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SCALABLE CONVERGENCE USING TWO-LEVEL DEFLATION
PRECONDITIONING FOR THE HELMHOLTZ EQUATION∗

VANDANA DWARKA† AND CORNELIS VUIK†

Abstract. Recent research efforts aimed at iteratively solving the Helmholtz equation have
focused on incorporating deflation techniques for accelerating the convergence of Krylov subpsace
methods. The requisite for these efforts lies in the fact that the widely used and well-acknowledged
complex shifted Laplacian preconditioner (CSLP) shifts the eigenvalues of the preconditioned system
towards the origin as the wave number increases. The two-level-deflation preconditioner combined
with CSLP showed encouraging results in moderating the rate at which the eigenvalues approach the
origin. However, for large wave numbers the initial problem resurfaces and the near-zero eigenvalues
reappear. Our findings reveal that the reappearance of these near-zero eigenvalues occurs if the
near-singular eigenmodes of the fine-grid operator and the coarse-grid operator are not properly
aligned. This misalignment is caused by accumulating approximation errors during the inter-grid
transfer operations. We propose the use of higher-order approximation schemes to construct the
deflation vectors. The results from rigorous Fourier analysis and numerical experiments confirm that
our newly proposed scheme outperforms any other deflation-based preconditioner for the Helmholtz
problem. In particular, the spectrum of the adjusted preconditioned operator stays fixed near one.
These results can be generalized to general shifted indefinite systems with random right-hand sides.
For the first time, the convergence properties for very large wave numbers (k = 106 in one dimension
and k = 103 in two dimensions) have been studied, and the convergence is close to wave number
independence. Wave number independence for three dimensions has been obtained for wave numbers
up to k = 75. The new scheme additionally shows very promising results for the more challenging
Marmousi problem. Irrespective of the strongly varying wave number, we obtain a constant number
of iterations and a reduction in computational time as the results remain robust without the use of
the CSLP preconditioner.
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1. Introduction. From investigating the earth’s layers in seismology to assess-
ing the effect of electromagnetic scattering in the presence of human tissue through
MRI, the Helmholtz equation finds its application in many engineering practices.
Many efforts have been rendered in order to obtain accurate and computationally
feasible solutions. Two major problem arise in trying to solve the Helmholtz equation
numerically. First of all, for large wave numbers the numerical solution suffers from
the so called “pollution error,” which intrinsically is a phase difference between the
exact and numerical solution. The second issue relates to the convergence behavior of
the underlying solver. For medium to large wave numbers, the linear system becomes
indefinite due to the negative eigenvalues. In order to balance the accuracy for such
large wave numbers the linear system becomes very large and thus preconditioned
iterative solvers are preferred, especially when considering higher-dimensional prob-
lems [7]. As the wave number increases the eigenvalues of the preconditioned matrix
start to shift towards the origin. These near-zero eigenvalues have a detrimental ef-
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fect on the convergence speed of Krylov-based iterative solvers. In order to mitigate
these effects, many preconditioners for the Helmholtz problem have been proposed
throughout the years.

A specific class of preconditioners focuses on the operator in question and shows
performance gains for medium sized wave numbers. In [1] the preconditioner matrix
is equal to the discretized Laplacian operator, and variations of this include a real
and/or complex shift. A widely known preconditioner is the complex shifted Laplacian
preconditioner (CSLP). The method was originally proposed by [10]. By including a
complex shift, the original Helmholtz operator was modified to work as a precondi-
tioner. Unless the shift is kept O(k) and the preconditioner is inverted exactly, the
small eigenvalues of the preconditioned system still rush to zero as the wave number
increases [14]. In order to properly manage the computational costs, one multigrid
iteration was proposed to obtain an approximation of the inverse. Using rigorous
Fourier analysis, the authors showed that the use of the multigrid method to obtain
a cost effective preconditioner came at the price of having to keep the complex shift
rather large, i.e., of O(k2). A more recent analysis provided a generalization for this
claim without having to restrict to Dirichlet boundary conditions [3]. A different
approach can be found by using preconditioning techniques based on domain decom-
position methods applied to the corresponding (shifted) problem, which is largely
based on the work in [15]. These methods split the computational domain into sub-
domains and solve a local subproblem of smaller dimension using a direct method
[22, 20, 21]. The performance of these preconditioners depends on the accuracy of the
transmission conditions, which currently is robust for constant wave number model
problems [18, 17]. While this resulted in a reduced number of iterations, the number
of iterations still mildly grows with the constant wave number k. Balancing between
wave number independent convergence and practical constraints created the oppor-
tunity to consider a deflation strategy, which was first proposed in [8]. Deflation, in
essence, aims to move the unwanted eigenvalues to zero or one and has been studied
widely; see [35, 36, 37]. While being able to improve the convergence and performance
significantly, the near-zero eigenvalues keep reappearing for large wave numbers. In
this work we present an adapted deflation scheme based on higher-order approxi-
mations in order to obtain an efficient and fast solver for very large wave numbers.
While convergence is boosted when we combine the deflation preconditioner with the
multigrid approximate inverse of the CSLP preconditioner, our results also show wave
number independent convergence when we exclude the CSLP preconditioning step.
The structure of this paper is as follows. A problem description and some background
on the underlying Krylov-based solver are introduced in sections 2 and 3, respectively.
Here we also briefly introduce the problem of the near-zero eigenvalues. In section 4
we embark on examining the root cause of these near-zero eigenvalues in full detail.
We proceed by introducing the adapted deflation scheme in section 5, together with
a spectral analysis of both methods in subsection 5.2. Finally we present numerical
results for benchmark problems in section 6.

2. Problem description. We start by focusing on a one-dimensional mathe-
matical model using a constant wave number k > 0:

−d
2u

dx2
− k2 u = δ(x− x′), x ∈ Ω = [0, L] ⊂ R,(2.1)

u(0) = 0, u(L) = 0.
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We will refer to this model problem as MP 1-A. As mentioned previously, using
Dirichlet boundary conditions, the resulting coefficient matrix is normal and hence
GMRES convergence after preconditioning is completely determined by the spectrum.
While this allows for extensive analysis of the convergence behavior, no true wave
number independent convergence has been reported for this model problem unless
the shift in the CSLP preconditioner is kept very small and exact inversion is utilized
[14]. This motivates us to start with the study of this simple model problem in order to
create a foundation for obtaining wave number independent convergence. Moving on,
we introduce MP 1-B as the model problem where Sommerfeld radiation conditions
have been implemented. In this case, the boundary conditions become(

∂

∂n
− ik

)
u(x) = 0, x ∈ ∂[0, L].

For both model problems, discretization using second-order finite differences with
step size h = 1

n leads to

−ul−1 + 2ul − ul+1

h2
− k2ul = fl , l = 1, 2, . . . , n.

Using a lexicographic ordering, the linear system can be formulated exclusively on
the internal grid points due to the homogeneous Dirichlet boundary conditions. We
obtain the following linear system and eigenvalues with indices l = 1, 2, . . . n:

Au =
1

h2
tridiag[−1 2− k2h2 − 1]u = f,

λ̂l =
1

h2
(2− 2 cos(lπh))− k2.(2.2)

In order to investigate the scalability of the convergence in higher dimensions (sec-
tion 6), we define MP 2 and MP 3 to be the two-dimensional and three-dimensional
versions of the one-dimensional model problem MP 1-A defined above (2.1). The
discretization using second-order finite differences goes accordingly for higher dimen-
sions, with the resulting matrices being penta- and hepta-diagonal for two dimensions
(2D) and three dimensions (3D), respectively.

The final test problem is a representation of an industrial problem and is widely
referred to as the two-dimensional Marmousi problem, which we denote by MP 4. We
consider an adapted version of the original Marmousi problem developed in [35]. The
original domain has been truncated to Ω = [0, 8192] × [0, 2048] in order to allow for
efficient geometric coarsening of the discrete velocity profiles given that the domain
remains a power of 2. The original velocity c(x, y) is also adapted by letting 2587.5 ≤
c ≤ 3325. We will use the adjusted domain in order to benchmark against the results
from [35]. On the adjusted domain Ω, we define

−∆u(x, y)− k(x, y)2u(x, y) = δ(x− 4000, y), (x, y) ∈ Ω \ ∂Ω ⊂ R2,(2.3) (
∂

∂n
− ik

)
u(x, y) = 0, (x, y) ∈ ∂Ω,

where n denotes the outward normal unit vector in the x- and y-directions, respec-
tively. Note that we now have a nonconstant wave number k(x, y) = 2πfreq

