graph G, ⌈ 5ω(G)

4
⌉ and ⌈∆(G)+ω(G)+1

2
⌉ are tight upper

bounds for the chromatic number of G. Moreover, our structural results
imply that every (P6,C4)-free graph with no clique cutset has bounded
clique-width, and thus the existence of a polynomial-time algorithm that
computes the chromatic number (or stability number) of any (P6, C4)-free
graph.

Keywords: Square-free graphs; P6-free graphs; Chromatic number; χ-
boundedness; Clique size; Degree.

1 Introduction

All our graphs are finite and have no loops or multiple edges. For any integer
k, a k-coloring of a graph G is a mapping c : V (G) → {1, . . . , k} such that
any two adjacent vertices u, v in G satisfy c(u) 6= c(v). A graph is k-colorable
if it admits a k-coloring. The chromatic number χ(G) of a graph G is the
smallest integer k such that G is k-colorable. In general, determining whether
a graph is k-colorable or not is well-known to be NP -complete for every fixed
k ≥ 3. Thus designing algorithms for computing the chromatic number by
putting restrictions on the input graph and obtaining bounds for the chromatic
number are of interest.

A clique in a graph G is a set of pairwise adjacent vertices. Let ω(G) denote
the maximum clique size in a graph G. Clearly χ(H) ≥ ω(H) for every induced
subgraph H of G. A graph G is perfect if every induced subgraph H of G
satisfies χ(H) = ω(H). The existence of triangle-free graphs with aribtrarily
large chromatic number shows that for general graphs the chromatic number
cannot be upper bounded by a function of the clique number. However, for
restricted classes of graphs such a function may exist. Gyárfás [19] called such
classes of graphs χ-bounded classes. A family of graphs G is χ-bounded with
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χ-bounding function f if, for every induced subgraph H of G ∈ G, χ(H) ≤
f(ω(H)). For instance, the class of perfect graphs is χ-bounded with f(ω) = ω.

Given a family of graphs F , a graph G is F-free if no induced subgraph of
G is isomorphic to a member of F ; when F has only one element F we say
that G is F -free. Several classes of graphs defined by forbidding certain families
of graphs were shown to be χ-bounded: even-hole-free graphs [1]; odd-hole-free
graphs [34]; quasi-line graphs [10]; claw-free graphs with stability number at
least 3 [13]; see also [6, 8, 12, 22, 24] for more instances.

For any integer ℓ we let Pℓ denote the path on ℓ vertices and Cℓ denote the cy-
cle on ℓ vertices. A cycle on 4 vertices is referred to as a square. It is well known
that every P4-free graph is perfect. Gyárfás [19] showed that the class of Pk-free
graphs is χ-bounded. Gravier et al. [18] improved Gyárfás’s bound slightly by
showing that every Pk-free graph G satisfies χ(G) ≤ (k − 2)ω(G)−1. In particu-
lar every P6-free graph G satisfies χ(G) ≤ 4ω(G)−1. Improving this exponential
bound seems to be a difficult open problem. In fact the problem of determining
whether the class of P5-free graphs admits a polynomial χ-bounding function
remains open, and the known χ-bounding function f for such class of graphs
satisfies c(ω2/ logw) ≤ f(ω) ≤ 2ω [23]. So the recent focus is on obtaining
(linear) χ-bounding functions for some classes of Pt-free graphs, where t ≥ 5. It

is shown in [8] that every (P5, C4)-free graph G satisfies χ(G) ≤ ⌈ 5ω(G)
4 ⌉, and in

[7] that every (P2 ∪P3, C4)-free graph G satisfies χ(G) ≤ ⌈ 5ω(G)
4 ⌉. Gaspers and

Huang [14] studied the class of (P6, C4)-free graphs (which generalizes the class
of (P5, C4)-free graphs and the class of (P2 ∪ P3, C4)-free graphs) and showed

that every such graph G satisfies χ(G) ≤ 3ω(G)
2 . We improve their result and

establish the best possible bound, as follows.

Theorem 1.1 Let G be any (P6, C4)-free graph. Then χ(G) ≤ ⌈ 5ω(G)
4 ⌉. More-

over, this bound is tight.

The degree of a vertex in G is the number of vertices adjacent to it. The
maximum degree over all vertices in G is denoted by ∆(G). For any graph
G, we have χ(G) ≤ ∆(G) + 1. Brooks [5] showed that if G is a graph with
∆(G) ≥ 3 and ω(G) ≤ ∆(G), then χ(G) ≤ ∆(G). Reed [33] conjectured that

every graph G satisfies χ(G) ≤ ⌈∆(G)+ω(G)+1
2 ⌉. Despite several partial results

[25, 31, 33], Reed’s conjecture is still open in general, even for triangle-free
graphs. Using Theorem 1.1, we will show that Reed’s conjecture holds for the
class of (P6,C4)-free graphs:

Theorem 1.2 If G is a (P6, C4)-free graph, then χ(G) ≤ ⌈∆(G)+ω(G)+1
2 ⌉.

One can readily see that the bounds in Theorem 1.1 and in Theorem 1.2 are tight
on the following example. Let G be a graph whose vertex-set is partitioned into
five cliques Q1, . . . , Q5 such that for each i mod 5, every vertex in Qi is adjacent
to every vertex in Qi+1∪Qi−1 and to no vertex in Qi+2∪Qi−2, and |Qi| = q for
all i (q > 0). Clearly ω(G) = 2q and ∆(G) = 3q − 1. Since G has no stable set
of size 3, G is P6-free and χ(G) ≥ ⌈ 5q

2 ⌉. Moreover, since no two non-adjacent
vertices in G has a common neighbor in G, we also see that G is C4-free.

Finally, we also have the following result.

Theorem 1.3 There is a polynomial-time algorithm which computes the chro-
matic number of any (P6, C4)-free graph.
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The proof of Theorem 1.3 is based on the concept of clique-width of a graph G,
which was defined in [9] as the minimum number of labels which are necessary
to generate G using a certain type of operations. (We omit the details.) It is
known from [26, 32] that if a class of graphs has bounded clique-width, then
there is a polynomial-time algorithm that computes the chromatic number of
every graph in this class. We are able to prove that every (P6, C4)-free graph
that has no clique cutset has clique-width at most 36, which implies the validity
of Theorem 1.3. However a similar result, using similar techniques, was proved
by Gaspers, Huang and Paulusma [15]. Hence we refer to [15], or to the extended
version of our manuscript [21] for the detailed proof of Theorem 1.3.

We finish on this theme by noting that the class of (P6, C4)-free graph itself
does not have bounded clique-width, since the class of split graphs (which are
all (P6, C4)-free) does not have bounded clique-width [2, 29]. The clique-width
argument might also be used for solving other optimization problems in (P6, C4)-
free graphs, in particular the stability number. However this problem was solved
earlier by Mosca [30], and the weighted version was solved in [4], and both
algorithms have reasonably low complexity.

Theorems 1.1 and 1.2 will be derived from the structural theorem below
(Theorem 1.4). Before stating it we recall some definitions.

In a graph G, the neighborhood of a vertex x is the set NG(x) = {y ∈
V (G)\x | xy ∈ E(G)}; we drop the subscript G when there is no ambiguity. The
closed neighborhood is the set N [x] = N(x) ∪ {x}. Two vertices x, y are clones
if N [x] = N [y]. For any x ∈ V (G) and A ⊆ V (G)\x, we let NA(x) = N(x)∩A.
For any two subsets X and Y of V (G), we denote by [X,Y ], the set of edges
that has one end in X and other end in Y . We say that X is complete to Y or
[X,Y ] is complete if every vertex in X is adjacent to every vertex in Y ; and X is
anticomplete to Y if [X,Y ] = ∅. If X is singleton, say {v}, we simply write v is
complete (anticomplete) to Y instead of writing {v} is complete (anticomplete)
to Y . If S ⊆ V (G), then G[S] denote the subgraph induced by S in G. A vertex
is universal if it is adjacent to all other vertices. A stable set is a set of pairwise
non-adjacent vertices. A clique-cutset of a graph G is a clique K in G such that
G \K has more connected components than G. A matching is a set of pairwise
non-adjacent edges. The union of two vertex-disjoint graphs G and H is the
graph with vertex-set V (G) ∪ V (H) and edge-set E(G) ∪ E(H). The union of
k copies of the same graph G will be denoted by kG; for example 2P3 denotes
the graph that consists in two disjoint copies of P3.

A vertex is simplicial if its neighborhood is a clique. It is easy to see that in
any graph G that has a simplicial vertex, letting S denote the set of simplicial
vertices, every component of G[S] is a clique, and any two adjacent simplicial
vertices are clones.

A hole is an induced cycle of length at least 4. A graph is chordal if it
contains no hole as an induced subgraph. Chordal graphs have many interesting
properties (see e.g. [17]), in particular: every chordal graph has a simplicial
vertex; every chordal graph that is not a clique has a clique-cutset; and every
chordal graph that is not a clique has two non-adjacent simplicial vertices.

In a graph G, let A,B be disjoint subsets of V (G). It is easy to see that the
following two conditions (i) and (ii) are equivalent: (i) any two vertices a, a′ ∈ A
satisfy either NB(a) ⊆ NB(a

′) or NB(a
′) ⊆ NB(a); (ii) any two vertices b, b′ ∈ B
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satisfy either NA(b) ⊆ NA(b
′) or NA(b

′) ⊆ NA(b). If this condition holds we
say that the pair {A,B} is graded. Clearly in a C4-free graph any two disjoint
cliques form a graded pair. See also Lemma 2.3 below.

Some special graphs Let F1, F2, F3 be three graphs (as in [14]), as shown
in Figure 1.
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Figure 1: F1, F2, F3

Let H1, H2, H3, H4, H5 be five graphs, as shown in Figure 2, where H1 is the
Petersen graph.
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Figure 2: H1, H2, H3, H4, H5
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(a) Fk,l (b) F2,2

Figure 3: (a) Schematic representation of the graph Fk,l. Here, the vertices in
a shaded box form a clique, and an edge between a vertex and a box indicates
that the vertex is adjacent to all the vertices in the box. For example, the vertex
x is adjacent to all the vertices in the boxes A, U , and W . (b) F2,2.

Graphs Fk,ℓ For integers k, ℓ ≥ 0 let Fk,ℓ be the graph whose vertex-set can
be partitioned into sets A,B,U,W and {x, y, z} such that:
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• A = {a0, a1, . . . , ak} is a clique of size k + 1, and U = {u1, u2, . . . , uk} is
a stable set of size k, and the edges between A and U form a matching of
size k, namely, [A,U ] = {aiui | i ∈ {1, . . . , k}};

• B = {b0, b1, . . . , bℓ} is a clique of size ℓ + 1, and W = {w1, . . . , wℓ} is a
stable set of size ℓ, and the edges between B and W form a matching of
size ℓ, namely, [B,W ] = {bjwj | j ∈ {1, . . . , ℓ}};

• The neighborhood of x is A ∪ U ∪W ∪ {y};

• The neighborhood of y is B ∪ U ∪W ∪ {x};

• The neighborhood of z is A ∪B.

See Figure 3 for the schematic representation of the graph Fk,l and for the
graph F2,2.

Blowups A blowup of a graph H is any graph G such that V (G) can be
partitioned into |V (H)| (not necessarily non-empty) cliques Qv, v ∈ V (H),
such that [Qu, Qv] is complete if uv ∈ E(H), and [Qu, Qv] = ∅ if uv /∈ E(H).
See Figure 4:(a) for a blowup of a C5.

Q5

Q1Q4

Q3 Q2

R2R3
................

.....
................

Q2

Q1

(a)

Q3Q4

Q5

(b)

Q4 Q1

Q5

R3

Q3 Q2

R2

(c)

Figure 4: Schematic representations of: (a) a blowup of a C5, (b) a band, and
(c) a belt. In (a), (b) and (c), the circles represent a collection of sets into
which the vertex set of the graph is partitioned. Each shaded circle represents a
nonempty clique, a solid line between two circles indicates that the two sets are
complete to each other, and the absence of a line between two circles indicates
that the two sets are anticomplete to each other. In (b), a dotted line between
two circles means that the respective pair of sets is graded. For example, the
pair {Q3, Q4} is graded. In (c), the dashed lines between the sets R2, R3, Q2

and Q3 mean that the adjacency between these sets are subject to the fourth
item of the definition of a belt.

Bands A band is any graph G (see Figure 4:(b)) whose vertex-set can be
partitioned into seven sets Q1, . . . , Q5, R2, R3 such that:

• Each of Q1, . . . , Q5, R2, R3 is a clique.

• The sets [Q5, Q1∪Q4], [R2, Q1∪Q2∪Q3], [R3, Q2∪Q3∪Q4] and [Q2, Q3]
are complete.

• The sets [Q1, Q3∪R3∪Q4], [Q4, Q1∪Q2∪R2] and [Q5, Q2∪R2∪Q3∪R3]
are empty.

• The pairs {Q1, Q2}, {Q3, Q4} and {R2, R3} are graded.
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Q

A

M B

L

M 1

M 2

B 1

M k

B 2

B k

Figure 5: Partial structure of a boiler. Here, each shaded circle represents a
nonempty clique, and ovals labelled M and B represents the union of the sets
represented by the circles inside that oval. The sets in oval B forms a clique,
and the ovals M and L induces a (P4, 2P3)-free graph. A solid line between
two shapes indicates that the respective sets are complete to each other. The
absence of a line between any two shapes indicates that the respective sets are
anticomplete to each other. A dashed line between any two shapes means that
the adjacency between these sets are subject to the definition of a boiler.

Belts A belt is any (P6, C4, C6)-free graph G (see Figure 4:(c)) whose vertex-
set can be partitioned into seven sets Q1, . . . , Q5, R2, R3 such that:

• Each of Q1, . . . , Q5 is a clique.

• The sets [Q1, Q2 ∪R2 ∪Q5] and [Q4, Q3 ∪R3 ∪Q5] are complete.

• The sets [Q1, Q3 ∪R3 ∪Q4], [Q4, Q2 ∪R2 ∪Q1], [Q5, Q2 ∪R2 ∪Q3 ∪R3]
are empty.

• For each j ∈ {2, 3}, [Qj , Rj] is complete, every vertex in Qj ∪ Rj has a
neighbor in Q5−j ∪R5−j , and no vertex of Rj is universal in G[Rj ].

Boilers A boiler is a (P6, C4, C6)-free graph G whose vertex-set can be parti-
tioned into five sets Q,A,B, L,M such that:

• The sets Q, A, B and M are non-empty, and Q, A and B are cliques.

• The sets [Q,A], [Q,M ], and [B,L] are complete.

• The sets [Q,B], [Q,L] and [L,M ] are empty.

• G[L] and G[M ] are (P4, 2P3)-free.

• Every vertex in L has a neighbor in A.

• For some integer k ≥ 3, M is partitioned into k non-empty sets M1, . . . ,
Mk, pairwise anticomplete, and B is partitioned into k non-empty sets
B1, . . . , Bk, such that for each i ∈ {1, . . . , k} every vertex in Mi has a
neighbor in Bi and no neighbor in B \ Bi; and every vertex in B has a
neighbor in M .
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• [A,M1∪B1∪M2∪B2] is complete, and for each i ∈ {3, . . . , k} every vertex
in A is either complete or anticomplete to Mi ∪Bi, and no vertex in A is
complete to B.

See Figure 5 for the partial structure of a boiler.

We consider that the definition of blowups (of certain fixed graphs) and of
bands (using Lemma 2.3) is also a complete description of the structure of such
graphs. However this is not so for belts and boilers. Such graphs have additional
properties, and a description of their structure is given in Section 4.

Now we can state our main structural result. The existence of such a de-
composition theorem was inspired to us by the results from [14] which go a long
way in that direction.

Theorem 1.4 If G is any (P6, C4)-free graph, then one of the following holds:

• G has a clique cutset.

• G has a universal vertex.

• G is a blowup of either H1, . . . , H5, F3 or Fk,ℓ (for some k, ℓ ≥ 1).

• G is either a band, a belt, or a boiler.

Theorem 1.4 is derived from Theorem 1.5.

Theorem 1.5 Let G be a (P6, C4)-free graph that has no clique-cutset and no
universal vertex. Then the following hold:

1. If G contains an F3, then G is a blowup of F3.

2. If G contains an F1 and no F3, then G is a band.

3. If G is F1-free, and G contains an induced C6, then G is a blowup of one
of the graphs H1, H2, H3, H4.

4. If G is C6-free, and G contains an F2, then G is a blowup of either H5 or
Fk,ℓ for some integers k, ℓ ≥ 1.

5. If G contains no C6 and no F2, and G contains a C5, then G is either a
belt or a boiler.

Proof. The proof of each of these items is given below in Theorems 3.4, 3.5, 3.6,
3.7 and 3.8 respectively. �

Proof of Theorem 1.4, assuming Theorem 1.5.
Let G be any (P6, C4)-free graph. If G is chordal, then either G is a complete
graph (so it has a universal vertex) or G has a clique cutset. Now suppose that
G is not chordal. Then it contains an induced cycle of length either 5 or 6. So
it satisfies the hypothesis of one of the items of Theorem 1.5 and consequently
it satisfies the conclusion of this item. This established Theorem 1.4. �

2 Classes of square-free graphs

In this section, we study some classes of square-free graphs and prove some
useful lemmas and theorems that are needed for the later sections. We first
note that any blowup of a P6-free chordal graph is P6-free chordal.

7



Lemma 2.1 In a chordal graph G, every non-simplicial vertex lies on a chord-
less path between two simplicial vertices.

