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Abstract. This paper investigates gradient recovery schemes for data defined on discretized
manifolds. The proposed method, parametric polynomial preserving recovery (PPPR), does not
require the tangent spaces of the exact manifolds, and they have been assumed for some significant
gradient recovery methods in the literature. Another advantage of PPPR is that superconvergence
is guaranteed without the symmetric condition which has been asked in the existing techniques.
There is also numerical evidence that the superconvergence by PPPR is high curvature stable, which
distinguishes itself from the others. As an application, we show its capability of constructing an
asymptotically exact a posteriori error estimator. Several numerical examples on two-dimensional
surfaces are presented to support the theoretical results and comparisons with existing methods are
documented.
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1. Introduction. Numerical methods for approximating variational problems or
partial differential equations (PDEs) with solutions defined on surfaces or manifolds
are of growing interests over the last decades. Finite element methods, as one of
the most important methods for numerically solving PDEs, are well established for
those problems. A starting point can be traced back to [19], which is the first to
investigate a finite element method for solving elliptic PDEs on surfaces. Since then,
there have been a lot of extensions in both numerical analysis and practical algorithms,
see [11–13, 20, 33–35] and the references therein. In the literature, most works focus
on the a priori error analysis of various surface finite element methods. Only a few
works, up to our best knowledge, take into account the a posteriori error analysis and
superconvergence of finite element methods in a surface setting, see [5,9,10,13,14,18,
37]. Recently, there is an approach proposed in [21] which merges the two types of
analysis to develop a higher order finite element method on an approximated surface,
where a gradient recovery scheme plays a vital role. Gradient recovery techniques,
which are important in post-processing solutions or data to improve the accuracy of
gradient approximations, have been widely studied and found many applications in
numerical analysis. For planar problems, the study of gradient recovery methods has
reached a certain maturity stage, and there is a massive of works in the literature,
to name a few [1, 4, 22, 28, 38, 40–42]. We point out some significant methods among
them, like the classical Zienkiewicz–Zhu (ZZ) superconvergent patch recovery [41],
and a later method called polynomial preserving recovery (PPR) [40]. Those two
approaches work under different philosophies methodologically. The former method
first locates positions of superconvergent points in the neighborhood of each nodal
point, and then recovers the gradients themselves at the nodal point by fitting the
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selected neighbored superconvergent points to achieve a higher order approximation
accuracy; while the latter first fits a polynomial in the least-squares sense at each
nodal point and then takes the gradient of the fitted polynomial to have the recovered
gradient. Both methods can produce comparable superconvergence results, but ZZ-
Scheme requires stronger conditions on the discretized meshes than the PPR method.

Gradient recovery methods for data defined on curved spaces have only recently
been investigated. In [37], several gradient recovery methods have been extended
to a general surface setting for linear finite element solutions which are defined on
polyhedrons by triangulation. The surface in [37] is considered to be a zero level set
of a smooth function embedded in an ambient space, and the gradient of functions on
the surface is represented using the ambient gradient with tangential projection. It has
been shown that most of the properties of the gradient recovery schemes for planar
problems are maintained in their counterparts for surface problems. In particular,
in their implementation and analysis, the methods require knowledge of the exact
surface: the vertices of the triangles are assumed to be located on the exact surface,
and the exact normal vectors are given. However, this information is usually not
available in reality, where we have only interpolation or approximations of surfaces,
for instance, polyhedrons, splines or polynomial surfaces. How to deal with gradient
recovery in such cases and prove its superconvergence is an open question in [37].
On the other hand, the generalized ZZ-scheme for surface elements gives the most
competitive results in [37], but its superconvergence, including several other methods,
is proven with a condition that the mesh is O(h2)-symmetric. In the planar cases,
this restrictive condition, however, is not necessary for the PPR method.

This triggers us to think of a generalization of the PPR method to manifolds
setting. A follow-up question would be what are polynomials in the curved manifold
domain. Using the idea from the literature, e.g., [18], one could consider polynomials
defined locally on the tangent spaces of the manifolds. Apparently, such a straightfor-
ward generalization based on tangent spaces will again fall into the awkward situation:
the exact manifolds and their tangent spaces are unknown.

To overcome these difficulties, we go back to the original definition of manifolds.
Every local patch of a manifold resembles a planar Euclidean domain, therefore a local
parametrization for a patch of the manifold can always be established with respect to
a parametric domain Ω and not necessarily to be a tangent space. The idea is then to
use polynomials to recover the unknown parametrization function of the discretized
patch locally on the parametric domain Ω, as well to fit the corresponding local data
or finite element solutions on Ω iso-parametrically, from which we are able to recovery
the gradient using the intrinsic definition (see formula (2.1) and (2.2)). Our proposed
method is called parametric polynomial preserving recovery (PPPR) which does not
rely on the O(h2)− symmetric condition for the superconvergence, just like its genetic
father PPR. To this end, it is revealed that the idea of using parametric domain is
particularly useful to address the issue of unavailable tangent spaces and vertices, and
thus it enables us to answer the open problem in [37]. Even though we only prove
the supperconvergence with exact vertices in the paper, as it can also be observed
from our numerical examples, the superconvergence does hold for non-exact vertices
of the triangulation. To better demonstrate the ideas, a theoretical analysis of the
problem with no exact vertices will be presented separately in a follow-up paper.
Another advantage of the PPPR method, which has been observed in our numerical
examples, is that it is relatively high curvature stable in comparing with the methods
proposed in [37]. This is verified by all of our numerical tests on the high curvature
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surfaces, but a quantitative analysis will be open in the paper. Moreover, the original
PPR method [40] does not preserve the function values at the nodal points in its
pre-recovery step. In this paper, we take care of this issue, so that the PPPR can
not only preserve parametric polynomial but also preserve the surface sampling points
and the function values at the given points simultaneously. This property makes the
given data invariant in using the PPPR method.

The rest of the paper is organized as follows: Section 2 gives a preliminary ac-
count on relevant differential geometry concepts and an exemplary PDE problem.
Section 3 introduces discretized function spaces and collects some geometric nota-
tions frequently used in this paper. Section 4 presents the new algorithms especially
the proposed PPPR method. Section 5 exhibits the numerical analysis and some rele-
vant properties of the PPPR method. Section 6 shows the recovery-based a posteriori
estimator by using the PPPR operator. Finally, in Section 7, we present numerical re-
sults verifying the theoretical analysis and make comparisons with existing methods.
We postpone the proof of a basic lemma until Appendix A.

2. Background. We only show some basic geometric concepts which are rele-
vant to our paper. For a more general overview on the topic of Riemannian geometry
or differential geometry, one could refer to [15, 29]. In this paper, we shall consider
(M, g) as an oriented, connected, C3 smooth, regular and compact Riemannian man-
ifold without boundary, where g denotes the Riemann metric tensor. The idea we are
going to work on should have no restriction for general n-dimensional manifolds, but
we will focus on the case of two-dimensional ones, which are also called surfaces, in
the later applications and numerical examples.

Our concerns are some quantities u :M→ R which are scalar functions defined
on manifolds. First, let us recall the differentiation of a function u in a manifold
setting, which is called covariant derivatives in general. It is defined as the directional
derivatives of the function u along an arbitrarily selected path γ on the manifold

Dvu =
du(γ(σ))

dσ
|σ=0,

where v = γ(σ)′|σ=0 is a tangential vector field.
The gradient then is an operator such that

(∇gu(x),v(x))g = Dvu, for all v(x) ∈ TxM and all x ∈M,

where TxM is the tangent space ofM at x. We can think of the gradient as a tangent
vector field on the manifoldM. Using a local coordinate, the gradient has the form

∇gu =
∑
i,j

gij∂ju∂i, (2.1)

where gij is the entry of the inverse of the metric tensor g, and ∂i denotes the tangential
basis. Fix r : Ω→ S ⊂M to be a local geometric mapping, then we can rewrite (2.1)
into a matrix form with this concrete local parametrization. That is

(∇gu) ◦ r = ∇ū(g ◦ r)−1∂r. (2.2)

In (2.2), ū = u◦r is the pull back of function u to the local planar parametric domain
Ω, ∇ denotes the gradient operator on the planar domain Ω, ∂r is the Jacobian of r,
and

g ◦ r = ∂r(∂r)>.
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Remark 2.1. r is not specified here, and we will make it clear when it becomes
necessary later. We actually have a relation that

(∂r)† = (g ◦ r)−1∂r, (2.3)

where (∂r)† denotes the Moore-Penrose generalized inverse of ∂r. See [16, Appendix]
for a detailed explanation.