c(x,y) , where

the frequency is given in Hertz.
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2.1. Effect of nonnormality. By assuming Dirichlet boundary conditions for
our first model problem, we are able to simplify the analysis and perform rigorous
Fourier analysis, which shows that the new scheme is able to align the near-zero
eigenvalues of the fine- and coarse-grid coefficient matrices. Having a higher-order
approximation scheme for the deflation vectors enables us to reach wave number in-
dependent convergence in one dimension (1D) and close to wave number independent
convergence in 2D and 3D for very large wave numbers. The difficulty in using Som-
merfeld radiation conditions is that the resulting coefficient matrix becomes complex
and non-self-adjoint. Therefore, there are no closed-form expressions for the eigenval-
ues. Additionally, it has been noted that in the case of nonnormal matrices, spectral
analysis becomes less meaningful in order to assess convergence properties [23, 39]. If
A is normal, then the condition number of the eigenvector matrix is one. In the case
of a nonnormal matrix, the condition number of the eigenvector matrix is larger than
one. As a result it has been shown that arbitrary matrices can be created with arbi-
trary eigenvalues and right-hand sides which give the same GMRES residual norms
[23]. While this often has been interpreted as “spectral analysis for a nonnormal ma-
trix is insufficient,” the original authors also mentioned that even for a matrix which
is far from normal, GMRES can converge very well and the eigenvalues can still pri-
marily govern its convergence in some specific cases. For example it may be the case
that the eigenvector matrix is well conditioned, A is close to Hermitian despite having
ill-conditioned eigenvectors, or zero is outside the field of values (FOV) of A. While
the latter approach has received great attention in the past years to explain conver-
gence behavior of the Helmholtz equation, its use is very sensitive to having zero
inside the FOV, which often seems to be the case for indefinite systems [6]. A more
recent and detailed analysis showed that the dependence on the condition number of
the eigenvectors is often a large overestimation of the actual error [27]. In fact, it has
been shown that for diagonalizable matrices, eigenvalues close to the origin indeed
hamper GMRES convergence and GMRES convergence does not explicitly depend
on the condition number of the eigenvector matrix [28]. While the latter may be
large, convergence is still predominantly governed by the eigenvalues if the eigenvec-
tor matrix is not too far from unitary. Similarly for nondiagonalizable matrices such
as a highly non-normal single, plain Jordan block, GMRES convergence can still be
strongly governed by an eigenvalue with a large modulus [28, 6, 27, 25, 26]. An impor-
tant implication of this for a diagonalizable matrix is that convergence for a nonnormal
A can behave as convergence for a normal A. While the literature does not quantify
terms as a “small” condition number or “not too far from normality/unitary” for this
particular application, there exists vast numerical evidence showing that altering the
spectrum leads to better GMRES convergence. This corroborates the acceleration
of GMRES convergence using deflation preconditioning techniques [19, 5, 29, 31]. In
fact, in [31] the authors state that “deflated GMRES can be effective even when the
eigenvectors are poorly defined . . . and for highly nonnormal matrices,” where conver-
gence is boosted after removing small (pseudo)eigenvalues. Therefore, in order to fully
understand the efficiency of our proposed deflation preconditioner, we start conduct-
ing spectral and convergence behavior analysis of the proposed preconditioner for the
self-adjoint case. We then provide numerical evidence to investigate the performance
of the preconditioner for non-self-adjoint problems. Our numerical results support
the notion that similar conclusions as regards wave number independent convergence
holds for the non-self-adjoint Helmholtz equation and the heterogeneous Marmousi
problem.
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3. Deflated Krylov methods. Starting with the simple MP 1-A, (2.2) reveals
that the spectrum contains both positive and negative eigenvalues for

k >
2 sin(π h2 )

h
≈ π.

This indefiniteness narrows the choice of potential Krylov-based solvers due to the
conjugate gradient type methods being ineffective. While the application of the CSLP
preconditioner was successful in confining the eigenvalues between 0 and 1, the Krylov
solver remains defenseless against the hampering convergence behavior caused by the
small eigenvalues for large k, which is why deflation was introduced to boost the
convergence behavior of the Krylov solver. Deflation is a technique which aims to
move near-zero eigenvalues to zero by using an orthogonal projection. It can also
be used to move these unwanted eigenvalues to 1 or the largest eigenvalue. In both
cases, the eigenvalues are mapped to the desired value when the exact eigenvectors
are utilized. Due to practical considerations within the context of Krylov solvers,
it is possible to alleviate the adverse effects of near-zero eigenvalues using deflation
by either explicitly modifying the operator of the linear system [32] or by finding
approximations to the eigenvectors corresponding to the troublesome eigenvalues. For
example, such approximations are used in [29] and [30], where harmonic Ritz vectors
serve as eigenvector approximations to augment the Krylov subspace in order to gain
faster convergence. Deflation for large scale problems relies on multiplying the linear
system by a projection matrix P and applying the Krylov subspace method to the
projected system PA, rendering the projection matrix P to act as a preconditioner
at the same time.

3.1. Deflation-based preconditioning for GMRES. Consider a general real
valued linear system. The projection matrix P̂ and its complementary projection P
can be defined as

P̂ = AQ, where Q = ZE−1ZT and E = ZTAZ,(3.1)

A ∈ Rn×n, Z ∈ Rm×n,
P = I −AQ,

where Z functions as the deflation matrix whose m < n columns are considered the
deflation vectors and I is the n × n identity matrix. Additionally, the coarse-grid
coefficient matrix E is assumed to be invertible. Matrix P is also known as the
projection preconditioner. In Algorithm 3.1 we present the preconditioned deflated
GMRES algorithm, which will be used for numerical testing in section 6 and includes
a preconditioner matrix M . In our case, we use the CSLP preconditioner, which is
defined by

M = −∆− (β1 + β2i)k
2,

where i =
√
−1 and (β1, β2) ∈ [0, 1]. The CSLP preconditioner is included in order

to obtain a more favorable spectrum. Unless stated otherwise, we use one V (1, 1)-
multigrid cycle to obtain an approximate inverse of the CSLP preconditioner.

We now proceed by discussing the computational cost of the preconditioner. Be-
fore discussing the computational costs, we need to establish that a state-of-the-art
scalable solver should comprise two components: wave number independent conver-
gence and O(n) time complexity with respect to the number of grid points. Many
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Algorithm 3.1 Preconditioned deflated GMRES for system Au = b.

Choose u0 and compute r0 = b0 −Au0 and v1 = r0/‖r0‖
for for j = 1, 2, . . . , k or until convergence do
ṽj := Pvj
w = M−1Aṽj
for i := 1, 2, . . . , j do
hi,j := wT vi
w := w − hi,jvi

end for
hj+1,j := ‖w‖
vj+1 := w/hj+1,j

end for
Store Vk =

[
ṽ1, . . . , ṽk

]
; Hk = {hi,j}, 1 ≤ i ≤ j + 1, 1 ≤ j ≤ m

Compute yk = argminy‖b0 −Hky‖ and uk = u0 + Vkyk
The entries of upper k + 1, k Hessenberg matrix Hk are the scalars hi,j
Update approximated solution uk = Qb + PTuk

Table 1
Number of extra flops above standard preconditioned GMRES. The cost of the sparse factoriza-

tion and backward solve have been discussed in [2]. A ∈ Rn×n and E ∈ Rm×m. Z ∈ Rm×n. Bold
indicates costs of initialization only.

Operation Linear Quadratic

1D 2D 3D 1D 2D 3D

E = LU m m1 1
2 m2 4m 4m1 1

2 4m2

w = (LU)−1y 2m 2m log(m) 2m1 1
3 4m 4m log(m) 4m1 1

3

v = Zw 3n 3n 3n 5n 5n 5n
y = ZTw 3n 3n 3n 5n 5n 5n
z = Av 6n 10n 14n 6n 10n 14n

Px = x− z n n n n n n

works have either focused on scalable convergence, obtaining linear time scaling re-
sults, or finding a balance between the trade-off. While our primary focus lies on
establishing the theory and numerical evidence for obtaining true wave number inde-
pendent convergence, our current solver is the first which allows for a reduction of the
computational costs while maintaining true wave number independent convergence
for very high wave numbers. In Table 1, we provide the extra cost of the initialization
phase and the iterative phase, using the fact that A,E,Z are all sparse. Apart from
the deflation operator, the inversion of the CSLP preconditioner by one multigrid
iteration costs O(n) flops [9]. The extra computational cost of the deflation method
depends on the design of the deflation matrix Z. The largest cost in the initialization
phase is attributed to the one-time factorization of E leading up to the backward
solve on the coarse grid. Similarly to the approach taken in the literature with re-
spect to two-level methods, we only count the backward solve in order to determine
the computational complexity of the iterative phase [2, 17, 38, 13, 20, 22]. The work
in [14] appears to be one of the few to report absolute wave number independent
convergence using the CSLP preconditioner as a basis. However, the convergence is
subjected to keeping the shift small (O( 1

k )) and inverting the precondtioner exactly,
which is why the authors predominantly emphasize its theoretical contribution. For
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a three-dimensional application, exact inversion of the CSLP preconditioner using
a small shift costs O(n2) flops for the factorization stage and O(n1

1
3 ) flops for the

solve stage. By using the two-level deflation preconditioner, we obtain wave num-
ber independent convergence for very high wave numbers by reducing the sequential
factorization and solve stage by a factor of 16 and 8, respectively.1 In fact, the com-
plexity of our two-level method is comparable to the sequential timings reported in
[22]. There, a two-dimensional domain decomposition preconditioner is implemented

having an O(n1
1
2 ) time complexity with convergence being moderately dependent on

k. A natural extension from a two-level method to a multilevel method has addition-
ally been researched in the aforementioned and other works, and provides promising
directions for future research.

3.2. The deflation (DEF) preconditioner. Based on the above, the DEF
preconditioner has been defined by taking the coarse correction operator Ih2h from a
multigrid setting as the DEF subspace Z in (3.1). Ih2h can be interpreted as interpo-
lating from grid Ω2h to grid Ωh. As a result, the DEF preconditioner is commonly
referred to as a two-level method and we obtain

P̂ = AhQ, where Q = ZA2h
−1ZT and A2h = ZTAhZ,(3.2)

P = Ih −AhQ, where Z = Ih2h.

In the literature a distinction is made with respect to the two-level DEF operator. On
the one hand we have the DEF preconditioner as defined above. On the other hand
we have the ADEF preconditioner, which is defined by taking PADEF = P + γQ.
The inclusion of the shift γ ensures that the coarse-grid solve with respect to A2h can
be approximated, for example, by considering a multilevel implementation [38, 35].
When considering approximate inversion, γ is generally either set to 1 or the largest
eigenvalue of the original coefficient matrix. In this work we solely focus on the DEF
preconditioner in a two-level setting, and thus we can take γ = 0.

3.2.1. Inscalability and spectral analysis. We now shift our focus to the
study of the eigenvalues of the DEF operator without inclusion of CSLP. To study
the eigenvalues, we use the analytical derivations and expressions for the spectrum
of the DEF operator applied to the coefficient matrix A from [19]. The authors have
provided concise analytical expressions for the eigenvalues of the standard two-level
DEF operator. We use these expressions to perform a preliminary analysis of the
spectrum. For l = 1, 2, . . . , n2 , the eigenvalues of the system PA are given by

λl(PA) = λl(A)

(
1−

λl(A) cos(lπ h2 )4

λl(A2h)

)
+ λn+1−l(A)

(
1−

λn+1−l(A) sin(lπ h2 )4

λl(A2h)

)
.

