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Abstract

This papers deals with a construction and convergence analysis of a finite difference scheme
for solving time-fractional porous medium equation. The governing equation exhibits both non-
local and nonlinear behaviour making the numerical computations challenging. Our strategy
is to reduce the problem into a single one-dimensional Volterra integral equation for the self-
similar solution and then to apply the discretization. The main difficulty arises due to the
non-Lipschitzian behaviour of the equation’s nonlinearity. By the analysis of the recurrence
relation for the error we are able to prove that there exists a family of finite difference methods
that is convergent for a large subset of the parameter space. We illustrate our results with a
concrete example of a method based on the midpoint quadrature.

Keywords: porous medium equation, nonlinear diffusion, fractional derivative, finite difference
method, Volterra equation

1 Introduction
In our previous investigations [30, 28, 29] we have considered the following time-fractional nonlinear
diffusion equation (also known as a time-fractional porous medium equation)

∂αt u = (umux)x , 0 < α < 1, m > 1, (1)

where the fractional derivative is of the Riemann-Liouville type

∂αt u(x, t) =
1

Γ(1− α)

∂

∂t

∫ t

0

(t− s)−αu(x, s)ds. (2)

The boundary conditions that we impose are the following

u(x, 0) = 0, u(0, t) = 1, x > 0, t > 0, (3)

where the nondimensionalization has been implicitly assumed. The above problem is a description
of an experiment where one measures the material properties of an essentailly one-dimensional half-
infinite medium under the water imbibition from the boundary (for a experimental results see [16,
34, 23, 12, 39]).

There is a wealth of literature concerning numerical methods for fractional differential equations
(both ODEs and PDEs) - some surveys can be found in [15, 4]. Concerning the linear fractional
diffusion the Reader can find relevant methods for example in [36, 24, 37]. The numerical methods
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for the main operator in the spatial diffusion, namely the fractional Laplacian, can be found in [20, 11].
As for the nonlinear version of the anomalous diffusion, an interesting paper recently appeared in
which the authors constructed a multi-grid waveform method of fast convergence [18]. Moreover,
a similar equation to ours has been solved in [3] in the context of petroleum industry. Some other
numerical approaches concern space-fractional nonlinear diffusion [17, 14], nonlinear source terms
[40, 38, 5] and variable order diffusion [26].

Our approach is based on a transformation of the governing PDE to the equivalent nonlinear
Volterra equation (for a recent survey of theory and numerical methods see [6]). In that case the clas-
sical convergence theory cannot be applied since the nonlinearity of the equation is non-Lipschitzian.
According to our best knowledge, there is a scarce literature concerning similar problems. A very
interesting paper is [7] where an iterative technique has been applied and convergence proofs given.
Moreover, in [8] a short summary of the theoretical and numerical character has been published.
Lastly, we mention our own work [31] from which the present considerations stem where we have
given the convergence proof assuming the kernel’s separation from zero. In the present discussion we
relax this assumption.

The paper is structured as follows. In the second section we formulate the problem in terms
of the Volterra setting starting from the self-similar form of the time-fractional porous medium
equation. We proceed to the main results in the third section where a construction of a convergent
finite difference method is given. We end the paper with some numerical simulations illustrating our
results.

2 Problem statement
The straightforward numerical approach is to start with the equation (1). This has been done for
example in [28] (but also see the recent approach in [18]) but Authors noted a very large compu-
tational cost and stability issues caused by the interplay of two factors: nonlocality (of the frac-
tional derivarive) and nonlinearity (of the flux). A more sensible method is to transform (1) into
its self-similar form and then to derive an appropriate numerical scheme. We begin by necessary
preparations.

If we substitute η = xt−α/2 for some 0 < α < 1 and denote u(x, t) = U(xt−α/2) we arrive at

(UmU ′)
′
=

[
(1− α)− α

2
η
d

dη

]
I0,1−α
− 2
α

U, 0 < α < 1, (4)

with the boundary conditions
U(0) = 1, U(∞) = 0. (5)

Here, Ia,bc is the Erdélyi-Kober operator [21, 22, 35]

Ia,bc U(η) =
1

Γ(b)

∫ 1

0

(1− s)b−1saU(s
1
c η)ds. (6)

Notice that (4) is an ordinary integro-differential equation which should be more tractable for nu-
merical work than (1).