Proof. Let x be a non-simplicial vertex in G, so it has two non-adjacent neigh-
bors y, z. If both y, z are simplicial, then y-x-z is the desired path. Hence
assume that y is non-simplicial. Since G is not a clique, it has two simplicial
vertices, so it has a simplicial vertex s different from z. So s /∈ {y, z}. In
G \ s, the vertex x is non-simplicial, so, by induction, there is a chordless path
P = p0-p1-· · · -pk in G\s, with k ≥ 2, such that p0 and pk are simplicial in G\s
and x = pi for some i ∈ {1, . . . , k − 1}. If p0 and pk are simplicial in G, then P
is the desired path. So suppose that p0 is not simplicial in G, so sp0 ∈ E(G).
Since s is simplicial in G we have NP (s) ⊆ {p0, p1}. Then we see that either
s-p0-p1-· · · -pk or s-p1-· · · -pk is the desired path. �

Lemma 2.2 In a chordal graph G, let X and A be disjoint subsets of V (G)
such that A is a clique and every simplicial vertex of G[X ] has a neighbor in A.
Then every vertex in X has a neighbor in A.

Proof. Consider any non-simplicial vertex x of G[X ]. By Lemma 2.1 there is a
chordless path P = p0-p1-· · · -pk in G[X ], with k ≥ 2, such that p0 and pk are
simplicial in G[X ] and x = pi for some i ∈ {1, . . . , k − 1}. By the hypothesis
p0 has neighbor a ∈ A and pk has a neighbor a′ in A. Suppose that x has no
neighbor in {a, a′}. Let h be the largest integer in {0, . . . , i − 1} such that ph
has a neighbor in {a, a′}, and let g be the smallest integer in {i+1, . . . , k} such
that pg has a neighbor in {a, a′}. Then {ph, ph+1, . . . , pg, a, a

′} contains a hole,
a contradiction. So x has a neighbor in A. �

Lemma 2.3 In a C4-free graph G, let A,B be two disjoint cliques. Then:

• There is a labeling a1, . . . , a|A| of the vertices of A such that NB(a1) ⊇
NB(a2) ⊇ · · · ⊇ NB(a|A|). Similarly, there is a labeling b1, . . . , b|B| of the
vertices of B such that NA(b1) ⊇ NA(b2) ⊇ · · · ⊇ NA(b|B|).

• If every vertex in A has a neighbor in B, then some vertex in B is complete
to A.

• If every vertex in A has a non-neighbor in B, then some vertex in B is
anticomplete to A.

• If [A,B] is not complete, there are indices i ≤ |A| and j ≤ |B| such
aibj /∈ E(G), and aibh ∈ E(G) for all h < j, and agbj ∈ E(G) for all
g < i. Moreover, every maximal clique of G contains one of ai, bj.

Proof. Consider any two vertices a, a′ ∈ A. If there are vertices b ∈ NB(a) \
NB(a

′) and b′ ∈ NB(a
′) \NB(a), then {a, a′, b, b′} induces a C4. Hence we have

either NB(a) ⊆ NB(a
′) or NB(a

′) ⊆ NB(a). This inclusion relation for all a, a′

implies the existence of a total ordering on A, which corresponds to a labeling
as desired, and the same holds for B. This proves the first item of the lemma.
The second and third item are immediate consequences of the first.

Now suppose that A is not complete to B. Consider any vertex ai′ ∈ A
that has a non-neighbor in B, and let j be the smallest index such that ai′bj /∈
E(G). Let i be the smallest index such that aibj /∈ E(G). So i ≤ i′. We have
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agbj ∈ E(G) for all g < i by the choice of i. We also have aibh ∈ E(G) for all
h < j, for otherwise, since i ≤ i′ we also have ai′bh /∈ E(G), contradicting the
definition of j. This proves the first part of the fourth item.

Finally, consider any maximal clique K of G. Let g be the largest index such
that ag ∈ K and let h be the largest index such that bh ∈ K. By the properties of
the labelings and the maximality of K we have K = {a1, . . . , ag}∪ {b1, . . . , bh}.
If both g < i and h < j, then the properties of ai, bj imply that K ∪ {ai} (and
also K ∪ {bj}) is a clique of G, contradicting the maximality of K. Hence we
have either g ≥ i or h ≥ j, and so K contains one of ai, bj. �

Lemma 2.4 In a (P6, C4)-free graph G, let X, Y and {c} be disjoint subsets
of V (G) such that:

• Y is a clique, and every vertex in X has a neighbor in Y ,

• c is complete to X and anticomplete to Y ;

• Either G[X ] is not connected, or there are vertices c′, c′′ ∈ V (G)\ (X ∪Y )
such that c′ is complete to Y and anticomplete to X, and c′′ is anticomplete
to X ∪ Y , and c′c′′ ∈ E(G).

Then G[X ] is (P4, 2P3)-free.

Proof. First suppose that there is a P4 p1-p2-p3-p4 in G[X ]. By the hypothesis
p1 has a neighbor a ∈ Y . Then ap3 /∈ E(G), for otherwise {p1, a, p3, c} induces a
C4; and similarly ap4 /∈ E(G). If G[X ] is connected, then either p3-p2-p1-a-c

′-c′′

or p4-p3-p2-a-c
′-c′′ is a P6. Now suppose that G[X ] is not connected. So X

contains a vertex p that is anticomplete to {p1, p2, p3, p4}. By the hypothesis
p has a neighbor a′ ∈ Y . As above we have ap /∈ E(G) and a′pi /∈ E(G) for
all i ∈ {1, . . . , 4} for otherwise there is a C4. But then either p-a′-a-p1-p2-p3 or
p-a′-a-p2-p3-p4 is a P6.

Now suppose that there is a 2P3 in G[X ], with vertices p1, . . . , p6 and edges
p1p2, p2p3, p4p5, p5p6. We know that p1 has a neighbor a ∈ Y , and as above we
have api /∈ E(G) for each i ∈ {3, 4, 5, 6}, for otherwise there is a C4. Likewise,
p6 has a neighbor a′ ∈ Y , and a′pj /∈ E(G) for each j ∈ {1, 2, 3, 4}. Then
ph+1-ph-a-a

′-pg-pg−1 is an induced P6 for some h ∈ {1, 2} and g ∈ {5, 6}. �

(P4, C4)-free graphs We want to understand the structure of (P4, C4, 2P3)-
free graphs as they play a major role in the structure of belts and boilers.
Recall that (P4, C4)-free graphs were studied by Golumbic [16], who called them
trivially perfect graphs. Clearly any such graph is chordal. It was proved in [16]
that every connected (P4, C4)-free graph has a universal vertex. It follows that
trivially perfect graphs are exactly the class T of graphs that can be built
recursively as follows, starting from complete graphs:
– The disjoint union of any number of trivially perfect graphs is trivially perfect;
– If G is any trivially perfect graph, then the graph obtained from G by adding
a universal vertex is trivially perfect.

As a consequence, any connected member G of T can be represented by a
rooted directed tree T (G) defined as follows. If G is a clique, let T (G) have one
node, which is the set V (G). If G is not a clique, then by Golumbic’s result the
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set U(G) of universal vertices of G is not empty, and G \ U(G) has a number
k ≥ 2 of components G1, . . . , Gk. Let then T (G) be the tree whose root is U(G)
and the children (out-neighbors) of U(G) are the roots of T (G1), . . . , T (Gk).

The following properties of T (G) appear immediately. Every node of T (G)
is a non-empty clique of G, and every vertex v of G is in exactly one such clique,
which we call Av; moreover, Av is a homogeneous set (all member of Av are
pairwise clones). For every vertex v of G, the closed neighborhood of v consists
of Av and all the vertices in the cliques that are descendants and ancestors of
Av in T (G). Every maximal clique of G is the union of the nodes of a directed
path in T (G). All vertices in any leaf of T (G) are simplicial vertices of G, and
every simplicial vertex of G is in some leaf of T (G).

We say that a member G of T is basic if every node of T (G) is a clique of
size 1. (We can view T (G) as a directed tree, where every edge is directed away
from the root; and then G is the underlying undirected graph of the transitive
closure of T (G).). It follows that every member of T is a blowup of a basic
member of T . In a basic member G of T , two vertices are adjacent if and only
if one of them is an ancestor of the other in T (G), and every clique of G consists
of the set of vertices of any directed path in T (G).

A dart is the graph with vertex-set {a, b, c, d, e} and edge-set {ab, bc, cd, da,
ac, ce}. Let K+

1,3 be the tree obtained from K1,3 by subdividing one edge. Next
we give the following useful lemma.

Lemma 2.5 Let G be a (P4, C4)-free graph.
(a) If G does not have three pairwise non-adjacent simplicial vertices, then G is
a blowup of P3.
(b) If G does not have four pairwise non-adjacent simplicial vertices, then G is
a blowup of a dart.

Proof. The hypothesis of (a) or (b) means that, if H is a connected component
of G, then T (H) is a tree with at most three leaves. Since each internal vertex
of T (H) has at least two leaves, T (H) is either K1, K2, P3 (rooted at its vertex
of degree 2), K1,3 (rooted at its vertex of degree 3), or K+

1,3 (rooted at its vertex
of degree 2). Then the conclusion follows directly from our assumption on G
and the preceding arguments. �

(P4, C4, 2P3)-free graphs Let C be the class of (P4, C4, 2P3)-free graphs. So
C ⊂ T . If G is any member of C, and G is connected and not a clique, then
since G is 2P3-free all components of G\U(G), except possibly one, are cliques.
So all children of U(G) in T (G), except possibly one, are leaves. Applying this
argument recursively we see that the tree T (G) consists of a rooted directed
path plus a positive number of leaves adjacent to every node of this path, with
at least two leaves adjacent to the last node of this path. We call such a tree a
bamboo. By the same argument as above, every member of C is a blowup of a
basic member of C.

C-pairs A graph G is a C-pair if G is P6-free, chordal, and V (G) can be
partitioned into two sets X and A such that A is a clique, G[X ] ∈ C, every
vertex in X has a neighbor in A, and any two non-adjacent vertices in X have
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no common neighbor in A. Depending on the context we may also write that
(X,A) is a C-pair.

We say that G is a basic C-pair if the subgraph G[X ] is a basic member of
C, with vertices x1, . . . , xk for some integer k, and a clique A = {a0, a1, . . . , ak};
and for each i ∈ {1, . . . , k}, if xi is simplicial in G[X ] then NA(xi) = {ai}, else
NA(xi) consists of {ai} plus the union of NA(y) over all descendants y of xi in
T (G[X ]).

Before describing how all C-pairs can be obtained from basic C-pairs we need
to introduce another definition. Let H be any graph and M be a matching in
H . An augmentation of H along M is any graph G whose vertex-set can be
partitioned into |V (H)| cliques Qv, v ∈ V (H), such that [Qu, Qv] is complete if
uv ∈ E(H) \M , and [Qu, Qv] = ∅ if uv /∈ E(H), and {Qu, Qv} is a graded pair
if uv ∈ M . (See [28] for a similar definition.)

In a basic C-pair G, with the same notation as above, we say that a match-
ing M is acceptable if there is a clique {xi1 , . . . , xih} in G[X ] such that M =
{xi1ai1 , . . . , xihaih}.

x1

x2

x3

a1 a2 a3 a0

X

A

.......

.............

Qx2

Qx1
Qx3

x2

x1 x3

a1 a2 a3 a0

X

A

(a) (b) (c)

Qa3
Qa1

Qa2
Qa0

Figure 6: Schematic representations of: (a) a basic C-pair, (b) an acceptable
matching in (a), and (c) an augmentation of the graph in (a) along an acceptable
matching in (b). In (a) and (b), the vertices in a shaded box represents a clique.
In (b), the dashed lines represent the matching edges. In (c), the circles represent
a collection of sets into which the vertex set of the graph is partitioned, each
shaded circle represents a clique, and the circles inside the oval form a clique,
a solid line between two circles indicates that the two sets are complete to each
other, the dotted line between two circles means that the respective pair of sets
is graded, and the absence of a line between two circles indicates that the two
sets are anticomplete to each other.

Theorem 2.1 A graph is a C-pair then it is an augmentation of a basic C-pair
along an acceptable matching.

Proof. Let G be any C-pair, with the same notation as above. Since G[X ] is
(P4, C4, 2P3)-free it admits a representative tree T (G[X ]) which is a bamboo.
We claim that:

If Y, Z are two nodes of T (G[X ]) such that Z is a descendant of Y ,
then Y is complete to NA(Z).

(1)

Proof: Consider any y ∈ Y and a ∈ NA(Z); so there is a vertex z ∈ Z with
za ∈ E(G). Since Y is not a leaf of T (G[X ]), there is a child Z ′ of Y in
T (G[X ]) such that Z ′ is not on the directed path from Z to Y , and so Z and Z ′

are not adjacent (they are anticomplete to each other). Pick any z′ ∈ Z ′. Then
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yz, yz′ ∈ E(G) and zz′ /∈ E(G). We know that z′ has a neighbor a′ ∈ A. We
have az′, a′z /∈ E(G) by the definition of a C-pair (z and z′ have no common
neighbor in A). Then ya, ya′ ∈ E(G), for otherwise G[y, z, z′, a, a′] contains an
induced hole of length 4 or 5, contradicting the fact that G is chordal. So (1)
holds.

Let X1, . . . , Xk be the nodes of T (G[X ]). For each i ∈ {1, . . . , k}, let Ui

be the union of NA(Z) over all descendants Z of Xi in T (G[X ]), and let Ai =
NA(Xi) \ Ui. Let A0 = A \ (A1 ∪ · · · ∪ Ak) (so [X,A0] = ∅).

Let Xi1 , . . . , Xih be the nodes of T (G[X ]) that are not homogeneous in G
(if any). Note that for each i ∈ {i1, . . . , ih} the pair {Xi, Ai} is graded since G
is C4-free. We claim that:

Xi1 ∪ · · · ∪Xih is a clique. (2)

Proof: Suppose, on the contrary, and up to symmetry, that [Xi1 , Xi2 ] is not
complete, and so [Xi1 , Xi2 ] = ∅. For each t ∈ {1, 2}, since Xit is not homoge-
neous in G, there are vertices yt, zt ∈ Xit and a vertex at ∈ A that is adjacent to
yt and not to zt. Since non-adjacent vertices in X have no common neighbor in
A, we have a1 6= a2 and a1y2, a1z2, a2y1, a2z1 /∈ E(G). Then z1-y1-a1-a2-y2-z2
is a P6. So (2) holds.

Let H be the basic member of C of which G[X ] is a blowup. Let H have
vertices x1, . . . , xk, where xi corresponds to the nodeXi of T (G[X ]) for all i. Let
G0 be the graph obtained from H by adding a set A = {a0, a1, . . . , ak}, disjoint
from V (H), and edges so that A is a clique in G0 and, for all i ∈ {1, . . . , k} and
j ∈ {0, 1, . . . , k}, vertices xi and aj are adjacent in G0 if and only if [Xi, Aj ] 6= ∅
in G. By this construction and by (1) G0 is a basic C-pair. In G0 let M =
{xi1ai1 , . . . , xihaih}. It follows from (2) that M is an acceptable matching of
G0 and from all the points above that G is an augmentation of G0 along M . �

3 Structure of (P6, C4)-free graphs

In this section, we give the proof of Theorem 1.5. We say that a subgraph H of
G is dominating if every vertex in V (G) \ V (H) is a adjacent to a vertex in H .
We will use the following theorem of Brandstädt and Hoàng [4].

Theorem 3.1 ([4]) Let G be a (P6, C4)-free graph that has no clique cutset.
Then the following statements hold.
(i) Every induced C5 is dominating.
(ii) If G contains an induced C6 which is not dominating, then G is the join of
a complete graph and a blowup of the Petersen graph. �

In the next two theorems we make some general observations about the
situation when a (P6, C4)-free graph contains a hole (which must have length
either 5 or 6). Observe that in a C4-free graph G, if u-v-w is a P3, then any
x ∈ V (G) \ {u, v, w} which is adjacent to u and w is also adjacent to v.
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Theorem 3.2 Let G be any (P6, C4)-free graph that contains a C5 with vertex-
set C = {v1, . . . , v5} and {vivi+1 | i ∈ {1, . . . , 5}, i mod 5}. Let:

A = {x ∈ V (G) \ C | NC(x) = C}.

Ti = {x ∈ V (G) \ C | NC(x) = {vi−1, vi, vi+1}.

Wi = {x ∈ V (G) \ C | NC(x) = {vi}.

Xi,i+1 = {x ∈ V (G) \ C | NC(x) = {vi, vi+1}.

Moreover, let T = T1 ∪ · · · ∪ T5, W = W1 ∪ · · · ∪ W5, and X = X12 ∪ X23 ∪
X34 ∪X45 ∪X51. Then the following properties hold for all i:

(a) A ∪ Ti is a clique.

(b) [Ti, Ti+2], [Xi,i+1, Xi+2,i+3], [Wi,Wi+1], [Ti,Wi−2 ∪ Wi+2], [Ti, Xi+2,i+3]
and [Xi,i+1,Wi ∪Wi+1] are empty.

(c) [Xi,i+1, Xi+1,i+2], [Wi,Wi+2], and [Xi,i+1,Wi−1 ∪Wi+2] are complete.

(d) If G is C6-free, then for each i one of Xi,i+1 and Xi+1,i+2 is empty, and
one of Wi and Wi+2 is empty, and one of Xi,i+1 and Wi−1∪Wi+2 is empty.

(e) If G has no clique cutset, then the set {x ∈ V (G)\C | NC(x) = ∅} is empty
and [Ti,Wi] is complete.

(f) If G has no clique cutset, then V (G) = V (C) ∪ A ∪ T ∪W ∪X.