(3.3)

Inspection of (3.3) leads to the observation that the eigenvalues of the DEF
operator P are given by

λl(P ) =

(
1−

λl(A) cos(lπ h2 )4

λl(A2h)

)
+

(
1−

λn+1−l(A) sin(lπ h2 )4

λl(A2h)

)
.(3.4)

1The size of E in a three-dimensional application is n
8

.
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A908 VANDANA DWARKA AND KEES VUIK

Fig. 1. kh = 0.625, k = 500. Left: eigenvalues of PA scaled by magnitude of the largest
eigenvalue (c). Center: Ratio between eigenvalues of the fine-grid and coarse-grid operator (β̂ from
equation (3.6)). Right: real part of eigenvalues PTM−1A.

By introducing the following coefficients, we can rewrite (3.3) as

αl =

(
1−

λl(A) cos(lπ h2 )4

λl(A2h)

)
=
λn+1−l(A) sin(lπ h2 )4

λl(A2h)
,

βl =

(
1−

λn+1−l(A) sin(lπ h2 )4

λl(A2h)

)
=
λl(A) cos(lπ h2 )4

λl(A2h)
,

λl(PA) = λl(A)αl + λn+1−l(A)βl , l = 1, 2, . . . ,
n

2
.(3.5)

Since the sine and cosine terms are always strictly less than 1, the eigenvalues of the
system PA are essentially the product of eigenvalues of A multiplied by the scaled
ratio of the eigenvalues of A and A2h. In order to simplify the analysis, we therefore
proceed by analyzing

β̂l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ , l = 1, 2, . . . ,
n

2
,(3.6)

which provides an upperbound to the previously defined coefficients. It is easy to see
that the eigenvalues of PA will approach the origin if the factor β̂l becomes small for
some l . If we define the constant c to be the magnitude of the largest eigenvalue of
A, then we can scale the eigenvalues of PA by c and compare them to the eigenvalues
PTM−1A and β̂. In Figure 1 we have plotted a selected range of eigenvalues of
PA scaled by c and compared these to the eigenvalues of PTM−1A (right) and β̂l

(center). On the x-axis we have the relevant indices l corresponding to the respective
close to zero eigenvalues. The figure provides affirmative support for our remark that
the behavior of the eigenvalues of both PA and PTM−1A are, apart from a scaling
factor, determined by the behavior of β̂l as all three figures exhibit the same shape
and pattern. β̂l approaches the origin whenever |λl(A)| becomes small, which is at
l = lhmin (marker). If lhmin 6= l2hmin and l2hmin < lhmin, then we are dividing a relatively

small number |λlhmin(A)| by a larger number |λlhmin(A2h)|, which brings the resulting
fraction closer to zero. The further apart lhmin and l2hmin are, the closer to zero the
resulting term will be. The outlier appointed by the marker is the result of exactly
the opposite effect. At l = l2hmin, |λl(A2h)| will be at its smallest, while the magnitude
of |λl(A)| will still be large. In like manner, we get a large term, which explains
the typical outliers we often encounter when the spectra of the operators PA and
PTM−1A are plotted.
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4. Eigenvector perturbations. The next question which needs to be answered
is what is causing the near-zero eigenvalues of the coarse grid operator to shift. It
has been reported that interpolating coarse-grid functions always introduces high-
frequency modes, which can be interpreted as an aliasing phenomenon [11, 12]. These
high-frequency modes are the main cause for interpolation errors [11]. The effect be-
comes more severe as index l increases. If the high-frequency eigenmodes are activated
by interpolating from a coarse to a fine grid, then the coarse-grid eigenvectors will not
be approximated accurately. This affects the eigenvalues of A2h as A2h is obtained
by first restricting the fine-grid elements onto the coarse-grid and then transferring
the result back onto the fine grid. To measure the extent of this effect, we make use
of Lemma 4.1 and Corollary 4.2.

Lemma 4.1 (intergrid transfer I). Let B be the n
2 ×

n
2 matrix given by B = ZTZ,

where Z = Ih2h is the prolongation matrix and let lmin be the index of the smallest
eigenvalue of A in terms of magnitude. Then there exists a constant Ch, depending
on h, such that

Bφlmin,2h = Chφlmin,2h and lim
h→0

Ch = λlmin
(B) = 2,

where φl,h is the l th eigenvector on the fine-grid of A and λl(B) is the l th eigenvalue
of B.

Proof. We use the method from [12]. For i = 1, 2, . . . n we have

[ZTφlmin,h]i =
1

2
(sin((2i− 1)hπlmin,h) + 2 sin(2ihπlmin,h) + sin((2i+ 1)hπlmin,h))

=
1

2
(2 sin(2ihπlmin,h) + 2 cos(2ihπlmin,h)) sin(2ihπlmin,h)

= (1 + cos(lmin,hπh)) sin(2ihπlmin,h)

= C1(h)φlmin,2h
.

Now taking the limit as h goes to zero of the coefficient Ch gives limh→0 C1(h) = 2.
For i = 1, 2, . . . , n we distinguish two cases: i is odd and i is even. We start with the
first case

[Zφlmin,2h]i =
1

2

(
sin

(
(i− 1)hπlmin,h

2

)
+ sin

(
(i+ 1)hπlmin,h

2

))
=

1

2
(sin((i− 1)hπlmin,h) + sin((i+ 1)hπlmin,h))

= cos(lmin,hφh) sin(ihπlmin,h)

= C2(h)φlmin,h.

Again, taking the limit as h goes to zero of the coefficient C2(h) gives limh→0 C2(h) =

1. For i is even, we obtain Zφlmin,2h = sin(
ihφlmin,h

2 ) = sin(ihπlmin,h) = φlmin,h. We
can combine both results to obtain Bφlmin,2h = ZTZφlmin,2h = ZT (C2(h)φlmin,h) =

C1(h)C2(h)φlmin,2h
= λ̂lmin

(B)φlmin,2h
, where λ̂lmin

(B) represents the perturbed eigen-
value of B at index l due to the approximation error. Taking the limit as h goes to
zero provides limh→0 λ̂lmin

(B) = limh→0 C1(h)C2(h) = 2 = λlmin,h
(B).

Corollary 4.2 (coarse-grid kernel). Let A2h be the n
2 ×

n
2 matrix given by

A2h = ZTAZ, where Z = Ih2h is the prolongation matrix and let lmin be the index of
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the smallest eigenvalue of A in terms of magnitude. Then

A2hφlmin,2h
= Chλlmin,h

(A)φlmin,2h
, and lim

h→0
Ch = λlmin,h(B),

where φj,2h is the l th eigenvector on the coarse grid of A2h and λj(A2h) is the l th
eigenvalue of A2h.

Proof. Using Lemma 4.1 and its proof, we have

A2hφlmin,2h =
(
ZTAZ

)
φlmin,2h

= ZTA
(
Zφlmin,2h

)
= ZTA(C2(h)φlmin,h)

= C1(h)ZTAφlmin,h

= C1(h)ZTλlmin,h
(A)φlmin,h

= λlmin,h
(A)C1(h)

(
ZTφlmin,h

)
= λlmin,h

(A)C1(h)C2(h)φlmin,2h
.

Using Lemma 4.1 it is easy to see that after taking the limit the eigenvalues of A2h

can be written as a product of the eigenvalues of A and the eigenvalues of B.

From Lemma 4.1 and Corollary 4.2 it is clear that for lmin, which is within the
smooth-frequency range, the near-kernel coarse-grid eigenvalues λlmin,h(A2h) are equal
to the product of λlmin,h(A) and λlmin,h

(B) when h goes to zero. Consequently, in the
limiting case, the coarse-grid kernel and the fine-grid kernel will be aligned propor-
tionally and both A and A2h will reach its smallest absolute eigenvalues at the same
index lmin.

Recall the behavior of the eigenvalues of PA can be represented by

β̂l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ for l = 1, 2, . . . ,
n

2
,

where we found that this ratio becomes very small by a mismatch of the small-
est absolute eigenvalue of A and A2h, respectively. As in the limit, we can write
λlmin,h(A2h) = λlmin,h(B)λlmin,h(Ah), perturbations up to λlmin,h(B) will propagate
throughout the low-frequency part of the spectrum for l ∈ {1, 2, . . . , lmin,h}, eventu-
ally resulting in the errors related to λl(A2h) for l = lmin,h. To measure to what
extent these perturbations to λ(B) lead to errors, we examine the projection error
to quantify the error we make when projecting the eigenvector onto the subspace
spanned by the column of Z.

Theorem 4.3 (projection error I). Let X be the DEF space spanned by column
vectors of Z and let the eigenvector corresponding to the smallest eigenvalue of A be
denoted by φlmin,h

6∈ X. Let P = ZB−1ZT with B = ZTZ be the orthogonal projector
onto X. Then the projection error E is given by

E = ‖(I − P )φlmin,h‖
2

= φlmin,h
Tφlmin,h − φlmin,h

TZB−1ZTφlmin,h.

Proof. By idempotency of the orthogonal projector, we have

‖(I − P )φlmin,h‖
2

= φlmin,h
T (I − P )(I − P )φlmin,h

= φlmin,h
T (I − P )φlmin,h

= φlmin,h
Tφlmin,h − φlmin,h

TZB−1ZTφlmin,h.
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We proceed by rewriting the projection error in terms of a perturbation to the
eigenvalues of the operator B.

Corollary 4.4 (projection error II). Let X be the DEF space spanned by the
column vectors of Z and let the eigenvector corresponding to the smallest eigenvalue
of A be denoted by φlmin,h

6∈ X. Let P = ZB−1ZT with B = ZTZ be the orthogonal
projector onto X. Then the projection error E is given by

E = ‖(I − P )φlmin,h‖
2

=

(
1− λlmin,h(B)− δ1

λlmin,h(B)− δ2

)
φlmin,h

Tφlmin,h,

where δ1 = λlmin,h(B)− φlmin,h
T B̂φlmin,h

φlmin,h
Tφlmin,h

and δ2 = λlmin,h(B)− φlmin,h
T B̂φlmin,h

φlmin,h
TZ(B−1ZTφlmin,h)

.