There is a one more transformation that can be done in order to simplify the matters even
more. Notice that due to (5) our problem has a free-boundary which can cause difficulties to resolve
numerically (for some details see [10]). However, there exists a substitution that can take (4) into an
equivalent initial-value problem. Physical situation as well as theoretical considerations [2, 33, 32]
suggest that the solution of (4) has a compact support, i.e. there exists a point η∗ ≥ 0 such that

U(η) = 0 for η ≥ η∗. (7)
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This simply means that the wetting front propagates at a finite speed. Now, we can substitute

U(η) =
(
m(η∗)2

) 1
m y(z), z = 1− η

η∗
, (8)

which changes (4) into

m(ymy′)′ =

[
(1− α) +

α

2
(1− z)

d

dz

]
Fαy, 0 < α < 1, 0 ≤ z ≤ 1. (9)

where the linear operator Fα is defined by

Fαy(z) :=
1

Γ(1− α)

∫ 1

(1−z)
α
2

(1− s)−αy(1− s−
2
α (1− z))ds. (10)

Further, the same transformation yields the formula for wetting front position

η∗ =
1√

my(1)m
. (11)

Lastly, equation (9) can be integrated twice and transformed into a Volterra integral equation

y(z)m+1 =
m+ 1

m

∫ z

0

(α
2

+
(

1− α

2

)
z − t

)
Fαy(t)dt, (12)

which is of the main interest for this paper. It is a Volterra equation in which the nonlinear term in
non-Lipschitz (it can be seen by introducing a new function u = y1+m).

We can manipulate the integrand of (12) in order to explicitly write the kernel. This would
simplify the subsequent numerical implementation. To start, change the variable u = 1− s− 2

α (1− z)
in the definition of Fα given by (10)

Fαy(t) =
α

2

(1− t)α2
Γ(1− α)

∫ t

0

(
1−

(
1− z
1− u

)α
2

)−α
(1− u)−

α
2
−1 y(u)du. (13)

Now, plugging the above formula into (12) and changing the order of integration we obtain

y(z)m+1 =
m+ 1

m

α

2

1

Γ(1− α)

∫ z

0

[∫ z

u

(α
2

+
(

1− α

2

)
z − t

)
(1− t)

α
2

(
1−

(
1− t
1− u

)α
2

)−α
dt

]
y(u)

(1− u)
α
2

+1
du.

(14)
To simplify further we can substitute s =

(
1−t
1−u

)α
2 and arrive at

y(z)m+1 =

∫ z

0

m+ 1

m

1

Γ(1− α)

∫ 1

( 1−z
1−u)

α
2

(
s

2
α (1− u)−

(
1− α

2

)
(1− z)

)
s

2
α (1− s)−α︸ ︷︷ ︸

K(z,u)

 y(u)du.

(15)
Finally, we can notice the kernel K can be written in terms of the Incomplete Beta Function defined
by

B(x, a, b) :=

∫ x

0

(1− t)a−1tb−1dt. (16)

Hence,

y(z)m+1 =

∫ z

0

K(z, u)y(u)du, (17)
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where for 0 ≤ u ≤ z we have

K(z, u) :=
m+ 1

m

1

Γ(1− α)

[
(1− u)

(
B

(
4

α
+ 1, 1− α

)
−B

((
1− z
1− u

)α
2

,
4

α
+ 1, 1− α

))

−
(

1− α

2

)
(1− z)

(
B

(
2

α
+ 1, 1− α

)
−B

((
1− z
1− u

)α
2

,
2

α
+ 1, 1− α

))]
.

(18)

It is evident that the kernel is positive and continuous with a singular derivative. A class of equations
similar to the above has been a subject of very active investigations. For important results stating
the existence and uniqueness the Reader is invited to consult [9, 19, 27].

