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MULTIGRID METHODS FOR DISCRETE FRACTIONAL SOBOLEV
SPACES⇤
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Abstract. Coupled multiphysics problems often give rise to interface conditions naturally for-
mulated in fractional Sobolev spaces. Here, both positive and negative fractionality are common.
When designing e�cient solvers for discretizations of such problems it would therefore be useful to
have a preconditioner for the fractional Laplacian. In this work, we develop an additive multigrid
preconditioner for the fractional Laplacian with positive fractionality and show a uniform bound on
the condition number. For the case of negative fractionality, we reuse the preconditioner developed
for the positive fractionality and left-right multiply a regular Laplacian with a preconditioner with
positive fractionality to obtain the desired negative fractionality. Implementational issues are out-
lined in detail as the di↵erences between the discrete operators and their corresponding matrices must
be addressed when realizing these algorithms in code. We finish with some numerical experiments
verifying the theoretical findings.
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1. Introduction. Multiphysics or multiscale problems often involve coupling
conditions at interfaces which are manifolds of lower dimensions. The coupling con-
ditions, because of the lower dimensionality, are naturally posed in fractional Sobolev
spaces, and this fact seemingly complicates discretization schemes and solution algo-
rithms. Our focus here will be on the development of solution algorithms in terms of
multilevel preconditioners that from an implementational point of view only require
minor adjustments of standard multilevel algorithms.

As simplified examples of problems involving interface conditions, let us consider
the following two prototype problems. The first is an elliptic problem with a trace
constraint,

(1.1)
��u+ T ⇤� = f, x 2 ⌦,

Tu = g, x 2 �,

and the second is an elliptic problem in mixed form with a trace constraint,

(1.2)

u�rp+ T ⇤� = f, x 2 ⌦,

r · u = g, x 2 ⌦,

Tu = h, x 2 �.

Here, � is a submanifold either within ⌦ or at its boundary, T is a trace operator, and
T ⇤ is its adjoint. Both problems are assumed to be equipped with suitable boundary
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conditions. We remark that although these problems are single physics problems,
they may easily be coupled to other problems through the Lagrange multiplier at the
interface. As such, the problems represent well the challenge of handling the interface
properly in a multiphysics setting.

We may write the above problems as
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A crucial challenge is to discretize and solve these problems in a scalable way such
that the computations scale linearly with the number of unknowns. Our approach
here is to consider iterative methods and develop preconditioners that are both spec-
trally equivalent with the involved operators and of order-optimal complexity. The
main di�culty is the handling of the Lagrange multiplier, which falls outside the
scope of standard multilevel methods. To provide a general framework, we will con-
sider preconditioners constructed in terms of the so-called operator preconditioning
approach [32] to be used for iterative methods. As will be explained later, the block
diagonal preconditioners constructed by this technique will be of the following form:
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respectively. Multilevel methods spectrally equivalent with both (��)�1 and (I �
rr·)�1 are well known. The challenging part in both cases is the construction of
e�cient preconditioning algorithms that approximate the inverse of the fractional
Laplace problems of the form

(1.3) (��)su = f, x 2 �,

with s = 1/2 and s = �1/2, equipped with suitable boundary conditions. Further-
more, if � is of codimension 2, numerical simulations [26] indicate that s 2 (�0.2,�0.1)
gives rise to e�cient preconditioners. In this paper we therefore consider methods for
s 2 [�1, 1].

There are many examples of applications of fractional Laplacians in the literature,
and we mention a few that motivate this work. Nonoverlapping domain decomposition
preconditioners are studied in [3, 25]. Here, they use (1.3) with s = 1

2 to precondi-
tion the interface problem involving the related Steklov–Poincaré operator. In [27]
the authors use (1.3) with s = � 1

2 as part of a block diagonal preconditioner for a
multiphysics problem where the constraint coupling two domains of di↵erent topo-
logical dimension is enforced by the Lagrange multiplier. Therein the fractionality
s is dictated by the mapping properties of the Schur complement operator. Some
further examples of coupled systems with domains of di↵erent dimensionality include
Babuška’s problem for enforcing Dirichlet boundary conditions on an elliptic opera-
tor [5], flow stabilization by removal of tangential velocity at the boundary through
Lagrange multipliers [8], the no-slip condition on the surface of a falling solid in the
Navier–Stokes fluid [17], the inextensibility constraint in the complex model of vesicle
formation [1], and the potential jump on a membrane of a cardiac cell [35]. We note
that in these applications the fractional Laplace problem has to be solved with both
positive and negative exponents.
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There are several alternative approaches that have been used in order to ap-
proximate fractional Laplacians. Polynomial approximations of As, where A is a
discrete Laplacian, can be computed with standard Krylov subspace methods. How-
ever, without any preconditioner a Krylov subspace of large dimension is required for
convergence; see, e.g., the Lanczos method in [24, section 4]. Preconditioners based
on fractional powers of A on preconditioned problems on small subspaces have been
shown to be e�cient for various applications in [3, 38]. The contour integral method
of [19] and the extended Krylov method of [24] are here related to rational function
approximations of As, while [22] considers the best uniform rational approximations of
the trasformed function A 7! A��s. In general, the approximation properties of these
methods depend on the condition number of A, and thus computations of extremal
eigenvalues are often part of the algorithm. Further, the computational complex-
ity of the methods based on rational approximations depends on e�cient solvers for
auxiliary linear systems, e.g., (A � qkI)x = b in [22], where qk 2 R is a shift param-
eter. Almost mesh independent preconditioners for systems arising in [19] and [24]
are discussed in [16]. An alternative approach to the matrix transfer method is pre-
sented in [9], where the inverse of the fractional Laplacian is defined via the (integral)
Balakrishnan formula [6].

Multilevel methods for fractional Laplacians have been considered in [12, 22, 33,
34], but there seems to be a significant untapped potential for advancement. Our
work here is closely related to [12], where order-optimal preconditioners for As when
s 2 �� 3

2 ,
3
2

�
were constructed using a hierarchical basis approach. The paper [12],

however, only considers smoothers based on level-dependent scaling and does not put
much focus on the actual implementation. Here, we will develop and analyze a multi-
level algorithm that is straightforward to implement in a standard multilevel software
framework. In fact, the main change required is an adjustment of the smoothers. To
illustrate the change, let us assume that we want to solve the system Ax = b, where
A is a sti↵ness matrix corresponding to a discretized Laplacian. A standard Jacobi
algorithm can then be written

x
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where Ai,i are the diagonal entries of the sti↵ness matrix for a discretized Laplacian,
and r

n is the residual of the nth iterate, xn. In our case, for A

s
x = b, the proposed

Jacobi smoother may be implemented as
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Here, Mi,i are the diagonal entries of the mass matrix. We notice here that for s = 0
the action is a Jacobi iteration on the mass matrix, and for s = 1 the action is a Jacobi
iteration on the sti↵ness matrix, and for 0 < s < 1 the action is an interpolation
between these two extremes. From an implementational point of view, the restriction
and interpolation operators used are the same as those used in standard multilevel
algorithms. However, from a theoretical point of view, the fact that we use standard
restriction and interpolation operators means that the multilevel approach will be
nonnested. In fact, the matrices on coarser levels do not correspond to (��)s-Galerkin
projections of the matrix on the finer levels. We therefore employ the framework of
nonnested multilevel methods [15]. Furthermore, a multiplicative multilevel algorithm
would require computing the residual and hence the evaluation of the exact (��)�s
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operator on every level. Since the evaluation of the exact (��)�s is a computationally
expensive procedure, we instead rely on the additive multilevel algorithm proposed in
[14], where the same residual is used on all levels. The additive variant is significantly
less e�cient than corresponding multiplicative variants in terms of the conditioning (in
the sense that the conditioning depends on the number of levels). Still, this is a small
price to pay (only logarithmic in the number of unknowns) to avoid exact evaluation
of the residual. In this paper we will assume a quasi-uniform mesh and continuous
piecewise linear finite elements. This is mainly for simplicity, and the results can be
generalized to higher order discretizations as well as discontinuous Galerkin methods.