We consider M a regular manifold in the paper. By regular we mean that the
Jacobian of the parametrization ∂r and their inverse (∂r)† are functions with bounded
norms in the space W 2,∞ on Ω.

Note that the parametrization map r is non-unique. Typical ones can be con-
structed through function graphs on the parametric domain, which will be used in
our later algorithms. We have the following lemma whose proof is given in Appendix
A.

Lemma 2.1. The gradient calculated by using (2.2) is invariant for different
regular bijective parametrization functions r.

Let ω = dvol be the volume form onM, and ∂j (j = 1, · · · , n) be the tangential
bases, TM =

⋃
x∈M TxM be the tangent bundle which consists of all the tangent

planes TxM ofM. For every tangent vector field v :M→ TM, v = vi∂i, we have a
(n− 1) form defined by the interior product of v and the volume form ω through the
following way

ivω =
∑
k

ω(v, ∂k1 , · · · , ∂kn−1),

where k1, · · · , kn−1 are (n−1) indexes with k taking out from 1, · · · , n. The divergence
of the vector field v satisfies

d(ivω) = divg(v)ω, (2.4)

where d denotes the exterior derivative. Since both the left hand side and the right
hand side of (2.4) are n forms, divg(v) is a scalar field. Using the local coordinates,
we can explicitly write the volume form as

ω =
√
|det g|dx1 ∧ · · · ∧ dxn.

By equation (2.4), the divergence of the vector field v can be computed by

divgv =
1√
|det g|

∂i(v
i
√
|det g|).

It implies that the divergence operator is actually the dual of the gradient operator.
With the above preparation, we can now define the Laplace-Beltrami operator, which
is denoted by ∆g in our paper, as the divergence of the gradient, that is

∆gu = divg(∇gu) =
1√
|det g|

∂i(g
ij
√
|det g|∂ju). (2.5)

We would like to mention that if the manifoldM is a hypersurface, that isM⊂ Rn+1

and it has co-dimension 1, then the gradient and divergence of the function u can be
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equally calculated through projecting the gradient and divergence of an extended
function in ambient space Rn+1 to the tangent spaces ofM respectively. That is

∇gu = (PT∇e)ue and divgv = (PT∇e) · ve,

where ue and ve are the extended scalar and vector fields defined in the ambient space
of the hypersurface, which satisfies ue(x) = u(x) and ve(x) = v(x) for all x ∈ M.
Note that ∇e is the gradient operator defined in the ambient Euclidean space Rn+1,
PT is the tangential projection operator

PT = Id− n⊗ n,

and n is a unit normal vector field of M. Such type of definitions has been applied
in many references e.g. [37] which consider problems in an ambient space setting.

With the definition of covariant derivatives on manifolds, many function spaces on
Euclidean domains can be studied analogously in the setting of manifolds. Sobolev
spaces on manifolds [27] are one of the most investigated spaces, which provide a
breeding ground to study PDEs. We are interested in numerically approximating
PDEs whose solutions are defined on M. Even though our methods are problem
independent, in this paper, the analysis will be mainly conducted for the Laplace-
Beltrami operator (2.5) and its generated PDEs. For the purpose of both analysis and
applications, we consider the Laplace-Beltrami equation as an exemplary problem [19]:
For a given f satisfying

∫
M f dvol = 0, find u solves the equation

−∆gu = f onM, with
∫
M
u dvol = 0, (2.6)

where dvol denotes the manifold volume measure.

3. Function Spaces on Discretized Manifolds. The discretization of a smooth
manifold M has been widely studied in many settings, especially in terms of sur-
faces [20]. A discretized surface, in most cases, is a piecewise polynomial surface.
One of the simplest cases is the polygonal approximation to a given smooth surface,
especially with triangulations. Finite element methods for triangulated meshes on
surfaces have firstly been studied in [19] by using the linear element. In [12], a gener-
alization of [19] to high order finite element methods is proposed based on triangulated
surfaces. In order to have an optimal convergence rate, it is shown that the geomet-
ric approximation error and the function approximation error has to be compatible
with each other. In fact, the balance of the geometric approximation error and the
function approximation error is also the key point in the development of our recovery
algorithm.

For convenience, Table 3.1 collects notations been frequently referred in the paper.

Let Mh =
⋃
j∈Jh τh,j be a triangular mesh, and h = maxj∈Jh diam(τh,j) be the

maximum diameter. To better present our main idea, we mostly stick to the simplest
case which is the linear finite elements on triangulated surfaces, thus the nodes consist
of simply the vertices ofMh, and we denote the set by Nh = {xi}i∈Ih .

In the following, we define transform operators between the function spaces on
M and on Mh. Let V(M) and V(Mh) be some ansatz function spaces. Then we
define

Th : V(M)→ V(Mh);

v 7→ v ◦ Ph,
(3.1)
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Table 3.1: Notations

Notation Remark
(M, g) a smooth, connected, oriented and close manifold with metric g
(Mh, gh) a triangular approximation ofM with metric gh
n a unit normal vector field onM
∇g gradient operator with respect to the metric g
∆g Laplace-Beltrami operator with respect to the metric g
Tx a local domain on the tangent space at a position x ∈M
(Ph)±1 bijective maps betweenMh andM
V(M)/Vh(Mh) ansatz function spaces for functions onM/Mh

(Th)±1 operators between function spaces onM and onMh

h the diameter of the triangulation mesh inMh

Ω a parametric domain for a patch onM/Mh

ζ a position variable in the parameter domain Ω
r/rh a local parametrization map from Ω to a patch ofM/Mh

vol(or volh) the volume (area) measure ofM (orMh)
‖·‖k,p,M W k,p norm of functions defined onM
|·|k,p,M W k,p semi-norm of functions defined onM
‖·‖k,M Hk norm of functions defined onM
Ih the total number of the nodal points (vertices) ofMh

Jh the total number of the triangles onMh

P2(Ω) the 2nd order polynomial space over a planar domain Ω
a ◦ b function a composed with function b
α . β denotes the inequality α ≤ Cβ where C is a constant
O(σ) denotes the quantity satisfies: limσ→0

O(σ)
σ = C for σ > 0

and its inverse

(Th)−1 : V(Mh)→ V(M);

vh 7→ vh ◦ P−1
h ,

(3.2)

where Ph is a continuous and bijective projection map from every element in {τh,j}j∈Jh
to every element in {τj}j∈Jh .

We will use the following definition to characterize the approximation quantity
ofMh toM. For the purpose of later analysis, we assume that both Txi and Ωi are
compact domain corresponding to selected compact patches onMh orM.

Definition 3.1. LetMh =
⋃
j∈Jh τh,j be a triangular approximation ofM. Let

Ki ⊂ Mh be the triangle patches associated with the vertex xi ∈ Nh. Then there is
a curved patch Mi ⊂ M. Let Ki and Mi be parametrizable by a common domain
Ωi with rh,i and ri be their parametrization functions respectively. We call Mh is a
regular approximation ofM if

lim
h→0
‖rh,i − ri‖∞;Ωi

= 0 for all i ∈ Ih. (3.3)

for a fixed number k ∈ N, and both |∂rh,i| and its inverse |(∂rh,i)†| are uniformly
bounded on Ωi (edges are ignored) for all i ∈ Ih.
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Based on our assumptions onM, it indicates that ri ∈ W 3,∞(Ωi) for all i ∈ Ih.
In particular, since we consider the vertices ofMh located onM, therefore, rh,i is a
linear interpolation of ri. IfMh is a regular approximation ofM, then it converges to
M as h→ 0. In the following, we introduce conditions on the triangle meshes which
are common conditions to guarantee the supercloseness (cf. [4, Definition 2.4], [30,
Definition 1.2] or [37, Definition 3.2]).

Fig. 3.1: Illustration of two adjacent triangles.

Definition 3.2. Suppose τh and τ ′h are two adjacent triangles in Th, as illustrated
in Figure 3.1. They are said to form an O(h2) parallelogram if

|
−−→
AB −

−−→
CD| = O(h2), and |

−−→
BC −

−−→
DA| = O(h2).

Definition 3.3. A triangulation mesh Th is said to satisfy the O(h2σ) irregular
condition if there exist a partition Th,1

⋃
Th,2 of Th and a positive constant σ such

that every two adjacent triangles in Th,1 form an O(h2) parallelogram and∑
τh⊂Th,2

|τh| = O(h2σ).

Before going further, we make a general assumption for a non-adaptive triangu-
lationMh.

Assumption 3.4. Let Mh be a triangulation of M with all of the nodes lo-
cated on M. We assume it to be quasi-uniform and shape regular, and be a regular
approximation ofM. Moreover, it satisfies the O(h2σ) irregular condition.