Proof. Using Lemma 4.1 and its proof we know that in the limit ZTφlmin,h is an
eigenvector of B. We would thus have

‖(I − P )φlmin,h‖
2

= φlmin,h
Tφlmin,h − φlmin,h

TZ
(
B−1ZTφlmin,h

)
= φlmin,h

Tφlmin,h −
φlmin,h

TZZTφlmin,h

λlmin,h(B)

= φlmin,h
Tφlmin,h −

φlmin,h
T
(
B̂φlmin,h

)
λlmin,h(B)

.

Note that B̂ has dimension n × n and has n
2 eigenvalues equal to the eigenvalues of

B and n
2 zero eigenvalues. By Lemma 4.1 and its proof, we also have that φlmin,h is

an eigenvector of B̂, which leads to

‖(I − P )φlmin,h‖
2

= lim
h→0

φlmin,h
Tφlmin,h −

φlmin,h
T
(
λlmin,h(B̂)φlmin,h

)
λlmin,h(B)

 = 0.(4.1)

Now, in the nonlimiting case, we have two sources of errors; the factor containing
λlmin,h(B) both in the numerator and denominator will be subjected to perturbations.

Starting with the denominator, if we let λ̃lmin,h(B) denote the perturbed eigenvalue
of B, we have

φlmin,h
TZ
(
B−1ZTφlmin,h

)
= φlmin,h

TZ

(
ZTφlmin,h

λ̃lmin,h(B)

)
6= φlmin,h

TZ

(
ZTφlmin,h

λlmin,h(B)

)
.

Reordering leads to

λ̃lmin,h(B) =
φlmin,h

TZZTφlmin,h

φlmin,h
TZ (B−1ZTφlmin,h)

=
φlmin,h

T B̂φlmin,h

φlmin,h
TZ (B−1ZTφlmin,h)

.

The perturbation to λlmin,h(B) can now be written as

δ2 = λlmin,h(B)− λ̃lmin,h(B) = λlmin,h(B)− φlmin,h
T B̂φlmin,h

φlmin,h
TZ (B−1ZTφlmin,h)

.

For the numerator, if we let η denote the error, i.e., η = B̂φlmin,h − λlmin,h(B)φlmin,h,

then B̂φlmin,h = λlmin,h(B)φlmin,h + η and substitution gives

λ̃lmin,h(B)φlmin,h
TZ
(
B−1ZTφlmin,h

)
= φlmin,h

T B̂φlmin,h

= φlmin,h
T (λlmin,h(B)φlmin,h + η) .
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Letting δ1 = − φlmin,h
T η

φlmin,h
Tφlmin,h

, we obtain

λ̃lmin,h(B)φlmin,h
TZ
(
B−1ZTφlmin,h

)
= (λlmin,h(B)− δ1)φlmin,h

Tφlmin,h
.

Finally, we can now rewrite the projection error E in terms of perturbations to the
eigenvalues of B:

‖(I − P )φlmin,h‖
2

= φlmin,h
Tφlmin,h − φlmin,h

TZ
(
B−1ZTφlmin,h

)
=

(
1− λlmin,h(B)− δ1

λlmin,h(B)− δ2

)
φlmin,h

Tφlmin,h,

which gives the statement.

We can prove an additional statement with respect to the pollution error. We
know that the pollution error is minimized when we keep the step size h = k−

3
2 . We

can study the behavior of the projection error by letting k go to infinity.

Corollary 4.5 (pollution error). Let h = k−
3
2 . Let X be the DEF space

spanned by column vectors of Z and let the eigenvector corresponding to the smallest
eigenvalue of A be denoted by φlmin,h

6∈ X. Let P = ZB−1ZT with B = ZTZ be the
orthogonal projector onto X. Then the projection error E goes to zero,

E = lim
k→∞

‖(I − P )φlmin,h‖
2

= 0.

Proof. Using Lemma 4.1 and Corollary 4.2 we have

[ZTφlmin,h]i = (1 + cos lmin,hπh)φlmin,2h

=

(
1 + cos lmin,h

π

k
3
2

)
φlmin,2h.

Now taking k →∞ gives limk→∞[ZTφlmin,h,i] = 2φlmin,2h. Similarly,

[Zφlmin,2h]i = cos(lmin,2hπh)φlmin,h

= cos

(
lmin,h

π

k
3
2

)
φlmin,h.

Again, taking k → ∞ gives limk→∞[Zφlmin,2h,i] = φlmin,h. Now, substituting these
expressions into the projection error E gives

E = lim
k→∞

‖(I − P )φlmin,h‖22 = lim
k→∞

φTlmin,hφlmin,h − φTlmin,hZ(B−1ZTφlmin,h)

= lim
k→∞

(
φTlmin,hφlmin,h − φTlmin,hZB

−1(2φlmin,2h)
)

= lim
k→∞

(
φTlmin,hφlmin,h − 2φTlmin,hZ(B−1φlmin,2h)

)
= lim
k→∞

(
φTlmin,hφlmin,h −

2

λB
φTlmin,h(Zφlmin,2h)

)
= lim
k→∞

(
φTlmin,hφlmin,h −

2

λB
φTlmin,hφlmin,h

)
= lim
k→∞

(
1− 2

λB

)
.

We know from Corollary 4.2 that λB → 2 when h goes to zero. And thus we obtain
the statement.
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Table 2
Projection error for φlmin,h

for various values of k. jmin,h and lmin,2h denote the index for the
smallest absolute eigenvalue of A and A2h, respectively.

k E lmin,h lmin,2h E lmin,h lmin,2h E lmin,h lmin,2h

kh = 0.625 kh = 0.3125 k3h2 = 1
10 0.0672 3 3 0.0077 3 3 0.0077 3 3
50 0.4409 16 15 0.0503 16 16 0.0045 16 16
100 0.8818 32 31 0.0503 32 32 0.0032 32 32
500 4.670 162 155 0.5031 162 158 0.0013 162 162
1000 9.2941 324 310 1.0062 324 316 0.0009 324 324

Corollary 4.4 reveals that the projection error due to the inaccurate approxima-
tions of the eigenvectors can be represented by deviations from λlmin,h(B). In Table 2
we present the projection error for various k’s. The results illustrate that the projec-
tion error increases linearly with k. Along with the projection error, the misalignment
between lmin,h and lmin,2h increases, shifting the near-zero eigenvalue of A and A2h.
If we let kh = 0.3125, the projection error is reduced. However, already for k = 1000,
the error regains magnitude, which explains why, despite resorting to a finer grid, the
near-zero eigenvalues reappear when k increases. The results for k3h2 = 1 are in line
with Corollary 4.5. As the step size h gets smaller, the error of the interpolation and
restriction operations from the fine to the coarse grid and vice versa reduces. This
explains why the projection error decreases as the wave number k increases. This can
also be noticed from the last two columns of Table 2. Note that the location of the
smallest eigenvalue in terms of the magnitude of A and A2h are always located at the
same index.

In subsection 3.2.1 we have shown that the spectrum of PA and PM−1A is (apart
from a scaling factor) equivalent to

β̂l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ , l = 1, 2, . . . ,
n

2
.

From Lemma 4.1 and Corollary 4.2 we additionally found that in the limit near
l = lmin,h we can express the eigenvalues of the coars -grid operator A2h in terms of
λlmin,h(B) by λlmin,h(A2h) = λlmin,h(A)λlmin,h(B). Thus in the vicinity of the smallest
eigenvalue, we can write

β̂l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ =
1

λl(B)
.(4.2)

Corollary 4.4 reflects that errors in projecting the eigenvectors onto the coarse grid
lead to errors in the eigenvalues of the operator B. These errors accumulate and
increase as index l increases due to the eigenvectors becoming more oscillatory. If we

account for these errors, then (4.2) becomes β̂l = | λ
l (A)

λl (A2h)
| = 1

λ̂l (B)
, for some perturbed

λ̂l(B). These perturbations to the eigenvalues of B cause inaccurate scaling of the
eigenvalues of A, eventually leading to the smallest eigenvalue of A2h being located
at a different index lmin,2h 6= lmin,h.

In Figures 2(a) and 2(b) we have plotted the eigenvalues of B and the ratio be-
tween the eigenvalues of A2h and A according to (4.2). Note that the latter essentially
represents the perturbed λl(B) due to errors accumulated during prolongating and
restricting the eigenvectors of A. It can be noted that as h becomes smaller, the ratio
slowly converges to λl(B). This observation is also in line with the projection error
decreasing.
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(a) kh = 0.825 (b) kh = 0.01

Fig. 2. k = 50. Plot of the ratio between the fine-grid and coarse-grid eigenvalues (4.2) and the
eigenvalues of B. lmin,h = 16 and lmin,2h = 15 for kh = 0.825. For kh = 0.01, lmin,h = lmin,2h = 16.

5. Higher-order DEF.

5.1. Quadratic approximation. Recall that the grid transfer functions u2h =
[u2h1 , . . . , u2hn ] from Ω2h to the fine grid Ωh using standard linear interpolation are
given by

(5.1) Ih2h : Ω2h → Ωh, u2h → Ih2h u2h

such that

(5.2)

{
[u2h]i/2 if i is even,

1
2

(
[u2h](i−1)/2 + [u2h](i−1)/2

)
if i is odd,

i = 1, . . . , n− 1.