The paper is structured as follows. In section 2, we introduce notation and some
useful operator inequalities related to fractional powers of positive operators. We
also give a brief discussion of fractional Sobolev spaces. Section 3 is devoted to the
analysis of an abstract multilevel framework. In section 4 we use this framework to
define operators that are spectrally equivalent to the inverse of the fractional Laplacian
when the fractionality s � 0. We discuss some strategies for preconditioning when
s < 0 in section 5, and in section 6 we discuss implementation of the preconditioners
developed in the previous sections. Finally, we provide numerical results that verify
our theoretical result in section 7.

2. Notation and preliminaries. Let ⌦ be a bounded, Lipschitz domain in Rn,
with boundary @⌦. We denote by L2(⌦) the space of square integrable functions over
⌦, with inner product (·, ·) and norm k·k. For k 2 N, we denote by Hk(⌦) the usual
Sobolev spaces of functions in L2(⌦) with all derivatives up to order k in L2(⌦). The
norm and inner product in Hk are denoted by k · kk and (·, ·)k, respectively. The
closure in Hk of smooth functions with compact support in ⌦ is denoted as Hk

0 (⌦)
and its dual space is H�k. In general a Hilbert space X is equipped with a norm k ·kX
and an inner product (·, ·)X , and the dual space is denoted by X

0
. For two Hilbert

spaces X and Y , we write L(X,Y ) to mean the space of bounded linear operators
T : X ! Y , which we equip with the usual operator norm

kTkL(X,Y ) = sup
x2X

kTxkY
kxkX

.

Let A be a symmetric positive-definite operator on a finite-dimensional Hilbert
space X with dimension N . Denote by {(�k,�k)}Nk=1 the set of eigenpairs of A,
normalized so that

(�k,�l)X = �k,l,

where �k,l is the Kronecker delta. Then �k for k = 1, . . . , N forms an orthonormal

basis of X, and if u 2 X has the representation u =
PN

k=1 ck�k, then

Au =
NX

k=1

�kck�k.

For s 2 R, we define the fractional power As of A by

Asu =
NX

k=1

�s
kck�k.

If A is only positive semidefinite, then we must restrict to s � 0, and the eigenvectors
corresponding to the nullspace of A are left out (also for s = 0). If B is another
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symmetric positive semidefinite operator on X, we write A  B if for every u 2 X

(Au, u)X  (Bu, u)X

holds. Note that 0  A is equivalent to saying that A is positive semidefinite.
A result in operator theory is the Löwner–Heinz inequality, which states that if

A  B, then

(2.1) As  Bs, s 2 [0, 1];

cf., for instance, [23]. Inequality (2.1) means that the function xs with x 2 [0,1) is
operator monotone for s 2 [0, 1]. It follows that �(x)s is operator convex (cf. [20]);
that is, for any two symmetric positive semidefinite operators A and B on a Hilbert
space X, the inequality

�As + (1� �)Bs  (�A+ (1� �)B)s

holds for every � 2 [0, 1]. A key result regarding operator convex functions is the
Jensen operator inequality (cf. [21, Theorem 2.1]). The version we will use in the
current work states that for any K 2 N and s 2 [0, 1]

(2.2)
KX

k=1

P ⇤
kA

s
kPk 

 
KX

k=1

P ⇤
kAkPk

!s

,

where, for k = 1, . . . ,K, Ak are symmetric positive semidefinite operators on X, and
Pk are linear operators on X so that

PK
k=1 P

⇤
kPk  I and I is the identity operator

on X.

2.1. Fractional Sobolev spaces. We consider the interpolation spaces between
H1(⌦) and L2(⌦) as defined in [30]. Let the inner product on H1(⌦) be realized by
the operator A := I �� as

(u, v)1 = (Au, v) = (u, v) + (ru,rv) , u, v 2 H1(⌦).

A is unbounded as an operator mapping L2(⌦) to L2(⌦). However, A is well defined
on the set

D(A) =
�
u 2 L2(⌦) : Au 2 L2(⌦)

 
,

which is a dense subspace of L2(⌦). On D(A), A is symmetric and positive-definite,
and so the fractional powers of A, A✓ for ✓ 2 R are well defined. Note that in the
particular case ✓ = 1

2 , ���A
1
2u
���
2
= (Au, u) = kuk1 .

For s 2 [0, 1], we define the fractional Sobolev spaces as

(2.3) Hs(⌦) =
�
u 2 L2(⌦) : A

s
2u 2 L2(⌦)

 
,

which is a Hilbert space with inner product given by

(u, v)s = (Asu, v) , u, v 2 Hs(⌦),

and we denote the corresponding norm by k·ks.
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We define Hs
0(⌦) to be the closure of C1

0 (⌦), the space of infinitely smooth
functions with compact support in ⌦, in the norm of Hs(⌦). We note that if s  1

2 ,
the spaces Hs

0(⌦) and Hs(⌦) coincide (cf. [30, Theorem 11.1]). For s 2 [�1, 0], we
define a family of fractional Sobolev spaces using the dual of Hs

0(⌦). That is,

Hs(⌦) =
�
H�s

0 (⌦)
�0

.

Replacing H1(⌦) with H1
0 (⌦) and setting A = �� in the above construction will

again yield the space Hs
0(⌦), with equivalent norm, for all s except when s = 1

2 . In
this case, interpolation between H1

0 (⌦) and L2(⌦) results in a space that is strictly

contained in H
1
2
0 (⌦). The subsequent analysis is valid for both Hs

0(⌦) and Hs(⌦).
We remark that the above-defined fractional space Hs(⌦) is equivalent to the

fractional space Ĥs(⌦) defined in terms of the norm

kuk2Ĥs(⌦) = kuk2 +
Z

⌦⇥⌦

|u(x)� u(y)|2
|x� y|n+2s

dxdy.

A detailed overview of the various definitions of fractional Sobolev norms and their
discretizations can be found in [31].

2.2. Discrete fractional Sobolev spaces. We will now consider a discretiza-
tion of the fractional Sobolev spaces Hs

0(⌦) and H�s(⌦) for s 2 [0, 1]. Let Xh be
a finite-dimensional subspace of H1

0 (⌦), with dimXh = Nh. We define the operator
Ah : Xh ! Xh by

(2.4) (Ahu, v) = (ru,rv) , u, v 2 Xh.

Using the fractional powers of Ah, we define for s 2 R the discrete fractional inner
product on Xh by

(u, v)s,h = (As
hu, v) , u, v 2 Xh,

and denote the corresponding norm by k·ks,h. It is clear that for s = 0 and s = 1,
the two norms k·ks,h and k·ks coincide on Xh. Therefore, due to [4, Lemma 2.3],
the norms k·ks,h and k·ks, when s 2 [0, 1], are equivalent on Xh, with constants of
equivalence independent of Nh.

Let XH be a subspace of Xh, and let AH : XH ! XH be defined analogously to
Ah in (2.4). If IH : XH ! Xh is the inclusion map, we see that

(2.5) AH = I⇤HAhIH ,

where I⇤H is the adjoint of IH with respect to the L2 inner product.
We may also define As

H : XH ! XH , but generally, As
H 6= I⇤HAs

hIH . However, by
Jensen’s operator inequality we have the following.

Lemma 2.1. For every s 2 [0, 1] we have

I⇤HAs
hIH  As

H .

That is, for every u 2 XH ,

(2.6) (As
hu, u)  (As

Hu, u) .
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Proof. For s = 0 and s = 1, (2.6) holds with equality, so let 0 < s < 1. We start
by noticing that since I⇤HIH is the identity on XH ,

A2
H = (I⇤HIHAHI⇤HIH)2 = I⇤H(IHAHI⇤H)2IH .