3 Finite difference scheme
Let us begin with introducing the grid

zn :=
n

N
, h :=

1

N
, n = 0, 1, ..., N. (19)

Following our previous investigations [31] we discretize the integral (17)∫ zn

0

K(zn, t)y(t)dt = h
n−1∑
i=1

wn,iK(zn, zi)y(zi) + δn(h), (20)

where δn(h) is the local consistency error. Furthermore, define the maximal error

δ(h) := max
1≤n≤N

|δn(h)|. (21)

For the weights, we assume their boundedness

0 < wn,i ≤ W. (22)

We can propose the following finite difference scheme for solving (17)

ym+1
n = h

n−1∑
i=1

wn,iKn,i yi, n = 2, 3, ..., N, (23)

where Kn,i := K(zn, zi).
The objective of the following is to prove that (23) is convergent provided we choose an appropriate

starting value y1. From (18) we notice that K(1, 1) = 0 and thus the kernel is not separated from
zero. Hence, we cannot use our previous results from [31]. However, several ingredients from our
developing theory will be useful. The first is a simple consequence of the integral equation structure
and discretization scheme.

Proposition 1. Let y be the nontrivial solution of (17) and yn are constructed via the iteration (23).
If δn(h) in (20) is non-negative (non-positive) for all n = 1, 2, ..., N , then y(nh) ≥ yn (y(nh) ≤ yn)
provided that y(h) ≥ y1 (y(h) ≤ y1).

This monotonicity result has been proved in [31]. The second piece of information about the
solution of (17) concerns the global estimates (for the proofs of the next two lemmas see [33]).
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Lemma 1. Let y be the nontrivial solution of (17). Then, the following estimates take place

C1z
2−α
m ≤ y(z) ≤ C2z

2−α
m , 0 ≤ z ≤ 1, 0 < α ≤ 1, (24)

where C1,2 are given by

C1 =


((

α
2

)1−α Γ( 2−α
m )

Γ(2−α+ 2−α
m )

1
2−α+m(3−α)

) 1
m+1

, 0 < α ≤ 1− 1
m+1

;((
α
2

)2−α Γ(1+ 2−α
m )

Γ(2−α+ 2−α
m )

1
2−α

) 1
m+1

, 1− 1
m+1

< α ≤ 1,

C2 = Γ(3− α)−
1

m+1 .

(25)

Our solution is thus bounded from below and above by a power function of the same class. As it
appears, something more detailed can be said about the behaviour of y at the origin.

Lemma 2. The solution y = y(z) of (17) satisfies

y(z) ∼
(α

2

)2−α Γ
(

2−α
m

)
Γ
(
1− α + 2−α

m

) z
2−α
m

(2− α)
(
1 + 1

m

)
− 1

as z → 0+, 0 < α ≤ 1. (26)

The asymptotics is thus of power-type and the constant of proportionality is known. As a quick
application of the above lemma we propose a sensible choice of the starting value of the numerical
method (23)

y1 :=
(α

2

)2−α Γ
(

2−α
m

)
Γ
(
1− α + 2−α

m

) h
2−α
m

(2− α)
(
1 + 1

m

)
− 1

, (27)

which introduces the starting error of higher order than h
2−α
m as h→ 0+.

Now, we proceed to the proof of the fact that (23) is convergent. First, we state an auxiliary
lemma which can be thought as a generalization of the discreet Gronwall-Bellman’s Lemma (for a
thorough review of similar results see [1]).

Lemma 3. Let {en}, n = 1, 2, ... be a sequence of positive numbers satisfying

en ≤
1

nβ

(
A

n−1∑
i=1

(n− i)γ ei +B

)
, n ≥ 2, (28)

where A, B are positive constants, β ≥ 1 and γ ≥ 0. Then, provided that e1 ≤ B we have

en ≤ B
f(n)

nβ
, (29)

where f(1) = 1 and

f(n) = 1 + Anγ

[
n−1∏
j=2

(
1 + Ajγ−β

)
+

n−1∑
i=2

1

iβ

n−1∏
j=i+1

(
1 + Ajγ−β

)]
, n ≥ 2. (30)

Proof. The proof proceeds by mathematical induction. The right-hand side of (29) reduces to B
for n = 1 (with the usual convention for the product:

∏0
i=1 = 1) which yields e1 ≤ B. The initial

inductive step is thus satisfied by the assumption.
Assume now that (29) is satisfied for (n− 1)-th term. We will show that this also is the case for

en. To this end, use the inductive assumption to obtain

en ≤
B

nβ

(
A

n−1∑
i=1

(n− i)γ f(i)

iβ
+ 1

)
. (31)