Proof. (a) If there are non-adjacent vertices a, b ∈ A∪ Ti, then {a, vi−1, b, vi+1}
induces a C4.

(b) Let i = 1 and suppose that there is an edge xy in one of the listed sets.
If x ∈ T1 and y ∈ T3, then {x, y, v4, v5} induces a C4. If x ∈ X12 and y ∈ X34,
then {x, v2, v3, y} induces a C4. If x ∈ T1 and y ∈ W4 then {x, y, v4, v5} induces
a C4. If x ∈ W1 and y ∈ W2, then x-y-v2-v3-v4-v5 is an induced P6. If x ∈ T1

and y ∈ X34, then {x, v2, v3, y} induces a C4. If x ∈ X12 and y ∈ W1, then
y-x-v2-v3-v4-v5 is a P6. The other cases are symmetric.

(c) and (d) Let i = 1 and suppose that there are vertices x ∈ X12 ∪W1 and
y ∈ X23 ∪W3. If xy /∈ E(G), then x-v1-v5-v4-v3-y is a P6. This proves (c). If
xy ∈ E(G) then the same vertices induce a C6, which proves (d).

(e) Follows from Theorem 3.1.
(f) Follows by Theorem 3.1 and (e). �

Theorem 3.3 Let G be any (P6, C4)-free graph that contains a C6 with vertex-
set C = {v1, . . . , v6} and {vivi+1 | i ∈ {1, . . . , 6}, i mod 6}. Let:

S = {x ∈ V (G) \ C | NC(x) = C}.

Ai = {x ∈ V (G) \ C | NC(x) = {vi−1, vi, vi+1}}.

Bi = {x ∈ V (G) \ C | NC(x) = {vi−1, vi, vi+1, vi+2}.

Di = {x ∈ V (G) \ C | NC(x) = {vi, vi+3}}.

L = {x ∈ V (G) \ C | NC(x) = ∅}.

Moreover, let A = A1 ∪ · · · ∪ A6, B = B1 ∪ · · · ∪ B6, and D = D1 ∪ · · · ∪ D6.
Then the following properties hold for all i, i mod 6:
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(a) V (G) = V (C) ∪ A ∪B ∪D ∪ S ∪ L.

(b) Each of Ai ∪Bi ∪Bi+5, Di and S is a clique.

(c) [Ai, Ai+1∪Ai+5 ∪Di], [Bi, Bi+1∪Bi+3 ∪Bi+5 ∪Di+2], and [S,Ai∪Bi∪Di]
are complete.

(d) [Ai, Ai+3 ∪ Bi+2 ∪ Bi+3 ∪ Di+1 ∪ Di+2], [Bi, Bi+2 ∪ Bi+4], and [Di, Di+1]
are empty.

(e) If Bi 6= ∅, then Di ∪Di+1 = ∅.

(f) If Bi 6= ∅ and Bi+1 6= ∅, then Bi+3 ∪Bi+4 = ∅.

Proof. We note that Di = Di+3, for all i.
(a) Suppose that there is a vertex x in G. We may assume that x ∈ V (G) \

V (C). If x has no neighbor in C, then x ∈ L. So, suppose that x has a neighbor
in C. If NC(x) = {vi} (or {vi, vi+1}), for some i, then (C \{vi+1})∪{x} induces
a P6. In all the remaining cases, we see that either C ∪{x} contains an induced
C4 or x ∈ A ∪B ∪D ∪ S. So (a) holds.

(b) If there are non-adjacent vertices x and y in one of the listed sets, then
either {x, vi−1, vi+1, y} or {x, vi, vi+3, y} induces a C4.

(c) Let i = 1 and suppose that there are non-adjacent vertices x and y in one
of the listed sets. If x ∈ A1 and y ∈ A2 ∪D1, then {v2, x, v6, v5, v4, y} induces
a P6. If x ∈ B1 and y ∈ B2, then {x, v1, y, v3} induces a C4. If x ∈ B1 and
y ∈ B4∪D3, then {x, v3, y, v6} induces a C4. If x ∈ S and y ∈ A1∪B1∪D1, then
either {x, v6, y, v2} or {x, v1, y, v3} induces a C4. The other cases are symmetric.

(d) Let i = 1 and suppose that there is an edge xy in one of the listed sets.
If x ∈ A1 and y ∈ A4 ∪B3 ∪D2, then {x, v6, v5, y} induces a C4. If x ∈ B1 and
y ∈ B3, then {x, v6, v5, y} induces a C4. If x ∈ D1 and y ∈ D2, then {x, v1, v2, y}
induces a C4. The other cases are symmetric.

(e) Let i = 1 and let x ∈ B1. Up to symmetry, if there exists a vertex y ∈ D1,
then by (c), xy ∈ E(G). But then {x, y, v4, v3} induces a C4. So D1 = ∅.

(f) Let i = 1. Let x ∈ B1 and y ∈ B2. Up to symmetry, if there exists a
vertex z ∈ B4, then by (c), xy, xz ∈ E(G), and by (d), yz /∈ E(G). But then
{x, y, v3, z} induces a C4. So B4 = ∅.

This shows Theorem 3.3. �

When there is an F3

Now we can give the proof of the first item of Theorem 1.5 which we restate it
as follows.

Theorem 3.4 Let G be a (P6, C4)-free graph with no universal vertex and no
clique cutset. Suppose that G contains an F3. Then G is a blowup of F3.

Proof. Consider the graph F3 as shown in Figure 1 and let C = {v1, . . . , v6}. By
Theorem 3.3(a), and with the same notation, every vertex in V (G) \C belongs
to Ai ∪Bi ∪Di ∪ S ∪ L for some i. Note that x ∈ A2, y ∈ A4 and z ∈ A6. We
first claim that:

Bi ∪Di = ∅, for all i. (1)

Proof: Suppose on the contrary, and up to symmetry, that there is a vertex
u ∈ B1∪D1. Suppose that u ∈ B1. By Theorem 3.3(b) we have ux ∈ E(G), and
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by Theorem 3.3(d) we have uy /∈ E(G). Then either {u, x, z, v6} or {u, v3, y, z}
induces a C4. Now suppose that u ∈ D1. By Theorem 3.3(d) we have ux, uz /∈
E(G). Then u-v4-v5-z-x-v2 is a P6. So (1) holds.

Next, we claim that:
L ∪ S = ∅. (2)

Proof: Suppose that L 6= ∅. By Theorem 3.3(b), S is a clique. Since S is not a
clique cutset, and by (1), some vertex w in L has a neighbor a ∈ A, say a ∈ A1.
But then w-a-v6-v5-v4-v3 is a P6, a contradiction. Hence L = ∅. Now if S 6= ∅,
then by Theorem 3.3(b) and (c), any vertex in S is universal, a contradiction.
So (2) holds.

We note that every vertex a ∈ A2 is either complete or anticomplete to {y, z},
for otherwise G[{a, v3, y, z, v1}] has an induced C4. So let A′

2 = {v2}∪{u ∈ A2 |
u is anticomplete to {y, z}} and X = A2 \ A′

2. Note that x ∈ X . Define sets
A′

4, Y , A′
6, Z similarly.

By Theorem 3.3(c) and (d), we know that [A1, A
′
2∪X∪A′

6∪Z] is complete and
[A1, A

′
4∪Y ] = ∅. Likewise, [A3, A

′
2∪X∪A′

4∪Y ] is complete and [A3, A
′
6∪Z] = ∅,

and [A5, A
′
4 ∪ Y ∪ A′

6 ∪ Z] is complete and [A5, A
′
1 ∪X ] = ∅. Moreover there is

no edge a1a3 with a1 ∈ A1 and a3 ∈ A3, for otherwise {a1, a3, y, z} induces a
C4. So [A1, A3] = ∅, and similarly [A3, A5] = ∅ and [A5, A1] = ∅.

There is no edge a′2a
′
4 with a′2 ∈ A′

2 and a′4 ∈ A′
4, for otherwise {a

′
2, a

′
4, y, x}

induces a C4. So [A′
2, A

′
4] = ∅, and similarly [A′

4, A
′
6] = ∅ and [A′

6, A
′
2] = ∅.

There is no edge a′2y
′ with a′2 ∈ A′

2 and y′ ∈ Y , for otherwise {a′2, y
′, z, v1}

induces a C4. Hence, and by symmetry, [A′
2, Y ∪ Z] = ∅, and similarly [A′

4, Z ∪
X ] = ∅ and [A′

6, X ∪ Y ] = ∅.
Finally, any two vertices x′ ∈ X and y′ ∈ Y are adjacent, for otherwise

{x′, v3, y
′, z} induces a C4. Hence [X,Y ] is complete, and similarly [X,Z] and

[Y, Z] are complete. Now we exhibit the mapping Qv → v, v ∈ V (F3) of the
definition of a blowup, as follows: A′

i → vi, for i even, and Ai → vi, for i odd,
X → x, Y → y, and Z → z. Then the above properties mean that G is a
blowup of F3. This completes the proof. �

When there is an F1 and no F3

Here we give the proof of the second item of Theorem 1.5.

Theorem 3.5 Let G be a (P6, C4)-free graph with no universal vertex and no
clique cutset. Suppose that G contains an F1 and no F3. Then G is a band.

Proof. Consider the graph F1 as shown in Figure 1 and let C = {v1, . . . , v5}.
We use the same notation as in Theorem 3.2. So x ∈ X12, y ∈ X23 and z ∈ X34.
By Theorem 3.2(b) and (c), we know that [X23, X12 ∪ X34] is complete and
[X12, X34] = ∅. Note that X12 is a clique, for otherwise v1, y and two non-
adjacent vertices from X12 induce a C4. Similarly, X23 and X34 are cliques. We
claim that:

W = ∅, and X51 ∪X54 = ∅, and A = ∅. (1)

Proof: Suppose the contrary. Up to symmetry, there is a vertex u ∈ W1 ∪W2 ∪
W5 ∪ X51 ∪ A. Suppose u ∈ W1. By Theorem 3.2(b) we have ux, uy /∈ E(G).
Then u-v1-x-y-v3-v4 is a P6. Now suppose u ∈ W2. By Theorem 3.2(b) we have
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uz /∈ E(G). Then either u-v2-y-z-v4-v5 or u-y-z-v4-v5-v1 is a P6. Now suppose
u ∈ W5. By Theorem 3.2(b) we have uz /∈ E(G). Then u-v5-v1-v2-v3-z is a
P6. Now suppose u ∈ X51. By Theorem 3.2(b) we have uy, uz /∈ E(G). Then
u-v1-v2-y-z-v4 is a P6. Thus we have established that W = ∅ and X51∪X54 = ∅
so X = X12∪X23∪X34. Finally, suppose that u ∈ A. We note that for any two
vertices x′ ∈ X12 and y′ ∈ X23 the vertex u is either complete or anticomplete
to {x′, y′}, for otherwise G[u, v1, x

′, y′, v3] contains an induced C4. The same
holds for any two vertices in X23 and X34. It follows that u is either complete or
anticomplete toX . If u is complete toX then by Theorem 3.2(a), u is a universal
vertex, a contradiction. If u is anticomplete to X then {v1, . . . , v5, x, y, z, u}
induces an F3, a contradiction. Thus (1) holds.

By (1) we have V (G) = C∪T1∪· · ·∪T5∪X12∪X23∪X34. By Theorem 3.2(b)
we know that [T5, T2 ∪ T3 ∪X23] = ∅. We claim that:

[T5, X12 ∪X34] = ∅, and [T5, T1 ∪ T4] is complete. (2)

Proof: Pick any vertex t5 ∈ T5. Suppose up to symmetry that t5 has a neighbor
x′ ∈ X12. Then either {t5, x′, y, z} induces a C4 or v5-t5-x

′-v2-v3-z is a P6, a
contradiction. Now suppose up to symmetry that t5 has a non-neighbor t1 ∈ T1.
Then t5-v5-t1-v2-v3-z is a P6 (since t1z /∈ E(G) by Theorem 3.2(b)). Thus (2)
holds.

By Theorem 3.2(b) we have [T1, T3∪T4∪X34] = ∅ and [T4, T1∪T2∪X12] = ∅.
We claim that:

[T1, X12] and [T4, X34] are complete. (3)

Proof: If, up to symmetry, there are non-adjacent vertices t1 ∈ T1 and x′ ∈ X12,
then either {t1, v1, x′, y} induces a C4 or t1-v1-x

′-y-z-v4 is a P6. Thus (3) holds.

By Theorem 3.2(b) we have [T2, T4] = ∅ and [T3, T1] = ∅. We claim that:

[T2, X12 ∪ X23] and [T3, X23 ∪ X34] are complete. Moreover, every
vertex in T2 is complete either to T1 or to T3, and every vertex in
T3 is complete either to T2 or to T4.

(4)

Proof: Up to symmetry pick any t2 ∈ T2, x′ ∈ X12 and y′ ∈ X23. Then
t2y

′ ∈ E(G), for otherwise either {t2, v2, y′, z} induces a C4 or t2-v2-y
′-z-v4-v5

is a P6. Then t2x
′ ∈ E(G), for otherwise {t2, y′, x′, v1} induces a C4. This

proves the first sentence of (4). Now suppose that some t2 ∈ T2 has a non-
neighbor t1 ∈ T1 and a non-neighbor t3 ∈ T3. Then either {t1, v1, t2, y} induces
a C4 or t1-v1-t2-y-t3-v4 is a P6. Thus (4) holds.

Every vertex in X23 is anticomplete to T1 or T4. (5)

Proof: If any y′ ∈ X23 has neighbors t1 ∈ T1 and t4 ∈ T4, then {y, t1, v5, t4}
induces a C4. Thus (5) holds.

By (5) there is a partition Y1, Y4 of X23 such that [Y1, T4] = [Y4, T1] = ∅.

Now let Qi = {vi} ∪ Ti for each i ∈ {1, 4, 5}. We observe that the set
T2 ∪ {v2} ∪ X12 ∪ Y1 is a clique, because each of T2 ∪ {v2}, X12 and Y1 and
they are pairwise complete as proved above. Likewise T3 ∪ {v3} ∪ X34 ∪ Y4 is
a clique. Let R2 = {u ∈ T2 ∪ {v2} ∪ X12 ∪ Y1 | u is complete to Q1}, and let
Q2 = (T2∪{v2}∪X12∪Y1)\R2. Likewise let R3 = {u ∈ T3∪{v3}∪X34∪Y4 | u
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is complete to Q4}, and let Q3 = (T3 ∪ {v3} ∪ X34 ∪ Y4) \ R3. Note that
{v2}∪X12 ⊆ R2 and {v3}∪X34 ⊆ R3 by (3). So Q2 ⊆ T2∪Y1 and Q3 ⊆ T3∪Y4.
We observe that [Q2, Q3] is complete by (4) and becauseX23 is a clique. Further,
we claim that:

[Q3, R2] and [Q2, R3] are complete. (6)

Proof: Suppose that there are non-adjacent vertices q ∈ Q3 and r ∈ R2. Then
r /∈ {v2} ∪ Y1, and so r ∈ T2 ∪ X12, and q has a non-neighbor t ∈ T4. If
r ∈ X12, then q-v3-t-v5-v1-r is a P6 (since rt /∈ E(G), by Theorem 3.2(b)), a
contradiction. So r ∈ T2. Then since qz ∈ E(G) (by (4)) and {q, z, r, v2} does
not induce a C4, rz /∈ E(G). But then v5-t-z-q-v2-r is a P6, a contradiction.
Thus (6) holds.

Moreover, by the definition of Q1, . . . , Q4, R2 and R3, the pairs {Q1, Q2},
{Q2, Q3} and {R2, R3} are graded. Hence the sets Q1, . . . , Q5, R2, R3 form a
partition of V (G) which shows that G is a band. �

When there is a C6 and no F1

Here we give the proof of the third item of Theorem 1.5, which we restate as
follows.

Theorem 3.6 Let G be a (P6, C4)-free graph that has no clique-cutset and no
universal vertex, and suppose that G is F1-free. If G contains an induced C6,
then G is a blowup of one of the graphs H1, H2, H3, H4.

Proof. Let C = {v1, v2, . . . , v6} be the vertex-set of a C6 in G, with edges vivi+1

(mod 6). We use Theorem 3.3 with the same notation. If C is not dominating,
then by Theorem 3.1 and since G has no universal vertex, G is a blowup of the
Petersen graph. Therefore we may assume that C is dominating. So L = ∅
and V (G) = V (C) ∪ A ∪ B ∪ D ∪ S. Moreover, since G is F1-free, we have
[Ai, Ai+2] = ∅ and [Ai, Bi+1] is complete. So, by Theorem 3.3, each of the sets
A1 ∪{v1}, . . . , A6 ∪{v6}, B1, . . . , B6, D1, D2, D3, S is a clique and that any two
of them are either complete or anticomplete to each other. So G is a blowup
of some graph. We now make this more precise. Since G has no universal
vertex, by Theorem 3.3(b) and (c), we have S = ∅. If B = ∅, then G is a
blowup of the Petersen graph. Now assume that B 6= ∅. First, suppose that
two consecutive Bj ’s are non-empty, say Bi, Bi+1 6= ∅. Then by Theorem 3.3(f),
Bi+3 ∪Bi+4 = ∅, and by Theorem 3.3(e) D = ∅. So again by Theorem 3.3(f), G
is a blowup of H4. Next, suppose that no two consecutive Bj ’s are non-empty
and let Bi 6= ∅. Then Bi−1 = ∅ = Bi+1 and by Theorem 3.3(e), Di = ∅ = Di+1.
Now, if Bi+3 6= ∅ or Bi+2∪Bi+4 = ∅, then G is a blowup of H2, and if Bi+3 = ∅
and Bi+2 ∪Bi+4 6= ∅, then by Theorem 3.3(e), D = ∅, and so G is a blowup of
H3. �

When there is an F2 and no C6

Here we give the proof of the fourth item of Theorem 1.5, which we restate it
as follows.
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Theorem 3.7 Let G be a (P6, C4)-free graph that has no clique-cutset and no
universal vertex, and suppose that G is C6-free. If G contains an F2, then G is
a blowup of either H5 or Fk,ℓ for some integers k, ℓ ≥ 1.