By induction, we find that

Ak
H = I⇤H(IHAHI⇤H)kIH

for every nonnegative integer k. It follows that for any polynomial p

(2.7) p(AH) = I⇤H p (IHAHI⇤H) IH .

Take now ✏ > 0. The spectra of both AH and IHAHI⇤H are contained in some
bounded, nonnegative interval [0, b]. By the Weierstrass approximation theorem we
can thus choose a polynomial p so that

k(IHAHI⇤H)s � p(IHAHI⇤H)k < ✏ and kAs
H � p(AH)k < ✏.

Using the triangle inequality and (2.7), we have that

kAs
H � I⇤H (IHAHI⇤H)s IHk  kAs

H � p(AH)k+kI⇤H ((IHAHI⇤H)s � p(IHAHI⇤H)) IHk < 2✏,

and since ✏ was arbitrary, this shows that

(2.8) As
H = I⇤H(IHAHI⇤H)sIH .

Using (2.5) in (2.8), we get that

(2.9) As
H = I⇤H(IHI⇤HAhIHI⇤H)sIH .

Finally, IHI⇤H defines a symmetric operator on Xh with L2 operator norm equal to
1. Since the function x 7! �xs is operator convex on [0,1), we can use Jensen’s
operator inequality (2.2) in (2.9) to get

As
H � I⇤HIHI⇤HAs

hIHI⇤HIH

= I⇤HAs
hIH ,

where we have used that I⇤HIH is the identity on XH .

3. Abstract multilevel theory. In order to analyze and implement a multigrid
preconditioner for the fractional Laplacian, there are three main issues that need to
be dealt with. First, we need to derive and implement a smoother with the desired
properties. As already mentioned in the introduction, this step only requires a minor
modification to standard smoothing algorithms. We will discuss the details concerning
implementation later. Second, the restriction/interpolation operators do not result in
a nested hierarchy of operators in our fractional setting as As

H 6= I⇤HAs
hIH . For this

reason we will employ the framework for nonnested multilevel algorithms developed
in [15]. Third, our main motivation for developing fractional multilevel solvers is their
application to multiphysics and multiscale problems where the preconditioner for the
fractional Laplacian is utilized at the interfaces. As such, the fractional Laplacian
operator is not part of the original problem, and therefore we may not assume that
this operator has been implemented. Furthermore, implementing this operator in an
e�cient manner is a challenge but is currently a very active research field; cf., e.g., [31]
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for an overview. To avoid the application of the fractional Laplacian on the various
levels we employ additive multilevel schemes which enable the residual of the problem
to be used at all levels and remove the need for implementing a global fractional
Laplacian operator. That said, the theory developed here extends to multiplicative
algorithms for problems involving the fractional Laplacian, such as the standard V-
cycle. In this section we will address the second and the third issues and outline a
theory for an additive multilevel scheme applied to an abstract nonnested problem.
As such, the analysis of this section is a synthesis of the papers [14] and [15].

Assume that we are given a nested sequence of finite-dimensional function spaces

V1 ⇢ V2 ⇢ · · · ⇢ VJ = V, J � 2.

We further assume that V , and consequently all subspaces of V , is endowed with
an inner product (·, ·), with corresponding induced norm k·k. Moreover, for each
k = 1, . . . , J , we assume that we are given a symmetric positive-definite operator
Ak : Vk ! Vk, and we set A = AJ . Note that we do not assume that the Ak operators
are nested.

For the development and analysis of our multilevel algorithm, it will be useful to
define a number of operators on each level k. First, we define Pk,k�1 : Vk ! Vk�1 by

(3.1) (Ak�1Pk,k�1v, w) = (Akv, w) 8v 2 Vk, w 2 Vk�1.

We remark that in a nested setting, Pk,k�1 is the A-projection, while since the Ak

operators are not nested, the Pk,k�1 operators are not projections. Next, we define
Qk : V ! Vk by

(3.2) (Qkv, w) = (v, w) 8v 2 V,w 2 Vk.

It follows by the above definitions that

(3.3) Ak�1Pk,k�1 = Qk�1Ak,

and QlQk = QkQl = Ql whenever l  k. For the sake of brevity, it will also be useful
to define Pk : V ! Vk by Pk = Pk+1,kPk+2,k+1 · · ·PJ,J�1. Using the definition of
Pj+1,j for j = k, . . . , J � 1, we see that

(AkPkv, w) = (Av,w) 8v 2 V,w 2 Vk.

Furthermore, applying (3.3) repeatedly, we find that

(3.4) AkPk = QkA.

Finally, suppose we are given for each k a smoother, which is a symmetric pos-
itive definite operator Rk : Vk ! Vk and in some sense should approximate A�1

k on
Vk\Vk�1. We can now define an additive multilevel operator B : V ! V by

(3.5) B =
JX

k=1

RkQk.

As remarked in [14], B can be viewed as an additive version of the standard multi-
plicative V-cycle multigrid algorithm, where Rk plays the role of smoother. Because
of this, it is reasonable that the assumptions we need to make to establish spectral
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equivalence between A�1 and B are similar to those made for standard multigrid
algorithms.

We assume that for k = 2, . . . , J

(A.1) (Akv, v)  (Ak�1v, v) 8v 2 Vk�1.

Under assumption (A.1) and the definition of Pk,k�1 we see that for any v 2 Vk

(Ak�1Pk,k�1v, Pk,k�1v) = (Akv, Pk,k�1v)

 (AkPk,k�1v, Pk,k�1v)
1
2 (Akv, v)

1
2

 (Ak�1Pk,k�1v, Pk,k�1v)
1
2 (Akv, v)

1
2 .

Thus, (A.1) implies

(3.6) (Ak�1Pk,k�1v, Pk,k�1v)  (Akv, v) 8v 2 Vk.

Conversely, assume (3.6). Then, for any v 2 Vk�1, by the definition of Pk,k�1,

(Akv, v) = (Ak�1Pk,k�1v, v)

 (Ak�1Pk,k�1v, Pk,k�1v)
1
2 (Ak�1v, v)

1
2

 (Akv, v)
1
2 (Ak�1v, v)

1
2 ,

which implies (A.1). Thus, (A.1) and (3.6) are equivalent. Notice that a similar
inequality to (3.6) would also hold for Pk, namely

(3.7) (AkPkv, Pkv)  (Av, v) 8v 2 V.

For the operators Rk, we assume there are constants C1, C2 > 0 independent of
k so that

(A.2) C1
kvk2
�k

 (Rkv, v)  C2

�
A�1

k v, v
� 8v 2 Vk,

where �k is the largest eigenvalue of Ak. Finally, as is common in multigrid theory,
we will use an approximation assumption to establish spectral equivalence between B
and A�1. In this work, we assume the following approximation property: There are
an ↵ 2 (0, 1] and a constant C3 > 0, independent of k, so that

(A.3) (Ak(I � Pk,k�1)v, v)  C↵
3

 
kAkvk2

�k

!↵

(Akv, v)
1�↵ 8v 2 Vk.

We are now in a position to state and prove the main theorem of this section.
The proof closely resembles the proofs of Corollary 3 and Theorem 2 in [14] but is
extended to handle the case of the nonnestedness of the operators.

Theorem 3.1. Assume that (A.1), (A.2), and (A.3) hold. Then, with B given

in (3.5),

(3.8) C1C
�1
3 J1� 1

↵ (Av, v)  (BAv,Av)  C2J (Av, v)

holds for every v 2 V .
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Proof. Fix v 2 V . Using the definition of B together with (3.4), we find that

(BAv,Av) =
JX

k=1

(RkQkAv,QkAv) =
JX

k=1

(RkAkPkv,AkPkv) .

Thus, applying the second inequality of (A.2) and (3.7) gives

(BAv,Av)  C2

JX

k=1

(AkPkv, Pkv)  C2J (Av, v) ,

which proves the second inequality of (3.8).
For the first inequality of (3.8) we write

v =
JX

k=1

(Pk � Pk�1)v,

where we interpret P0 = 0 and PJ = I. By the definition of Pk, we have that
Pk�1 = Pk,k�1Pk, and so

v =
JX

k=1

(I � Pk,k�1)Pkv.