5



We can immediately estimate the sum to obtain

en ≤
B

nβ

(
Anγ

n−1∑
i=1

f(i)

iβ
+ 1

)
. (32)

In order to make the above inequality to satisfy the assertion we require that

Anγ
n−1∑
i=1

f(i)

iβ
+ 1 = f(n), f(1) = 1. (33)

We will show that the solution of this nonlocal recurrence equation is equal to (30). Define g(n) :=∑n−1
i=1 f(i)i−β and notice that

g(n+ 1)− g(n) =
f(n)

nβ
, g(2) = 1. (34)

Hence, thanks to (33) we have

Anγg(n) + 1 = nβ (g(n+ 1)− g(n)) , g(2) = 1. (35)

After rearranging we obtain the following nonhomogeneous recurrence relation

g(n+ 1) = n−β +
(
1 + Anγ−β

)
g(n), g(2) = 1. (36)

To simplify the notation we temporarily introduce a(n) := n−β and b(n) := 1 +Anγ−β and solve the
following equation by the successive iteration

g(n+ 1) = a(n) + b(n)g(n) = a(n) + a(n− 1)b(n) + b(n)b(n− 1)g(n− 1) =

= a(n) + a(n− 1)b(n) + a(n− 2)b(n− 1)b(n) + b(n)b(n− 1)b(n− 2)g(n− 2) = ...
(37)

Continuing in this inductive fashion we can show that

g(n+ 1) =
n∏
j=2

b(j) +
n∑
i=2

a(i)
n∏

j=i+1

b(j), (38)

where the convention
∏1

j=2 = 1 is used. Going back to the original variables we have

g(n+ 1) =
n∏
j=2

(
1 + Ajγ−β

)
+

n∑
i=2

1

iβ

n∏
j=i+1

(
1 + Ajγ−β

)
, n ≥ 1, (39)

and if we use (33) and the definition of g(n) we can state the result in terms of the f(n) function

f(n) = 1 + Anγ

[
n−1∏
j=2

(
1 + Ajγ−β

)
+

n−1∑
i=2

1

iβ

n−1∏
j=i+1

(
1 + Ajγ−β

)]
, n ≥ 2. (40)

This concludes the proof.

Having the above in hand we can state the main result.

Theorem 1. Assume that 0 ≤ z ≤ X < 1 and let yn be the calculated from (23) approximation of the
solution of (17). Moreover, define the error en := yn − y(nh) and assume that |e1| ≤ 1

(m+1)Cm1

δ(h)
h2−α

,
where C1 is from Lemma 1. Then, for a quadrature with δn(h) ≤ 0 for every n ∈ N we have

|en| ≤ const.× δ(h)hα−A−1 as h→ 0+ with nh→ zn, (41)

with A = WD
(m+1)Cm1

, where W is from (22) and D = m+1
2m

1
Γ(2−α)

(
1

1−X

)1−α.
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Proof. Notice that by the assumption and Proposition 1 we have en := yn − y(nh) ≥ 0. Using the
Lagrange’s Mean-Value Theorem we obtain

ym+1
n − y(nh)m+1 = (m+ 1)ξmn en, (42)

where y(nh) ≤ ξn ≤ yn. On the other hand, from (17) and (20)

ym+1
n − y(nh)m+1 = h

n−1∑
i=1

wn,iKn,iei − δn(h) ≤ h

n−1∑
i=1

wn,iKn,iei + δ(h). (43)

Therefore, from (22)

(m+ 1)y(nh)men ≤ Wh

n−1∑
i=1

Kn,iei + δ(h). (44)

Now, using Lemma 1 we can estimate the left-hand side

(m+ 1)Cm
1 (nh)2−αen ≤ Wh

n−1∑
i=1

Kn,iei + δ(h). (45)

The next step is to find an appropriate bound for the kernel K. To this end we go back to (15) and
notice that

s
α
2 (1− u)−

(
1− α

2

)
(1− z) = s

α
2 (1− u)