Proof. Consider the graph F2 as shown in Figure 1 and let C = {v1, . . . , v5}.
We use the same notation as in Theorem 3.2. Note that t ∈ T5, and x ∈ X12

and y ∈ X34, so Theorem 3.2(e) implies that the sets X23, X45, X15 and W2,
W3, W5 are all empty, and one of W1,W4 is empty. So V (G) = C ∪ T1 ∪ · · · ∪
T5 ∪X12 ∪X34 ∪ A ∪W1 ∪W4. We establish a number of properties. (Some of
them were also proved in [14, Proof of Lemma 4].)

(i) Each vertex in T5 is either complete or anticomplete to X12 ∪ X34. In
particular, t is complete to X12 ∪X34.
Proof: Suppose that some vertex t5 ∈ T5 is not complete and not anti-
complete to X12 ∪ X34. It follows that t5 has a neighbor x′ ∈ X12 and a
non-neighbor y′ ∈ X34, or vice-versa. Then v5-t5-x

′-v2-v3-y
′ is a P6.

(ii) X12 and X34 are cliques.
Proof: If, up to symmetry, X12 contains two non-adjacent vertices x′, x′′,
then by (i), {t, x′, x′′, v2} induces a C4.

(iii) Each vertex in T2 is either complete or anticomplete to X12, and each
vertex in T3 is either complete or anticomplete to X34.
Proof: If, up to symmetry, some vertex t2 ∈ T2 has a neighbor x′ and a
non-neighbor x′′ in X12, then, by (ii), x′′-x′-t2-v3-v4-v5 is a P6.

(iv) [T2, X34] = ∅, and [T3, X12] = ∅.
Proof: Suppose, up to symmetry, that there are adjacent vertices t2 ∈ T2

and y′ ∈ X34. If t2t ∈ E(G) then {t2, v3, v4, t} induces a C4. If t2t /∈ E(G),
then by (i), {t2, y′, t, v1} induces a C4.

(v) [T1, T2 ∪ T5 ∪X12] and [T4, T3 ∪ T5 ∪X34] are complete.
Proof: Suppose, up to symmetry, that some vertex t1 ∈ T1 has a non-
neighbor u ∈ T2 ∪ T5 ∪ X12. Recall that t1y /∈ E(G) by Theorem 3.2(b).
Also, since {v5, t, y, v3, v2, t1} does not induce a C6, t1t ∈ E(G). Suppose
that u ∈ X12. Then {t1, t, u, v2} induces a C4, a contradiction. In par-
ticular t1x ∈ E(G). Now suppose that u ∈ T5 and u 6= t. If ux ∈ E(G),
then {u, x, t1, v5} induces a C4. If ux /∈ E(G), then by (i), uy /∈ E(G), and
u-v5-t1-v2-v3-y is a P6. Finally, if u ∈ T2, then by (iv), we have uy /∈ E(G),
and u-v2-t1-v5-v4-y is a P6.

(vi) [A,X12 ∪X34] is complete.
Proof: If, up to symmetry, there are non-adjacent vertices a ∈ A and
x′ ∈ X12, then by Theorem 3.2(a) and (i) the set {a, t, x′, v2} induces a C4.

Now let:

Qi = {vi} ∪ Ti for i ∈ {1, 4},

Q2 = {v2} ∪ {u ∈ T2 | u is complete to X12} and R2 = T2 \Q2,

Q3 = {v3} ∪ {u ∈ T3 | u is complete to X34} and R3 = T3 \Q3,

Q5 = {u ∈ T5 | u is complete to X12 ∪X34} and R5 = {v5} ∪ (T5 \Q5),

Recall that, by Theorem 3.2(b), [Ti, Ti+2] = ∅, for all i. Then:
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(vii) [Q2, R3] and [Q3, R2] are complete.
Proof: If there are non-adjacent vertices u ∈ Q2 and r ∈ R3, then r-v3-u-
x-t-v5 is a P6. The proof is similar for [Q3, R2].

(viii) [R2, R3] = ∅.
Proof: If r2 ∈ R2 and r3 ∈ R3 are adjacent then x-v1-r2-r3-v4-y is a P6.

Suppose that W1 ∪W4 = ∅. By (vi) and Theorem 3.2(a), [A, V (G) \ A] is
complete and A is a clique; since G has no universal vertex, we deduce that
A = ∅. Then V (G) is partitioned into the ten cliques Q1, Q2, Q3, Q4, Q5, R5,
X12, R2, R3, X34, and any two of them are either complete or anticomplete to
each other, and the adjacencies proved above show that G is a blowup of H5.

Therefore let us assume that W1 ∪W4 6= ∅. By Theorem 3.2(d) one of W1

and W4 is empty. Up to symmetry, let us assume that W1 6= ∅ and W4 = ∅.
Hence V (G) = Q1 ∪ · · · ∪Q5 ∪R2 ∪R3 ∪R5 ∪X12 ∪X34 ∪W1 ∪A. Recall that
every induced C5 in G is dominating, by Theorem 3.1. Then:

(ix) [W1, Q1] is complete, and [W1, Q3 ∪R3 ∪Q4 ∪X12] = ∅.
This follows directly from Theorem 3.2(b)–(e).

(x) [W1, Q5] is complete.
Proof: If any w ∈ W1 and u ∈ Q5 are non-adjacent, then either {w, v1, u, y}
induces a C4 or {u, x, v2, v3, y} is a non-dominating C5 by (ix).

(xi) [W1, Q2 ∪R5] = ∅.
Proof: Suppose that w ∈ W1 and u ∈ Q2 ∪ R5 are adjacent. If u ∈ Q2,
then, since t ∈ Q5 and by (ix) and (x), {w, t, x, u} induces a C4. If u ∈ R5,
then w-u-v4-v3-v2-x is a P6 by (ix).

(xii) R3 = ∅.
Proof: Pick any w ∈ W1. If there is any vertex r ∈ R3, then {w, v1, v2, r, v4,
y} induces a P6 or a C6 by (ix).

(xiii) Each component Z of W1 is homogeneous in G \A.
Proof: Otherwise, there are adjacent vertices z, z′ ∈ Z and a vertex u /∈
W1∪A adjacent to z and not to z′. By the preceding points u is in R2∪X34.
If u ∈ R2, then z′-z-u-v3-v4-v5 is a P6. If u ∈ X34, then z′-z-u-v3-v2-x is a
P6 by (ix).

(xiv) Each component Z of W1 has either a neighbor in R2 and no neighbor in
X34, or a neighbor in X34 and no neighbor in R2.
Proof: If Z has no neighbor in R2 ∪ X34, then by the preceding points
we have N(Z) = Q1 ∪ Q5 ∪ A′ for some A′ ⊆ A, and so N(Z) is a clique
by Theorem 3.2, contradicting the hypothesis that G has no clique cutset.
On the other hand if Z has a neighbor r ∈ R2 and a neighbor u ∈ X34,
then by (xiii) for any z ∈ Z we see that {z, r, v3, u} induces a C4.

(xv) Each component Z of W1 is a clique.
Proof: Suppose that Z contains non-adjacent vertices z, z′. By (xiii)
and (xiv) z and z′ have a common neighbor u in R2∪X34. Then {z, u, z′, t}
or {z, u, z′, v1} induces a C4.

(xvi) If Z,Z ′ are distinct components of W1, then N(Z)∩N(Z ′)∩(R2∪X34) = ∅.
(Otherwise there is a C4 as in the proof of (xv).)

(xvii) A = ∅.
Proof: Suppose that there exists a ∈ A. Since G has no universal vertex,
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there is a non-neighbor z of a. By Theorem 3.2(a) and by (vi) we have
z ∈ W1. By (xiii) and (xiv) z has a neighbor u ∈ R2 ∪ X34. But then
{a, u, z, t} or {a, u, z, v1} induces a C4.

By (xii) and (xvii) we have V (G) = Q1∪· · ·∪Q5∪R2∪R5∪X12∪X34∪W1.
Now it is a routine matter to check that G is a blowup of Fk,ℓ for some k, ℓ ≥ 1.
We clarify this point by exhibiting the mapping Qv → v of the definition of
a blowup, as follows. If Z is any component of W1, we say that it is an R2-
component (resp. X34-component) if it has a neighbor in R2 (resp. in X34), and
we call the set N(Z) ∩ R2 (resp. N(Z) ∩X34) the support of Z. By (xiv) and
(xvi) the supports are non-empty and pairwise disjoint. Let Z1, Z2, . . . , Zp be
the R2-components of W1, and let Z ′

1, Z
′
2, . . . , Z

′
q be the X34-components of W1.

Let k = p+ 1 and ℓ = q + 1. Then:

• Zi → ui and N(Zi) ∩ R2 → ai for each i ∈ {1, 2 . . . , p}, and X12 → up+1

and Q2 → ap+1, and R2 \ ∪
p
i=1(N(Zi) ∩R2) → a0.

• Z ′
j → wj and N(Z ′

j)∩X34 → bj for each j ∈ {1, 2 . . . , q}, and R5 → wq+1

and Q4 → bq+1, and X34 \ ∪
q
j=1(N(Z ′

j) ∩X34) → b0.

• Q1 → x, Q5 → y, and Q3 → z.

Since the components of W1 and their supports are cliques, we see that G is a
blowup of Fk,ℓ. This completes the proof of the theorem. �

When there is a C5, no C6 and no F2

Here we give the proof of the last item of Theorem 1.5.

Theorem 3.8 Let G be a (P6, C4)-free graph that has no clique-cutset and no
universal vertex, and suppose that G is C6-free and F2-free. If G contains a C5,
then G is either a belt or a boiler.

Proof. Let C = {v1, . . . , v5} be the vertex-set of a C5 in G with edges vivi+1

(mod 5). We use the same notation as in Theorem 3.2. We choose C such
that |T | is minimized. Remark that since G is (P6, C4, C6)-free every hole in
G has length 5 and is dominating by Theorem 3.1. We establish a number of
properties. (Some of them were also proved in [14, Lemma 5].)

(i) If Xi−2,i−1 ∪Xi+1,i+2 = ∅, then Ti is complete to Ti−1 ∪ Ti+1.
Proof: Up to symmetry let i = 1 and suppose that X23 ∪ X45 = ∅
and that some vertex t1 ∈ T1 has a non-neighbor t2 ∈ T2. Let C′ =
{t1, v2, v3, v4, v5}. So C′ induces a C5, and t2 has only two neighbors on
it, so the choice of C (minimizing |T |) implies the existence of a vertex
that has three neighbors on C′ and two on C. Such a vertex must be in
X23 ∪X45, a contradiction.

(ii) Every component Z of Wi is anticomplete to one of Ti−1, Ti+1.
Proof: Let i = 1 and suppose that there are vertices z, z′ ∈ Z such that
z has a neighbor t2 ∈ T2 and z′ has a neighbor t5 ∈ T5. If we can choose
z = z′, then C ∪ {z, t2, t5} induces an F2. Otherwise let P be a shortest
path between z and z′ in G[Z]. Then V (P ) ∪ {t2, v2, t5, v5} contains an
induced P6.
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(iii) For every component Z of Wi, every vertex of Ti−1∪Ti+1 is either complete
or anticomplete to Z.
Proof: Let i = 1. Suppose that y, z are adjacent vertices in Z and that
some vertex t2 ∈ T2 is adjacent to y and not to z. By (ii) [Z, T5] = ∅.
Then z-y-t2-v3-v4-v5 is a P6.

(iv) Every vertex in Wi has a neighbor in Xi−2,i+2. In particular if Wi 6= ∅,
then Xi−2,i+2 6= ∅.
Proof: Let i = 1 and suppose that some vertex of W1 has no neighbor in
X34. Let Z be the component of W1 that contains this vertex. By (ii) we
may assume that [Z, T5] = ∅. Let Z0 = {z ∈ Z | z has no neighbor in X34},
so Z0 6= ∅. Let Y0 be a component of G[Z0], and let Y1 = N(Y0)∩ (Z \Z0)
and Y2 = N(Y0) ∩ T2, and A0 = N(Y0) ∩ A. By Theorem 3.2 and since
[Z, T5] = ∅ we have N(Y0) = {v1} ∪ T1 ∪ Y1 ∪ Y2 ∪ A0 and Y0 is complete
to {v1} ∪ T1, and by (iii) Y2 is complete to Y0. Suppose that some vertex
y ∈ Y1 is not complete to Y0. Then there are adjacent vertices y0, z0 ∈ Y0

and a vertex x ∈ X34 such that z0-y0-y-x-v4-v5 is a P6. Hence Y0 is
complete to N(Y0) \ A0. Since G has no clique-cutset, there are non-
adjacent vertices u, v ∈ N(Y0). By Theorem 3.2 and (iii) we know that
[Y1 ∪ A0, {v1} ∪ T1 ∪ Y2] is complete, so we have either (a) u, v ∈ Y1, or
(b) u ∈ Y1 and v ∈ A0, or (c) u ∈ T1 and v ∈ Y2. Pick any y0 ∈ Y0. In
case (a), by the definition of Z0 there are vertices x, x′ ∈ X34 such that
xu, x′v ∈ E(G). If we can choose x = x′, then {x, u, y0, v} induces a C4;
and in the opposite case either {x, x′, u, v, y0} induces a non-dominating
C5 (if xx′ ∈ E(G)), because v5 has no neighbor in it, or {y0, u, v, x, x′, v4}
induces a C6, a contradiction. In case (b) we may choose y0 adjacent to
v. By the definition of Z0, u has a neighbor x ∈ X34. Then vx /∈ E(G),
for otherwise {v, x, u, y0} induces a C4. But then {v1, v3, v4, v5, x, y0, u, v}
induces an F2. In case (c), {y0, u, v2, v} induces a C4.

(v) Xi+2,i−2 is anticomplete to one of Ti−1, Ti+1.
Proof: Let i = 1 and suppose that there are vertices x, y ∈ X34 such that
x has a neighbor t2 ∈ T2 and y has a neighbor t5 ∈ T5. Then xt5 /∈
E(G), for otherwise {v1, t2, x, t5} induces a C4; and similarly yt2 /∈ E(G).
Moreover xy /∈ E(G), for otherwise v2-t2-x-y-t5-v5 is a P6. But then
{v1, v2, v3, v4, x, y, t2, t5} induces an F2.

(vi) If [Xi+2,i−2, Ti+1] 6= ∅ then Xi−1,i = ∅. Likewise if [Xi+2,i−2, Ti−1] 6= ∅
then Xi,i+1 = ∅.
Proof: Let i = 1, and suppose that some vertex x ∈ X34 has a neighbor
t ∈ T2 and that there is a vertex y ∈ X51. Then xy /∈ E(G), for otherwise
{x, v4, v5, y} induces a C4, and ty ∈ E(G), for otherwise v2-t-x-v4-v5-y is
a P6; but then C ∪ {t, x, y} induces an F2.

(vii) Every vertex in Xi+2,i−2 that has a neighbor in Ti+1 is complete to Ti−2.
Proof: Let i = 1, and suppose that some vertex x ∈ X34 has a neighbor t ∈
T2 and that x is not adjacent to a vertex y ∈ T4. Then by Theorem 3.2(b),
ty /∈ E(G). But then C ∪ {t, x, y} induces an F2.

(viii) If Wi 6= ∅, then [Xi+2,i−2, Ti+2 ∪ Ti−2] is complete.
Proof: Let i = 1, and suppose that, up to symmetry, there are non-
adjacent vertices x ∈ X34 and t ∈ T3 and that there is a vertex w ∈ W1.
Then {w, v1, v2, t, v4, x} induces a P6 or a C6.
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Suppose that X = ∅. Then (iv) implies that W = ∅, so V (G) = C ∪
T ∪ A. Moreover A = ∅, for otherwise any vertex in A is universal in G, by
Theorem 3.2(a); and (i) implies that [Ti, Ti+1] is complete for all i. So G is a
blowup of C5, which is a special case of a belt.

Now assume that X 6= ∅, sayX34 6= ∅. By Theorem 3.2(d) and by symmetry,
we may assume that X23∪X45 ∪X51 = ∅, so X = X12 ∪X34, and consequently,
by (v) and (vi) and up to symmetry, that [X34, T5] = ∅ and [X12, T5] = ∅. By
(iv) we have W = W1 ∪W4, and by Theorem 3.2(e) one of W1,W4 is empty, so,
still up to symmetry, we may assume that W4 = ∅. Let:

WT
1 = {w ∈ W1 | w has a neighbor in T2},

WN
1 = {w ∈ W1 | w has no neighbor in T2},

XT
34 = {x ∈ X34 | x has a neighbor in T2},

XN
34 = {x ∈ X34 | x has no neighbor in T2 and has a neighbor in W1},

X0
34 = {x ∈ X34 | x has no neighbor in T2 ∪W1},

XW
34 = {x ∈ X34 | x has a neighbor in W1}.