It follows that

(Av, v) =
JX

k=1

(Ak(I � Pk,k�1)Pkv, Pkv) .

Using (A.3) and (3.7) gives

(Av, v)  C↵
3

JX

k=1

⇣
��1
k kAkPkvk2

⌘↵

(AkPkv, Pkv)
1�↵

 C↵
3 (Av, v)1�↵

JX

k=1

⇣
��1
k kAkPkvk2

⌘↵

.

The first inequality of (A.2) then implies that

(Av, v)  (C�1
1 C3)

↵ (Av, v)1�↵
JX

k=1

(RkAkPkv,AkPkv)
↵

 (C�1
1 C3)

↵J1�↵ (Av, v)1�↵

 
JX

k=1

(RkAkPkv,AkPkv)

!↵

 (C�1
1 C3)

↵J1�↵ (Av, v)1�↵ (BAv,Av)↵ ,

where the second step follows by Hölder’s inequality. The last step follows by the
definition of B in (3.5), and (3.4). Dividing by (C�1

1 C3)↵ (Av, v)1�↵
J1�↵ on both

sides and raising to the power 1
↵ gives the first inequality of (3.8).

Remark 1. Analogously to what was done in [14], we can replace the regularity
assumption (A.3) with an assumption on the projections Qk (cf. also [13]). In partic-
ular, if, instead of (A.3), we assume that there is a constant C4 > 0 independent of k
so that

k(I �Qk�1)vk2  C4�
�1
k (Av, v) 8v 2 V,
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then we can use an argument like that made in [14, Theorem 1 and Corollary 1] to
show that

(3.9) C�1
4 C1J

�1 (Av, v)  (BAv,Av)  C2J (Av, v)

for every v 2 V .

4. Preconditioner for discrete fractional Laplacian. In this section we use
the abstract theory developed in section 3 to derive an order optimal preconditioner
for the discrete fractional Laplacian As

h, described in section 2, when s 2 [0, 1].
Let ⌦ be a bounded, polygonal domain in Rn, and suppose we are given a quasi-

uniform triangulation of ⌦, denoted by Th, where h denotes the characteristic mesh
size. We restrict our discussion to the case when Vh is the space of continuous,
piecewise linear functions relative to the triangulation Th which vanish on @⌦. To
define a nested sequence of subspaces, we suppose that Th is constructed by successive
refinements. That is, we are given a sequence,

T1 ⇢ · · · TJ = Th,

of quasi-uniform triangulations, and Tk has characteristic mesh size hk for k =
1, . . . , J . In the following, we will assume the bounded refinement hypothesis, that is,
hk�1  �hk for k = 2, . . . , J , where � � 1 is a constant. In practice, � is around 2.
For each k we define Vk as the space of continuous, piecewise linear functions relative
to Tk that vanish on @⌦. Further, we define Ak : Vk ! Vk by

(Akv, w) = (rv,rw) , v, w 2 Vk.

We now fix s 2 [0, 1]. Since Ak is symmetric positive-definite, we can define As
k

and corresponding norms

kvk2s,k := (As
kv, v) , v 2 Vk.

Note that if s = 0 or s = 1, the norm k·ks,k coincides with the L2-norm and H1
0 -norm,

respectively. That is, k·k0,k = k·k and k·k1,k = k·k1.
Analogous to the discussion in section 3 we also define operators P s

k,k�1 : Vk !
Vk�1 by

(4.1)
�
As

k�1P
s
k,k�1v, w

�
= (As

kv, w) 8v 2 Vk, w 2 Vk�1,

Qk : VJ ! Vk is the L2-projection, and P s
k := P s

k+1,kP
s
k+2,k+1 · · ·P s

J,J�1.
To complete the description of a multilevel preconditioner, we still need to define

smoothers, Rs
k, for each k and s. In this work, we will define additive smoothers

based on domain decomposition. To that end, let Nk be the set of vertices in the
triangulation Tk, and for each ⌫ 2 Nk, let Tk,⌫ be the set of triangles meeting at the
vertex ⌫. Then Tk,⌫ forms a triangulation of a small subdomain ⌦k,⌫ . We define Vk,⌫

to be the subspace of functions in Vk with support contained in ⌦̄k,⌫ . Analogously to
what we did for Vk, we may define for each ⌫ 2 Nk operators As

k,⌫ : Vk,⌫ ! Vk,⌫ and
Qk,⌫ : Vk ! Vk,⌫ . For k = 2, . . . , J , we define

(4.2) Rs
k :=

X

⌫2Nk

A�s
k,⌫Qk,⌫ ,
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while on the coarsest level we set Rs
1 = A�s

1 . We note that the smoothers are sym-
metric positive-definite, and their inverses satisfy

(4.3)
�
(Rs

k)
�1v, v

�
= inf

v=
P

⌫ v⌫
v⌫2Vk,⌫

X

⌫2Nk

�
As

k,⌫v⌫ , v⌫
�
, v 2 Vk.

With our particular choice of subspaces Vk,⌫ , any v 2 Vk can be uniquely decomposed
into v =

P
⌫2Nk

v⌫ , with v⌫ 2 Vk,⌫ . Moreover, it is well known that this decomposition
is L2-stable. That is, there are constants K0,K1 > 0 independent of k and v so that

(4.4) K0 kvk2 
X

⌫2Nk

kv⌫k2  K1 kvk2 .

Our preconditioner now reads

(4.5) Bs
h :=

JX

k=1

Rs
kQk.

We want to apply Theorem 3.1 to the preconditioner defined by (4.5) and (4.2),
so we need to verify assumptions (A.1)–(A.3).

Using Lemma 2.1, we immediately find that for every k,

(As
kv, v) 

�
As

k�1v, v
� 8v 2 Vk�1,

which verifies (A.1) in the current context.
We present the verification of (A.2) in the following lemma.

Lemma 4.1. For k = 1, . . . , J , let Rs
k : Vk ! Vk be defined by (4.2). Then there

are constants C1, C2 > 0, so that for every k,

(4.6) C1
kvk2
�s
k

 (Rs
kv, v)  C2

�
A�s

k v, v
� 8v 2 Vk,

where �s
k is the largest eigenvalue of As

k.

Proof. It is evident that (4.6) holds on the coarsest level; i.e., for k = 1 (4.6) is
satisfied with C1 = C2 = 1. So let k � 2, and fix v 2 Vk. For ⌫ 2 Nk, let �s

k,⌫

denote the largest eigenvalue of As
k,⌫ . To prove the first inequality in (4.6), we begin

by noting that

�1
k = sup

w2Vk

�
A1

kw,w
�

(w,w)
� sup

w2Vk,⌫

⇣
A1

k,⌫w,w
⌘

(w,w)
= �1

k,⌫ .

Thus, since �s
k = (�1

k)
s, we have that

(4.7) �s
k � �s

k,⌫ .

Let now v =
P

⌫2Nk
v⌫ be the unique decomposition of v into Vk,⌫ for ⌫ 2 Nk. Using

(4.7) and the second inequality of (4.4), together with the definition of Qk,⌫ and Rs
k,
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yields

(v, v)

�s
k

=
1

�s
k

X

⌫2Nk

(v, v⌫)

=
1

�s
k

X

⌫2Nk

(Qk,⌫v, v⌫)


 

1

�s
k

X

⌫2Nk

(Qk,⌫v,Qk,⌫v)

! 1
2
 

1

�s
k

X

⌫2Nk

kv⌫k2
! 1

2


 
X

⌫2Nk

1

�s
k,⌫

(Qk,⌫v,Qk,⌫v)

! 1
2 ✓

K1

�s
k

kvk2
◆ 1

2


 
X

⌫2Nk

⇣
A�s

k,⌫Qk,⌫v,Qk,⌫v
⌘! 1

2 ✓
K1

�s
k

kvk2
◆ 1

2

 (Rs
kv, v)

1
2

✓
K1

�s
k

kvk2
◆ 1

2

,

which proves the first inequality of (4.6) with C1 = K�1
1 .