[
1− s−

α
2

(
1− α

2

) 1− z
1− u

]
≤ 1

2
, (46)

because ( 1−z
1−u)α/2 ≤ s ≤ 1. Hence,

K(z, u) ≤ m+ 1

2m

1

Γ(1− α)

∫ 1

( 1−z
1−u )α/2

(1− s)−αds =
m+ 1

2m

1

Γ(2− α)

(
1−

(
1− z
1− u

)α/2)1−α

. (47)

Moreover, by convexity(
1−

(
1− z
1− u

)α/2)1−α

=

(
1−

(
1− z − u

1− u

)α/2)1−α

≤
(
z − u
1− u

)1−α

. (48)

Finally,

K(z, u) ≤ m+ 1

2m

1

Γ(2− α)

(
z − u
1−X

)1−α

=: D (z − u)1−α , (49)

where we have used the assumption that 0 ≤ z ≤ X < 1.
Now, going back to (45) and noticing that zn − zi = h(n− i) we can write

en ≤
1

n2−α

(
WD

(m+ 1)Cm
1

n−1∑
i=1

(n− i)1−αei +
1

(m+ 1)Cm
1

δ(h)

h2−α

)

=:
1

n2−α

(
A

n−1∑
i=1

(n− i)1−αei +B

)
.

(50)

This form of the inequality can be plugged into Lemma 3 to yield

en ≤
1

(m+ 1)Cm
1

δ(h)

(nh)2−αf(n). (51)
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It is interesting for us to learn how does the function f behave asymptotically as n→∞. To see the
exact order we write it explicitly as

f(n) = 1 + An1−α

[
n−1∏
j=2

(
1 +

A

j

)
+

n−1∑
i=2

1

i2−α

n−1∏
j=i+1

(
1 +

A

j

)]
, n ≥ 2. (52)

First, we can use Stirling’s formula to obtain

n−1∏
j=2

(
1 +

A

j

)
=

Γ(n+ A)

Γ(n)Γ(2 + A)
∼ nA

Γ(2 + A)
, (53)

as n→∞. Similarly,

n−1∑
i=2

1

i2−α

n−1∏
j=i+1

(
1 +

A

j

)
=

Γ(n+ A)

Γ(n)

n−1∑
i=2

1

i2−α
Γ(i+ 1)

Γ(i+ 1 + A)

∼ nA

(
1

Γ(2 + A)
+
∞∑
i=2

1

i2−α
Γ(i+ 1)

Γ(i+ 1 + A)

)
,

(54)

as n→∞. Therefore, because nh remains bounded for large n, we have

en ≤ const.× δ(h)hα−A−1 as n→∞. (55)

This concludes the proof.

Up to this point we have a result stating that a family of numerical methods (23) with δn(h) ≤ 0
will be convergent provided that the constant A is sufficiently small. Notice that since by Lemma 2
the solution y is not regular at z → 0+ we do not have to (and ought to!) use a high-order quadrature.
Moreover, since y(z)m+1 is Lipschitz continuous for X ≤ z ≤ 1, the classical theory of numerical
methods for integral equations works on that interval. Hence, we are only interested in solving (17)
for the neighbourhood of zero, i.e. 0 ≤ z ≤ X. Eventually, X can be made sufficiently small.

As an example of the above we choose the quadrature to be the midpoint method and formulate
the result as a corollary.

Corollary 1. Assume that 0 ≤ z ≤ X < 1 and let yn be the calculated from (23) approximation
to the solution of (17). If the quadrature (20) is chosen to be the midpoint method, i.e. y1 chosen
according to (27) and

ym+1
2n+k =

1

2
hK2n+k,k yk + 2h

n∑
i=1

K2n+k,2i+k−1 y2i+k−1, k ∈ {0, 1} , n > 1, (56)

then it is convergent provided that

m > 2− α and A =
2D

(m+ 1)Cm
1

< α +
2− α
m

. (57)

Moreover, the order of convergence is at least

2− (2− α)

(
1− 1

m

)
− 2D

(m+ 1)Cm
1

. (58)
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Proof. We have to check whether the assumptions of the Theorem 1 are satisfied. First, it is an easy
geometrical reasoning to ascertain that δn(h) ≤ 0 when y is locally a concave function (for details
see [31]). This is precisely the present case due to Lemma 2 and the assumption that m > 2 − α
(since 0 < α < 1).