A closer look reveals that the current transfer functions are only reinforced at the
odd components, leaving the even components unchanged. In fact, these components
are mapped to linear combination of their fine-grid counterparts φhl

and a comple-
mentary mode φhn+1−l

with first-order accuracy [11]. A more general representation
of the linear interpolation operator for the even components can be given by using
rational Bézier curves, which are defined in Definitions 5.1, 5.2, and 5.3. The use of
these curves within the context of multigrid methods has been studied in [4, 24]. Using
these vectors as vectors for the input of the prolongation and restriction matrices in
a multigrid setting is referred to as a monotone multigrid method. The monotonicity
comes from the construction of the coarse-grid approximations, which ensures that
the coarse-grid functions approximate the fine-grid functions monotonically [24, 33].
The higher-order approximation schemes are defined in Definition 5.4.

Definition 5.1 (Bézier curve). A Bézier curve of degree n is a parametric
curve defined by

B(t) =

n∑
j=0

bj,n(t)Pj , 0 ≤ t ≤ 1, where the polynomials

bj,n(t) = (n, j) tj(1− t)n−j , j = 0, 1, . . . , n,

are known as the Bernstein basis polynomials of order n. The points Pj are called
control points for the Bézier curve.
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Definition 5.2 (rational Bézier curve). A rational Bézier curve of degree n
with control points P0, P1, . . . , Pn and scalar weights w0, w1, . . . , wn is defined as

C(t) =

n∑
j=0

wjbj,n(t)Pj

n∑
j=0

wjbj,n(t)
.

Definition 5.3 (linear interpolation). Let [u2h](j−1)/2 and [u2h](j+1)/2, be the
endpoints within a component span defined on the coarse grid. Then the prolongation
scheme for the even nodes can be characterized by a rational Bézier curve of degree
1 with polynomials

b0,1(t) = 1− t,

b1,1(t) = t,

whenever j is odd by taking the weights w0 = w1 = 1 and t = 1
2 . Note that in the case

w0 = w1 and is nonrational we obtain the original Bézier curve:

C

(
1

2

)
=

1
2 [u2h](j−1)/2 + (1− 1

2 )[u2h](j+1)/2

1
2 + (1− 1

2 )
(5.3)

=
1

2

(
[u2h](j−1)/2 + [u2h](j+1)/2

)
.(5.4)

When j is even, we take the middle component [u2h]j/2, which itself gets mapped onto
the fine grid.

For large k, the prolongation operator working on the even components is not
sufficiently accurate to map the near kernels to adjacent modes on Ω2h and Ωh.
Consequently, we wish to find a higher-order approximation scheme, which takes the
even components into account. We thus consider a quadratic rational Bézier curve
in order to find appropriate coefficients to yield a higher-order approximation of the
fine-grid functions by the coarse-grid functions.

Definition 5.4 (quadratic approximation). Let [u2h](j−2)/2 and [u2h](j+2)/2 be
the endpoints within a component span defined on the coarse grid. Then the pro-
longation operator can be characterized by a rational Bézier curve of degree 2 with
polynomials

b0,2(t) = (1− t)2,

b1,2(t) = 2t(1− t),

b2,2(t) = t2,

and control point [u2h]j/2, whenever j is even. Because we wish to add more weight
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to the center value, we take weights w0 = w2 = 1
2 , w1 = 3

2 , and t = 1
2 to obtain

C(t) =
1
2 (1− t)2[u2h]j−1 + 3

22t(1− t)[u2h]j + 1
2 (t)2[u2h]j+1

1
2 (1− t)2 + 3

22t(1− t) + 1
2 (t)2

=
1
2 (1− 1

2 )2[u2h]j−1 + 3
2 (2)( 1

2 )(1− 1
2 )[u2h]j + 1

2 ( 1
2 )2[u2h]j+1

1
2 (1− 1

2 )2 + 1
2 (2)( 1

2 )(1− 1
2 ) + 1

2 ( 1
2 )2

=
1
8 [u2h]j−1 + 3

4 [u2h]j + 1
8 [u2h]j+1

1

=
1

8
([u2h]j−1 + 6[u2h]j + [u2h]j+1) .(5.5)

When j is odd, [u2h](j−1)/2 and [u2h](j+1)/2 have an even component and we are in
the same scenario as is the case with linear interpolation.

Based on the upper scheme, we redefine the prolongation and restriction operator
as follows:

(5.6) Ih2h [u2h]i =


1
8

(
[u2h](i−2)/2 + 6 [u2h](i)/2 + [u2h](i+2)/2

)
if i is even,

1
2

(
[u2h](i−1)/2 + [u2h](i+1)/2

)
if i is odd

 ,

for i = 1, . . . , n− 1 and

I2hh [uh]i =
1

8

(
[uh](2i−2) + 4 [uh](2i+1) + 6 [uh](2i) + 4 [uh](2i+1) + [uh](2i+2)

)
for i = 1, . . . , n2 .

Using the new matrices Ih2h and I2hh , we can now construct similar analytical ex-
pressions for the eigenvalues of A2h, PA, and PTM−1A, where we follow the same
approach as [11, 12, 19]. In these works, the basis consisting of eigenvectors is re-
ordered and the projection operator P is block-diagonalized. This allows thorough
spectral analysis of each eigenvalue of PA for MP 1-A as each block now contains the
nonzero analytical eigenvalues. We therefore start by following a similar approach
with respect to the block-diagonalization by reordering the basis consisting of the
eigenvectors as follows:

V =
{
φ1h, φ

(n+1)−1
h , φ2h, φ

(n+1)−2
h , . . . , φ

n
2

h , φ
(n+1)−n

2

h

}
.

Here the fine-grid eigenvectors are given by φlh = sin(lπh) and the coarse-grid eigen-
vectors are obtained by substituting 2h for h. The prolongation operator maps the
coarse-grid eigenvectors for indices j, l = 1, 2, . . . n2 , to

[I2hh φ2h]lj =
1

8
[sin((j − 2)/2)lπ2h) + 6 sin((j)/2)lπ2h) + sin((j + 2)/2)lπ2h)]

=

[
1

4
cos(2lπh) +

3

4

]
sin(ljπh)

for j even and

[I2hh φ2h]lj =
1

8
[4 sin((j − 1)/2)lπ2h) + 4 sin((j + 1)/2)lπ2h)]

= [cos(lπh)] sin(ljπh)

D
ow

nl
oa

de
d 

08
/1

8/
20

 to
 1

45
.9

4.
75

.8
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 

 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE CONVERGENCE USING TWO-LEVEL DEFLATION A917

for j odd. With respect to the remaining part of the index set containing j, we use
that

φ
n+1−lj
h = −(−1)j sin(ljπh),(5.7)

j = 1, 2, . . . n− 1, and l = 1, 2, . . .
n

2
.

Note that (5.7) is only positive when j is odd. Consequently for even j such that
j ∈

{
n
2 , . . . , n− 1

}
is even, we obtain

[I2hh φ2h]lj =
1

8
[− sin((j − 2)/2)lπ2h)− 6 sin((j)/2)lπ2h)− sin((j + 2)/2)lπ2h)]

=

[
−1

4
cos(2lπh)− 3

4

]
sin(ljπh),

whereas for j odd, we now have

[I2hh φ2h]lj =
1

8
[4 sin((j − 1)/2)lπ2h) + 4 sin((j + 1)/2)lπ2h)]

= [cos(lπh)] sin(ljπh).

With respect to our basis, we therefore obtain the following 2 × 1 block for the pro-
longation operator:

[Ih2h]l =

[
cos(lπh) + 1

4 cos(2lπh) + 3
4

cos(lπh)− 1
4 cos(2lπh)− 3

4

]
.

Similarly, the restriction operator is defined by taking [Ih2h]l
T

and thus we obtain a
1× 2 block. For ease of notation, we now define

vl = cos(lπh) +
1

4
cos(2lπh) +

3

4
,

vn+1−l = cos(lπh)− 1

4
cos(2lπh)− 3

4
.

Using these expressions, we can now compute the eigenvalue of the Galerkin coarse-
grid operator, which is given by the 1× 1 diagonal block

λl(A2h) = [Ih2h]lAl [I2hh ]l =
(
vl
)2
λl(A) +

(
vn+1−l)2 λn+1−l(A).(5.8)

In order to obtain the eigenvalues of PA, we have to compute the 2 × 2 diagonal
blocks of the projection operator P first. Recall that P is defined by

P l = I − (Ih2h)l(Al
2h)−1(I2hh )lAl .

We thus obtain the following block system:

P l =

1− (vl )2

λl (A2h)
vlvn+1−l

λl (A2h)

vn+1−lvl

λl (A2h)
1− (vn+1−l )2

λl (A2h)

[λl(A) 0
0 λn+1−l(A)

]

=

λl(A)
(

1− (vl )2

λl (A2h)

)
λn+1−l(A)

(
vlvn+1−l

λl (A2h)

)
λl(A)

(
vn+1−lvl

λl (A2h)

)
λn+1−l(A)

(
1− (vn+1−l )2

λl (A2h)

)
 .(5.9)
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From here, we retrieve the eigenvalues of PA by multiplying (5.9) again with the 2×2
diagonal block containing the eigenvalues of A with respect to index l on our defined
basis:

[PA]l =

(λl(A))2
(

1− (vl )2

λl (A2h)

)
(λn+1−l(A))2

(
vlvn+1−l

λl (A2h)

)
(λl(A))2

(
vn+1−lvl

λl (A2h)

)
(λn+1−l(A))2

(
1− (vn+1−l )2

λl (A2h)

)
 .(5.10)

Similarly, the eigenvalues of PTM−1A are obtained by simply multiplying (5.9) with
the 2× 2 block containing the eigenvalues of M−1A instead of A and computing the
trace. This operation leads to the following analytical expressions for the eigenvalues
of PTM−1A for l = 1, 2, . . . , n2 :

λl(PTM−1A) =
(λl(A))2

λl(M)

(
1− (vl)2

λl(A2h)

)
+

(λn+1−l(A))2

λl(M)

(
1− (vn+1−l)2

λl(A2h)

)
.

(5.11)

Using (5.11), we can proceed with the spectral analysis of the DEF preconditioner for
MP 1-A.