For the second inequality, we begin by noting that for s = 1, it was proven in [37,
Lemma 7.2] that there is a constant C independent of k so that

�
R1

kv, v
�  C

�
A�1

k v, v
� 8v 2 Vk.

Since s 2 [0, 1], it follows by the Löwner–Heinz inequality (2.1) that

(4.8)
�
(R1

k)
sv, v

�  Cs
�
A�s

k v, v
� 8v 2 Vk.

Thus, if we can show that

(4.9) (Rs
kv, v)  C

�
(R1

k)
sv, v

�

for some constant C, which is independent of k, then (4.8) together with (4.9) implies
the second inequality of (4.6).

We aim to prove (4.9) using Jensen’s operator inequality. To that end, we need

to scale Rs
k, so that (2.2) is applicable. From the characterization of

�
R0

k

��1
in (4.3)

and the first inequality of (4.4) we have that

K0 kvk2 
⇣�

R0
k

��1
v, v

⌘
,

which in turn implies that

X

⌫2Nk

(Qk,⌫v,Qk,⌫v) =
�
R0

kv, v
�  K�1

0 kvk2 .

If we now define Q̃k,⌫ = K
1
2
0 Qk,⌫ and R̃s

k = K0R
s
k, we have that

X

⌫2Nk

⇣
Q̃k,⌫v, Q̃k,⌫v

⌘
 kvk2 and

⇣
R̃s

kv, v
⌘
=

X

⌫2Nk

⇣
A�s

k,⌫Q̃k,⌫v, Q̃k,⌫v
⌘
.
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We can now use Jensen’s operator inequality (2.2), together with an argument anal-
ogous to that in the proof of Lemma 2.1, to get

Rs
k = K�1

0 R̃s
k

 K�1
0 (R̃1

k)
s

= K
�(1�s)
0 (R1

k)
s.

This, together with (4.8), proves the second inequality of (4.6) with C2 = K
�(1�s)
0 Cs.

We observe that the proof of Lemma 4.1 shows that if the decomposition Vk =P
⌘2Nk

Vk,⌫ is stable in both the L2-norm and the H1
0 -norm, then it is also stable in

the fractional norm k·ks,k. That is, if there are constants c0, c1 > 0 so that

(As
kv, v)  cs

�
(Rs

k)
�1v, v

� 8v 2 Vk,

with s = 0 and s = 1, then the same holds for every s 2 [0, 1], with cs = c1�s
0 cs1.

In this way, the smoother defined by (4.2) is the natural interpolation between the
corresponding smoothers for s = 0 and s = 1. As such, the results in Lemma 4.1
can be extended to more general overlapping domain decompositions than the one we
consider here.

As noted in [11, Remark 5.1], the ↵ in the approximation and regularity as-
sumption (A.3) is closely related to the elliptic regularity of the continuous problem.
Therefore, we make the following assumption.

Assumption 4.1. There is an ↵0 2 (0, 1] so that A is a bounded operator from
H1

0 (⌦)
T
H1+↵0

(⌦) to H�1+↵0
(⌦), and A�1 is a bounded operator from H�1+↵0

(⌦)
to H1

0 (⌦)
T

H1+↵0
(⌦).

Assumption 4.1 is standard for proving condition (A.3) in the case of s = 1 (cf.,
for instance, [11]). In [9, Thm 4.3, and Rem. 4.1] Bonito and Pasciak used Assumption
4.1 to prove the error estimate

��(A�s �A�s
k Qk)f

��  Ch2s
k kfk 8f 2 L2(⌦),

when ↵0 > s. By the triangle inequality and the bounded refinement hypothesis it
then follows that

(4.10)
��(A�s

k �A�s
k�1Qk�1)f

��  Ch2s
k kfk 8f 2 Vk,

for each k. This estimate is su�cient to verify (A.3) in our current context. The
result is stated in the following lemma.

Lemma 4.2. Assume that Assumption 4.1 is satisfied with ↵0 > s. Then there is

a constant C3 > 0, so that for every k

(4.11)
�
As

k(I � P s
k,k�1)v, v

�  C3
kAs

kvk2
�s
k

.

Proof. From the definition of P s
k,k�1 in (4.1),

I � P s
k,k�1 = I �A�s

k�1Qk�1A
s
k = (A�s

k �A�s
k�1Qk�1)A

s
k,

and so, for any v 2 Vk

�
As

k(I � P s
k,k�1)v, v

�  �
(A�s

k �A�s
k�1Qk�1)A

s
kv,A

s
kv
�
.
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Using the Cauchy–Schwarz inequality together with the error estimate (4.10), we get

(4.12)
�
As

k(I � P s
k,k�1)v, v

�  ��(A�s
k �A�s

k�1Qk�1)A
s
kv
�� kAs

kvk  Ch2s
k kAs

kvk2 .

By the quasi-uniformity of the mesh h2
k  C��1

k , and it follows that h2s
k  C��s

k .
Using this in (4.12) completes the proof.

We are finally in a position to prove the main theorem of this section.

Theorem 4.1. Let Assumption 4.1 be satisfied with ↵0 > s. Then, for s 2 [0, 1],
Bs

h defined by (4.2) and (4.5) satisfies

(4.13) C1C
�1
3 (As

hv, v)  (Bs
hA

s
hv,A

s
hv)  C2J (As

hv, v) 8v 2 V,

where C1, C2, and C3 are the same as in Lemmas 4.1 and 4.2.

Proof. This result is a straightforward application of Theorem 3.1 together with
Lemmas 4.1 and 4.2.

Theorem 4.1 shows that the condition number K(Bs
hA

s
h)  CJ and so increases

linearly with the number of mesh levels but is independent of h.
With less regularity of the domain, we can still prove a slightly weaker form of

spectral equivalence. By the assumed quasi-uniformity of Tk, we have for k = 2, . . . , J
that

k(I �Qk�1)vk2  Ch2
k kvk21 8v 2 Vk.

This, together with the boundedness of I �Qk�1 and interpolation theory, yields

k(I �Qk�1)vk2  Ch2s
k kvk2s,k  C4�

�s
k kvk2s,k

for some constant C4, independent of k. By the discussion in Remark 1, we get that

(4.14) C�1
4 C1J

�1 (As
hv, v)  (Bs

hA
s
hv,A

s
hv)  C2J (As

hv, v) 8v 2 Vh,

and the condition number is bounded by K(Bs
hA

s
h)  CJ2.

5. Preconditioner when s 2 [�1, 0]. For s 2 [�1, 0], the large eigenvalues of
As

h correspond to smooth functions. In a multilevel setting this means that neither
relaxation nor coarse grid correction will reduce the oscillatory components of the
error. As a consequence, we cannot expect a direct multigrid approach to work.
Moreover, when s < 0 the Löwner–Heinz and Jensen operator inequalities in (2.1)
and (2.2) fail to hold, and the argument of section 4 is no longer valid. In this section,
we will therefore investigate an alternative approach for constructing preconditioners.

We will base the preconditioner for As
h when s is negative on our previously defined

preconditioners Bt
h for t 2 [0, 1] together with the multiplicative decomposition of Ah,

(5.1) A�s
h = A

� 1+s
2

h AhA
� 1+s

2

h .

We have for every u 2 Vh and t 2 R that

kuk�s,h =
���A� t+s

2

h u
���
t,h

.

The specific form we will use below is

(5.2) kuk� 1+s
2 +�,h =

���A� 1+s
2

h u
���

1+s
2 +�,h

,
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which is valid for any � 2 R.
Replacing the leftmost and rightmost factors of the right-hand side in (5.1) with

a spectrally equivalent preconditioner B
1+s
2

h yields a symmetric positive-definite op-
erator

(5.3) B̃s
h := B

1+s
2

h AhB
1+s
2

h .