We have the following lemma for the transform operators.
Lemma 3.5. Let V(M) ↪→ W k,p(M) for a fixed k ∈ N and p ≥ 1, and Mh

satisfies Assumption 3.4. Then the predefined operators (Th)±1 are uniformly bounded
between the spaces W k,p(M) and W k,p(Mh), that is there exists positive constants
c ≤ C, and

c ‖Thv‖k,p,Mh
≤ ‖v‖k,p,M ≤ C ‖Thv‖k,p,Mh

for all v ∈ V(M).

Proof. Denote v̌h := Thv, and let τj ⊂ M be the curved triangle corresponding
to τh,j ⊂ Mh. If p = ∞, every function v and its derivatives are uniformly bounded
onM, as well for function v̌h and its derivatives overMh. Then we can always find
constants c1h and C1

h satisfying

c1h ‖v̌h‖k,∞,Mh
≤ ‖v‖k,∞,M ≤ C

1
h ‖v̌h‖k,∞,Mh

.

7



If 1 ≤ p < ∞, using the results in [12, page 811], there exists positive and bounded
constants ch,j and Ch,j for each pair of triangle faces τh,j and τj such that

c2h,j ‖v̌h‖
p
k,p,τh,j

≤ ‖v‖pk,p,τj ≤ C
2
h,j ‖v̌h‖

p
k,p,τh,j

.

For both the two cases, due to the regular approximation condition in Assumption
3.4, we have c1h → 1, C1

h → 1 when h → 0 as well as c2h,j → 1 and C2
h,j → 1

when h → 0 for all j ∈ Jh . Thus, both
{
cah,j

}
and

{
Cah,j

}
are uniformly bounded

sequences with respect to the mesh size h and also the index j for a = 1, 2. Denote
c := mina,h,j

{
cah,j

}
and C := maxa,h,j

{
Cah,j

}
. Since ‖v‖pk,p,M =

∑
j∈Jh ‖v‖

p
k,p,τj

for
p ∈ [1,∞), we have the estimates

c ‖v̌h‖pk,p,Mh
≤ ‖v‖pk,p,M ≤ C ‖v̌h‖

p
k,p,Mh

,

and the same hold for p =∞. This gives the conclusion.

4. Parametric Polynomial Preserving Recovery on Manifolds. Our de-
velopments are based on the PPR method proposed in [40] for planar problems. It is
a robust and high accuracy approach for recovering gradient on mildly unstructured
meshes. This idea has been used to develop a Hessian recovery technique in a recent
paper [23]. In this paper, we show the possibility of generalizing the idea to problems
on manifolds. To simplify the presentation, we shall restrict ourselves to the case of
two-dimensional manifolds here and after.

We will focus on the case where the data is a linear finite element solution on
Mh. Therefore, Vh(Mh) is restrict to linear finite element spaces in what follows. At
each node xi, let hi be the length of the longest edge attached to xi. For any natural
number k, let Bkhi(xi) be the set of vertices in a discrete geodesic ball centered at xi
with discrete geodesic radius k × hi, i.e.,

Bkhi(xi) = {x ∈ Nh : |x− xi| ≤ k × hi}.

Then we define B(xi) = Bkihi(xi) with ki being the smallest integer such that B(xi)
satisfies the rank condition (see [40]) in the following sense:

Definition 4.1. A selected vertices set B(xi) is said to satisfy the rank condition
of the PPR or PPPR if it admits a unique least-squares fitted polynomial pi in (4.3)
or si and pi in (4.5) and (4.6) respectively.

For a discretized manifold, the main difficulty is that the vertices in B(xi) are in
general not located on the same plane. Another challenge is that there is no trivial
definition of polynomials in a manifold setting. Some idea appeared in the literature
is to use the domain in tangent space Txi at every vertex xi as a local parameter
domain, and project the neighboured vertices of xi onto this common planar plane,
then define polynomials locally by the coordinates of the tangent space. This idea
has been applied in [18] and also in [37] to generalize the ZZ method and several
other methods. However, the exact manifoldM is usually not given in real problems.
Therefore, the tangent spaces (Txi)i∈Ih ofM are blind to users, which makes the idea
not much feasible in practice. This problem has been proposed as an open question
in [37].

In our algorithms, we consider an alternative way for the polynomial reconstruc-
tion instead of the one which is initially proposed in [40] for the planar PPR. The
method in [40] assumes that a second order polynomial has a form

p(y) = a0 + a1y1 + a2y2 + a3y
2
1 + a4y1y2 + a5y

2
2 , for y = (y1, y2) ∈ Ωi,
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and solves the linear system Aa = b for a = (a0, a1, · · · , a5)T , where

A =


1 ζi1,1 ζi1,2 ζ2

i1,1
ζi1,1ζi1,2 ζ2

i1,2

1 ζi2,1 ζi2,2 ζ2
i2,1

ζi2,1ζi2,2 ζ2
i2,2

... · · ·
1 ζi|Ii|,1 ζi|Ii|,2 ζ2

i|Ii|,1
ζi|Ii|,1ζi|Ii|,2 ζ2

i|Ii|,2

 and b =


uh,i1
uh,i2
...

uh,i|Ii|

 . (4.1)

The solution of the least squares approximation in the algorithms is given by

a = (ATA)−1ATb,

which tells that ∂1p(0) = a1 and ∂2p(0) = a2.
Our observation is that there is one extra freedom can be removed in the recon-

struction of the polynomials. Since the polynomial recovery procedure cannot improve
the accuracy of the solution itself, it is unnecessary to adopt the solution in gradient
recovery. We can fix this problem by using the following polynomial equation locally

p̃(y) = uh,i1 + ã1y1 + ã2y2 + ã3y
2
1 + ã4y1y2 + ã5y

2
2 , for y = (y1, y2) ∈ Ωi

where uh,i1 is the finite element solution at the vertex xi. Let ζi1 = (ζi1,1, ζi1,2) be
the origin 0 of the plane Ωi, then the matrix and the vector in (4.1) can be simplified
to

Ã =

 ζi2,1 ζi2,2 ζ2
i2,1

ζi2,1ζi2,2 ζ2
i2,2

... · · ·
ζi|Ii|,1 ζi|Ii|,2 ζ2

i|Ii|,1
ζi|Ii|,1ζi|Ii|,2 ζ2

i|Ii|,2

 and b̃ =

 uh,i2 − uh,i1
...

uh,i|Ii| − uh,i1

 .

(4.2)
Solving the problem in the least squares sense

ã = (ÃT Ã)−1ÃT b̃,

then we have ∂1p̃(0) = ã1 and ∂2p̃(0) = ã2.
Using (4.2) instead of (4.1), it preserves the original function values at the recov-

ered nodal points. This idea can be applied to construct the polynomial functions in
the 2nd step of Algorithm 1, and also in both the 2nd and the 3rd steps of Algorithm
2, which are going to be introduced next.

As a starting point, we first provide a direct generalization of the PPR method
based on given tangent spaces of the exact manifold M. In this case, the algorithm
is pretty much the same as the planar one. We sketch it in Algorithm 1 and still
name it as the PPR method. We describe the PPPR method in Algorithm 2. In both
algorithms, Ih,i denotes the set of the indexes of the selected vertices in B(xi) which
satisfies the rank condition.

A straightforward remedy for missing exact normal fields is to find a way to
approximate normal vectors at every vertex xi. This can be done, for instance, by
taking the simple average or weighted average of the normal vectors of each faces
adjunct to xi. However, with such kinds of approximations, the recovery errors are
very likely to be dominated by the errors of the approximation of the normal vector
fields (see the numerical results in Section 7). Therefore, a better estimation of the
normal vectors is necessary in order to have higher recovery accuracy.
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Algorithm 1 PPR Method (with exact information of normal vectors)
Let the discretized triangulation Mh and the data (FEM solutions) (uh,i)i∈Ih be
given. Also, we have the the normal vector (ni)i∈Ih of M at each vertex xi. Then
repeat steps (1)− (3) for all i ∈ Ih.

(1) For every xi, select B(xi) ∈ Mh including sufficient vertices, and shift xi to
be the origin of Txi , and choose an orthonormal basis (t1

i , t
2
i ) of Tx∗i , then

project the vertices x∗j ∈ B(xi) to Txi whose new coordinates read as ζij .
(2) Find a polynomial pi over Txi by solving the least squares problem

pi = arg min
p

∑
j∈Ih,i

|p(ζij )− uh,j |2 for p ∈ P2(Txi). (4.3)

(3) Calculate the partial derivatives of the approximated polynomial functions to
have the recovered gradient at each vertex xi

G∗huh(xi) = ∂1pi(0)t1
i + ∂2pi(0)t2

i . (4.4)

For the recovery of gradient G∗huh(x) when x is not a vertex of triangles, use lin-
ear finite element basis to interpolate the values {G∗huh(xi)}i∈Ih at vertices of each
triangle.