5.2. Spectral analysis. In order to keep track of both (original and adapted)
DEF-based preconditioned systems, we will use the ∼ notation to denote the adapted
system. We will now compare the spectrum of the DEF + CSLP preconditioned ma-
trix (PTM−1A), with the adapted deflation + CSLP precondtioned matrix (P̃TM−1A)
for MP 1-A. In Figure 3 we have plotted the spectrum of both PTM−1A (dot marker)
and P̃TM−1A (diamond marker) for very large wave numbers. Starting with the re-
sults for kh = 0.625, we note that incorporating the new DEF scheme leads to a
remarkable reduction in the near-zero eigenvalues. Compared to the original DEF
scheme, the spectrum of the adapted scheme is more densely located near the point
(1, 0). As a result, the spectrum of the adapted scheme has shorter tails. For example,
for k = 103, there are almost no near-zero eigenvalues. However, as k increases to
106, we see the near-zero eigenvalues reappearing. If we switch to a finer grid using
kh = 0.3125 in Figure 3(b), we observe an even greater improvement. For k = 106

a few eigenvalues are slightly moving towards the origin; however, these results are
negligible compared to the magnitude of the wave number. Table 3 contains the pro-
jection error according to Corollary 4.4 for both schemes. The projection error for
the new scheme is reduced significantly. However, as k increases we observe that the
projection error increases accordingly, which is in line with the spectral analysis.

5.2.1. Parameter sensitivity. We have seen that for very large k such as
k = 106, the adapted scheme using P̃ still has a small number of near-zero eigenvalues.
This result is supported by the increasing projection error for kh = 0.625 (see Table 3).
One explanation is that for these large wave numbers, the low-frequency eigenmodes
corresponding to lhmin for A and l2hmin for Ã2h are still very oscillatory vectors. Fur-
thermore, apart from these eigenmodes themselves being relatively oscillatory, the
high-frequency modes which get activated are again a source for approximation errors
when prolonging the coarse-grid eigenvectors. Necessarily, at some point, the scheme
based on the adapted DEF vectors will again suffer from accumulation errors as their
approximation power reduces when k increases.

One of the characteristics of Bézier curves implies that at systematic intervals
some discontinuities appear as sharp corners at certain points [34]. If the eigenvectors
become oscillatory due to the wave number being very large, then keeping the grid
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(a) kh = 0.625

(b) kh = 0.3125

Fig. 3. Eigenvalues of PTM−1A and P̃TM−1A. The top row contains the spectrum of
PTM−1A and P̃TM−1A for kh = 0.625. The bottom row contains the eigenvalues for kh = 0.3125.

Table 3
Projection error for the old scheme E and the adapted scheme Ẽ.

k E Ẽ E Ẽ
kh = 0.625 kh = 0.3125

101 0.0672 0.0049 0.0077 0.0006
102 0.8818 0.0154 0.1006 0.0008
103 9.2941 0.1163 1.0062 0.0014
104 92.5772 1.1021 10.0113 0.007
105 926.135 10.9784 100.1382 0.0635
106 9261.7129 109.7413 1001.3818 0.6282

resolution constant, these discontinuities become a source of approximation error.
Instead of diverting to higher-order approximation schemes, the use of rational Bézier
curves allow simple modifications which can alter the shape and movement of the
utilized curve segments. In fact, the weights of the rational Bézier curve are shape
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parameters, which allow control over the curve segments. For example, increasing the
weight corresponding to a control point forces the curvature to move more closely and
sharply to that control point. Decreasing the weight of a control point, on the other
hand, results in the curve flattening and expanding more towards its endpoints. In
our case, the quadratic approximation using the rational Bézier curve has one control
point per segment. This would lead to the following redefinition:

Ih2h [u2h]i =


(

1
8 [u2h](i−2)/2 + ( 3

4 − ε) [u2h](i)/2 + 1
8 [u2h](i+2)/2

)
if i is even,

1
2

(
[u2h](i−1)/2 + [u2h](i+1)/2

)
if i is odd


for i = 1, . . . , n − 1, and ε > 0. The new scheme alters the expressions for the
eigenvalues of P̃TM−1A according to

ṽl = cos(lπh) +
1

4
cos(2lπh) +

(
3

4
− ε
)
,

ṽn+1−l = cos(lπh)− 1

4
cos(2lπh)−

(
3

4
− ε
)
.

Straightforward substitutions of the altered expressions for ṽl and ṽn+1−l into
(5.10) render the analytical expressions for the eigenvalues of P̃TM−1A. The next
question which needs to be answered is, given a fixed kh, how do we find ε? ε should
be chosen such that the projection error E is minimized. In order to find this value,
we can use two approaches. The first approach is straightforward; our ultimate aim is
to have the eigenvalue of λl(P̃TM−1A) at index lmin,h to be equal to 1. Recall from
the proof of Corollary 4.2 that in the absence of errors the eigenvalues of A2h can be
written as a product of the eigenvalues of A and the eigenvalues of B. Thus, using
(5.8), we can write

λl(A2h) = [Ih2h]lAl [I2hh ]l ,

=
(
vl
)2
λl(A) +

(
vn+1−l)2 λn+1−l(A) = λl(A)λl(B).(5.12)

Note that the sum of (vl)2 and (vn+1−l)2 in expression (5.12) are exactly equal to
λl(B). If we want (5.12) to hold at index lmin,h in the presence of errors, we need to
pick ε such that (vn+1−l)2 = 0, which is equivalent to

ε = 0.75−
(

cos(lπh)− 1

4
cos(2lπh)

)
.(5.13)

This way the near-zero eigenvalue of A2h will always be proportional to the near-
zero eigenvalue of A. Fortunately, the eigenvalues of B containing the term ε are
independent of the eigenvalues of A. Therefore, finding ε primarily depends on the
approximation scheme which determines the eigenvalues of B. An interesting obser-
vation is that ε is completely determined by the step size h and therefore by the grid
resolution kh.

We can take advantage of this k-independence, as it enables us to determine an ε
without having to account for the wave number. Also, once we find an ε which works
for some kh, then it will work for all k as long as kh remains constant. Thus, especially
for practical applications of higher-dimensional problems, instead of computing the
exact smallest eigenvalues of the fine- and coarse-grid operator, we can find the ε by
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Fig. 4. Eigenvalues of PTM−1A and P̃TM−1A using kh = 0.625 for various weight parameters
ε. The wave number k has been set to 106.

performing a grid search for some small k. A similar strategy was used in [16] for
the open cavity problem in order to find the optimal parameter for a given k and a
given paritition in the context of optimized Schwarz methods (with overlap). There,
the best parameter was chosen to be the one which resulted in the smallest GMRES
residual. In our case, the best parameter ε is the one which minimizes the projection
error for some fixed h. Therefore, for MP 2 and MP 3, we will use the heuristic
in Algorithm 5.1. This provides a practical alternative to computing the analytical
expressions for the eigenvalues of B.

Algorithm 5.1 Projection error minimizer.

Initialize k small, φjmin , ε0 = 0.0001, tol = 10−4

for c = 1, 2, . . . ,m do
Compute Ecε0 using cε0 to construct Z
y1 = ZTφjmin

, w = φTjmin
Z,B = ZTZ

By2 = y1 , solve for y1 (direct or iteratively)
Ecε0 = φTjmin

φjmin
− wy2

while Ēcε0 > tol do
Compute E(c+1)ε0 and repeat until Ē(c+1)ε < tol

end while
end for
Set ε = c̃ε0 for some c̃ ∈ [1,m].

We proceed by reexamining the spectrum of MP 1-A for k = 106 after introducing
the weight parameter. We have plotted the eigenvalues for kh = 0.625 for ε = 0.01906
(left), ε = 0.03 (center), and ε = 0.05 (right) in Figure 4. It immediately becomes
apparent that using the right parameter to minimize the projection error completely
shifts the spectrum. Particularly, the left column contains the results where the
optimal ε has been used and it can be noted that the spectrum stays clustered near
(1, 0) independent of the wave number k.

In the next section, we provide numerical experiments with these parameters for
MP 1-A in order to test whether we obtain a reduced number of iterations as theorized.
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Table 4
Number of GMRES iterations for MP 1-A using the adapted preconditioned DEF scheme

APD(ε). ε has been determined using (5.13). APD(0) is the adapted DEF scheme without the
projection error minimizer ε. The shift in CSLP has been set to (1, 1) and the preconditioner has
been inverted inexactly.

k APD(0.1250) APD(0.0575) APD(0.01906) APD(0) APD(0.00125) APD(0)

kh = 1 kh = 0.825 kh = 0.625 kh = 0.625 kh = 0.3125 k3h2 = 1

101 2 3 4 4 3 4
102 6 5 4 4 3 4
103 6 5 4 6 3 4
104 6 5 4 12 3 4
105 6 5 4 59 3 4
106 6 5 4 509 3 4

Table 5
Projection error for MP 1-A E(ε) for various kh. ε has been determined using (5.13).

k E(0.1250) E(0.0575) E(0.01906) E(0.00125)
kh = 1 kh = 0.825 kh = 0.625 kh = 0.3125

101 0.0127 0.0075 0.0031 0.0006
102 0.0233 0.0095 0.0036 0.0007
103 0.0245 0.0095 0.0038 0.0007
104 0.0246 0.0095 0.0038 0.0007
105 0.0246 0.0095 0.0038 0.0007
106 0.0246 0.0095 0.0368 0.0007

6. Numerical experiments. We start by examining the convergence behavior
of the adapted solver using various kh. Unless stated otherwise, we deploy the CSLP
preconditioner with (β1, β2) = (1, 1) as we approximate the inverse of M using one
V (1, 1)-multigrid iteration. The tolerance level for the relative residual has been set
to 10−7.