Clearly W1 = WT
1 ∪ WN

1 and X34 = XT
34 ∪ XN

34 ∪ X0
34. Moreover we have

XN
34 ⊆ XW

34 ⊆ XN
34 ∪ XT

34. Recall that [W1, T1] is complete and that [W1, T3 ∪
T4 ∪X12] = ∅ by Theorem 3.2(b)–(e). By (i), [T1, T2 ∪ T5] and [T4, T3 ∪ T5] are
complete. We establish some additional facts.

(ix) [W1, T5] = ∅.
Proof: Suppose that w ∈ W1 and t ∈ T5 are adjacent. By (iv) w has a
neighbor x ∈ X34. Since [X34, T5] = ∅, we see that v5-t-w-x-v3-v2 is a P6.

(x) [WT
1 ,WN

1 ] = ∅.
This follows directly from (iii).

(xi) For every edge wx with w ∈ W1 and x ∈ X34, every vertex u in T2 is
either complete or anticomplete to {w, x}. Hence [WT

1 , XN
34] = ∅ and

[WN
1 , XT

34] = ∅. Also every vertex u in A is either complete or anticom-
plete to {w, x}.
Proof: In the opposite case there is a C4 in G[{v1, w, x, v3, u}].

(xii) [A,XT
34 ∪WT

1 ] is complete.
Proof: Consider any a ∈ A. First pick any x ∈ XT

34, so x has a neighbor
t ∈ T2. Then at ∈ E(G) by Theorem 3.2(a), and ax ∈ E(G), for otherwise
{a, t, x, v4} induces a C4. Now pick any w ∈ WT

1 . So w has a neighbor
t ∈ T2 and, by (iv), a neighbor x ∈ X34. Then xt ∈ E(G) by (xi), so
x ∈ XT

34, and ax ∈ E(G) by the preceding point of this claim. Then
aw ∈ E(G), for otherwise {a, v1, w, x} induces a C4.

(xiii) Any vertex x ∈ XW
34 is complete to (X34 \ x) ∪ T3 ∪ T4.

Proof: Suppose up to symmetry that x has a non-neighbor y ∈ (X34 \x)∪
T3. Let w ∈ W1 be any neighbor of x. Then either {w, x, y, v3} induces a
C4 (if wy ∈ E(G)) or v5-v1-w-x-v3-y is a P6.

(xiv) Every vertex in X12 has a neighbor in T3.
Proof: Suppose on the contrary that the set Z = {z ∈ X12 | z has no
neighbor in T3} is non-empty, and let Y be the vertex-set of a component
of G[Z]. Let Y ′ = N(Y ) ∩ X12, T ′

1 = N(Y ) ∩ T1, T ′
2 = N(Y ) ∩ T2,
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and A′ = N(Y ) ∩ A. By Theorem 3.2 and the current assumption we
have N(Y ) = {v1, v2} ∪ Y ′ ∪ T ′

1 ∪ T ′
2 ∪ A′. Suppose that some vertex

u ∈ Y ′ ∪ T ′
1 ∪ T ′

2 is not complete to Y ; so there are adjacent vertices
y, z ∈ Y with uy ∈ E(G) and uz /∈ E(G). If u ∈ Y ′, then u ∈ X12 \ Z, so
u has a neighbor t ∈ T3, and then z-y-u-t-v4-v5 is a P6. If u ∈ T ′

1, then
z-y-u-v5-v4-v3 is a P6. The proof is similar if u ∈ T ′

2. Hence Y is complete
to {v1, v2} ∪ Y ′ ∪ T ′

1 ∪ T ′
2. Since G has no clique cutset, the set N(Y )

contains two non-adjacent vertices u, v. By Theorem 3.2, and since [T1, T2]
is complete, and up to symmetry, we have u ∈ Y ′ and v ∈ Y ′∪T ′

1∪T ′
2∪A′.

So u has a neighbor t ∈ T3. Pick any y ∈ Y . If v ∈ Y ′, then v has
a neighbor s ∈ T3, and either {y, u, v, s} induces a C4 (if we can choose
s = t) or {y, u, v, s, t} induces C5 that does not dominate v5. If v ∈ T ′

1, then
{y, u, t, v4, v5, v} induces a C6. If v ∈ T ′

2, then either {y, u, t, v} induces a
C4, or {y, u, t, v3, v} induces a C5 that does not dominate v5. If v ∈ A′,
then we can choose y adjacent to v, and then {y, u, t, v} induces a C4.

(xv) [X12, T1] is complete.
Proof: This follows from (xiv) and (vii).

(xvi) [X12, A] is complete.
Proof: Pick any a ∈ A and x ∈ X12. By (xiv) x has a neighbor t ∈ T3. We
have at ∈ E(G) by Theorem 3.2, and ax ∈ E(G), for otherwise {a, t, x, v1}
induces a C4.

(xvii) For any component Z of G[X0
34] the set [Z,N(Z) \ A] is complete and

N(Z) \A is a clique.
Proof: Let Z be (the vertex-set of) a component of G[X0

34]. Then N(Z) \
A ⊆ {v3, v4}∪T3 ∪T4 ∪XN

34 ∪XT
34. First suppose that [Z,N(Z) \A] is not

complete. So there are adjacent vertices y, z ∈ Z and a vertex u ∈ N(Z)\A
with uy ∈ E(G) and uz /∈ E(G). Clearly u /∈ {v3, v4}. If u ∈ XN

34 ∪XT
34,

then, by (xiii) u has no neighbor in W1, so u has a neighbor t ∈ T2, and
then z-y-u-t-v1-v5 is a P6. If u ∈ T3, then z-y-u-v2-v1-v5 is a P6. If u ∈ T4

then z-y-u-v5-v1-v2 is a P6, a contradiction. Now suppose that N(Z) \ A
is not a clique, so it contains two non-adjacent vertices u, v. Pick any
z ∈ Z. By Theorem 3.2 and since [T4, T3] is complete we have either (a)
u, v ∈ XN

34 ∪ XT
34 or (b) u ∈ XN

34 ∪ XT
34 and v ∈ T3 ∪ T4. In case (a), by

(xiii) u and v have no neighbor in W1, so they have neighbors respectively
t and t′ in T2; then {z, u, v, t, t′} induces either a C4 or a non-dominating
C5 (because v5 has no neighbor in it), a contradiction. In case (b), item
(xiii) implies that u has no neighbor in W1, so u has a neighbor t ∈ T2. If
v ∈ T3, then {z, u, t, v2, v} induces a non-dominating C5 (because of v5).
If v ∈ T4, then v2-t-u-z-v-v5 is a P6.

(xviii) For each component Z of G[X0
34] there are vertices a ∈ A, z ∈ Z, w ∈ W1

and x ∈ XN
34 such that az, wx ∈ E(G) and aw, ax /∈ E(G).

Proof: We have N(Z) ⊆ XN
34 ∪ XT

34 ∪ {v3, v4} ∪ T3 ∪ T4 ∪ A. Since G
has no clique cutset there are two non-adjacent vertices u, v ∈ N(Z). By
(xvii) and Theorem 3.2, and since T3 ∪ T4 is a clique, we have u ∈ A and
consequently v ∈ XN

34 ∪ XT
34, and by (xii) v ∈ XN

34. So v has a neighbor
w ∈ W1, and uw /∈ E(G) by (xi).

Suppose that XN
34 = ∅. Then X0

34 = ∅ by (xviii), and WN
1 = ∅ by (iv)

and (xi). So X34 = XT
34 and W1 = WT

1 . Now [A, V (G) \ A] is complete by
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Theorem 3.2, (xii) and (xvi), and since G has no universal vertex it follows that
A = ∅. So V (G) = C ∪ T1 ∪ · · · ∪ T5 ∪WT

1 ∪X12 ∪XT
34. Let:

Qi = {vi} ∪ Ti for each i ∈ {1, 4, 5}.

Q2 = {v | v is universal in G[{v2} ∪ T2 ∪X12 ∪W1]}.

R2 = ({v2} ∪ T2 ∪X12 ∪W1) \Q2.

Q3 = {v | v is universal in G[{v3} ∪ T3 ∪X34]}.

R3 = ({v3} ∪ T3 ∪X34) \Q3.

Hence V (G) = Q1 ∪ · · · ∪ Q5 ∪ R2 ∪ R3. We claim that Q2 6= ∅. Indeed, if
W1 = ∅ then v2 ∈ Q2. So suppose that W1 6= ∅. By (iv) and (xiii) the set
Y34 = {x ∈ X34 | x has a neighbor in W1} is non-empty and is a clique. Since
XN

34 ∪ X0
34 = ∅, every vertex of Y34 has a neighbor in T2, and it follows that

some vertex t in T2 is complete to Y34 (otherwise there are vertices y′, y′′ ∈ Y34

and t′, t′′ ∈ T2 that induce a C4). Let us verify that t ∈ Q2. We know that t is
complete to T2 \ t by Theorem 3.2. Any w ∈ W1 has a neighbor x ∈ X34 by (iv),
and so tw ∈ E(G) for otherwise {t, x, w, v1} induces a C4. Now consider any
y ∈ X12. Pick any w ∈ W1 and x ∈ X34∩N(w). Then ty ∈ E(G), for otherwise
y-v2-t-x-v4-v5 is a P6. So t ∈ Q2, and the claim that Q2 6= ∅ is established. Now
the properties of the nine sets Q1, . . . , Q5, R2, R3 satisfy all the axioms of the
belt. We make this more precise as follows:

• By Theorem 3.2 and by (i), we know that Q1, Q4 and Q5 are non-empty
cliques, [Q1 ∪Q4, Q5] is complete and [Q1, Q4] = ∅.

• Clearly Q2 and Q3 are cliques, with v3 ∈ Q3, and Q2 6= ∅ as seen above.

• By (i), (vii) and Theorem 3.2, [Q1, Q2∪R2] and [Q4, Q3∪R3] are complete.

• By the definition of Q2 and Q3, Theorem 3.2, and since [X12∪X34, T5] = ∅,
we have [Q2, Q4 ∪Q5] = ∅ and [Q3, Q1 ∪Q5] = ∅.

• By the definition of Q2, Q3, R2 and R3, we have: for each j ∈ 2, 3, [Qj, Rj ]
is complete, every vertex in Rj has a non-neighbor in Rj , every vertex in
Q2 ∪ R2 has a neighbor in Q3 ∪ R3 (by (iv) and (xiv)), and every vertex
in Q3 ∪R3 has a neighbor in Q2 ∪R2 (by the definition of XT

34)).

Thus G is a belt.

Therefore we may assume that XN
34 6= ∅. So, W1 6= ∅. Then:

(xix) XN
34 ∪XT

34 ∪ T3 ∪ T4 is a clique.
Proof: By (viii) and by Theorem 3.2, it is enough to show that XN

34 ∪XT
34

is a clique. Suppose that there are non-adjacent vertices x, x′ ∈ XN
34∪XT

34.
Pick any y ∈ XN

34. By (xiii), y /∈ {x, x′} and yx, yx′ ∈ E(G), and x, x′ ∈
XT

34. So x has a neighbor t ∈ T2, and x′ has a neighbor t′ ∈ T2. Then
{y, x, x′, t, t′} induces a cycle of length either 4 (if t = t′) or 5 and not
dominating (because v5 has no neighbor in it), a contradiction.

(xx) G[X0
34] is chordal.

Proof: If G[X34] contains a hole C, then C either has length 4 or at least 6
or is a non-dominating C5 (because of v5).

(xxi) For every simplicial vertex s of G[X0
34], there are vertices a ∈ A and

u ∈ X0
34 ∪XN

34 with sa, su ∈ E(G) and au /∈ E(G).
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Proof: Let Z be the vertex-set of the component of G[X0
34] that contains s.

So NZ(s) is a clique. We have N(s) ⊆ NZ(s) ∪ (N(Z) \A) ∪A. By (xvii)
the set NZ(s) ∪ (N(Z) \A) is a clique. Since G has no clique cutset there
are two non-adjacent vertices u, v in N(s), and so u ∈ NZ(s)∪ (N(Z) \A)
and v ∈ A. Since N(Z) \ A ⊆ XN

34 ∪ XT
34 ∪ {v3, v4} ∪ T3 ∪ T4 and A is

complete to XT
34 ∪ {v3, v4} ∪ T3 ∪ T4 by Theorem 3.2 and (xii), we have

u ∈ X0
34 ∪XN

34.

Let A0 = {a ∈ A | a has a neighbor in X0
34 and a non-neighbor in XN

34}.
By (xviii) we have A0 6= ∅. Since A0 and XN

34 are cliques (by Theorem 3.2 and
(xix)) and by the third item of Lemma 2.3, there is a vertex x0 in XN

34 that is
anticomplete to A0. Let w0 be a neighbor of x0 in W1. Then w0 is anticomplete
to A0 by (xi).

(xxii) x0 is complete to X0
34.

Proof: If there is a vertex x ∈ X0
34 that is non-adjacent to x0, then v2-v1-

w0-x0-v4-x is a P6.

(xxiii) G[X0
34 ∪ A0] is chordal.

Proof: If G[X0
34 ∪ A0] contains a hole C, then C either has length 4 or at

least 6 or is a non-dominating C5 (because of w0).

(xxiv) Every vertex in X0
34 has a neighbor in A0.

Proof: Let Z be the vertex-set of any component of G[X0
34], and let ZA =

{z ∈ Z | z has a neighbor in A0}, and suppose that Z 6= ZA. By (xxiii)
and Lemma 2.2 applied to G[Z ∪A0], Z and A0, some simplicial vertex s′

of G[Z] has no neighbor in A0. Let S = {s′′ ∈ Z | NZ [s
′′] = NZ [s

′]}; so the
vertices in S are simplicial in G[Z] and pairwise clones, and S is a clique.
Let s be a vertex in S with the smallest number of neighbors in A. If s
has any neighbor a ∈ A0, then, since {S,A0} is a graded pair of cliques,
by Lemma 2.3 all vertices in S are adjacent to a, a contradiction. So s has
no neighbor in A0. By (xxi) there are vertices b ∈ A and u ∈ Z ∪XN

34 with
sb, su ∈ E(G) and bu /∈ E(G). We know that b /∈ A0, so b is complete
to XN

34, and so u ∈ Z. Moreover u /∈ S, for otherwise the choice of s is
contradicted (since b ∈ A, and the pair {A,S} is graded). Hence u is not a
simplicial vertex of G[Z], and so it has a neighbor v ∈ Z \N [s]. Consider
any a ∈ A0. We know that as /∈ E(G); then also au /∈ E(G), for otherwise
{a, b, s, u} induces a C4; and av /∈ E(G), for otherwise s-u-v-a-v1-w0 is a
P6. Hence {s, u, v} is anticomplete to A0. Let Y be the component of
G[Z \ ZA] that contains s, u, v. Let ZY = {z ∈ ZA | z has a neighbor in
Y }, and let AY = {b′ ∈ A | b′ has a neighbor in Y }. Note that [AY , X

N
34]

is complete. Since ZA 6= ∅ and G[Z] is connected, ZY 6= ∅. Then [Y, ZY ]
is complete, for otherwise there are adjacent vertices y, y′ ∈ Y , a vertex
z ∈ ZY , and a vertex a ∈ A0 such that y′-y-z-a-v1-w0 is a P6. Then ZY is
a clique, for otherwise {s, v, z, z′} induces a C4 for any two non-adjacent
vertices z, z′ in ZY . Moreover, for any b′ ∈ AY and z ∈ ZY , we have
b′z ∈ E(G), for otherwise {b′, y, z, a} induces a C4 for any y ∈ Y ∩ N(b)
and a ∈ A0 ∩ N(z). We have N(Y ) ⊆ ZY ∪ AY ∪ (N(Z) \ A), and by
Theorem 3.2, items (xii) and (xvii) and the fact that [AY , X

N
34] is complete,

this set is a clique, a contradiction.

(xxv) [X0
34, X

T
34] is complete.
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Proof: Suppose that some z ∈ X0
34 and x ∈ XT

34 are non-adjacent. By
(xxiv) x has a neighbor a ∈ A0. Then, by (xii), {a, x, x0, z} induces a C4.

(xxvi) For any two components Z,Z ′ of G[W1], the sets N(Z)∩X34 and N(Z ′)∩
X34 are disjoint.
Proof: Otherwise {v1, x, z, z′} induces a C4 for some z ∈ Z, z′ ∈ Z ′ and
x ∈ N(Z) ∩N(Z ′) ∩X34.

Let:

Q = {v1} ∪ T1,

B = {v3, v4} ∪ T3 ∪ T4 ∪XT
34 ∪XN

34,

M = {v2, v5} ∪ T2 ∪ T5 ∪X12 ∪W1,

L = X0
34.

We know that A and Q are cliques, and B is a clique by (xix). Every vertex in
L has a neighbor in A by (xxiv), and every vertex in M has a neighbor in B by
(iv) and (xiv). The subgraph G[L] is (P4, 2P3)-free by Lemma 2.4, using A0 in
the role of Y , x0 in the role of c, and v1 and w0, respectively, in the role of c′

and c′′ . The subgraph G[M ] has at least three components because {v2}∪X12,
{v5} ∪ T5 and W1 are pairwise anticomplete to each other and non-empty, and
G[M ] is (P4, 2P3)-free by Lemma 2.4, using B in the role of Y , v1 in the role of
c and the fact that G[M ] is not connected. Hence the sets Q,A,B, L,M form
a partition of V (G) that shows that G is a boiler. �

4 Additional properties of belts and boilers

Belts and boilers have some additional and useful properties that we give below.

4.1 Belts

Theorem 4.1 Let G be a belt, with the same notation as in Section 1. Then:

(a) For each j ∈ {2, 3}, any two non-adjacent vertices in Rj have no common
neighbor in Q5−j.

(b) [R2, R3] = ∅.