The PPPR method (Algorithm 2) requires no information of the tangent spaces
ofM. The idea is to use the intrinsic formulation (2.2), where we can calculate the
gradient from an arbitrary local parametrization. The local parametrization function
can be constructed, in principal, with respect to arbitrary Euclidean domain Ωi but
not restrict to tangent space Txi in Algorithm 1. Lemma 2.1 indicates that for every
fixed xi, taking arbitrary Ωi, the gradient operator is analytically invariant. The
crucial point in practice is that, numerically, the shape of the triangles must not be
destroyed after projecting them to the domain Ωi, and also for a superconvergence
purpose, the O(h2σ) irregular condition should be properly preserved for the projected
triangular mesh on Ωi. Thus, we still have to find a good way for this projection.
Our suggestion is, at each vertex, to use the simple average or weighted average of
the surrounding normal vectors which can help us to locate and orient a suitable
parameter domain Ωi. This has been adopted in our numerical examples. Note that
for Ωi = Txi for all i ∈ Ih, and we shift xi to be the origin of Txi , and let φ1

i = t1
i ,

φ2
i = t2

i , φ3
i = ni, if ∂1si(0) = ∂2si(0) ≡ 0 for all i ∈ Ih, then the recovered gradient

in (4.7) is equal to the one recovered in (4.4).
Let Ḡh be the PPR operator introduced in [30] for planar problems. The recovered

gradient values at each vertex xi by PPPR operator Gh can be represented by Ḡh in
the following sense:

Ghuh(xi) = Ḡhūh(ζi)(Ḡhrh,i(ζi))
†, ζi ∈ Ωi is the projection from xi. (4.8)

Our numerical results will show that choosing the approximations of normal vec-
tors by either simple average or weighted average has very little influence on the
recovery accuracy of the gradient by Algorithm 2. This is different to the case in Al-
gorithm 1 where the recovery accuracy highly relies on the error of the approximated
normal vectors. The relation (4.8) indicates that the analysis of the PPR which has
been developed for planar problems can be applied to Algorithm 2 to some extend.
Moreover, the idea of approximating (2.2) by generalizing ZZ scheme seems feasi-
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Algorithm 2 PPPR Method (with no exact normal vectors)
Let the discretized triangular surfaceMh and the data (FEM solutions) (uh,i)i∈Ih be
given. Then repeat steps (1)− (4) for all i ∈ Ih.

(1) For every xi, select B(xi) ∈ Mh with sufficient vertices, using simple
(weighted) average of the out normal vectors of every triangles with vertices
in B(xi), and normalizing the averaged vector to be φ3

i , and then construct-
ing a local parameter domain Ωi orthogonal to φ3

i . Shift xi to be the origin
of Ωi, and choose (φ1

i , φ
2
i ) the orthonormal basis of Ωi, then project all se-

lected vertices xj ∈ B(xi) into the parameter domain Ωi, and record the new
coordinates as ζij .

(2) Reconstruct a 2nd order polynomial surface Si over Ωi to approximate the
local surface. Typically, it can be approximated locally as a function graph
parametrized by Ωi. That is Si = r̃h,i(Ωi) =

⋃
ζ∈Ωi

(ζ, si(ζ)), where si solves

si = arg min
s

∑
j∈Ih,i

|s(ζij )− 〈xj , φ3
i 〉|2 for s ∈ P2(Ωi). (4.5)

(3) Find a 2nd order polynomial pi over the domain Ωi by optimizing

pi = arg min
p

∑
j∈Ih,i

|p(ζij )− uh,j |2 for p ∈ P2(Ωi). (4.6)

(4) Calculate the partial derivatives of both the polynomial approximated sur-
face function in Step (2) and the approximated polynomial function of FEM
solution in Step (3). Then approximate the gradient as (4.7) using the local
coordinates:

Ghuh(xi) =
(
∂1pi(0), ∂2pi(0)

)
J†(si)

(
φ1
i φ

2
i φ

3
i

)>
, (4.7)

where J†(si) = (J>(si)J(si))
−1J>(si) and J>(si) =

(
1 0 ∂1si(0)
0 1 ∂2si(0)

)
. The

equation (4.7) is derived from (2.3) in the remark 2.1 for calculating (2.2).
To multiply with the orthonormal basis

{
φ1
i , φ

2
i , φ

3
i

}
is because we have to

unify the coordinates from local ones to a global one.
For the recovery of the gradient Ghuh(x) when x is not a vertex of triangles, use
linear finite element basis to interpolate the values {Ghuh(xi)}i∈Ih at vertices of each
triangle.

ble. One could similarly reconstruct the two levels gradient recovery of the surfaces
parametrization function r and the function ū iso-parametrically. That is to replace
the recovery operator Ḡh in (4.8) by using planar ZZ recovery. However, in order
to achieve the superconvergence property, this generalization can still not escape the
constraint that the meshes should be O(h2)− symmetric.

Remark 4.1. An experimental observation will be reported later that the PPPR
is able to give the most competitive results for the recovery of the gradient when the
approximated surface is featured with some high curvature. Our argument is that, in
the planar case, the PPR is the most robust method for unstructured meshes compared
to the other methods, especially, it does not require the O(h2) symmetric condition.
For a surface with complicated curvature, a well-structured triangulation after project-
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ing to the parametric domains or tangent spaces, it is possible that the good structure
is not preserved, for instance, the symmetric condition. The PPPR method is, in fact,
using the PPR to reconstruct both the tangent vectors of the surface and the gradi-
ent of the solutions in local parametric domains, which is more stable than the other
methods for those mildly structured meshes projected from the high curvature areas.
All of our numerical tests on high curvature surfaces support this hypothesis, as the
one shown in Numerical Example 2 in Section 7. However, more efforts are needed
in order to have a quantitative analysis of this property.

5. Superconvergence Analysis. We prove the superconvergence property of
the proposed algorithms in previous section. Although our algorithms are problem
independent, to make the discussion simple, we will take the equation (2.6) as our
model problem, and focus on its approximation using the linear finite element method
on triangulated surfaces. The variational formulation of problem (2.6) is given as
follows: Find u ∈ H1(M) such that∫

M
∇gu · ∇gv dvol =

∫
M
fv dvol, for all v ∈ H1(M). (5.1)

The regularity of the solutions has been proved in [2, Chapter 4]. In the finite ele-
ment methods, the surfaceM is approximated by the triangulationMh which satisfy
Assumption 3.4, and the finite element space Vh(Mh) is the piecewise linear function
spaces defined over Mh. The finite element solution is to find uh ∈ Vh(Mh) such
that ∫

Mh

∇ghuh · ∇ghvh dvolh =

∫
Mh

fhvh dvolh, for all vh ∈ Vh(Mh). (5.2)

Since here quite a few local geometric notations involved, we summarize them in Table
5.1.

Table 5.1: Notations on local geometry

Notation Remark
Ωi a local parametric domain for patches around vertex xi
Ki local triangle patches ofMh around vertex xi
τh,j τh,j ⊂Mh is the jth triangle face
τj τj ⊂M is the jth curved triangle w.r.t. τh,j ⊂Mh

r̃τh,j geometric mapping from τh,j to τj
rh,i geometric mapping from patches in Ωi to Ki
ri geometric mapping from patches in Ωi toMi

We prepare the proof of the superconvergence of the recovered gradient by firstly
establishing the boundedness of the proposed gradient recovery operators.