As was noted in [13] the midpoint quadrature for a nonsmooth function will, in our case, have
an order of δ(h) ∝ h1+(2−α)/m (in contrast with the second order for smooth functions). Since we are
initializing the iteration from (27) which is an asymptotic form of the solution at z → 0+, the starting
error will be µ = o(h(2−α)/m). The number (2− α)/m is always greater than 1 + (2− α)/m− 2 + α
and hence |e1| will be smaller than const. × δ(h)hα−2 for sufficiently small h. The assumption of
Theorem 1 concerning the initial step is thus satisfied.

Finally, we can estimate the convergence error. From Theorem 1 we have

|en| ≤ const.× h1−(2−α)(1− 1
m)−A+1. (59)

To prove the convergence we have to show that the exponent is a positive constant. To this end
notice that by the assumption

1− (2−α)

(
1− 1

m

)
−A+ 1 > 1− (2−α)

(
1− 1

m

)
−α− 2− α

m
+ 1 = 1− 2 +α−α+ 1 = 0. (60)

Therefore the method is convergent.

It can be verified that Cm
1 and D are bounded for any m and, hence, the last term in (58) can be

arbitrarily close to zero for sufficiently large m. Moreover, we can see that the theoretical estimate
on the convergence error converges to α for large m. Therefore, the method is convergent for any
0 < α < 1 for sufficiently large m.

We illustrate the above result by a series of numerical examples computing the solution of (17)
by (56) for different values of α and m. In each simulation we approximate the order of convergence
by use of the Aitken’s Method (it finds the order by extrapolation and refinement of the grid with
N , 2N and 4N steps, see [25]) and compare it to the theoretical estimate (58). The results obtained
in MATLAB are given in Tab. 1.

First, we have to remark that obtaining an accurate value of the order of convergence is very
demanding on the computer power. We have settled to choosing N = 3 · 103 as the number of
subdivisions of the [0, 1] interval (hence, the maximal division in Aitken’s method is 12 · 103).

Notice that for α → 1− the method order approaches 1 both theoretically (for large m) and
empirically. For smaller values of α the empirical order gets lower but this fact can be due to the
singularity of the kernel (18) at α = 0, which is difficult to resolve numerically. In almost every case
the theoretical estimate is lower than the numerically found value of the order. This was anticipated
since the value (58) is not optimal - it depends on the bound from Lemma 1 which might not be
accurate enough. The three small exceptions to the above, that is (α,m) = (0.9, 1) and (0.99, 1) and
(0.99, 10), are most probably caused by not sufficiently large N used in our simulations to resolve
the empirical order. It also may be conjectured that, guessing from our simulations, the true order
of the method is equal to 1 for, at least, α close to unity. The verification of this claim requires more
refined proof techniques and numerical simulations which is the main goal of our future work.

4 Conclusion
We have devised a convergent numerical method for solving the nonlocal nonlinear porous medium
equation. Due to the non-Lipschitzian nonlinearity, the classical proof methods could have not been
used. Our approach gives an estimate on the convergence error but it is clear that it does not cover all
of the admissible (α,m) parameter space and is not optimal. One of the reasons is the C1 constant
which enlarge the essential exponent A. The object of our future work will be to overcome this
difficulty and obtain more strict bounds on the convergence order.
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α m theoretical order (58) empirical order

α = 0.1
m = 1463 0 0.83
m = 10000 0.09 0.98

α = 0.2
m = 252 0 0.64
m = 1000 0.15 0.94

α = 0.3
m = 80 0 0.58
m = 100 0.06 0.63

α = 0.4
m = 33 0 0.60
m = 100 0.27 0.79

α = 0.5
m = 15 0 0.66
m = 100 0.42 0.88

α = 0.6
m = 1 0.16 1.01
m = 10 0.55 0.93

α = 0.7
m = 1 0.44 0.90
m = 10 0.66 0.95

α = 0.8
m = 1 0.68 0.87
m = 10 0.78 0.97

α = 0.9
m = 1 0.88 0.85
m = 10 0.77 0.97

α = 0.99
m = 1 1.04 0.83
m = 10 1.08 1.00

Table 1: Results of the simulations done for N = 3000. For each α the corresponding m has been
chosen for the theoretical estimate on the order (58) to be non-negative.