(c) For each j ∈ {2, 3}, every vertex of Qj that has a neighbor in R5−j is
complete to Q5−j.

(d) The graphs G[R2] and G[R3] are (P4, 2P3)-free.

Proof. (a) If two non-adjacent vertices r, r′ ∈ R2 have a common neighbor v in
Q3, then {v1, r, r′, v} induces a C4.

(b) Suppose that any r2 ∈ R2 and r3 ∈ R3 are adjacent. By the definition
of a belt, for each j ∈ {2, 3} the vertex rj has a non-neighbor r′j ∈ Rj . Then
r2r

′
3 /∈ E(G), for otherwise {r2, r′3, v4, r3} induces a C4, and similarly r3r

′
2 /∈

E(G). Then {r′2, v1, r2, r3, v4, r
′
3} induces a P6 or C6.

(c) Consider any u ∈ Q3 which has a neighbor r2 ∈ R2, and suppose that u
has a non-neighbor v ∈ Q2. By the definition of a belt r2 has a non-neighbor
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r′2 ∈ R2. Then ur′2 /∈ E(G), for otherwise {u, r′2, v1, r2} induces a C4. But then
r′2-v-r2-u-v4-v5 is a P6. The proof is similar when j = 2.

(d) Pick a vertex qi ∈ Qi for each i ∈ {1, 4, 5}. Lemma 2.4, using vertices
q1, q4 and q5 in the role of c, c′ and c′′, implies that G[R2] is (P4, 2P3)-free. The
proof is similar for G[R3]. �

Note that Theorem 4.1(d) means that (R2, Q3) and (R3, Q2) are C-pairs.

4.2 Boilers

Let G be a boiler, with the same notation as in the definition. Since every
vertex in A has a non-neighbor in B, Lemma 2.3 implies that some vertex b∗ in
B is anticomplete to A. Let m∗ be any neighbor of b∗ in M . Then m∗ too is
anticomplete to A (for otherwise {m∗, a, b, b∗} induces a C4 for some a ∈ A and
b ∈ B1 ∪B2). Pick a vertex z ∈ Q.

If L is a clique, then (A ∪ M,B ∪ L) is a C-pair, so the structure of G is
completely determined by Theorem 2.1 and the fact that Q is complete to A∪M
and anticomplete to B ∪ L.

Therefore let us assume that L is not a clique. Let U be the set of universal
vertices of L. (Possibly U = ∅.) Let AL = {a ∈ A | a has a neighbor in L} and
A′

L = {a ∈ A | a has a neighbor in L \ U}.

Theorem 4.2 Let G be a boiler, with the same notation as above, and assume
that L is not a clique. Then, up to a permutation of the set {3, . . . , k}, there is
an integer j ∈ {3, . . . , k} such that the following hold:

(i) For each a ∈ AL \ A′
L, there is an integer i ∈ {j, . . . , k} such that a is

complete to M1 ∪ B1 ∪ · · · ∪Mi−1 ∪ Bi−1 and anticomplete to Mi ∪ Bi ∪
· · · ∪Mk ∪Bk;

(ii) A′
L is complete to (M ∪B) \ (Mk ∪Bk) and anticomplete to Mk ∪Bk;

(iii) A \ AL is complete to M1 ∪ B1 ∪ · · · ∪Mj−1 ∪ Bj−1 and anticomplete to
Mj ∪Bj ∪ · · · ∪Mk ∪Bk.

Proof. Since A and B are disjoint cliques and G is C4-free, [A,B1 ∪B2] is com-
plete, and b∗ is anticomplete to A, Lemma 2.3 implies that there is a permutation
of {3, .., k} such that for every vertex a ∈ A there is an integer i ∈ {3, . . . , k}
such that a is complete to M1 ∪ B1 ∪ · · · ∪ Mi−1 ∪ Bi−1 and anticomplete to
Mi ∪Bi ∪ · · · ∪Mk ∪Bk. We may assume that b∗ ∈ Bk and m∗ ∈ Mk.

Let J = {i ∈ {3, . . . , k} | some vertex in A is anticomplete to Mi ∪ Bi}.
By the preceding paragraph there is an integer j such that J = {j, . . . , k}. In
particular this implies the validity of item (i) of the lemma.

Now consider any vertex a ∈ A′
L. So a has a neighbor x ∈ L \ U , so x has

a non-neighbor x′ ∈ L, and by the definition of a boiler we have ax′ /∈ E(G).
Suppose that a is not complete to Mi ∪Bi for some i < k, so a is anticomplete
to Mi∪Bi, and pick any m ∈ Mi. Then m-z-a-x-b∗-x′ is a P6. So a is complete
to (M ∪B) \ (Mk ∪Bk), which proves (ii).

Finally, consider any vertex d ∈ A \AL. So d is anticomplete to L. Pick any
i ∈ J and b ∈ Bi. So there is a vertex a ∈ AL that is anticomplete to Bi ∪Mi.
By the definition of AL the vertex a has a neighbor x ∈ L. Then db is not an

27



edge, for otherwise {d, b, x, a} induces a C4. It follows that d is anticomplete to
Bi ∪Mi which proves (iii). �

5 Bounding the chromatic number

In this section, we give a proof for Theorem 1.1 and Theorem 1.2.
We say that a stable set of a graph G is good if it meets every clique of size

ω(G) in G; and that it is very good if it meets every (inclusionwise) maximal
clique of G. Moreover, we say that a clique K in G is a t-clique of G if |K| = t.

We will use the following theorem as a tool in proving Theorem 1.1.

Theorem 5.1 Let G be a graph such that every proper induced subgraph G′ of
G satisfies χ(G′) ≤ ⌈ 5

4ω(G
′)⌉. Suppose that one of the following occurs:

(i) G has a vertex of degree at most ⌈ 5
4ω(G)⌉ − 1.

(ii) G has a (very) good stable set;

(iii) G has a stable set S such that G \ S is perfect.

(iv) For some integer t ≥ 5 the graph G has t stable sets S1, . . . , St such that
ω(G \ (S1 ∪ · · · ∪ St)) ≤ ω(G)− (t− 1).

Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. (i) Suppose that G has a vertex u with d(u) ≤ ⌈ 5
4ω(G)⌉ − 1. By the

hypothesis we have χ(G\u) ≤ ⌈ 5
4ω(G\u)⌉. So we can take any χ(G\u)-coloring

of G \ u and extend it to a ⌈ 5
4ω(G)⌉-coloring of G, using for u a (possibly new)

color that does not appear in its neighborhood.
(ii) Suppose that G has a (very) good stable set S. Then ω(G\S) = ω(G)−1.

By the hypothesis we have χ(G\S) ≤ ⌈ 5
4ω(G\S)⌉ = ⌈ 5

4 (ω(G)−1)⌉ ≤ ⌈ 5
4ω(G)⌉−

1. We can take any χ(G \ S)-coloring of G \ S and add S as a new color class,
and we obtain a coloring of G. Hence χ(G) ≤ ⌈ 5

4ω(G)⌉.
(iii) Suppose that G has a stable set S such that G \ S is perfect. Then

χ(G \ S) = ω(G \ S) ≤ ω(G). We can take any χ(G \ S)-coloring of G \ S and
add S as a new color class. Hence χ(G) ≤ ω(G) + 1 ≤ ⌈ 5

4ω(G)⌉.
(iv) Note that t

t−1 ≤ 5
4 because t ≥ 5. We take any χ(G \ (S1 ∪ · · · ∪ St))-

coloring of G \ (S1 ∪ · · · ∪ St) and use S1, . . . , St as t new colors and we get a
coloring of G. Then χ(G) ≤ χ(G\ (S1∪· · ·∪St))+ t ≤ ⌈ 5

4 (ω(G)− (t−1))⌉+ t ≤
⌈ 5
4ω(G)⌉ because t

t−1 ≤ 5
4 . �

5.1 Chromatic bound for blowups

We first note that by a result of Lovász [27], any blowup of a perfect graph is a
perfect graph.

For any integer t ≥ 2 we say that G is a t-blowup of H if |Qu| = t for all
u ∈ V (H). Remark that, for an integer k, a k-coloring of the t-blowup of H
is equivalent to a collection of k stable sets of H such that every vertex of H
belongs to at least t of them.

Blowups of Petersen graph
Let H1 be the Petersen graph as shown in Figure 2.
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Lemma 5.1 Let G be the 2-blowup of the Petersen graph H1. Then χ(G) = 5.

Proof. The five sets {a, b, w3, w6}, {b, c, w1, w4}, {a, c, w2, w5}, {z, w1, w3, w5}
and {z, w2, w4, w6} are five stable sets, and every vertex of H1 belongs to two of
them. As observed above this is equivalent to a 5-coloring of G. This is optimal
because G has 20 vertices and every stable set in G has size at most 4. �

Theorem 5.2 If G is any blowup of the Petersen graph H1, then χ(G) ≤
⌈ 5
4ω(G)⌉.

Proof. Let q = ω(G). We prove the theorem by induction on |V (G)|. We may
assume that G is connected (otherwise we consider each component separately)
and that G is not a clique. Moreover, the theorem holds easily if G is any
induced subgraph of H1. Now suppose that G is not an induced subgraph of
H1. So there is x ∈ V (H1) such that |Qx| ≥ 2. Since G is connected and
not a clique there exists y ∈ NH1

(x) such that Qy 6= ∅, and so q ≥ 3. By
Theorem 5.1 (ii) we may assume that G has no good stable set.

Note that every maximal clique of G consists of Qu ∪ Qv for some edge
uv ∈ E(H1) with Qu 6= ∅ and Qv 6= ∅, and we denote it as Quv. We say that
such a maximal clique is balanced if |Qu| ≥ 2 and |Qv| ≥ 2.

Suppose that every q-clique of G is balanced. So q ≥ 4. Let X be a subset
of V (G) obtained by taking min{2, |Qv|} vertices from Qv for each v ∈ V (H1).
We claim that:

ω(G \X) = q − 4. (1)

Proof: Consider any maximal clique K in G. As observed above we have K =
Qu ∪ Qv for some edge uv ∈ E(G) with Qu 6= ∅ and Qv 6= ∅. Suppose that
|K| = q. The hypothesis that every q-clique is balanced implies that X contains
exactly four vertices from K, so |K \X | = |K| − 4 = q − 4. Now suppose that
|K| ≤ q − 1. The definition of X implies that either |K| ≥ 3 and X contains at
least two vertices from Qu and one from Qv, or vice-versa, or |K| = 2 and X
contains one vertex from each of Qu, Qv, and in any case we have |K\X | ≤ q−4.
Thus (1) holds.

By (1) and the induction hypothesis we have χ(G \ X) ≤ ⌈ 5
4ω(G \ X)⌉ =

⌈ 5
4 (q − 4)⌉ = ⌈ 5

4q⌉ − 5. By Lemma 5.1 we know that G[X ] is 5-colorable. We
can take any χ(G \X)-coloring of G \X and use five new colors for the vertices
of X , and we obtain a coloring of G. It follows that χ(G) ≤ ⌈ 5

4q⌉ as desired.
Therefore we may assume that some q-clique of G is not balanced, say, up

to symmetry, the clique Qza, with |Qz| ≥ q − 1 and |Qa| ≤ 1. So we also have
|Qb| ≤ 1 and |Qc| ≤ 1.

Suppose that both Qaw1
and Qaw4

are q-cliques. So |Qw1
| ≥ q − 1 and

|Qw4
| ≥ q − 1. This implies |Qwj

| ≤ 1 for each j ∈ {2, 3, 5, 6}. It follows that
each of the cliques Qbw2

, Qbw5
, Qcw3

, Qcw6
, Qw2w3

, Qw5w6
has size at most 2,

so they are not q-cliques. Then {z, w1, w4} is a good stable set.
Therefore we may assume that one of Qaw1

and Qaw4
is not a q-clique.

Likewise, one of Qbw2
and Qbw5

is not a q-clique, and one of Qcw3
and Qcw6

is
not a q-clique. This implies, up to symmetry, that we have either: (a) each of
Qaw1

, Qbw5
, Qcw3

is not a q-clique, or (b) each of Qaw1
, Qbw2

, Qcw3
is not a

q-clique. In case (a), we see that {z, w2, w4, w6} is a good stable set of G. Hence
assume that we are in case (b) and not in case (a), and so Qbw5

is a q-clique,
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and so |Qw5
| ≥ q− 1. Hence |Qw4

| ≤ 1 and |Qw6
| ≤ 1. It follows that Qaw4

and
Qcw6

are cliques of size at most 2, so they are not q-cliques. Now Qaw4
, Qbw2

,
and Qcw6

are not q-cliques, so we are in a situation similar to case (a). This
completes the proof. �

We immediately have the following.

Corollary 5.1 If G is any blowup of C5, then χ(G) ≤ ⌈ 5
4ω(G)⌉. �

Blowups of F3

Consider the graph F3 as shown in Figure 1.

Lemma 5.2 Let G be the 2-blowup of F3. Then χ(G) = 7.

Proof. For each v ∈ V (F3) we call v and v′ the two vertices of Qv in G.
The seven sets {x, v4, v6}, {y, v2, v′6}, {z, v

′
2, v

′
4}, {x

′, v5}, {y′, v1}, {z′, v3} and
{v′1, v

′
3, v

′
5} form a 7-coloring of G. Hence χ(G) ≤ 7. On the other hand we see

that χ(G[Qv1∪Qv2 ∪Qv3∪Qy∪Qz ]) ≥ 5 since that subgraph has 10 vertices and
no stable set of size 3, and consequently χ(G[Qx∪Q1∪Q2∪Q3∪Qy∪Qz]) ≥ 7.
Hence χ(G) ≥ 7. �

We say that G is a special blowup of F3 if (up to symmetry) we have |Qu| ≤ 1
for each u ∈ {x, v4, v5, v6} and |Qv| = t for each v ∈ {v1, v2, v3, y, z}, for some
integer t ≥ 2.

Lemma 5.3 Let G be a special blowup of F3. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. We prove the theorem by induction on |V (G)|. IfQx∪Qv4∪Qv5∪Qv6 = ∅,
then G is a blowup of C5, so the lemma holds by Corollary 5.1. Hence assume
that Qx∪Qv4 ∪Qv5 ∪Qv6 6= ∅. It follows that ω(G) = 2t+1. Let X be a subset
of V (G) obtained by taking two vertices from Qv for each v ∈ {v1, v2, v3, y, z}
and the set Qx ∪ Qv4 ∪ Qv5 ∪ Qv6 . Then ω(G \ X) = 2t − 4 = ω(G) − 5. In
F3 the six sets {v1, v3, v5}, {v2, y}, {v2, z}, {v1, y}, {v3, z} and {x, v4, v6} are
such that every vertex from {v1, v2, v3, y, z} belongs to two of them and every
vertex from {x, v4, v5, v6} belongs to one of them; hence they are equivalent to
a 6-coloring of G[X ]. We can take any χ(G \X)-coloring of G \X and use six
new colors for X , and we obtain a coloring of G. Hence χ(G) ≤ χ(G \X)+ 6 ≤
⌈ 5
4 (ω(G)− 5)⌉+ 6 = ⌈ 5

4ω(G)− 25
4 ⌉+ 6 ≤ ⌈ 5

4ω(G)⌉. �

Theorem 5.3 If G is any blowup of F3, then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. Let q = ω(G). We prove the theorem by induction on |V (G)|. Obviously
the theorem holds if G is any induced subgraph of F3. Now suppose that G is
not an induced subgraph of F3. By Theorem 5.1 (ii) we may assume that G has
no good stable set.

Note that every maximal clique of G consists of Qu ∪ Qv ∪ Qw for some
triangle {u, v, w} in F3, and we denote it as Quvw. We say that such a maximal
clique is balanced if |Qu| ≥ 2, |Qv| ≥ 2, and |Qw| ≥ 2.

Suppose that every q-clique of G is balanced. Let X be a subset of V (G)
obtained by taking min{2, |Qv|} vertices from Qv for each v ∈ V (F3). The
hypothesis that every q-clique is balanced implies that X contains exactly six
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vertices from each q-clique of G, so ω(G \ X) = ω(G) − 6. By the induction
hypothesis we have χ(G\X) ≤ ⌈ 5

4ω(G\X)⌉ = ⌈ 5
4 (q−6)⌉ = ⌈ 5

4q−
30
4 ⌉ ≤ ⌈ 5

4q⌉−7.
By Lemma 5.2 we know that G[X ] is 7-colorable. We can take any χ(G \X)-
coloring of G \X and use seven new colors for the vertices of X , and we obtain
a coloring of G. It follows that χ(G) ≤ ⌈ 5

4q⌉ as desired. Therefore we may
assume that some q-clique of G is not balanced.

For each v ∈ V (F3), let Rv consist of one vertex from Qv if Qv 6= ∅, otherwise
let Rv = ∅. We claim that we may assume that:

Each of Qx, Qy and Qz is non-empty. (1)

Proof: Suppose up to symmetry thatQx = ∅. If alsoQv2 = ∅, thenG is a blowup
of F3 \{x, v2}, which is a chordal graph, so χ(G) = ω(G) and the theorem holds.
Therefore Qv2 6= ∅. Likewise, Qv1 6= ∅ and Qv3 6= ∅. Since Rv1 ∪ Rv3 ∪ Rv5 is
not a good stable set, we have Qv5 = ∅. Moreover, if Qv4 ∪Qv6 = ∅, then G is a
blowup of C5, and the theorem holds by Corollary 5.1. So up to symmetry we
may assume that Qv4 6= ∅. Now if Qz = ∅, then G is a blowup of F3 \ {x, z, v5},
which is a chordal graph, so χ(G) = ω(G) and the theorem holds. So suppose
that Qz 6= ∅. Then Rv2 ∪ Rv4 ∪ Rz is a good stable set of G. Hence we may
assume that (1) holds.