Lemma 5.1. Choose an arbitrary but fixed vertex xi, and let τh,j be one of the
triangles connected to xi, Ki be the selected triangle patches, and τh,j ⊂ Ki ⊂ Mh.
Then Gh is a bounded linear operator in the sense that

‖Ghvh‖L2(τh,j)
. ‖∇ghvh‖L2(Ki) , for all vh ∈ Vh(Mh). (5.3)
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Proof. Let us denote v̄h = vh ◦ rh,i, and recall (2.2). Then we have that on every
parametric domain Ωi:

(∇ghvh) ◦ rh,i = ∇v̄h(∂rh,i)
† ⇐⇒ ∇v̄h = (∇ghvh) ◦ rh,i∂rh,i, (5.4)

where ∂rh,i and (∂rh,i)
† are piecewise constant functions. We take into account the

assumptions that M is regular and C3 smooth, and Mh is a regular approximation
as specified in Definition 3.1. Then there exist positive constants cr and Cr, such that

n

Cr
≤ |∂rh,i| ≤

n

cr
, and cr ≤ |(∂rh,i)†| ≤ Cr for all h and i, (5.5)

where n is the dimension number of M. Correspondingly there are similar bounds
for |(∂ri)†| and we denote them with c∗r and C∗r . Because of the interpolation nature,
and the fact that every τh,j is uniformly bounded, we get

|Ghvh|(x) ≤
∑
i∈Vj

|Ghvh(xi)| ≤ C max
i∈Vj
|Ghvh(xi)| for all x ∈ τh,j ; (5.6)

where Vj denotes the index set of the vertices on τh,j . Using the boundedness result
of the planar PPR recovery operator [30], we have for every τh,j ⊂ Ki:∥∥Ḡhv̄h∥∥L∞(τh,j)

≤ C ‖∇v̄h‖L∞(Ωi)
.

Now we are going to show that
∥∥(Ḡhrh,i)

†
∥∥
L∞(τh,j)

is uniformly bounded for all i ∈ Ih
and j ∈ Jh. By noticing that rh,i is a linear interpolation of ri on Ωi, the polynomial
preserving property of the planar PPR operator implies

|Ḡhrh,i − ∂ri| = ‖ri‖3,∞O(h2). (5.7)

Taking into account that ∂ri is uniformly bounded from below and above and ri
belongs to W 3,∞(Ωi), we can deduce from (5.7) that there exists a constant c for
sufficiently small h2 ≤ h2

0 (some fixed h0 ∈ R+) such that

|Ḡhrh,i| ≥
n

C∗r
− ch2

0 ⇒
∥∥(Ḡhrh,i)

†∥∥
L∞(τh,ji )

≤ Ĉ, (5.8)

where Ĉ := n
n
C∗r
−ch2

0
. For every τh,j ⊂ Ki, we conclude that

max
i∈Vj
|Ghvh(xi)| ≤

∥∥Ḡhv̄h∥∥L∞(τh,j)

∥∥(Ḡhrh,i)
†∥∥
L∞(τh,j)

≤ Ĉ ‖∇v̄h‖L∞(Ωi)
;

which together with (5.6) give

‖Ghvh‖L∞(τh,j)
≤ CĈ ‖∇v̄h‖L∞(Ωi)

.

Using the formula on the right side of (5.4), and the bounds on |∂rh,i| in (5.5), we
get the boundedness result for Gh

‖Ghvh‖L∞(τh,j)
≤ nCĈ

cr
‖∇ghvh‖L∞(Ki) .

All the constants here are independent of h for all h ≤ h0. Since vh is a piecewise
linear polynomial onMh, the inverse estimate implies

‖∇ghvh‖L∞(Ki) ≤
Cin√
|Ki|
‖∇ghvh‖L2(Ki) ,
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for some constant Cin independent of h. Here |Ki| denotes the area of Ki. Finally we
have

‖Ghvh‖L2(τh,j)
≤
√
|τh,j | ‖Ghvh‖L∞(τh,j)

≤
√
|τh,j |

nCĈ

cr
‖∇ghvh‖L∞(Ki)

≤
nCĈCin

√
|τh,j |

cr
√
|Ki|

‖∇ghvh‖L2(Ki) .

The fact
√
|τh,j |√
|Ki|

≤ 1 indicates

‖Ghvh‖L2(τh,j)
. ‖∇ghvh‖L2(Ki)

which completes the proof.
The boundedness of the operator G∗h in Algorithm 1 is a trivial case implicated

from Lemma 5.1. In the next we show the consistency of the PPPR gradient recovery
operator by establishing the following lemma.

Lemma 5.2. Let u ∈ W 3,∞(M), and let uI be the linear interpolation of the
function u at every vertex ofMh, then we have the estimate∥∥∇gu− (Th)−1GhuI

∥∥
0,M ≤ h

2
√
A(M)D(g, g−1) ‖u‖3,∞,M , (5.9)

where D(g, g−1) is a constant determined by the metric tensor g and its inverse.
Proof. We start from a single triangle τh,j ⊂Mh, and then go through all j ∈ Jh.

In particular, we consider the formulation (2.2) on each triangle. Let τj ⊂M be the
area corresponding to τh,j ⊂Mh. Then we have

∥∥∇gu− (Th)−1GhuI
∥∥2

0,τj
=

∫
τh,j

|∇ūτh,j (∂r̃τh,j )† −Gh(uI)|2 det(g ◦ r̃τh,j );

where ūτh,j = u◦ r̃τh,j and r̃τh,j is the geometric mapping from τh,j to τj , that is: τj =
r̃τh,j (τh,j). Gh(uI)|r̃τh,j are the gradient values over the triangle τh,j by interpolating
values recovered at the vertices of τh,j . Therefore, in the local coordinates of τh,j ,
they are first order polynomials.

On the other hand, at every vertex xi, let ūi(ζi) = u ◦ rh,i(ζi) = u ◦ ri(ζi).
The consistency of polynomial preserving recovery operator Ḡh on the planar domain
implies that

|∇ūi(ζi)− ḠhūI(ζi)| ≤ Ch2 ‖ū‖3,∞,Ωi , (5.10)

where ζi is the local coordinates for xi. Let θi be coordinates for xi on τh,j . Then we
have

∇gu(xi) = ∇ūi(ζi)(∂ri(ζi))† = ∇ūτh,j (θi)(∂r̃τh,j (θi))†, (5.11)

and GhuI(xi) = ḠhūI(ζi)(Ḡhrh,i(ζi))
†. Note that because both ∂ri and Ḡh∂rh,i (see

(5.8)) are uniform bounded from below, using the consistency error estimation (5.7),
then we derive

|(∂ri(ζi))† − (Ḡhrh,i(ζi))
†| . h2 ‖ri‖3,∞,Ωi . (5.12)
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By the triangle inequality and the estimates (5.10) and (5.12), we obtain

|∇ūi(ζi)(∂ri(ζi))† −GhuI(xi)|
≤|∇ūi(ζi)(∂ri(ζi))† − ḠhūI(ζi)(∂ri(ζi))†|+ |ḠhūI(ζi)(∂ri(ζi))† − ḠhūI(ζi)(Ḡhrh,i(ζi))†|
.h2 ‖ū‖3,∞,Ωi |(∂ri(ζi))

†|+ h2 ‖ri‖3,∞,Ωi |ḠhūI(ζi)|

.h2
(
‖ū‖3,∞,Ωi

∥∥(∂ri)
†∥∥

0,∞,Ωi
+ ‖ri‖3,∞,Ωi ‖ūI‖1,∞,Ωi

)
.

Since ∇ūτh,j (∂r̃τh,j )† is a vector valued function, then each of its components belongs
to W 2,∞(τh,j). Particularly, let

(
∇ūτh,j (∂r̃τh,j )†

)
I
be the linear interpolation of the

vector-valued function ∇ūτh,j (∂r̃τh,j )† on τh,j . By the triangle inequality and the
interpolating error estimate, we deduce that∥∥∇ūτh,j (∂r̃τh,j )† −Gh(uI)

∥∥
0,τh,j

≤
∥∥∇ūτh,j (∂r̃τh,j )† − (∇ūτh,j (∂r̃τh,j )†)I∥∥0,τh,j

+∥∥(∇ūτh,j (∂r̃τh,j )†)I −Gh(uI)
∥∥

0,τh,j

.h2|∇ūτh,j (∂r̃τh,j )†|2,τh,j +
∑
i∈Vj

|∇ūτh,j (θi)(∂r̃τh,j (θi))† −GhuI(xi)|
√
A(τh,j)

.h2

|∇ūτh,j (∂r̃τh,j )†|2,τh,j +
∑
i∈Vj

‖ū‖3,∞,Ωi
∥∥(∂ri)

†∥∥
0,∞,Ωi

√
A(τh,j)


+ h2

∑
i∈Vj

‖ri‖3,∞,Ωi ‖ūI‖1,∞,Ωi
√
A(τh,j)

.h2
∑
i∈Vj

(
‖ū‖3,∞,Ωi

∥∥(∂ri)
†∥∥

2,∞,Ωi
+ ‖ri‖3,∞,Ωi ‖ū‖1,∞,Ωi

)√
A(τh,j);

(5.13)
where we have used the relation (5.11), and the following

|∇ūτh,j (∂r̃τh,j )†|2,τh,j = |∇ū(∂ri)
†|2,τh,j ≤ ‖ū‖3,∞,Ωi

∥∥(∂ri)
†∥∥

2,∞,Ωi

√
A(τh,j),

in the last inequality. On every local domain Ωi, because of the regular property ofM,
we have the following facts: a), g◦ri = ∂ri(∂ri)

T , then ‖∂ri‖k,∞,Ωi and
∥∥(∂ri)

†
∥∥
k,∞,Ωi

for k ∈ {0, 1, 2} on all Ωi can be estimated by
√
‖g‖k,∞ and

√
‖g−1‖k,∞ respectively;

b), SinceM is C3 smooth and regular with bounded curvature, therefore both g and
g−1 and their derivatives up to second order are uniformly bounded from below and
above. On the other hand, we can estimate the norms

‖ū‖k+1,∞,Ωi ≤
∥∥(det g)−1

∥∥
0,∞

√
‖g‖k,∞ ‖u‖k+1,∞,M for k ∈ {0, 1, 2} .