6.1. One-dimensional constant wave number model.

6.1.1. MP 1-A. For MP 1-A the results are presented in Tables 4 and 5. Table 4
gives the number of iterations and Table 5 provides the projection error for increasing
k. The numerical results presented are in line with with the theoretical results from
section 4 and the spectral analysis from Figure 5. The consistently clustered spectrum
near (1, 0) is reflected in a significant reduction in the number of iterations. On coarser
levels, the number of iterations is still constant yet higher. In particular, compare
the 6 iterations for kh = 1 with the 5 iterations for kh = 0.825. Even for such a
simple model problem as MP 1-A, these results present the first numerical evidence
of obtaining true wave number independent convergence for very high wave numbers
without having to resort to keeping the shift in the CSLP preconditioner small and
inverting the preconditioner exactly.

If we keep the grid resolution economical, kh = C, where C ∈ [0.3125, 1], we
observe that, unlike the previous DEF scheme using linear interpolation, the adapted
scheme has an almost constant projection error as the wave number increases; see
Table 5. With respect to the pollution error, it is necessary to keep the grid resolution
k3h2 ≈ 1. The last column of Table 4 contains the number of iterations using k3h2 ≈ 1.
These results are in line with the theory from section 4, Corollary 4.5, and corroborate
that an increasing wave number in fact leads to a lower projection error (Table 5)
and hence a decreasing number of iterations (Table 4). This brings us to the final
observation. The use of the weight parameter ε becomes redundant in the case we
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Fig. 5. Eigenvalues for k = 106 of PTM−1A and P̃TM−1A using various kh. The weight
parameter ε has been determined using (5.13).

Table 6
Number of GMRES iterations for MP 1-B using APD(ε) and Sommerfeld radiation conditions.

ε has been determined using (5.13). The shift in CSLP has been set to (1, 1) and has been inverted
inexactly.

k APD(0.1250) APD(0.0575) APD(0.01906) APD(0.00125) APD(0)

kh = 1 kh = 0.825 kh = 0.625 kh = 0.3125 k3h2 = 1

101 2 3 5 4 5
102 8 6 5 4 5
103 8 6 5 4 5
104 8 6 5 4 5
105 8 6 5 4 5
106 8 6 5 4 5

let k3h2 = 1. Recall that the weight parameter is necessary in order to capture the
perturbations which arise in mapping the eigenvectors as the wave number increases.
Corollary 4.5 shows why this becomes unneccessary as the mappings naturally become
more accurate as we let h go to zero.

Finally, compared to the CSLP preconditioner which shows h-independent con-
vergence behavior, the use of the APD preconditioner could allow for more accurate
solutions while keeping the number of iterations constant and small. For example, one
could use a higher-order finite difference scheme, combined with a coarser grid reso-
lution in order to solve large scale problems more accurately without being penalized
by an increased number of iterations.

6.1.2. MP 1-B. Table 6 contains the results for MP 1-B. We observe that in-
cluding Sommerfeld radation conditions does not lead to deviating conclusions. While
the results of the rigorous Fourier analysis for MP 1-A are not analogously applicable
to the case where we use Sommerfeld radiation conditions, we have used the same
values for ε determined for MP 1-A and observe that the convergence behavior is
very similar. This provides numerical evidence for the notion that the convergence
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Table 7
Number of iterations for MP 2 using kh = 0.625 using APD(ε). ε has been optimized using

Algorithm 5.1. Approximate CSLP inversion using one V(1, 1) cycle. Exact inversion includes the
CSLP shift (1, k−1). AD contains no CSLP preconditioner.

k n2 APD(0) AD(0.01906) APD(0.01906) APD(0) CSLP
Approximate inversion Exact inversion

50 6400 4 13 5 3 9
100 25600 5 13 6 3 12
250 160000 10 13 6 5 20
500 640000 15 14 8 5 28
750 1440000 37 16 9 7 36
1000 2560000 53 18 9 8 45

behavior for MP 1-A and MP 1-B are very similar and in both cases we obtain pure
wave number independent convergence.

6.2. Two-dimensional constant wave number model. In this section per-
form numerical experiments for the two-dimensional model problem using a constant
wave number k and Dirichlet boundary conditions. The weight parameter ε has
been optimized using Algorithm 5.1. Table 7 contains the number of iterations for
kh = 0.625. We start with the case where we use the APD scheme without using
the weight parameter ε. In this case, the third column shows that we can solve for
k = 1000 in 53 iterations. To see the effect of the DEF technique without the influ-
ence of the CSLP preconditioner, the fourth column contains the number of iterations
for the AD scheme including the weight parameter. Remarkably, we can solve for
k = 1000 in 18 iterations. Finally, combining both the weight parameter and the
approximate inversion of the CSLP preconditioner, it takes 9 iterations to solve for
k = 1000. If we would have inverted the CSLP preconditioner exactly using a small
shift to compensate for the use of no weight parameter, it would take the solver 8
iterations to solve for k = 1000. These results are almost similar, but the use of the
weight parameter and approximate inversion is less computationally expensive com-
pared to exact inversion of the CSLP preconditioner. This is very promising as this
implies that we can include a powerful preconditioner without having to pay the price
of exact inversion at the finest level. While we do see a slight increase in the number
of iterations throughout Table 7, these are the lowest reported number of iterations
for a sequential implementation using such high wave numbers. Without the use of
the DEF preconditioner, CSLP preconditioned GMRES would need 45 iterations to
converge despite using a small shift of order k−1 = 10−3.

We now repeat the same analysis for kh = 0.3125, with results reported in Table 8.
Note that in this case we do not include an adjusted weight coefficient parameter,
i.e., we set ε = 0. The inclusion of ε may in particular be more useful when using
coarser grids. The reason behind this is that increasing the problem size already
results in more accuracy and faster convergence (see Corollary 4.5). We also compare
the performance of the adapted scheme with and without the inclusion of the CSLP
preconditioner. Results are reported in Table 8. If we compare these results to the ones
obtained from Table 7, we note that, with the inclusion of the CSLP preconditioner,
increasing the problem size leads to faster convergence as theorized. Two important
remarks can be made with respect to letting kh = 0.3125. First of all, in the case
we set ε = 0, we go from 53 iterations for kh = 0.625 to 8 iterations for kh = 0.3125
when k = 1000. However, once we include the weight parameter (Table 7, column 5),
we obtain 9 iterations for kh = 0.625 and 8 iterations for kh = 0.3125 and the
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Table 8
Number of iterations for MP 2 using kh = 0.3125 using APD(ε). Approximate CSLP inversion

using one V(1, 1)-cycle. AD contains no CSLP preconditioner.

k n2 AD(0) APD(0)
Iterations Iterations

25 6400 4 4
50 25600 4 4
100 102400 3 4
250 640000 4 4
500 2560000 5 5
750 5760000 5 5
1000 10240000 7 8

Table 9
Results for the Marmousi problem using 10 gpw. All solvers are combined with the inexact

inversion of the CSLP preconditioner using shifts (1, 1). TL denotes two level.

f DEF-TL APD-TL DEF-TL APD-TL
Iterations Solve time (s)

1 3 6 1.72 4.08
10 16 5 7.30 3.94
20 31 5 77.34 19.85
40 77 5 1175.99 111.78

Table 10
Results for the Marmousi problem using 10 gpw using no CSLP preconditioner. TL denotes

two level.

f DEF-TL APD-TL DEF-TL APD-TL
Iterations Solve time (s)

1 10 12 1.41 2.76
10 20 12 2.44 2.80
20 35 12 17.15 15.15
40 82 12 219.39 85.87

convergence behaviors become very similar irrespective of using a finer grid resolution.
Second of all, the number of iterations with and without the CSLP preconditioner is
almost the same for all reported values of k in Table 8. It may be argued that for
fine grid resolutions, some computational time can be saved by excluding the CSLP
preconditioner as we need one multigrid iteration to approximate the inverse. The
numerical results from the previous and current section show that there are plenty
of optimization strategies to exploit when it comes to balancing a small and fixed
number of iterations and a fine-grid resolution. The latter is equally important to
obtain accurate solutions.

6.3. Two-dimensional nonconstant Marmousi model. In this section we
present the numerical results for the industrial two-dimensional Marmousi problem
(MP 4) (section 2). Results are reported in Tables 9 and 10. Starting with Table 9
we implement no correction using ε given that the grid for this model problem has
been resolved such that kh ≤ 0.39 on average and the maximum wave number is
approximately 400.2 Table 9 contains the results for frequencies f = 1, 10, 20, and
40 using 10 grids points per wavelength (gpw) for the largest wave number k. The
results show that even for this challenging problem, the APD scheme leads to very

2If we use the dimensionless model we obtain a wave number of
√

2π40
2587.5

2 × 2048× 8192 ≈ 398.
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Table 11
Number of iterations for MP 3 using kh = 0.625. AD contains no CSLP preconditioner. APD

contains the CSLP with shift (1, 1), which has been inverted inexactly.

k n3 APD(0) APD(0.00125)
Iterations Iterations

5 512 4 4
10 4096 4 4
25 64000 5 4
50 512000 5 4
75 1728000 6 4

satisfactory results. If we compare the results between DEF-TL and APD-TL, we
note an improved performance in terms of both metrics: solve time and iterations.
For f = 1, the number of iterations for APD-TL is larger than DEF-TL. The latter
method takes 6 iterations, while the former takes 3 iterations, which is clearly reflected
in the lower solve time. Once we start increasing the frequency, we note that the APD-
TL scheme quickly catches up in terms of both iterations and solve time. For example
for f = 40, we obtain 5 iterations and a total solve time of 111.78 seconds.

Table 10 repeats the same simulation without the use of the CSLP preconditioner.
We observe very similar behavior as compared to the results obtained for the constant
wave number problem (Table 7). Excluding the CSLP preconditioner and solely using
the DEF preconditioner results in a constant number of iterations and a significant
reduction in sequential solve time. If we use the old DEF preconditioner based on the
linear interpolation scheme, then a similar effect cannot be observed. For example,
for f = 40 Hz, we obtain 82 iterations versus 12 for the adapted scheme. These
results provide a promising basis for future research where the coarse-grid solve can be
optimized and balanced with respect to the number of iterations and time scalability
of the overarching solver.