We claim that we may assume that:

Each of Qxyz, Qxyv3 , Qyzv5 , Qzxv1 , Qxv1v2 , Qyv3v4 is a q-clique, and
either Qzv5v6 or Qxv2v3 is a q-clique.

(2)

Proof: If two of Rv1 , Rv3 , Rv5 are empty, say Rv1 ∪Rv3 = ∅, then G is a blowup
of F3 \ {v1, v3}, which is a chordal graph, so χ(G) = ω(G). So at least two of
Rv1 , Rv3 , Rv5 are non-empty. Since Rv1 ∪ Rv3 ∪ Rv5 is not a good stable set,
there is a q-clique in G \ (Rv1 ∪ Rv3 ∪ Rv5), and this clique can only be Qxyz.
Now consider the stable set Rx46 = Rx ∪Rv4 ∪Rv6 , which is not empty by (1).
Since it is not a good stable set, there is a q-clique in G \Rx46, and so Qyzv5 is
a q-clique. Likewise, Qxyv3 and Qzxv1are q-cliques. Now consider the stable set
Rx ∪ Rv5 . Since it is not a good stable set, we deduce that one of Qyv3v4 and
Qzv6v1 is a q-clique. Likewise, one of Qzv5v6 and Qxv2v3 is a q-clique, and one
of Qxv1v2 and Qyv4v5 is a q-clique. Up to symmetry this yields the possibilities
described in (2). Thus we may assume that (2) holds.

Next we claim that we may assume that:

Qzv5v6 is not a q-clique. (3)

Proof: Suppose not.
First we show that we may assume that |Qv1 | ≥ 2. Suppose that |Qv1 | = ε ≤

1. Let a = |Qv2 | and b = |Qx|. Since Qxv1v2 is a q-clique, we have a+ b+ ε = q.
Then, using the q-cliques given by (2), we deduce successively that |Qz| = a,
|Qy| = ε, |Qv5 | = b, |Qv6 | = ε, |Qv3 | = a, and |Qv4 | = b. We have |Qxv2v3 | =
b+2a ≤ q = a+ b+ ε, so a ≤ ε. Also we have |Qyv4v5 | = 2b+ ε ≤ q = a+ b+ ε,
so b ≤ a. Hence b ≤ a ≤ ε ≤ 1, which means that G is isomorphic to an induced
subgraph of F3, so the theorem holds. So we may assume that |Qv1 | ≥ 2.
Likewise, we may assume that |Qv3 | ≥ 2, and |Qv5 | ≥ 2.
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Next we may assume that |Qx| ≥ 2 (otherwise since Qxyz and Qyzv5 are q-
cliques (by (2)), we have |Qv5 | ≤ 1, a contradiction). Likewise, we have |Qy| ≥ 2
and |Qz| ≥ 2.

Further, we may assume that |Qv6 | ≥ 2 (otherwise since by (2) and by our
assumption, Qyzv5 and Qzv5v6 are q-cliques, we have |Qy| ≤ 1, a contradiction).
Likewise, we have |Qv2 | ≥ 2 and |Qv4 | ≥ 2.

Hence the above analysis shows that every q-clique in G is balanced, and
the theorem holds as above. Thus we may assume that (3) holds.

Now by (2) and (3), we may assume that Qxv2v3 is a q-clique. Let a = |Qv5 |,
b = |Qz| and t = |Qy|. Then by (2), a + b + t = q, and by using the q-cliques
given by (2), we deduce successively that |Qx| = a, |Qv1 | = t and |Qv2 | = b.
Then again by (2) and by our assumption, since Qxv2v3 and Qxyv3 are q-cliques,
we see that |Qv3 | = b = t. So, q = a + 2t. Since Qyv3v4 is a q-clique (by (2)),
we have |Qv4 | = a. Thus |Qyv4v5 | = 2a+ t ≤ q = a+2t, so a ≤ t. First suppose
that t ≤ 1. Then a ≤ 1 and hence q ≤ 3. This implies that, we may assume that
|Qv6 | ≤ 1 (otherwise since Qzv5v6 is not a q-clique (by (3)), a+2t > a+t+ |Qv6|,
and hence t ≥ 2 which is a contradiction.). Thus G is an induced subgraph of
F3 and the theorem holds. So suppose that t ≥ 2. Since some q-clique of G is
not balanced, there is a vertex w ∈ {x, v4, v5} such that |Qw| ≤ 1. In any case,
we have a ≤ 1, and hence q ≤ 2t+ 1. Now |Qv6v1z| = |Qv6 | + 2t ≤ q ≤ 2t + 1,
so |Qv6 | ≤ 1. Hence the above analysis shows that G is a special blowup of F3,
so the theorem holds as a consequence of Lemma 5.3. �

Blowups of H2, H3, H4 and H5

Let H2, . . . , H5 be the graphs as shown in Figure 2.

Theorem 5.4 Let G be any blowup of H2. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. By the definition of a blowup, V (G) is partitioned into cliques Qv,
v ∈ V (H2). If Qv 6= ∅ we call v one vertex of Qv, and if |Qv| ≥ 2 we call v′ a
second vertex of Qv. We denote, e.g., the clique Qa ∪Qv1 ∪Qv2 by Qav1v2 , etc.
Let q = ω(G). We prove the theorem by induction on |V (G)|. By Theorem 5.1
we may assume that every vertex x ∈ V (G) satisfies d(x) ≥ ⌈ 5

4q⌉ and that G
has no good stable set.

Suppose that Qv1 ∪ Qv2 = ∅. If Qb 6= ∅, then {b} is a good stable set. If
Qb = ∅, then G is a blowup of C5, and the result follows from Corollary 5.1.
Hence we may assume that Qv1 ∪ Qv2 6= ∅. Then both Qv1 and Qv2 are non-
empty, for otherwise some vertex in Qv1 ∪ Qv2 is simplicial (and so has degree
less than q). Since N [v1] is partitioned into the two cliques Qv6 and Qav1v2 , and
d(v1) ≥ ⌈ 5

4q⌉, we deduce that |Qv6 | ≥ ⌈ q
4⌉ + 1 ≥ 2; and similarly (since N [v1]

is also partitioned into cliques Qav1v6 and Qv2) we have |Qv2 | ≥ ⌈ q
4⌉ + 1 ≥ 2.

Likewise |Qv3 | ≥ 2 and |Qv1 | ≥ 2. By the same argument we may assume that
both Qv4 and Qv5 are non-empty, and consequently |Qv4 | ≥ 2 and |Qv5 | ≥ 2.

If Qc = ∅, then G is a blow-up of F3, and the theorem follows from Theo-
rem 5.3. So we may assume that |Qc| ≥ 1. Then the set of maximal cliques of
G is {Qav1v6 , Qav1v2 , Qav2v3 , Qbv3v4 , Qbv4v5 , Qbv5v6 , Qabcv3 , Qabcv6}.

Suppose that |Qc| ≥ 2. Consider the five stable sets {v1, v3, v5}, {v2, v4, v6},
{c, v′1, v

′
5}, {c

′, v′2, v
′
4}, and {v′3, v

′
6}. Then every maximal clique of G contains
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four vertices from their union; so the result follows from Theorem 5.1 (iv) (with
t = 5). Therefore let us assume that |Qc| = 1.

Suppose that both Qa and Qb are non-empty. Consider the six stable sets
{v1, v3, v5}, {v2, v4, v6}, {v′3, v

′
6}, {a, v′5}, {b, v′2} and {c, v′1, v

′
4}. Then every

maximal clique of G contains five vertices from their union; so the result follows
from Theorem 5.1 (iv) (with t = 6).

Therefore we may assume up to symmetry that Qa = ∅. Note that Qbcv3 is
not a q-clique of G, because Qbv3v4 is a clique and |Qv4 | > |Qc|. Likewise, Qbcv6

is not a q-clique of G. Consider the five stable sets {v1, v3, v5}, {v2, v4, v6},
{v′2, v

′
4}, {v

′
3, v

′
6} and {c, v′1, v

′
5}. Then every maximal clique of G contains four

vertices from their union, except for Qbcv3 and Qbcv6 , which contain only three
vertices from their union, but we know that these two are not q-cliques. It
follows that ω(G \X) ≤ q − 4, so the result follows from Theorem 5.1 (iv). �

Theorem 5.5 Let G be any blowup of H3. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. By the definition of a blowup, V (G) is partitioned into nine cliques Qi,
vi ∈ V (H3). If Qi 6= ∅ we call vi one vertex of Qi. Note that every maximal
clique of G consists of Qu∪Qv∪Qw for some triangle {u, v, w} in H3. If each of
Q1, Q4, Q7 is non-empty, then {v1, v4, v7} is a good stable set ofG, and the result
follows from Theorem 5.1 (ii). Hence we may assume that one of Q1, Q4, Q7

is empty. Likewise we may assume that one of Q2, Q5, Q8 is empty, and that
one of Q3, Q6, Q9 is empty. Up to symmetry and relabelling, this yields the
following two cases.
(i) Qi ∪Qi+1 = ∅ for some i. Then G is a chordal graph, so χ(G) = ω(G).
(ii) Qi ∪Qi+2 ∪Qi+4 = ∅ for some i. Then G is a blowup of C5, and the result
follows from Corollary 5.1. �

Theorem 5.6 Let G be a blowup of H5. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. By the definition of a blowup, V (G) is partitioned into ten cliques Qv,
v ∈ V (H5). Note that if Qti−1

∪ Qti+1
= ∅ for some i, then the vertices of Qti

can be moved to Qvi , so we may assume in that case that Qti = ∅ too. Let
q = ω(G). We prove the theorem by induction on |V (G)|.

If Qvi ∪ Qti = ∅ for some i, then G is a chordal graph (as it is a blowup
of a chordal graph), so χ(G) = ω(G). Hence let us assume that Qvi ∪ Qti 6= ∅
for all i. For each i let xi = ti if Qti 6= ∅, else let xi = vi. In any case if
d(xi) < ⌈ 5

4q⌉ then we can conclude using Theorem 5.1 (i) and induction. Hence
assume that d(xi) ≥ ⌈ 5

4q⌉ for all i. If xi = ti, then N [xi] is partitioned into the
two sets Qvi−1

and Qvi ∪ Qti ∪ Qvi+1
, and the latter set is a clique (of size at

most q), so the inequality d(xi) ≥ ⌈ 5
4q⌉ implies |Qvi−1

| ≥ ⌈ q
4⌉+1 ≥ 2. Similarly

|Qvi+1
| ≥ ⌈ q

4⌉+ 1 ≥ 2. On the other hand suppose that xi = vi (i.e., Qti = ∅).
If Qti−2

6= ∅ then the same argument implies |Qvi−1
| ≥ 2; while if Qti−2

= ∅,
then, as observed above, we have Qti−1

= ∅, so the same argument (about vi),
implies |Qvi−1

| ≥ 2 again. Hence in all cases we have |Qvj | ≥ 2 for all j.
For each i let ui, vi be two vertices in Qvi . Consider the five stable sets

{ui, vi+2} (i = 1, . . . , 5), and let X be their union. Any maximal clique K of
G is included in Qvi ∪Qvi+1

for some i, and so K contains ui, vi, ui+1, vi+1. So
ω(G \X) = q− 4 and we can conclude using Theorem 5.1 (iv) (with t = 5) and
the induction hypothesis. �
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Theorem 5.7 Let G be any blowup of H4. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. By the definition of a blowup, V (G) is partitioned into nine cliques Qv,
v ∈ V (H4). If Qv 6= ∅ we call v one vertex of Q. If Qv5 ∪ Qv6 = ∅, then G is
a chordal graph, so χ(G) = ω(G). Hence let us assume up to symmetry that
Qv5 6= ∅. If Qv1 = ∅, then G is a blowup of H5, so the result follows from
Theorem 5.6. Hence let us assume that Qv1 6= ∅. If Qv3 = ∅, then G is a blowup
of H5 again. Hence let us assume that Qv3 6= ∅. Now it is easy to see that
{v1, v3, v5} is a good stable set, so the result follows from Theorem 5.1 (ii). �

Blowups of Fk,ℓ

Theorem 5.8 For integers k, ℓ ≥ 0, let G be any blowup of Fk,ℓ. Then χ(G) ≤
⌈ 5
4ω(G)⌉.

Proof. We use the same notation as in the definition of Fk,ℓ. By the definition
of a blowup V (G) is partitioned into cliques Qv, v ∈ V (Fk,ℓ), such that [Qu, Qv]

is complete if uv ∈ E(Fk,ℓ) and otherwise [Qu, Qv] = ∅. Let QA =
⋃k

i=0 Qai

and QB =
⋃ℓ

j=0 Qbj . Let D =
⋃

v∈U∪W Qv. As a convention it is convenient,
for any u ∈ V (Fk,ℓ) such that Qu 6= ∅, to use the name u for one vertex of Qu;
moreover if |Qu| ≥ 2 we call u′ another vertex from Qu, and if |Qu| ≥ 3 we call
u′′ a third vertex from Qu. We denote, e.g., the clique Qx ∪Qy ∪Qui

by Qxyui
,

etc. Let q = ω(G). We prove the lemma by induction on |V (G)|+k+ℓ. We may
assume that G does not satisfy any of the hypotheses (i)–(iii) of Theorem 5.1,
for otherwise we can find a ⌈ 5

4q⌉-coloring of G using induction.
We remark that if k > 0 and Qui

= ∅ for some i ∈ {1, . . . , k}, then the
vertices of Qai

can be moved to Qa0
, and so G is a blowup of Fk−1,ℓ and the

result holds by induction. Moreover, if k > 0 and either |Qai
| ≤ ⌈ q

4⌉ for some i,
or |Qy| ≤ ⌈ q

4⌉, then, since N [ui] = Qai
∪Qui

∪Qx ∪Qy and Qaiuix and Quixy

are cliques that contain ui, we have d(ui) ≤ q − 1 + ⌈ q
4⌉ < ⌈ 5

4q⌉, so the result
holds by Theorem 5.1 (i). In summary, we may assume that:

If k > 0 then Qui
6= ∅ and |Qai

| > ⌈ q
4⌉ for all i, and |Qy| > ⌈ q

4⌉.
Also if ℓ > 0 then Qwj

6= ∅ and |Qbj | > ⌈ q
4⌉ for all j and |Qx| > ⌈ q

4⌉.
(1)

It follows from (1) that k ≤ 3, for otherwise |QA| > q; and similarly ℓ ≤ 3.
Moreover, if ℓ > 0 then k ≤ 2, for otherwise |QA ∪ Qx| > q; and similarly if
k > 0 then ℓ ≤ 2. We assume up to symmetry that k ≤ ℓ. Consequently we
have either k = 0 and ℓ ≤ 3, or k = 1 and ℓ ∈ {1, 2}, or k = ℓ = 2. In any
case k ≤ 2. If k ≤ 1 and ℓ ≤ 1, then G is a blowup of (an induced subgraph
of) H5, so the result follows from Theorem 5.6. So we may assume that ℓ ≥ 2.
Consequently we have either k = 0 and ℓ ∈ {2, 3}, or k = 1 and ℓ = 2, or
k = ℓ = 2.

Suppose that QA = ∅. Then Qz = ∅, for otherwise d(z) ≤ q−1, and Qy = ∅,
for otherwise {y} is a good stable set. Then we can view G as a blowup of
F0,ℓ−1 (putting Qbℓ and Qwℓ

in the role of Qz and Qa0
respectively) and use

induction. Therefore we may assume that QA 6= ∅. If k ≥ 1, then |Qa1
| ≥ 2

by (1), and if k = 0 then |Qa0
| ≥ 2, for otherwise either d(z) ≤ q (if Qz 6= ∅)

or d(a0) ≤ q (if Qz = ∅). Hence in any case we have |QA| ≥ 2. Let a, a′ be
two vertices from QA, chosen as follows: if k = 0, let a, a′ ∈ Qa0

. If k = 1, let
a, a′ ∈ Qa1

. If k = 2, let a ∈ Qa1
and a′ ∈ Qa2

.
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Let p = max{|Qv|, v ∈ U ∪W}. So p ≥ 1. We claim that:

We may assume that p ≥ 2. (2)

Proof: Suppose that p = 1; so Qv = {v} for all v ∈ U ∪W . If |Qz| ≤ 1, then
U ∪W ∪Qz is a stable set, and G \ (U ∪W ∪Qz) is perfect (a blowup of P4),
so the result follows from Theorem 5.1 (iii). Hence |Qz| ≥ 2. Define five stable
sets as follows: Let T1 = {a, b1}, T2 = {b2, x}, T3 = {z, x′}, T4 = {a′, y}, and
T5 = {z′, y′}, where y, y′ ∈ Qy, with the convention that y′ vanishes if |Qy| = 1,
and in that case if |Qx| ≥ 3 then T5 = {z′, x′′} for some x′′ ∈ Qx \ {x, x′}, and
y too vanishes if Qy = ∅. Let T ∗ = T1 ∪ · · · ∪ T5. We claim that every maximal
clique K of G satisfies |K \ T ∗| ≤ q − 4. The following cases (i)–(vii) occur:
(i) K = Qz ∪ QA. Then K contains four vertices (z, z′, a, a′) from T ∗, so
|K \ T ∗| ≤ q − 4. Likewise, if K = Qz ∪QB, then K contains z, z′, b1, b2.
(ii) K = Qx ∪QA. Then K contains a, a′, x, x′ from T ∗.
(iii) K = Qy ∪ QB. Then Qy 6= ∅ because QB is not a maximal clique (since
Qz 6= ∅). If |Qy| ≥ 2, then K contains four vertices b1, b2, y, y

′ from T ∗. If
|Qy| = 1 then (since |Qz| ≥ 2) |K| < |Qz ∪ QA| ≤ q, and K contains three
vertices b1, b2, y from T ∗, so |K \ T ∗| ≤ q − 4.
(iv) k ≥ 1 and K = Qxyui

for some i ∈ {1, . . . , k}. Then Qy 6= ∅ because Qxui
is

not a maximal clique (since Qai
6= ∅). If |Qy| ≥ 2, then K contains four vertices

(x, y, x′, y′) from T ∗. If |Qy| = 1, then (since |Qai
| ≥ 2) |K| < |Qxuiai

| ≤ q and
K contains three vertices x, x′, y from T ∗.
(v) k ≥ 1 and K = Qxaiui

for some i ∈ {1, . . . , k}, say i = 1. If k = 1 then K
contains x, x′, a, a′. Suppose k = 2. Since q ≥ |Qxa1a2

|, and |Qa2
| ≥ 2, we have

|K| ≤ q−1. Then K contains three vertices x, x′, a from T ∗, so |K \T ∗| ≤ q−4.
(vi)K = Qxywj

for some j ∈ {1, . . . , ℓ}. If |Qy| ≥ 2 thenK contains four vertices
(x, y, x′, y′) from T ∗. If |Qy| ≤ 1, then K contains at least two vertices from
T ∗, so if |K| ≤ q− 2 we are done. If |K| ≥ q− 1, then |Qx|+2 ≥ |K| ≥ q− 1 ≥
|Qz ∪ QB| − 1 ≥ 2(ℓ + 1) − 1 ≥ 5, so |Qx| ≥ 3, so the vertex x′′ exists and K
contains three vertices x, x′, x′′ from T ∗.
(vii) K = Qybjwj

for some j ∈ {1, . . . , ℓ}. Since q ≥ |Qz ∪ QB|, we have
|Qbj | ≤ q − 2ℓ. If ℓ = 3, then either |K| ≤ q − 4, or |K| = q − 3 and Qy 6= ∅
and K contains y from T ∗. Hence suppose that ℓ = 2. So bj ∈ K. Then either
|K| ≤ q− 3, or |K| = q− 2 and K also contains y from T ∗. So |K \T ∗| ≤ q− 4.
In either case Theorem 5.1 (iv) implies the desired result. Thus (2) holds.