These allow us to have the estimate:(
‖ū‖3,∞,Ωi

∥∥(∂ri)
†∥∥

2,∞,Ωi
+ ‖ri‖3,∞,Ωi ‖ū‖1,∞,Ωi

)
≤
√
‖(det g)−1‖0,∞

(
‖u‖3,∞,M

√
‖g‖2,∞

√
‖g−1‖2,∞ +

√
‖g‖2,∞

√
‖g‖0,∞ ‖u‖1,∞,M

)
≤C(g, g−1) ‖u‖3,∞,M ,

(5.14)
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where C(g, g−1) are constants determined by the geometry of M, and they are uni-
formly bounded whenever Assumption 3.4 satisfied. Using the local estimate (5.13)
and (5.14), we can further deduce that∫

τh,j

|∇ūτh,j (∂r̃τh,j )† −Gh(uI)|2 det(g ◦ r̃τh,j )

≤‖det g‖0,∞
∥∥∇ūτh,j (∂r̃τh,j )† −Gh(uI)

∥∥2

0,τh,j

≤h4|Vj |2 ‖det g‖0,∞ (C(g, g−1) ‖u‖3,∞,M)2A(τh,j).

(5.15)

Note that |Vj | ≡ 3 in our case. Summing over both sides of (5.15) for all index j ∈ Jh,
and taking the square root we get the final conclusion. The constant

D(g, g−1) = |Vj |
√
‖det g‖0,∞C(g, g−1)

where C(g, g−1) is given in (5.14). Note that here the summation is bounded as we
considerM to be compact and the fact that A(Mh) ≤ A(M), thus it does not reduce
the order of h.

Now we are ready to show the superconvergence of the recovered gradient onMh.
Theorem 5.3. Let Assumption 3.4 hold, and u ∈ W 3,∞(M) be the solution of

(5.1), and uh be the solution of (5.2). Then∥∥∇gu− T−1
h Ghuh

∥∥
0,M ≤ h2

(√
A(M)D(g, g−1) ‖u‖3,∞,M + ‖f‖0,M

)
+

Ch1+min{1,σ}
(
‖u‖3,M + ‖u‖2,∞,M

)
.

(5.16)

where D(g, g−1) is the same constant as Lemma 5.2.
Proof. This is readily shown by considering the triangle inequality∥∥∇gu− T−1

h Ghuh
∥∥

0,M ≤
∥∥∇gu− T−1

h GhuI
∥∥

0,M +
∥∥T−1

h Gh(uI − uh)
∥∥

0,M .

The first term is bounded by Lemma 5.2. For the second term, since both (Th)−1 and
Gh are bounded operators ( Lemma 3.5 and Lemma 5.2), we have∥∥(Th)−1Gh(uI − uh)

∥∥
0,M ≤ C ‖∇gh(uI − uh)‖0,Mh

then using the result 1 of [37, Theorem 3.5] to estimate ‖∇gh(uI − uh)‖0,Mh
. These

lead to the final estimate.
Due to Lemma 3.5, we have the following result immediately, which is verified in

our numerical part Section 7.
Corollary 5.4. Let the same assumptions as Theorem 5.3 hold. Then

‖Th∇gu−Ghuh‖0,Mh
≤ h2

(√
A(M)D(g, g−1) ‖u‖3,∞,M + ‖f‖0,M

)
+

Ch1+min{1,σ}
(
‖u‖3,M + ‖u‖2,∞,M

)
.

(5.17)

1The O(h2σ) condition is asked for the projected triangle meshes on each Ωi in order to show the
supercloseness, while what we have assumed is in fact on the meshes before projection as [37]. We
argue that for general smooth surfaces with uniformly bounded curvature, using the ways described
in our algorithms, the projected shape of meshes will not be significantly changed as [37], therefore
the O(h2σ) condition can be guaranteed, although this might be not the case for the meshes located
at the high curvature areas. Once a surface is highly curved, one may have to take into account the
ratio of the high curvature areas, thus O(h2σ) condition may be adapted to a new index σ̄ according
to ratio of the high curvature areas. But in this paper, we skip the quantitative discussion on this
point.
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6. Recovery-based a posteriori error estimator. The gradient recovery op-
erator Gh naturally provides an a posteriori error estimator. We define a local a
posteriori error estimator on each triangular element τh,j as

ηh,τh,j = ‖Ghuh −∇ghuh‖0,τh,j , (6.1)

and the corresponding global error estimator as

ηh =

∑
j∈Jh

η2
h,τh,j

1/2

. (6.2)

With the previous superconvergence result, we can show the asymptotic exactness
of error estimators based on the recovery operator Gh.

Corollary 6.1. Assume the same conditions in Theorem 5.3 and let uh be
the finite element solution of discrete variational problem (5.2). Further assume that
there is a constant C(u) > 0 such that

‖Th∇gu−∇ghuh‖0,Mh
≥ C(u)h. (6.3)

Then it holds that ∣∣∣∣∣ ηh
‖Th∇gu−∇ghuh‖0,Mh

− 1

∣∣∣∣∣ . hmin{1,σ}. (6.4)

Proof. By the triangle inequality, we have

ηh ≤ ‖Ghuh − Th∇gu‖0,Mh
+ ‖Th∇gu−∇ghuh‖0,Mh

and hence∣∣∣∣∣ ηh
‖Th∇gu−∇ghuh‖0,Mh

− 1

∣∣∣∣∣ ≤ ‖Ghuh −∇ghuh‖0,Mh

‖Th∇gu−∇ghuh‖0,Mh

. hmin{1,σ}.

where we use the superconvergence result (5.17) and the assumption (6.3) in the last
inequality.

Remark 6.1. The assumption (6.3) is common assumption to show the asymp-
totical exactness of recovery-based a posteriori error estimators as [1, 30, 40]. It is
reasonable since that the finite element solution error is not better than the interpola-
tion error which is bounded from below by O(h)(except some trivial cases).

Remark 6.2. Corollary 6.1 implies that (6.1) (or (6.2)) is an asymptotically
exact a posteriori error estimator for surface finite element methods.

7. Numerical Results. In this section, we present several numerical examples
to demonstrate the superconvergence property of the proposed gradient recovery op-
erators and make comparisons with existing gradient recovery operators. The first
example is to show the superconvergence results of the proposed gradient recovery
operators even though the element patch is not O(h2)-symmetric. In this example,
the vertices are located exactly on the torus. The second one is to compare the re-
sults on a more complicated surface and to demonstrate the superiority of the PPPR
method for surfaces with high curvature, which is an example that the vertices are not
located on the exact surfaces. The last two are to show the asymptotic exactness of
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the recovery-based a posterior error estimator introduced in Section 6. Some of our
numerical tests are conducted based on the MATLAB package iFEM [8]. Except for
the first example, the initial meshes for the other three examples are generated using
the three-dimensional surface mesh generation module of the Computational Geome-
try Algorithms Library [36]. To get meshes in other levels, we first perform either the
uniform refinement or the newest bisection [7]. Then we project the newest vertices
onto the M. In the general case, there is no explicit project map available. Hence
we adopt the first order approximation of projection map as given in [13]. Thus, the
vertices of the meshes are not on the exact surfaceM but in an h2 neighbourhood for
the second and fourth example. We notice that in such cases the superconvergence
results can still be observed.