We want B̃s
h to be spectrally equivalent to A�s

h . That is, there exist constants
C1, C2 so that for every u 2 Vh

(5.4) C1 (A
s
hu, u) 

⇣
B̃s

hA
s
hu,A

s
hu
⌘
 C2 (A

s
hu, u)

holds. By the definition of B̃s
h,

⇣
B̃s

hA
s
hu,A

s
hu
⌘
=
⇣
AhB

1+s
2

h As
hu,B

1+s
2

h As
hu
⌘
=
���B

1+s
2

h As
hu
���
2

1
,

and since (As
hu, u) = kuk2s,h, we see that the spectral equivalence in (5.4) is equivalent

to

(5.5) C
1
2
1 kuks,h 

���B
1+s
2

h As
hu
���
1
 C

1
2
2 kuks,h 8u 2 Vh.

Using the preconditioner described in section 4, we have by the spectral equivalence
established in Theorem 4.1 that there are constants C1, C2 > 0 so that

(5.6) C1 kuk� 1+s
2 ,h 

���B
1+s
2

h u
���

1+s
2 ,h

 C2J kuk� 1+s
2 ,h , u 2 Vh.

We assume now some additional regularity on B
1+s
2

h , similar to (5.2). That is, for
some �, we have the norm equivalence

(5.7) C1 kuk� 1+s
2 +�,h 

���B
1+s
2

h u
���

1+s
2 +�,h

 C2J kuk� 1+s
2 +�,h .

In particular, with � = 1�s
2 2 ⇥

1
2 , 1

⇤
, and replacing u by As

hu in (5.7), we recover
(5.5) and the spectral equivalence (5.4). We note also that if we assume the additional
regularity of (5.7), we can bound the condition number of B̃s

hA
s
h by

(5.8) K(B̃s
hA

s
h)  K(B

1+s
2

h A
1+s
2

h )2.

We remark that while (5.5) may be a nontrivial property to validate because Bh is a
discrete multigrid operator, similar conditions on the continuous di↵erential operator
are well established. That is, for (��)�s : H�s ! Hs the regularity conditions that
enable a decomposition (��)�s = (��)�(s+t)(��)t such that

k(��)�skL(H�s,Hs)  k(��)�(s+t)kL(H�s+t,Hs)k(��)�skL(H�s,H�s+t)

are well described; cf. [31]. As such the regularity assumption (5.5) is a reasonable
condition in the continuous setting, but the discrete setting is unclear.
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6. Implementational concerns. The discrete operators discussed so far are
related to, but are not the same as, the matrices used in the implementation. In this
section we will discuss how to implement these operators. We begin by discussing the
matrix representation of the discrete fractional operators. We also refer the reader
to [32] for more details. While the discrete fractional operators satisfy the group
property As

hA
t
h = As+t

h , their matrix representations do not. In particular, for t = �s,
As

hA
�s
h = Ih, and the finite element matrix representation of the identity is the mass

matrix. Hence, in order to provide a precise description of the interpolation of the

involved matrices, we let
�
�i
h

 Nh

i=1
be the standard nodal basis for Vh, and we introduce

the operators ⇡h, µh : Vh ! RNh , defined by

(6.1)
v =

NhX

i=1

(⇡hv)i �
i
h and

(µhv)i =
�
v,�i

h

�
, i = 1, . . . , Nh.

Subsequently, we will refer to ⇡hv and µhv as the primal and dual vector represen-
tations of v, respectively. The primal representation is sometimes called the nodal
representation. We then have that

(6.2) µ⇤
h = ⇡�1

h and ⇡⇤
h = µ�1

h .

To see this, take v 2 RNh and u 2 Vh. Then,

(µ⇤
hv, u) = (v, µhu)l2

=
NhX

i=1

vi

�
u,�i

h

�

=

 
u,

NhX

i=1

vi�
i
h

!

=
�
u,⇡�1

h v

�
,

where (·, ·)l2 is the standard Euclidean inner product on RNh . This proves the first
identity in (6.2). The second identity is proven similarly.

Using these operators, the sti↵ness matrix can then be expressed as

Ah = µhAh⇡
�1
h , and (Ah)i,j = (Ah�

j
h,�

i
h), 1  i, j  Nh,

and the mass matrix is

Mh = µhIh⇡
�1
h = µh⇡

�1
h , and (Mh)i,j = (�j

h,�
i
h), 1  i, j  Nh.

We see that for both the sti↵ness matrix and the mass matrix, a matrix-vector product
takes primal vectors as input and returns dual vectors.

For the matrix realization of As
h, let {(�i, ui)}Nh

i=1 ⇢ R⇥RNh be the eigenpairs of
the generalized eigenvalue problem

Ahui = �iMhui,

normalized so that u>j Mhui = �i,j . Setting ⇤h = diag(�1, . . . ,�Nh), and U = [u1, . . . , uNh ],
we have that

(6.3) U

>
MhU = I and U

>
AhU = ⇤h.
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We then define

(6.4) A

s
h = (MhU)⇤

s
h (MhU)

>
.

One can verify that the entries of As
h satisfy

(As
h)i,j =

⇣
As

h�
j
h,�

i
h

⌘
,

in which case A

s
h = µhA

s
h⇡

�1
h . Using (6.3), we are also able to see that

(6.5) (As
h)

�1 = U⇤

�s
h U

> = ⇡hA
�s
h µ�1

h ,

making it the matrix realization of As
h viewed as an operator from Xh to X

0

h. How-
ever, the group properties mentioned above only make sense when we consider As

h as
operators on Xh. Thus, we see that for the matrices

⇡hA
s
h⇡

�1
h = (⇡hµ

�1
h )µhA

s
h⇡

�1
h = M

�1
h A

s
h,

the group properties are satisfied. This can also be verified using the definition of As
h

in (6.4).
Since matrix-vector products involving A

s
h take primal vectors as input and return

dual vectors, the matrix realization of Bs
h should take dual vectors as input and return

primal vectors. Then the product B

s
hA

s
h acts on primal vectors and is thus suitable

for a Krylov subspace method. See also [32, section 6] and [10, section 15]. Therefore,
we define

(6.6) B

s
h = ⇡hB

s
hµ

�1
h .

To see how B

s
h is implemented, we begin by supposing that dimVk = Nk for

k = 1, . . . , J . Let
�
�i
k

 Nk

i=1
be bases for Vk, and we define operators ⇡k, µk : Vk ! RNk

analogously to (6.1). We then define mass and sti↵ness matrices on level k as Mk =
µk⇡

�1
k and Ak = µkAk⇡

�1
k , respectively.

By assumption, for every k, Vk ⇢ Vh, and so there are matrices Ik : RNk ! RNh

so that

�i
k =

NhX

j=1

(Ik)i,j�
j
h, i = 1, . . . , Nk.

In fact, Ik is the matrix realization of the inclusion operator Ik : Vk ! Vh, i.e.,
Ik = ⇡hIk⇡

�1
k . Using that Qk = I⇤k and (6.2), we have that the transpose of Ik

satisfies

I

>
k =

�
⇡hIk⇡

�1
k

�⇤

= (⇡�1
k )⇤Qk⇡

⇤
h

= µkQkµ
�1
h

=: Qk,

which is the matrix realization of Qk in dual representation. Thus, for the matrix B

s
h
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we have that

(6.7)

B

s
h = ⇡hB

s
hµ

�1
h

=
JX

k=1

⇡hIkR
s
kQkµ

�1
h

=
JX

k=1

(⇡hIk⇡
�1
k )(⇡kR

s
kµ

�1
k )(µkQkµ

�1
h )

=
JX

k=1

Q

>
k R

s
kQk,

where we define R

s
k = ⇡kR

s
kµ

�1
k as the matrix realization of Rs

k. We see that due to
(6.5) R

s
1 = (As

1)
�1. For k � 2 we define for ⌫ 2 Nk operators ⇡k,⌫ , µk,⌫ : Vk,⌫ !