10



Acknowledgement
This research was supported by the National Science Centre, Poland under the project with a signa-
ture NCN 2015/17/D/ST1/00625.

References
[1] William F Ames and BG Pachpatte. Inequalities for differential and integral equations, volume

197. Academic press, 1997.

[2] FV Atkinson and LA Peletier. Similarity profiles of flows through porous media. Archive for
Rational Mechanics and Analysis, 42(5):369–379, 1971.

[3] Abeeb A Awotunde, Ryad A Ghanam, Suliman S Al-Homidan, and Nasser-eddine Tatar. Nu-
merical schemes for anomalous diffusion of single-phase fluids in porous media. Communications
in Nonlinear Science and Numerical Simulation, 39:381–395, 2016.

[4] Dumitru Baleanu, Kai Diethelm, Enrico Scalas, and Juan J Trujillo. Fractional calculus: models
and numerical methods, volume 3. World Scientific, 2012.

[5] AH Bhrawy. A jacobi spectral collocation method for solving multi-dimensional nonlinear frac-
tional sub-diffusion equations. Numerical Algorithms, 73(1):91–113, 2016.

[6] Hermann Brunner. Volterra Integral Equations: An Introduction to Theory and Applications,
volume 30. Cambridge University Press, 2017.

[7] Evelyn Buckwar. Iterative Approximation of the Positive Solutions of a Class of Nonlinear
Volterra-type Integral Equations. Logos Verlag, 1997.

[8] Evelyn Buckwar. On a nonlinear volterra integral equation. In Volterra equations and applica-
tions, pages 157–162. CRC Press, 2000.

[9] PJ Bushell. On a class of volterra and fredholm non-linear integral equations. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 79, pages 329–335. Cambridge Univ
Press, 1976.

[10] John Crank. Free and moving boundary problems. Oxford University Press, 1987.

[11] Nicole Cusimano, Félix del Teso, Luca Gerardo-Giorda, and Gianni Pagnini. Discretizations of
the spectral fractional laplacian on general domains with dirichlet, neumann, and robin boundary
conditions. SIAM Journal on Numerical Analysis, 56(3):1243–1272, 2018.

[12] Eduardo N de Azevedo, Paulo L de Sousa, Ricardo E de Souza, M Engelsberg, Mirla de N
do N Miranda, and Maria Aparecida Silva. Concentration-dependent diffusivity and anomalous
diffusion: a magnetic resonance imaging study of water ingress in porous zeolite. Physical Review
E, 73(1):011204, 2006.

[13] Lj Dedić, M Matić, and J Pečarić. On euler midpoint formulae. The ANZIAM Journal,
46(03):417–438, 2005.

[14] Félix del Teso. Finite difference method for a fractional porous medium equation. Calcolo,
51(4):615–638, 2014.

[15] Kai Diethelm and Neville J Ford. Analysis of fractional differential equations. Journal of
Mathematical Analysis and Applications, 265(2):229–248, 2002.

11



[16] Abd El-Ghany El Abd and Jacek J Milczarek. Neutron radiography study of water absorption in
porous building materials: anomalous diffusion analysis. Journal of Physics D: Applied Physics,
37(16):2305, 2004.

[17] Vincent J Ervin, Norbert Heuer, and John Paul Roop. Numerical approximation of a time
dependent, nonlinear, space-fractional diffusion equation. SIAM Journal on Numerical Analysis,
45(2):572–591, 2007.

[18] Francisco J Gaspar and Carmen Rodrigo. Multigrid waveform relaxation for the time-fractional
heat equation. SIAM Journal on Scientific Computing, 39(4):A1201–A1224, 2017.

[19] Gustaf Gripenberg. Unique solutions of some volterra integral equations. Mathematica Scandi-
navica, 48(1):59–67, 1981.

[20] Yanghong Huang and Adam Oberman. Numerical methods for the fractional laplacian: A finite
difference-quadrature approach. SIAM Journal on Numerical Analysis, 52(6):3056–3084, 2014.

[21] Virginia S Kiryakova. Generalized fractional calculus and applications. CRC Press, 1993.

