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Abstract

In this paper, we first devise an ensemble hybridizable discontinuous Galerkin (HDG) method
to efficiently simulate a group of parameterized convection diffusion PDEs. These PDEs have
different coefficients, initial conditions, source terms and boundary conditions. The ensemble
HDG discrete system shares a common coefficient matrix with multiple right hand side (RHS)
vectors; it reduces both computational cost and storage. We have two contributions in this paper.
First, we derive an optimal L2 convergence rate for the ensemble solutions on a general polygonal
domain, which is the first such result in the literature. Second, we obtain a superconvergent rate
for the ensemble solutions after an element-by-element postprocessing under some assumptions
on the domain and the coefficients of the PDEs. We present numerical experiments to confirm
our theoretical results.

1 Introduction

A challenge in numerical simulations is to reduce computational cost while keeping accuracy. To-
ward this end, many fast algorithms have been proposed, which include domain decomposition
methods [30], multigrid methods [38], interpolated coefficient methods [8,16,34], and so on. These
methods are only suitable for a single simulation, not for a group of simulations with different
coefficients, initial conditions, source terms and boundary conditions in many scenarios; for exam-
ple, one needs repeated simulations to obtain accurate statistical information about the outputs of
interest in some uncertainty quantification problems. A common way is to treat the simulations
seperately; this requires computational effort and memory. Parallel computing is one method that
can solve this problem if sufficient memory is available.

However, the computational effort and storage requirement is still a great challenge in real
simulations. An ensemble method was proposed by Jiang and Layton [25] to address this issue.
They studied a set of J solutions of the Navier-Stokes equations with different initial conditions
and forcing terms. This algorithm uses the mean of the solutions to form a common coefficient
matrix at each time step. Hence, the problem is reduced to solving one linear system with many
right hand side (RHS) vectors, which can be efficiently computed by many existing algorithms,
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such as LU factorization, GMRES, etc. The ensemble scheme has been extended to many different
models; see, e.g., [17,19–24,26,27]. Recently, Luo and Wang [28] extended this idea to a stochastic
parabolic PDE. It is worthwhile to mention that all the above works only obtained suboptimal L2

convergence rate for the ensemble solutions.

All the previous works have used continuous Galerkin (CG) methods; however, for high Reynolds
number flows [23,26,36] using a modified CG method may still cause non-physical oscillations. The
literature on discontinuous Galerkin (DG) methods for simulating a single convection diffusion
PDE is already substantial and the research in this area is still active; see, e.g. [1,15,37]. However,
there are no theoretical or numerical analysis works on DG methods for the spatial discretization
of a group of parameterized convection diffusion equations.

However, the number of degrees of freedom for DG methods is much larger compared to CG
methods; this is the main drawback of DG methods. Hybridizable discontinuous Galerkin (HDG)
methods were originally proposed by Cockburn, Gopalakrishnan, and Lazarov in [9] to fix this
issue. The HDG methods are based on a mixed formulation and introduce a numerical flux and a
numerical trace to approximate the flux and the trace of the solution. The discrete HDG global
system is only in terms of the numerical trace variable since we can element-by-element eliminate
the numerical flux and solution. Therefore, HDG methods have a significantly smaller number
of globally coupled degrees of freedom compareed to DG methods. Moreover, HDG methods
keep the advantages of DG methods, which are suitable for convection diffusion problems; see,
e.g., [4–6,18,29]. Also, HDG methods have been applied to flow problems [2,10,12,13,13,14,31,32]
and hyperbolic equations [7, 33,35].

In this work, we propose a new Ensemble HDG method to investigate a group of parame-
terized convection diffusion equations on a Lipschitz polyhedral domain Ω ⊂ Rd (d ≥ 2). For
j = 1, 2, · · · , J , find (qj , uj) satisfying

cjqj +∇uj = 0 in Ω× (0, T ],

∂tuj +∇ · qj + βj · ∇uj = fj in Ω× (0, T ],

uj = gj on ∂Ω× (0, T ],

uj(·, 0) = u0
j in Ω,

(1.1)

where the vector vector fields βj satisfy

∇ · βj = 0. (1.2)

We make other smoothness assumptions on the data of system (1.1) for our analysis.

The HDG Method. To better describe the Ensemble HDG method, we first give the semidis-
cretization of the system (1.1) use an existing HDG method [11]. Let Th be a collection of disjoint
simplexes K that partition Ω and let ∂Th be the set {∂K : K ∈ Th}. Let e ∈ Eoh be the interior face
if the Lebesgue measure of e = ∂K+ ∩ ∂K− is non-zero, similarly, e ∈ E∂h be the boundary face if
the Lebesgue measure of e = ∂K ∩ ∂Ω is non-zero. Finally, we set

(w, v)Th :=
∑
K∈Th

(w, v)K , 〈ζ, ρ〉∂Th :=
∑
K∈Th

〈ζ, ρ〉∂K ,

where (·, ·)K denotes the L2(K) inner product and 〈·, ·〉∂K denotes the L2 inner product on ∂K.

Let Pk(K) denote the set of polynomials of degree at most k on the element K. We define the
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following discontinuous finite element spaces

Vh := {v ∈ [L2(Ω)]d : v|K ∈ [Pk(K)]d,∀K ∈ Th},
Wh := {w ∈ L2(Ω) : w|K ∈ Pk(K), ∀K ∈ Th},
Zh := {z ∈ L2(Ω) : z|K ∈ Pk+1(K),∀K ∈ Th},
Mh := {µ ∈ L2(εh) : µ|e ∈ Pk(e),∀e ∈ Eh, µ|E∂h = 0}.