RdimVk,⌫ and matrices Qk,⌫ : RNk ! RdimVk,⌫ , similarly to the above. The matrix
realization of Rs

k then becomes

(6.8) R

s
k =

X

⌫2Nk

Q

>
k,⌫(A

s
k,⌫)

�1
Qk,⌫ .

Here, As
k,⌫ = µk,⌫A

s
k,⌫⇡

�1
k,⌫ . By (6.5), the implementation of Rs

k will require solving
many small eigenvalue problems. In the particular case of continuous, piecewise linear
finite element functions, and subdomains ⌦k,⌫ as described in section 4, the subspaces
Vk,⌫ are one-dimensional. The matrix R

s
k is then diagonal, with entries

(Rs
k)i,i =

1

(Mk)
1�s
i,i (Ak)si,i

, i = 1, . . . , Nk.

That is, this is the smoother mentioned in the introduction.
Inserting (6.8) into (6.7), we get

(6.9) B

s
h = Q

>
1 (A

s
1)

�1
Q1 +

JX

k=2

Q

>
k

 
X

⌫2Nk

Q

>
k,⌫(A

s
k,⌫)

�1
Qk,⌫

!
Qk.

We end this section by showing how to implement B̃s
h when s 2 [�1, 0]. In this case,

the matrix realization of B̃s
h can be found from B

1+s
2

h and Ah by

(6.10)

˜

B

s
h := ⇡hB̃

s
hµ

�1
h

= (⇡hB
1+s
2

h µ�1
h )(µhAh⇡

�1
h )(⇡hB

1+s
2

h µ�1
h )

= B

1+s
2

h AhB

1+s
2

h .

That is, B̃s
h is implemented as an application of B

1+s
2

h , followed by a multiplication of

the sti↵ness matrix and a second application of B
1+s
2

h .

7. Numerical experiments. In this section we present a series of numerical
experiments that aim to validate the theoretical results we established in previous
sections. We also present numerical results for the case when s < 0, using B̃s

h, defined
in (5.3), as preconditioner. Specifically, in section 7.1 we solve

As
hu = f



MULTIGRID METHODS FOR FRACTIONAL SOBOLEV SPACES A967

Table 1
Numerical results for (��)s with nonnegative s. Table shows the number of preconditioned

conjugate gradient iterations until reaching error tolerance 10�15. Estimated condition numbers are
shown inside parentheses. N is the number of elements on the finest mesh. J = 5 in all tests.

s
N

32 64 128 256 512

0.0 20(13.5) 25(13.6) 28(13.8) 29(13.8) 29(13.9)
0.1 18(8.7) 21(8.9) 23(8.9) 24(8.9) 24(8.9)
0.2 16(5.8) 18(6.4) 19(6.5) 21(6.5) 21(6.6)
0.3 14(4.2) 15(4.7) 17(4.9) 18(5.0) 18(5.0)
0.4 12(3.4) 14(3.7) 15(3.8) 15(3.9) 16(3.9)
0.5 11(2.9) 12(3.0) 13(3.1) 13(3.1) 14(3.2)
0.6 12(2.9) 13(3.0) 13(3.0) 14(3.1) 14(3.0)
0.7 12(3.0) 13(3.0) 14(3.1) 14(3.1) 14(3.1)
0.8 13(3.2) 14(3.3) 14(3.3) 14(3.3) 14(3.3)
0.9 14(3.5) 15(3.6) 15(3.6) 15(3.6) 15(3.6)
1.0 14(4.0) 16(4.1) 16(4.1) 16(4.1) 16(4.1)

using the preconditioned conjugate gradient method with Bs
h defined in (4.5) as pre-

conditioner. Here, the main motivation is to validate the h-independence of K(Bs
hA

s
h)

implied by Theorem 4.1. In section 7.2, we consider a coupled multidomain problem
where the weakly imposed continuity on the interface leads to a Lagrange multiplier
in H± 1

2 .
The numerical experiments are conducted using random initial guess. Conver-

gence in the iterative methods used is reached when the relative preconditioned resid-
ual, i.e., (Brk,rk)

(Br0,r0)
, where rk is the residual at the kth iteration and B is the precondi-

tioner, is below a given tolerance.

7.1. Preconditioning the fractional Laplacian. In the first set of numerical
experiments, we show the performance of the preconditioners Bs

h and B̃s
h, defined in

(4.5) and (5.3), respectively, depending on the sign of s for the As
h inner product.

That is, for a given fh 2 Vh, we solve the following: Find uh 2 Vh such that

(7.1) (As
huh, v) = (fh, v) 8v 2 Vh,

where s 2 [�1, 1]. We take ⌦ = [0, 1] ⇢ R, and Th is a uniform partition of ⌦ consisting
of N = 1

h elements. Vh is then the space of continuous, piecewise linear functions
relative to Th that vanish on @⌦. The matrix representation of As

h we use here is
provided by (6.4). This matrix is in general dense, and so matrix-vector multiplication
will take O(N2) operations. As such, the preconditioned iterative method will not be
computationally optimal, but we stress that these experiments are designed only to
validate the bounds on K(Bs

hA
s
h).

We solve the linear system arising from (7.1) using preconditioned conjugate
gradient, with Bs

h as preconditioner if s � 0, and B̃s
h if s < 0. For s � 0, iteration

counts and estimated condition numbers can be viewed in Table 1. From these results
we see that both the iteration counts and condition numbers stay uniformly bounded
for each s.

The analogous results for s  0 can be seen in Table 2. Here the situation
is slightly more complicated. For each s, the iteration counts and condition num-
bers seem to increase for small N (large h) but ultimately stay bounded when N
is increased. Worth noting is that the bound (5.8) is relatively sharp. For in-
stance, for s = �1, the preconditioner B̃s

h does two applications of B0
h and has

estimated condition numbers around 193. By Table 1, K(B0
hA

0
h) ⇡ 13.8, and so
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Table 2
Numerical results for (��)s with negative s. Table shows the number of preconditioned con-

jugate gradient iterations until reaching error tolerance 10�15. Estimated condition numbers are
shown inside parentheses. N is the number of elements on the finest mesh. J = 5 in all tests.

s
N

32 64 128 256 512

�1.0 32(184.4) 47(192.4) 56(192.7) 64(193.8) 62(191.2)
�0.9 28(119.0) 43(118.9) 50(120.5) 54(120.7) 55(119.9)
�0.8 26(78.3) 37(82.6) 46(84.5) 48(83.8) 49(83.9)
�0.7 25(53.0) 33(60.1) 40(61.9) 42(62.1) 45(61.5)
�0.6 24(36.9) 31(43.8) 35(45.8) 38(46.2) 41(46.2)
�0.5 22(26.8) 25(31.9) 30(34.3) 34(34.9) 38(35.1)
�0.4 20(20.4) 24(24.8) 28(26.5) 32(27.0) 37(27.1)
�0.3 17(16.1) 21(19.3) 27(20.7) 30(21.1) 34(21.1)
�0.2 17(13.1) 21(15.3) 25(16.4) 29(16.7) 32(16.7)
�0.1 16(11.0) 20(12.4) 23(13.2) 27(13.5) 29(13.5)
0.0 14(9.4) 17(10.4) 20(11.0) 24(11.2) 27(11.1)

K(B̃�1A�1
h ) ⇡ K(B0

hA
0
h)

2. Similar relations holds for other values of s  0.

7.2. Multidomain preconditioning. In this section we apply the multilevel
algorithm (4.5) to construct mesh independent preconditioners for a coupled mul-
tidomain problem originating from a geometrically accurate model of electric signal
propagation in cardiac tissue, the Extracellular-Membrane-Intracellular (EMI) model
[35]. We remark that the EMI model is simple in the sense that it is a single-physics
problem where two elliptic equations are coupled. However, the interface problems
encountered here are identical to those found in multiphysics applications, e.g., the
coupled Darcy–Stokes system [29] or the Stokes–Biot system [2].