[22] Virginia S Kiryakova and Bader N Al-Saqabi. Transmutation method for solving Erdélyi-
Kober fractional differintegral equations. Journal of Mathematical Analysis and Applications,
211(1):347–364, 1997.

[23] Michel Küntz and Paul Lavallée. Experimental evidence and theoretical analysis of anomalous
diffusion during water infiltration in porous building materials. Journal of Physics D: Applied
Physics, 34(16):2547, 2001.

[24] Xianjuan Li and Chuanju Xu. A space-time spectral method for the time fractional diffusion
equation. SIAM Journal on Numerical Analysis, 47(3):2108–2131, 2009.

[25] Peter Linz. Analytical and numerical methods for Volterra equations, volume 7. Siam, 1985.

[26] Behrouz Parsa Moghaddam and José António Tenreiro Machado. A stable three-level explicit
spline finite difference scheme for a class of nonlinear time variable order fractional partial
differential equations. Computers & Mathematics with Applications, 73(6):1262–1269, 2017.

[27] Wojciech Okrasiński. On a nonlinear ordinary differential equation. In Annales Polonici Math-
ematici, volume 3, pages 237–245, 1989.

[28] Łukasz Płociniczak. Approximation of the erdélyi–kober operator with application to the time-
fractional porous medium equation. SIAM Journal on Applied Mathematics, 74(4):1219–1237,
2014.

[29] Łukasz Płociniczak. Analytical studies of a time-fractional porous medium equation. deriva-
tion, approximation and applications. Communications in Nonlinear Science and Numerical
Simulation, 24(1):169–183, 2015.

[30] Łukasz Płociniczak and Hanna Okrasińska. Approximate self-similar solutions to a nonlinear
diffusion equation with time-fractional derivative. Physica D: Nonlinear Phenomena, 261:85–91,
2013.

[31] Łukasz Płociniczak and Hanna Okrasińska-Płociniczak. Finite difference method for a Volterra
equation with a power-type nonlinearity. arXiv:1705.03073, 2017.

[32] Łukasz Płociniczak and Mateusz Świtała. Compactly supported solution of the time-fractional
porous medium equation on the half-line. preprint.

12

http://arxiv.org/abs/1705.03073


[33] Łukasz Płociniczak and Mateusz Świtała. Existence and uniqueness results for a time-fractional
nonlinear diffusion equation. preprint.

[34] NMM Ramos, JMPQ Delgado, and VP De Freitas. Anomalous diffusion during water absorption
in porous building materials–experimental evidence. In Defect and Diffusion Forum, volume 273,
pages 156–161. Trans Tech Publ, 2008.

[35] Ian Naismith Sneddon. The use in mathematical physics of Erdélyi-Kober operators and of
some of their generalizations. In Fractional Calculus and its applications, pages 37–79. Springer,
1975.

[36] Charles Tadjeran, Mark M Meerschaert, and Hans-Peter Scheffler. A second-order accurate
numerical approximation for the fractional diffusion equation. Journal of Computational Physics,
213(1):205–213, 2006.

[37] Santos B Yuste and Luis Acedo. An explicit finite difference method and a new von neumann-
type stability analysis for fractional diffusion equations. SIAM Journal on Numerical Analysis,
42(5):1862–1874, 2005.

[38] Fanhai Zeng, Fawang Liu, Changpin Li, Kevin Burrage, Ian Turner, and Vo Anh. A crank–
nicolson adi spectral method for a two-dimensional riesz space fractional nonlinear reaction-
diffusion equation. SIAM Journal on Numerical Analysis, 52(6):2599–2622, 2014.

[39] Alexey A Zhokh, Andrey A Trypolskyi, and Peter E Strizhak. Application of the time-fractional
diffusion equation to methyl alcohol mass transfer in silica. In Theory and Applications of Non-
integer Order Systems, pages 501–510. Springer, 2017.

[40] Pinghui Zhuang, Fawang Liu, Vo Anh, and I Turner. Numerical methods for the variable-
order fractional advection-diffusion equation with a nonlinear source term. SIAM Journal on
Numerical Analysis, 47(3):1760–1781, 2009.

13


	1 Introduction
	2 Problem statement
	3 Finite difference scheme
	4 Conclusion