Let GSAh , GWA
h , and GZZh be recovery operators by simple averaging, weighted

averaging, and Zienkiewicz-Zhu schemes on tangent planes [37], respectively. Note
that we use the exact normal vectors for GZZh in the numerical examples. We denote
G∗h, Gh, and Gah to be the recovery operators given by Algorithm 1, Algorithm 2
and Algorithm 1 with approximations of normal vectors, respectively. The approxi-
mating normal vectors are computed by weighted averaging for the tests with Gah in
our examples, which are also used to implement Algorithm 2 to construct the local
parametric domains Ωi. Another remark is that we use the function value preserving
skill for the PPPR Gh, but not for G∗h. For the reason of making comparisons, we
define:

De = ‖Th∇gu−∇ghuh‖0,Mh
, DeI = ‖∇ghuI −∇ghuh‖0,Mh

,

Der1 = ‖Th∇gu−G∗huh‖0,Mh
, Der2 = ‖Th∇gu−Ghuh‖0,Mh

,

Der3 = ‖Th∇gu−Gahuh‖0,Mh
, DeSA =

∥∥Th∇gu−GSAh uh
∥∥

0,Mh
,

DeWA =
∥∥Th∇gu−GWA

h uh
∥∥

0,Mh
, DeZZ =

∥∥Th∇gu−GZZh uh
∥∥

0,Mh
;

where uh is the finite element solution, u is the analytical solution and uI is the linear
finite element interpolation of u.

In Numerical Example 2, we shall compare the discrete maximal errors of the
above six discrete gradient recovery methods. For that reason, we introduce the
following notations

Der10 = ‖Th∇gu−G∗huh‖0,∞,Mh
, Der20 = ‖Th∇gu−Ghuh‖0,∞,Mh

,

Der30 = ‖Th∇gu−Gahuh‖0,∞,Mh
, DeSA0 =

∥∥Th∇gu−GSAh uh
∥∥

0,∞,Mh
,

DeWA
0 =

∥∥Th∇gu−GWA
h uh

∥∥
0,∞,Mh

, DeZZ0 =
∥∥Th∇gu−GZZh uh

∥∥
0,∞,Mh

;

where ‖ · ‖0,∞,Mh
means the maximum absolute value at all vertices.

In the following tables, all convergence rates are listed in term of the degree of
freedom(Dof). Noticing Dof ≈ h−2, the corresponding convergence rates in term of
the mesh size h are double of what we present in the tables.

7.1. Numerical Example 1. Our first example is to consider Laplace-Beltrami
equation on a torus surface. The right hand function f is chosen to fit the exact
solution u(x, y, z) = x− y. The signed distance function of torus surface is

Φ(x) =

√
(4−

√
x2

1 + x2
2)2 + x2

3 − 1. (7.1)
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To construct a series meshes on torus without O(h2) symmetric property of their
element patches, we firstly make a series of uniform meshes of Chevron pattern and
map the mesh onto the torus. Figure 7.1 plots the uniform mesh with 800 Dofs and
the corresponding finite element solution.

Table 7.1 lists the numerical results. As expected, H1 error of the finite element
solution is of O(h). Since the generated uniform meshes satisfy the O(h2σ) condition,
O(h2) supercloseness for DeI is observed. Concerning the convergence of recovered
gradients, both the recovered gradient by PPR with exact normal field and by the
PPPR have a superconvergence rate of order O(h2); while the recovered gradient
using PPR with approximated normal field and the other three methods in [37] only
converge at the optimal rate O(h).

(a) (b)

Fig. 7.1: Numerical Solution on Torus Surface: (a) Mesh; (b) Solution.

Table 7.1: Numerical Results for equation (5.1) on torus surface.

Dof De order DeI order Der1 Order Der2 order
200 2.52e+00 – 9.43e-01 – 1.50e+00 – 1.59e+00 –
800 1.26e+00 0.50 2.65e-01 0.92 4.12e-01 0.93 4.37e-01 0.93
3200 6.29e-01 0.50 6.92e-02 0.97 1.06e-01 0.98 1.13e-01 0.98
12800 3.14e-01 0.50 1.75e-02 0.99 2.67e-02 0.99 2.84e-02 0.99
51200 1.57e-01 0.50 4.40e-03 1.00 6.70e-03 1.00 7.12e-03 1.00
204800 7.86e-02 0.50 1.10e-03 1.00 1.67e-03 1.00 1.78e-03 1.00
819200 3.93e-02 0.50 2.75e-04 1.00 4.19e-04 1.00 4.45e-04 1.00
3276800 1.97e-02 0.50 6.88e-05 1.00 1.05e-04 1.00 1.11e-04 1.00
Dof Der3 order DeSA order DeWA Order DeZZ order
200 1.52e+00 – 2.27e+00 – 2.28e+00 – 2.27e+00 –
800 4.74e-01 0.84 7.22e-01 0.83 7.25e-01 0.83 6.91e-01 0.86
3200 1.68e-01 0.75 2.48e-01 0.77 2.49e-01 0.77 2.19e-01 0.83
12800 7.18e-02 0.61 1.03e-01 0.63 1.03e-01 0.63 8.39e-02 0.69
51200 3.42e-02 0.54 4.86e-02 0.54 4.86e-02 0.54 3.80e-02 0.57
204800 1.69e-02 0.51 2.39e-02 0.51 2.39e-02 0.51 1.84e-02 0.52
819200 8.40e-03 0.50 1.19e-02 0.50 1.19e-02 0.50 9.16e-03 0.51
3276800 4.20e-03 0.50 5.94e-03 0.50 5.94e-03 0.50 4.57e-03 0.50
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7.2. Numerical Example 2. In this example, we take a surface [20] which
contains high curvature features. It can be represented as the zero level of the following
level set function

Φ(x) =
1

4
x2

1 + x2
2 +

4x2
3

(1 + 1
2 sin(πx1))2

− 1.

We consider the Laplace-Beltrami equation (2.6) with exact solution u = x1x2. The
right-hand side function f can be computed from u.

Figure 7.2b shows the finite element solution uh on Delaunay mesh, see 7.2a, with
4606 Dofs. The numerical results is reported in Table 7.2. From the table, we clearly
see that De converges at the optimal rate O(h) and DeI converges at a superconver-
gent rate O(h2). As demonstrated in [9], some regions of the surface show significant
high curvature. Due to the existence of these areas, only sub-superconvergence rate of
order O(h1.8) is observed for PPR with approximated normal field and the other three
methods in [37]. In contrast, the O(h2) superconvergence rate can be observed in the
PPR with exact normal field and in the PPPR method. To look more clearly into the
relations between the recovery accuracy and the high curvature of a surface, we add
another set of comparison in this example. In our numerical tests, we observed that
the maximal recovery errors always happened in the area of the meshes generated
from highest curvature surface regions. We plot a case example of the distribution
of the error function |Ghuh − Th∇gu| in Figure 7.2c. Table 7.3 reports the maximal
discrete errors of all the above six gradient recovery methods, in which PPPR method
is the only one to achieve the superconvergence rate of O(h2) asymptotically in the
discrete maximal norm. This gives the evidence to our statement in Remark 4.1 that
PPPR is relatively curvature stable compared to the other methods. At that point,
we can say that PPPR is the best one for arbitrary meshes and meshes generated by
high curvature surfaces. Thus, in the following two examples, we shall only consider
the PPPR method.

In this example, we find from Table 7.2 and 7.3 that the results of the Algorithm 1
(Der1), which uses the exact normal vectors, are worse than the results of Algorithm
2 (Der2). This is not surprising, as we have reported that in this complicated surface
case, the vertices of the discrete mesh are not located on the exact analytical surface
any more. Therefore even with exact normal vectors, it brings unavoidable errors to
the computations. This also shows an advantage of the PPPR method (Algorithm 2).

7.3. Numerical Example 3. In the example, we consider a benchmark problem
for adaptive finite element method for the Laplace-Beltrami equation on the sphere
[9, 13, 14]. We choose the right-hand side function f such that the exact solution in
spherical coordinate is given by

u = sinλ(θ) sin(ψ).

In case of λ < 1, it easy to see that the solution u has two singularity points at north
and south poles and the solution u is barely in H1(M). In fact, u ∈ H1+λ(M).