Suppose that k ≤ 1. We know that ℓ ∈ {2, 3}. By (1) we have |Qbj | ≥ ⌈ q
4⌉+1

for all j ∈ {1, . . . , ℓ}. Recall that QA 6= ∅. Let a∗ = a0 if Qa0
6= ∅ and a∗ = a1

otherwise. In either case the set N(a∗) can be partitioned into two cliques such
that Qz is one of them. By Theorem 5.1 (i) we may assume that d(a) ≥ ⌈ 5

4q⌉, so
|Qz| ≥ ⌈ q

4⌉+1. Consequently q ≥ |Qz ∪QB| ≥ (ℓ+1)(⌈ q
4⌉+1). The inequality

q ≥ (ℓ+1)(⌈ q
4⌉+1) is violated if ℓ ≥ 3, so ℓ = 2. Moreover, the inequality with

ℓ = 2 implies q ≥ 12. Hence (1) yields that |Qx| ≥ 3, and |Qbj | ≥ 3 for each
j ∈ {1, 2}, and |QA| ≥ 3, and similarly |Qz| ≥ 3.

Suppose that k = 0. We may assume that Qxywj
is a q-clique for each j ∈

{1, 2}, for otherwise the set {a0, bj, w3−j} is a good stable set. Hence |Qw1
| =

|Qw2
| = p. Note that the set of maximal cliques of G is {Qza0

, Qxa0
, Qxyw1

,
Qxyw2

, Qyw1b1 , Qyw2b2 , Qzb0b1b2} plus Qyb0b1b2 if Qy 6= ∅. Let S1 = {b1, w2, a0},
S2 = {b2, w1, a

′
0}, S3 = {z, w′

1, w
′
2}, and S4 = {b′1, x}. If Qy 6= ∅, let S5 =

{a′′0 , y}. If Qy = ∅, then one of Qw1b1 , Qw2b2 is a q-clique, for otherwise {x, z} is
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a good stable set; so for some j ∈ {1, 2} we have |Qwjbj | = q ≥ |Qb1b2 |, whence
p = |Qwj

| ≥ |Qb3−j
| ≥ 3; so we let S5 = {a′′0 , w

′′
1 , w

′′
2}. In either case, S1, . . . , S5

are stable sets and it is easy to see that every maximal clique of G contains at
least four vertices from their union, so the result follows from Theorem 5.1 (iv).

Now suppose that k = 1, and so ℓ = 2. By (1), we have |Qy| ≥ 2. Note that
the set of maximal cliques of G is {Qza0a1

, Qxa0a1
, Qxa1u1

, Qxyu1
, Qxyw1

, Qxyw2
,

Qyw1b1 , Qyw2b2 , Qyb0b1b2 , Qzb0b1b2}. Let S1 = {b1, w2, u1} plus a0 if Qa0
6= ∅.

Let S2 = {b2, w1, a1}, S3 = {x, z}, S4 = {y′, z′}, and S5 = {a′1, y}. In either
case, S1, . . . , S5 are stable sets and that every maximal clique of G contains at
least four vertices from their union, so the result follows from Theorem 5.1 (iv).

Finally suppose that k = 2 and ℓ = 2. Let S1 = {a1, b1, u2, w2}, S2 =
{a2, b2, u1, w1}, S3 = {x, b′1}, S4 = {y, a′1}, and let S5 consist of one vertex
from each component of Qz ∪ (D \ {u1, u2, w1, w2}). Let S∗ = S1 ∪ · · · ∪ S5.
We claim that every maximal clique K of G satisfies |K \ S∗| ≤ q − 4. Indeed
if K = Qx ∪ QA then K contains x, a1, a

′
1, a2 from S∗. If K = Qz ∪ QA then

Qz 6= ∅ and K contains z, a1, a
′
1, a2. IfK = Qxa1u1

then K contains x, a1, a
′
1, u1.

If K = Qxa2u2
then K contains x, a2, u2 from S∗, so if |K| ≤ q− 1 we are done;

and if |K| = q then |Qxa2u2
| = q ≥ |Qxa1a2

| so |Qu2
| ≥ 2, so Qu2

contains
a vertex u′

2 from S5. If K = Qxyu1
then K contains x, y, u1 from S∗, so if

|K| ≤ q − 1 we are done; and if |K| = q then since p ≥ 2 we have |Qu1
| ≥ 2, so

Qu1
contains a vertex u′

1 from S∗. The other cases are symmetric. Hence the
result follows from Theorem 5.1 (iv). This completes the proof. �

5.2 Chromatic bound for bands, belts and boilers

Theorem 5.9 Let G be a band. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. We use the same notation as in the definition of a band (see also Fig-
ure 4:(b)), and we prove the theorem by induction on |V (G)|. First suppose
that [R2, R3] is not complete. By Lemma 2.3 there exist non-adjacent vertices
u ∈ R2 and v ∈ R3 such that every maximal clique in G[R2 ∪R3] contains u or
v. If Q5 6= ∅, pick any w ∈ Q5 and let S = {u, v, w}; else let S = {u, v}. Then
S is a very good stable set of G, so the result follows from Theorem 5.1 (ii).
Therefore we may assume that [R2, R3] is complete. Now suppose that [Q1, Q2]
is not complete. By Lemma 2.3 there exist non-adjacent vertices u ∈ Q1 and
v ∈ Q2 such that every maximal clique in G[Q1∪Q2] contains u or v. If Q4 6= ∅,
pick any w ∈ Q4 and let S = {u, v, w}; else let S = {u, v}. Then S is a very
good stable set of G, so the result follows from Theorem 5.1 (ii). Therefore we
may assume that [Q1, Q2] is complete, and similarly that [Q3, Q4] is complete.
Now G is a blowup of C5, so the result follows from Corollary 5.1. �

We say that a graph G is an extended C-pair if V (G) can be partitioned into
three sets Q,X,A such that (X,A) is a C-pair, Q is a clique, [Q,X ] is complete
and [Q,A] = ∅.

Lemma 5.4 Let G be an extended C-pair. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. We prove the lemma by induction on |V (G)|. Let V (G) be partitioned
into Q,X,A as in the definition above. Let q = ω(G). If some vertex a ∈ A has
no neighbor in X , then a is simplicial, so d(a) < q, and we can conclude using
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Theorem 5.1(i) and by the induction hypothesis. Therefore we may assume that
every vertex in A has a neighbor in X .

Suppose that G[X ] has four pairwise non-adjacent simplicial vertices s1, s2,
s3, s4. If d(si) ≤ ⌈ 5

4q⌉−1, then we can conclude using Theorem 5.1(i). So assume
that d(si) ≥ ⌈ 5

4q⌉. We have N(si) = Q∪NX(si)∪NA(si), and Q∪NX(si) is a
clique, so we must have |NA(si)| ≥ ⌈ q

4⌉+1. By the definition of a C-pair the sets
NA(s1), . . . , NA(s4) are pairwise disjoint. It follows that |A| ≥ 4(⌈ q

4⌉+ 1) > q,
a contradiction. Hence G[X ] has at most three pairwise non-adjacent simplicial
vertices. If X is a clique then G is a chordal graph, so χ(G) = ω(G) and the
theorem holds trivially. Therefore we may assume that G[X ] has exactly k
pairwise non-adjacent simplicial vertices with k ∈ {2, 3}. Since G[X ] ∈ C and
by Lemma 2.5, we have the following two cases (a) and (b).

(a) k = 2, so X is partitioned into three cliques X1, X2 and U such that
X1, X2 are non-empty, [U,X1∪X2] is complete and [X1, X2] = ∅. Suppose that
U 6= ∅. Then Theorem 2.1 and the fact that every vertex in A has a neighbor
in X implies that some vertex u in U is universal in G, so {u} is a very good
stable set and we conclude using Theorem 5.1(ii). Hence U = ∅. Then G is a
band, and we conclude with Theorem 5.9.

X1 X2

Q

W X3

A1 A2 A3B

Figure 7: Schematic representation of the graph in Case (b) of Lemma 5.4 where
U = ∅. Here, each shaded circle represents a clique, and the circles inside the
oval form a clique, a solid line between two circles indicates that the two sets
are complete to each other, the absence of line between any two circles indicates
that the sets are anticomplete to each other, and a dashed line between two
circles indicates that the adjacency between the two sets are arbitrary.

(b) k = 3, soX is partitioned into five cliquesX1, X2, X3,W and U such that
X1, X2, X3 are non-empty and pairwise anticomplete, [W,X1 ∪X2] is complete,
[W,X3] = ∅, and [U,X \ U ] is complete. As in case (a) we may assume that
U = ∅. By Theorem 2.1 and the fact that every vertex in A has a neighbor in X ,
the set A is partitioned into four sets A1, A2, A3, B such that NA(Xi) = Ai for
each i ∈ {1, 2, 3}, NA(W ) = A1∪A2∪B, and [W,A1∪A2] is complete, and there
is no other edge between X and A. Moreover, if one of [Xj , Aj ] (j ∈ {1, 2, 3}) is
not complete, then [Xt, At] is complete for each t ∈ {1, 2, 3} \ {j}. See Figure 7.

Suppose that B 6= ∅. Since every vertex of A has a neighbor in X , every
vertex of B has a neighbor in W . So by Lemma 2.3, there exists a vertex w ∈ W
such that [w,B] is complete. Hence w is universal in G[V (G) \ (X3 ∪ A3)]. We
may assume that [X3, A3] is not complete (otherwise {w, x3}, for any x3 ∈ X3,
is a very good stable set of G, and we can conclude by using Theorem 5.1.).
Then by Lemma 2.3, there exist non-adjacent vertices x3 ∈ X3 and a3 ∈ A3 such
that every maximal clique in G[X3 ∪A3] contains x3 or a3. Then {w, x3, a3} is
a very good stable set of G, and we can conclude by using Theorem 5.1. So we

37



may assume that B = ∅.
Suppose that [X1, A1] is not complete. Then, as remarked earlier, [X2, A2]

and [X3, A3] are complete. Also by Lemma 2.3, there exist non-adjacent vertices
x1 ∈ X1 and a1 ∈ A1 such that every maximal clique in G[X1 ∪ A1] contains
x1 or a1. Pick any x2 ∈ X2 and x3 ∈ X3. Then {a1, x1, x2, x3} is a very good
stable set of G, and we can conclude by using Theorem 5.1. Therefore assume
that [X1, A1] is complete, and, similarly, that [X2, A2] is complete.

Suppose that [X3, A3] is not complete. Then by Lemma 2.3, there are non-
adjacent vertices x3 ∈ X3 and a3 ∈ A3 such that every maximal clique in
G[X3 ∪ A3] contains x3 or a3. If W 6= ∅, then any w ∈ W is universal in
G[V (G) \ (X3 ∪ A3)]. But now {w, x3, a3} is a very good stable set of G, and
we can conclude by using Theorem 5.1. So W = ∅. Now pick any x1 ∈ X1

and x2 ∈ X2. Then {x1, x2, x3, a3} is a very good stable set of G, and we can
conclude by Theorem 5.1. Therefore assume that [X3, A3] is complete.

Now G is a blowup of F2,0 (with A1∪A2 is the role of QA, and X3 in the role
of QB, and A3 in the role of Qz, and Q in the role of Qy, and W in the role of
Qx, and X1, X2 in the role of Qu1

, Qu2
), so we can conclude using Theorem 5.8.

This completes the proof. �

Theorem 5.10 Let G be a belt. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. We use the same notation as in the definition of a belt, and we will also
use the properties listed in Theorem 4.1. We prove the theorem by induction
on ω(G). If ω(G) = 2 then G is a C5 and the theorem holds obviously. Now
assume that ω(G) ≥ 3. Let q = ω(G).

Suppose that both R2, R3 are non-empty. Recall from Theorem 4.1 that
G[R2] is (P4, C4, 2P3)-free, hence chordal. Moreover, the axiom that G[R2] has
no universal vertex implies that R2 is not a clique, so it has two non-adjacent
simplicial vertices r1, r2. For each h ∈ {1, 2} let Xh be the closed neighborhood
of rh in R2; so Xh is a clique. Let Yh = N(rh)∩Q3. If d(rh) < ⌈ 5

4q⌉ then we can
conclude using Theorem 5.1 (i) and induction. Hence assume that d(rh) ≥ ⌈ 5

4q⌉
for each h ∈ {1, 2}. By the definition of a belt, we haveN [rh] = Q1∪Q2∪Xh∪Yh,
and Q1∪Q2∪Xh is a clique, so we must have |Yh| ≥ ⌈ q

4⌉+1. By Theorem 4.1(a),
the sets Y1, Y2 are pairwise disjoint. By the same argument G[R3] has two
non-adjacent simplicial vertices and consequently there are two disjoint subsets
Z1, Z2 of Q2 with size at least ⌈ q

4⌉+1. By Theorem 4.1(c) the set Y1∪Y2∪Z1∪Z2

is a clique, and its size is strictly larger than q, a contradiction.
Therefore we may assume that R3 = ∅. Let X = Q2 ∪ R2 ∪ Q5 and A =

Q3 ∪ Q4. Then the partition of V (G) into Q1, X and A shows that G is an
extended C-pair, so the result follows from Lemma 5.4. �

Theorem 5.11 Let G be a boiler. Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. We use the same definition as in the definition of a boiler. Let q = ω(G).
By Theorem 5.1 we may assume that every vertex in G has degree at least ⌈ 5

4q⌉.
If L is a clique, then the partition of V (G) into Q, M∪A and L∪B shows that G
is an extended C-pair, so the result follows from Lemma 5.4. Therefore assume
that L is not a clique. By the same argument as in the proof of Theorem 5.10
implies that there are two disjoint subsets A1, A2 of A of size at least ⌈ q

4⌉+1. By
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the same argument applied to G[M1 ∪M2], there are two disjoint sets Y1 ⊆ B1

and Y2 ⊆ B2 of size at least ⌈ q
4⌉+ 1. Then A1 ∪ A2 ∪B1 ∪B2 is a clique, with

size strictly larger than q, a contradiction. �

5.3 Chromatic bounds for (P6, C4)-free graphs

Proof of Theorem 1.1. Let G be any (P6, C4)-free graph. We prove the theorem
by induction on |V (G)|.

If G has a universal vertex u, then ω(G) = ω(G\u)+1, and by the induction
hypothesis we have χ(G) = χ(G \ u) + 1 ≤ ⌈ 5

4 (ω(G \ u)⌉ + 1, which implies
χ(G) ≤ ⌈ 5

4 (ω(G)⌉.
If G has a clique cutset K, let A,B be a partition of V (G)\K such that both

A,B are non-empty and [A,B] = ∅. Clearly χ(G) = max{χ(G[K∪A]), χ(G[K∪
B])}, so the desired result follows from the induction hypothesis on G[K ∪ A]
and G[K ∪B].

Finally, if G has no universal vertex and no clique cutset, then the result
follows from Theorem 1.5 and Theorems 5.2—5.11. �

Next we prove Theorem 1.2 by using the following theorem.

Theorem 5.12 ([20]) If a graph G satisfies χ(G) ≤ ⌈ 5
4ω(G)⌉, then it satisfies

χ(G) ≤ ⌈∆(G)+ω(G)+1
2 ⌉.

Proof of Theorem 1.2. This follows from Theorems 1.1 and 5.12. �
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