6.4. Three-dimensional constant wave number model. In this section we
present some three-dimensional numerical results for MP 3. We have used the same
weight parameter ε from the two-dimensional test problem MP 2. From Table 11 we
can see that even without the weight parameter ε, the three-dimensional results show
promising features for scalability with respect to the number of iterations. These
results are in line with the previous results obtained for the one- and two-dimensional
constant wave number model. We similarly expect the importance of ε to decrease
along with kh.

7. Conclusion. We have shown that the near-zero eigenvalues for DEF-based
preconditioners are related to the near-kernel eigenmodes of the fine-grid operator A
and coarse-grid operator A2h being misaligned. This effect can be attributed to the
interpolation scheme not being able to sufficiently approximate the transferring of the
grid functions at very large wave numbers.

We have presented the first scheme to analytically measure the effect of these
errors on the construction of the projection preconditioner by means of the projec-
tion error. The quality of the DEF vectors determines whether the projection error
dominates. To minimize the projection error, we propose the implementation of a
higher-order approximation scheme to construct the deflation vectors. Incorporating a
weight parameter within the approximation scheme provides sufficient counterbalance
to mitigate the reappearance of the near-zero eigenvalues. Two options are available
for determining the weight parameter. The first is to use the analytical eigenvalues
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of B at the smallest index lmin,h and solve for ε. This approach is straightforward to
use as it primarily depends on the eigenvalues of B, which can be computed indepen-
dently of the eigenvalues of A. The second approach is to use the projection error
minimizing algorithm, which finds the ε which minimizes the error on average.

Even without adjusting the weight parameter, the spectrum of our proposed op-
erator is still the most favorable compared to other preconditioning operators based
on DEF. We have performed numerical testing and simulation of our model prob-
lems ranging from the simple one-dimensional constant wave number problem to the
challenging industrial Marmousi problem. The numerical results are in line with the
theoretical results as the number of iterations for both the one-, two-, and three-
dimensional constant wave number model problems are more or less wave number
independent. We furthermore provide numerical evidence supporting the notion that
our method also works for non-self-adjoint and heterogeneous problems, even when
the CSLP preconditioner is excluded. The latter allows for a substantial speedup.

Acknowledgment. We would like to thank three anonymous referees for their
constructive feedback and valuable comments which allowed us to greatly improve an
earlier version of this paper.
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[2] M. Bollhöfer, M. J. Grote, and O. Schenk, Algebraic multilevel preconditioner for the
Helmholtz equation in heterogeneous media, SIAM J. Sci. Comput., 31 (2009), pp. 3781–
3805.

[3] P.-H. Cocquet and M. J. Gander, How large a shift is needed in the shifted Helmholtz
preconditioner for its effective inversion by multigrid?, SIAM J. Sci. Comput., 39 (2017),
pp. A438–A478.

[4] M. Donatelli, A Note on Grid Transfer Operators for Multigrid Methods, preprint,
arXiv:0807.2565, 2008.

[5] M. Eiermann, O. G. Ernst, and O. Schneider, Analysis of acceleration strategies for
restarted minimal residual methods, J. Comput. Appl. Math., 123 (2000), pp. 261–292.

[6] M. Embree, How descriptive are GMRES convergence bounds?, manuscript.
[7] Y. Erlangga and E. Turkel, Iterative schemes for high order compact discretizations to the

exterior Helmholtz equation, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 647–660.
[8] Y. A. Erlangga and R. Nabben, On a multilevel Krylov method for the Helmholtz equation

preconditioned by shifted Laplacian, Electron. Trans. Numer. Anal., 31 (2008), 3.
[9] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner

for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471–1492.
[10] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee, On a class of preconditioners for solving

the Helmholtz equation, Appl. Numer. Math., 50 (2004), pp. 409–425.
[11] O. G. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with classical

iterative methods, in Numerical Analysis of Multiscale Problems, Springer, Berlin, 2012,
pp. 325–363.

[12] O. G. Ernst and M. J. Gander, Multigrid methods for Helmholtz problems: A convergent
scheme in 1d using standard components, in Direct and Inverse Problems in Wave Propa-
gation and Applications. De Gruyter, Berlin, 2013, pp. 135–186.

[13] C. Farhat, A. Macedo, and M. Lesoinne, A two-level domain decomposition method for the
iterative solution of high frequency exterior Helmholtz problems, Numer. Math., 85 (2000),
pp. 283–308.

[14] M. J. Gander, I. G. Graham, and E. A. Spence, Applying GMRES to the Helmholtz equation
with shifted Laplacian preconditioning: What is the largest shift for which wavenumber-
independent convergence is guaranteed?, Numer. Math., 131 (2015), pp. 567–614.

[15] M. J. Gander, F. Magoulés, and F. Nataf, Optimized Schwarz methods without overlap for
the Helmholtz equation, SIAM J. Sci. Comput., 24 (2002), pp. 38–60.

[16] M. J. Gander and H. Zhang, Optimized Schwarz methods with overlap for the Helmholtz
equation, SIAM J. Sci. Comput., 38 (2016), pp. A3195–A3219.

D
ow

nl
oa

de
d 

08
/1

8/
20

 to
 1

45
.9

4.
75

.8
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 

 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A928 VANDANA DWARKA AND KEES VUIK

[17] M. J. Gander and H. Zhang, Restrictions on the use of sweeping type preconditioners
for Helmholtz problems, in International Conference on Domain Decomposition Methods,
Springer, Cham, Switzerland, 2017, pp. 321–332.

[18] M. J. Gander and H. Zhang, A class of iterative solvers for the Helmholtz equation: Factor-
izations, sweeping preconditioners, source transfer, single layer potentials, polarized traces,
and optimized Schwarz methods, SIAM Rev., 61 (2019), pp. 3–76.

[19] L. G. Ramos and R. Nabben, On the spectrum of deflated matrices with applications to the
deflated shifted Laplace preconditioner for the Helmholtz equation, SIAM J. Matrix Anal.
Appl., 39 (2018), pp. 262–286.

[20] I. Graham, E. Spence, and E. Vainikko, Domain decomposition preconditioning for high-
frequency Helmholtz problems with absorption, Math. Comp., 86 (2017), pp. 2089–2127.

[21] I. Graham, E. Spence, and J. Zou, Domain Decomposition with Local Impedance Conditions
for the Helmholtz Equation, preprint, arXiv:1806.03731, 2018.

[22] I. G. Graham, E. A. Spence, and E. Vainikko, Recent results on domain decomposition
preconditioning for the high-frequency Helmholtz equation using absorption, in Modern
Solvers for Helmholtz Problems, Springer, 2017, Cham, Switzerland, pp. 3–26.

[23] A. Greenbaum and Z. Strakos, Matrices that generate the same Krylov residual spaces, in
Recent Advances in Iterative Methods, Springer, New York, 1994, pp. 95–118.

[24] M. Holtz and A. Kunoth, B-spline-based monotone multigrid methods, SIAM J. Numer.
Anal., 45 (2007), pp. 1175–1199.

[25] I. C. Ipsen, Expressions and bounds for the GMRES residual, BIT, 40 (2000), pp. 524–535.
[26] I. C. Ipsen, Departure from Normality and Eigenvalue Perturbation Bounds, Technical report,

North Carolina State University. Center for Research in Scientific Computation, 2003.
[27] J. Liesen and Z. Strakos, Convergence of GMRES for tridiagonal Toeplitz matrices, SIAM

J. Matrix Anal. Appl., 26 (2004), pp. 233–251.
[28] G. Meurant and J. D. Tebbens, The role eigenvalues play in forming GMRES residual norms

with non-normal matrices, Numer. Algorithms, 68 (2015), pp. 143–165.
[29] R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix

Anal. Appl., 16 (1995), pp. 1154–1171.
[30] R. B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput., 24 (2002), pp. 20–37.
[31] R. B. Morgan, Z. Yang, and B. Zhong, Pseudoeigenvector bases and deflated GMRES for

highly nonnormal matrices, Numer. Linear Algebra Appl., 23 (2016), pp. 1032–1045.
[32] R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value prob-

lems, SIAM J. Numer. Anal., 24 (1987), pp. 355–365.
[33] A. Pinkus, On L1-Approximation, Cambridge Tracts in Math. 93, Cambridge, Cambridge

University Press, 1989.
[34] D. F. Rogers, An Introduction to NURBS: With Historical Perspective, Morgan Kaufmann,

San Francisco, 2000.
[35] A. Sheikh, Development of the Helmholtz Solver Based on a Shifted Laplace Preconditioner

and a Multigrid Deflation Technique, Technical report, Delft University of Technology,
Delft, The Netherlands, 2014.

[36] A. Sheikh, D. Lahaye, L. G. Ramos, R. Nabben, and C. Vuik, Accelerating the shifted
Laplace preconditioner for the Helmholtz equation by multilevel deflation, J. Comput.
Phys., 322 (2016), pp. 473–490.

[37] A. Sheikh, D. Lahaye, and C. Vuik, On the convergence of shifted Laplace preconditioner
combined with multilevel deflation, Numer. Linear Algebra Appl., 20 (2013), pp. 645–662.

[38] J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga, Comparison of two-level precon-
ditioners derived from deflation, domain decomposition and multigrid methods, J. Sci.
Comput., 39 (2009), pp. 340–370.

[39] L. N. Trefethen, Pseudospectra of linear operators, SIAM Rev., 39 (1997), pp. 383–406.

D
ow

nl
oa

de
d 

08
/1

8/
20

 to
 1

45
.9

4.
75

.8
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Problem description
	Effect of nonnormality

	Deflated Krylov methods
	Deflation-based preconditioning for GMRES
	The deflation (DEF) preconditioner
	Inscalability and spectral analysis


	Eigenvector perturbations
	Higher-order DEF
	Quadratic approximation
	Spectral analysis
	Parameter sensitivity


	Numerical experiments
	One-dimensional constant wave number model
	MP 1-A
	MP 1-B

	Two-dimensional constant wave number model
	Two-dimensional nonconstant Marmousi model
	Three-dimensional constant wave number model

	Conclusion
	References