To obtain the optimal convergence rate, we use the adaptive finite element method
(AFEM). Different from the existing methods in the literature, the recovery-based a
posteriori error estimator is adopted. We start with the initial mesh given as in
Fig 7.3a. The mesh is adaptively refined using the Dor̈fler [17] marking strategy with
parameter equal to 0.3. Fig 7.3b plots the mesh after the 18 adaptive refinement steps.
The mesh successfully resolves the singularities. The numerical errors are displayed
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Table 7.2: Numerical Results for equation (5.1) on a general surface

Dof De order DeI order Der1 Order Der2 order
1153 5.46e-01 – 2.78e-01 – 4.77e-01 – 3.34e-01 –
4606 2.85e-01 0.47 1.18e-01 0.62 2.01e-01 0.62 1.29e-01 0.69
18418 1.40e-01 0.51 3.45e-02 0.89 6.58e-02 0.81 4.38e-02 0.78
73666 6.97e-02 0.50 9.86e-03 0.90 1.97e-02 0.87 1.28e-02 0.89
294658 3.48e-02 0.50 2.58e-03 0.97 5.33e-03 0.95 3.40e-03 0.96
1178626 1.74e-02 0.50 6.57e-04 0.99 1.37e-03 0.98 8.68e-04 0.99
4714498 8.70e-03 0.50 1.66e-04 0.99 3.46e-04 0.99 2.18e-04 1.00
Dof Der3 order DeSA order DeWA Order DeZZ order
1153 4.71e-01 – 4.83e-01 – 4.86e-01 – 4.95e-01 –
4606 1.98e-01 0.62 2.26e-01 0.55 2.30e-01 0.54 2.18e-01 0.59
18418 6.63e-02 0.79 8.30e-02 0.72 8.59e-02 0.71 7.45e-02 0.78
73666 2.06e-02 0.84 2.69e-02 0.81 2.82e-02 0.80 2.33e-02 0.84
294658 5.87e-03 0.91 7.72e-03 0.90 8.27e-03 0.89 6.60e-03 0.91
1178626 1.64e-03 0.92 2.14e-03 0.93 2.36e-03 0.90 1.83e-03 0.93
4714498 4.70e-04 0.90 6.04e-04 0.91 6.97e-04 0.88 5.22e-04 0.90

Table 7.3: Comparison of discrete maximal norms of gradient recovery methods on a
general surface

Dof Der10 order Der20 order Der30 Order
1153 9.70e-01 – 7.93e-01 – 8.73e-01 –
4606 5.43e-01 0.42 3.26e-01 0.64 4.77e-01 0.44
18418 1.92e-01 0.75 1.09e-01 0.79 2.22e-01 0.55
73666 8.57e-02 0.58 5.18e-02 0.54 9.16e-02 0.64
294658 2.50e-02 0.89 1.40e-02 0.94 3.51e-02 0.69
1178626 7.80e-03 0.84 3.59e-03 0.98 1.59e-02 0.57
4714498 3.56e-03 0.57 9.03e-04 0.99 7.57e-03 0.53
Dof DeSA0 order DeWA

0 order DeZZ0 Order
1153 7.16e-01 – 7.09e-01 – 8.13e-01 –
4606 5.09e-01 0.25 5.36e-01 0.20 5.83e-01 0.24
18418 2.73e-01 0.45 3.05e-01 0.41 2.65e-01 0.57
73666 1.42e-01 0.47 1.47e-01 0.53 1.11e-01 0.63
294658 5.66e-02 0.66 6.08e-02 0.64 3.67e-02 0.80
1178626 2.39e-02 0.62 2.75e-02 0.57 1.62e-02 0.59
4714498 1.12e-02 0.55 1.31e-02 0.54 7.63e-03 0.54

in Fig 7.4a. As expected, an optimal convergence rate for H1 error can be observed.
Also, we observe that the recovered gradient is superconvergent to the exact gradient
at a rate of O(h2).

To test the performance of our new recovery-based a posterior error estimator for
the Laplace-Beltrami problem, the effectivity index κ is used to measure the quality
of an error estimator [1,3], which is defined by the ratio between the estimated error
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(a) Mesh

(b) Solution

(c) Error distribution of recovered gradient

Fig. 7.2: Numerical Solution on general surface.

and the exact error

κ =
‖Ghuh −∇ghuh‖0,Mh

‖Th∇gu−∇ghuh)‖0,Mh

(7.2)

The effectivity index is plotted in Fig 7.4b . We see that κ converges asymptotically
to 1 which indicates the posteriori error estimator (6.1) (or (6.2) ) is asymptotically
exact.
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(a) (b)

Fig. 7.3: Meshes for Example 3: (a) Initial mesh; (b) Adaptively refined mesh.
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Fig. 7.4: Numerical Result for Example 3: (a) Errors; (b) Effective index.

7.4. Numerical Example 4. In this example, we consider the following Laplace-
Beltrami type equation on Dziuk surface as in [10]:

−∆g + u = f, on Γ,

where Γ =
{
x ∈ R3 : (x1 − x2

3)2 + x2
2 + x2

3 = 1
}
. f is chosen to fit the exact solution

u(x, y, z) = e
1

1.85−(x−0.2)2 sin(y).

Note that the solution has an exponential peak. To track this phenomenon, we adopt
AFEM with an initial mesh graphed in Fig 7.5a. Fig 7.5b shows the adaptively
refined mesh. We would like to point out that the mesh is refined not only around
the exponential peak but also at the high curvature areas. Fig 7.6a displays the
numerical errors. It demonstrates the optimal convergence rate in H1 norm and a
superconvergence rate for the recovered gradient. The effective index is shown in Fig
7.6b, which converges to 1 quickly after the first few iterations. Again, it indicates
the error estimator (6.1) (or (6.2) ) is asymptotically exact.
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(a) (b)

Fig. 7.5: Meshes for Example 4: (a) Initial mesh; (b) Adaptively refined mesh.
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Fig. 7.6: Numerical Result for Example 4: (a) Errors; (b) Effective index.

8. Conclusion. In this paper, we have proposed a novel gradient recovery method
which uses parametric polynomials to fit both manifolds and also FEM solutions de-
fined on the manifolds, and then to recover a better gradient for the FEM solutions.
In comparing with existing methods for data on surfaces in the literature, cf. [18,37],
the proposed method has several improvements: The first highlight is that it does
not requires the normal vectors of the exact manifold, which makes it a realistic and
robust method for practical problems; Second, it does not need the element patch to
be O(h2) symmetric to achieve superconvergence; Third, all of our numerical tests
show evidence that it is a curvature stable method in comparing with the existing
methods. We have advanced the traditional PPR method (for planar problems) to
function value preserving in the meantime, and shown the capability of the recovery
operator for constructing a posteriori error estimator. In fact, the superconvergence
does hold forMh with no exact vertices, but the theoretical proof is postponed to a
follow-up paper. Even though we have only discussed linear finite element methods
on triangulated meshes, the idea should be applicable to higher order FEM on more
accurate approximations of surfaces, e.g., piecewise polynomial surfaces, B-splines or
NURBS. However, these are non-trivial works, and we leave them as future topics.
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Gradient recovery has other applications, like enhancing eigenvalues [24, 31, 32],
simplifying higher order discretization of PDEs [21], designing new numerical meth-
ods for higher order PDEs [6, 25, 26, 39]. Moreover, it may help for the vector field
regularization in the context of [16], where the geometric approximation accuracy is
asked to be one more extra order higher than the order of function approximation
accuracy in order to optimally regularizing vector fields on manifolds. The super-
convergence property of the recovery scheme might be able to reduce the additional
higher order requirement in manifolds approximation for vector fields, and achieve op-
timal convergence rates as the case of scalar valued functions. It would be interesting
to investigate further the full usage of the PPPR method for problems with solutions
defined on manifolds.
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Appendix A. Proof of Lemma 2.1.
Proof. In general, there are infinitely many isomorphic parameterizations for a

given patch S ⊂M. Let us pick arbitrarily two of them, which are denoted by

r : Ω→ S and s : Ωs → S ,

respectively, where Ω and Ωs are planar parameter domains, then there exist

t : Ω→ Ωs

to be a bijective, differentiable mapping, such that r = s ◦ t. That means for an
arbitrary but fixed position x ∈ S, we have ξ ∈ Ω and t(ξ) = ζ, such that

x = s(ζ) = s(t(ξ)) = r(ξ).

Then we have

∂r(ξ) = ∂s(t(ξ))∂t(ξ),

and consequently, for every function v : S → R,

v ◦ r : Ω→ R and v ◦ s : Ωs → R,

we have

∇gv(r(ξ)) ∂r(ξ) = ∇(v ◦ r)(ξ) and ∇gv(s(ζ)) ∂s(ζ) = ∇(v ◦ s)(ζ). (A.1)

Using chain rule on both sides of the former equation of (A.1), then we get

∇gv(s(ζ)) ∂s(t(ξ))∂t(ξ) = ∂(v ◦ s(t(ξ)))∂t(ξ)⇒ ∇gv(s(ζ)) ∂s(t(ξ)) = ∂(v ◦ s(t(ξ))),

which gives the latter equation in (A.1) since ∂t(ξ) is non-degenerate. Using the
same process but consider t−1 : Ωs → Ω, we can show the reverse implication. Thus,
we have shown that any two arbitrary parameterizations r and s lead to the same
gradient values at same positions.
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