Let ⌦ ⇢ R2 be a bounded domain decomposed into two nonoverlapping sub-
domains ⌦1, ⌦2 with a common interface � = @⌦1

T
@⌦2 forming a closed curve.

Motivated by the application, the subdomain ⌦1 is designated as the exterior do-
main, i.e., @⌦2

T
@⌦ = ;. With ✏ > 0 and n the outer normal of the exterior domain

we now aim to solve

(7.2)

u1 ��u1 = f1, x 2 ⌦1,

u2 ��u2 = f2, x 2 ⌦2,

n ·ru1 � n ·ru2 = 0, x 2 �,

✏(u1 � u2) + n ·ru1 = g, x 2 �.

The choice of boundary conditions for (7.2) shall be discussed shortly. We remark
that in the EMI model the parameter ✏ plays a role of inverse time step, and thus
algorithms robust with respect to the parameter are of interest. However, here the
system will be considered only for a fixed choice of the parameter.

Considering (7.2) with homogeneous Neumann boundary conditions n ·ru1 = 0
on @⌦ and letting W1 = H1(⌦1)⇥H1(⌦2)⇥(H�1/2(�)

T
✏�1/2L2(�)), the variational

formulation of (7.2) defines an operator A1 : W1 ! W 0
1,

(7.3) A1 =

0

@
I �� 0 T ⇤

1

0 I �� �T ⇤
2

T1 �T2 �✏�1I

1

A ,

where Ti, Tiv = v|� for v 2 C(⌦̄i), i = 1, 2, are the trace operators on H1(⌦1) and
H1(⌦2), respectively. Tveito et al. [35] further discuss a mixed formulation of the
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system (7.2) where additional unknowns �i = �rui, i = 1, 2, are introduced. If
homogeneous Dirichlet boundary conditions u1 = 0 on @⌦ are assumed, the mixed
formulation leads to operator A2 : W2 ! W 0

2,

(7.4) A2 =

0

@
I r T ⇤

�r· �I 0
T 0 �✏I

1

A ,

withW2 = H(div,⌦)⇥L2(⌦)⇥(H1/2(�)
T

✏1/2L2(�)) and T the normal trace operator
T� = �|� ·n for v 2 [C(⌦)]2. We remark that operators A1 and A2 also arise naturally
in the analysis of nonoverlapping domain decomposition methods for second order
elliptic problems in the primal [36] and mixed [18] formulations, respectively.

Assuming that the operators A1 and A2 are isomorphisms on their respective
spaces,1 the preconditioners can be established within the framework of operator
preconditioning [32]. In particular, the Riesz map preconditioner for (7.3) is

(7.5) B1 =

0

@
I ��

I ��
✏�1I + (��+ I)�1/2

1

A
�1

,

while (7.4) will be preconditioned by

(7.6) B2 =

0

@
I �rr·

I
✏I + (��+ I)1/2

1

A
�1

.

Note that the operator sums in B1, B2 are due to the fact that the interface spaces
are intersection spaces [7].

In order to simplify the setting and focus only on the fractional operators in the
preconditioners, we remove the parameter dependence from the problems by setting
✏ = 1 in (7.3), (7.5) and similarly ✏ = 0 for (7.4), (7.6). In turn, the interface spaces
reduce to H�1/2(�) and H1/2(�), respectively, and the multilevel algorithm is directly
applicable to the related interface problems which now involve the operator I��; cf.
the Laplacian operator in the previous sections.

Robustness of B1, B2 and in particular the fractional Sobolev space preconditioner
are finally demonstrated by observing the iteration counts of the preconditioned Min-
Res method. In the experiments we let ⌦ = [0, 1]2 and ⌦2 = [0.25, 0.75]2. The
finite element discretization of W1 uses continuous linear Lagrange elements (P1).
For W2 two di↵erent discretizations are considered: BDM1-P0-P1 and RT1-P0-P0.
That is, the first subspace of W2 is constructed from linear Brezzi–Douglas–Marini
element (BDM1) or the lowest order Raviart–Thomas element (RT1), while the re-
maining subspaces use piecewise constant and piecewise linear Lagrange elements,
respectively. Let us note that with the RT1-P0-P0 element the discretization is non-
conforming owing to the piecewise constant space for the multiplier. Moreover, the
fractional multigrid algorithm is then applied outside the setting used in the analysis
of section 4. We remark that in this case the multigrid preconditioner uses the discrete
operator

(Ahu,w) = (u,w) +
X

⌫2N
{{h}}�1

⌫ [[u]]⌫ [[w]]⌫ , u, w 2 Vh.

1The proof of this result as well as stable finite element discretization of the problem are the
subject of current work and will be reported elsewhere. We remark that operator A

1

in the limit
case ✏ = 1 has been studied in [28] in the context of the mortar finite element method.
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Table 3
Number of MinRes iterations for the operator B

1

A
1

and ✏ = 1015 using multilevel algorithm
with J levels as a preconditioner for (�� + I)�1/2. Realizing the fractional operator with spectral
decomposition leads to iteration counts in the last column.

h dimWh #cells
�

#MG
#Eig

J = 2 J = 3 J = 4
2.21E-02 4481 128 67 93 103 36
1.10E-02 17153 256 68 92 111 35
5.52E-03 67073 512 66 90 112 35
2.76E-03 265217 1024 64 90 112 34
1.38E-03 1054721 2048 64 88 108 33

Table 4
Number of MinRes iterations for the operator B

2

A
2

and ✏ = 10�15 using multilevel algorithm
with J levels as a preconditioner for (�� + I)1/2. Two di↵erent finite element discretizations are
considered. Realizing the fractional operator with spectral decomposition leads to iteration counts in
the #Eig column.

h #cells
�

BDM
1

-P
0

-P
1

RT
1

-P
0

-P
0

dimWh
#MG

#Eig dimWh
#MG

#Eig
J = 2 J = 3 J = 4 J = 2 J = 3 J = 4

2.21E-02 128 33152 25 27 28 22 20736 27 28 27 22
1.10E-02 256 131840 25 27 29 22 82432 27 32 32 22
5.52E-03 512 525824 23 27 27 22 328704 27 33 36 22
2.76E-03 1024 2100224 22 27 29 22 1312768 27 33 40 22
1.38E-03 2048 8394752 22 25 29 22 5246976 25 35 40 22

Here N is a set of all the vertices of the mesh and {{u}}⌫ = 1
2 (u|K+ + u|K�), [[u]]⌫ =

u|K+ � u|K� are the average and the jump values computed from the two2 cells K±

connected to the vertex ⌫. Moreover, dimVk,⌫ = 2 so that the eigenvalue problems
needing to be solved by the smoother 4.2 use 2 by 2 matrices. Compare this to the case
of one-dimensional problems due to continuous, piecewise linear elements in section 6.

The discrete preconditioners shall use o↵-the-shelf methods for the first two
blocks. More specifically, a single V-cycle of algebraic multigrid is used for B1 while
for B2 the action is computed exactly by a direct solver. The final block of the precon-
ditioners is realized by the proposed multilevel preconditioner with a di↵erent number
of levels J = 2, 3, 4.

The number of MinRes iterations is shown in Tables 3 and 4. Here, the iterations
were started from a random initial vector and terminated once the relative precon-
ditioned residual norm was less then 10�8 in magnitude. For both B1 and B2 the
iterations are bounded in the discretization parameter. The tables further list itera-
tion counts for preconditioners where the fractional operators were realized in terms
of spectral decomposition. As expected from the theory and experiments for the
Laplace problem, the di↵erence in iteration counts between the multilevel realization
and spectral realization is larger for B1 than it is for B2.
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