We use the notation ∇vh and ∇ · rh to denote the gradient of vh ∈ Wh and the divergence of
rh ∈ Vh applied piecewise on each element K ∈ Th.

The semidiscrete HDG method finds (qjh, ujh, ûjh) ∈ Vh × Wh × Mh such that for all j =
1, 2 · · · , J

(cjqjh, rh)Th − (ujh,∇ · rh)Th + 〈ûjh, rh · n〉∂Th = −〈gj , rh · n〉ε∂h ,

(∂tujh, vh)Th − (qjh + βjujh,∇vh)Th + 〈q̂jh · n, vh〉∂Th
+〈βj · nûjh, vh〉∂Th + 〈βj · ngj , vh〉ε∂h = (fj , vh)Th ,

〈q̂jh · n+ βj · nûjh, v̂h〉∂Th = 0,

(1.3)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh. Here the numerical traces on ∂Th are defined as

q̂jh · n = qjh · n+ τj(ujh − ûjh) on ∂Th\ε∂h, (1.4)

q̂jh · n = qjh · n+ τj(ujh − gj) on ε∂h, (1.5)

where τj are positive stabilization functions defined on ∂Th satisfying

τj = τ + βj · n on ∂Th,

and the function τ is a positive constant on each element K ∈ Th.
The Ensemble HDG Method. It is obvious to see that the system (1.3)-(1.5) has J different

coefficient matrices. The idea of the Ensemble HDG method is to treat the system to share one
common coefficient matrix by changing the variables cj and βj into their ensemble means. Before
we define the Ensemble HDG method, we give some notation first.

Suppose the time domain [0, T ] is uniformly partition into N steps with time step ∆t and let
tn = n∆t for n = 1, 2 · · · , N . Moreover, c̄n and β̄n stand for the ensemble means of the inverse
coefficient of diffusion and convection coefficient at time tn, respectively, defined by

c̄n =
1

J

J∑
j=1

cnj and β̄n =
1

J

J∑
j=1

βn
j , (1.6)

the superscript n denotes the function value at the time tn.
Substitute (1.4)-(1.5) into (1.3), and use some simple algebraic manipulation, the ensemble mean

(1.6), and the previous step to replace the current step to obtain the Ensemble HDG formulation:
find (qnjh, u

n
jh, û

n
jh) ∈ Vh ×Wh ×Mh such that for all j = 1, 2, · · · , J

(c̄nqnjh, rh)Th − (unjh,∇ · rh)Th + 〈ûnjh, rh · n〉∂Th = ((c̄n − cnj )qn−1
jh , rh)Th

−〈gnj , rh · n〉E∂h , (1.7a)

(∂+
t u

n
jh, vh)Th + (∇ · qnjh, vh)Th − 〈q

n
jh · n, v̂h〉∂Th + (β

n · ∇unjh, vh)Th

−〈βn · n, unjhv̂h〉∂Th + 〈τ(unjh − ûnjh), vh − v̂h〉∂Th = (fnj , vh)Th + 〈τgnj , vh〉E∂h
+((β

n − βn
j ) · ∇un−1

jh , vh)Th − 〈(β
n − βn

j ) · n, un−1
jh v̂h〉∂Th , (1.7b)
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for all (rh, vh, v̂h) ∈ Vh × Wh × Mh. The initial conditions u0
jh and q0

jh will be specified later.
Finally, we let

∂+
t u

n
jh =

unjh − u
n−1
jh

∆t
.

It is easy to see that the system (1.7) shares one matrix with J RHS vectors, and it is more
efficient to solve than performing J separate simulations. It is worth mentioning that this is the first
time that an ensemble scheme has been derived incorporating HDG methods; it is even the first
time for DG methods. We provide a rigorous error analysis to obtain an optimal L2 convergence
rate for the flux qj and the solution uj on general polygonal domain Ω in Section 3. To the best of
our knowledge, this is the first time in the literature. One of the excellent features of HDG methods
is that we can obtain superconvergence after an element-by-element postprocessing; we show that
this result also holds in the Ensemble HDG algorithm under some conditions on the domain Ω
and the velocity vector fields βj . This is also the first superconvergent ensemble algorithm in the
literature. Finally, some numerical experiments are presented to confirm our theoretical results in
Section 4. Furthermore, we also present numerical results for convection dominated problems with
c−1
j � 1 to demonstrate the performance of the Ensemble HDG method in this difficult case. The

results show that the Ensemble HDG method is able to capture sharp layers in the solution. A
thorough error analysis of the Ensemble HDG method for the convection dominated case will be
in another paper.

2 Stability

We begin with some notation. We use the standard notation Wm,p(D) for Sobolev spaces on D
with norm ‖ · ‖m,p,D and seminorm | · |m,p,D. We also write Hm(D) instead of Wm,2(D), and we
omit the index p in the corresponding norms and seminorms. Also, we omit the index m when
m = 0 in the corresponding norms and seminorms. Moreover, we drop the subscript D if there is
no ambiguity in the statement. We denote by C(0, T ;Wm,s(Ω)) the Banach space of all continuous
functions from [0, T ] into Wm,s(Ω), and Lp(0, T ;Wm,s(Ω)) for 1 ≤ p ≤ ∞ is similarly defined.

To obtain the stability of (1.7) in this section, we assume the data of (1.1) satisfies

(A1): fj ∈ C(0, T ;L2(Ω)), gj ∈ C(0, T ;H1/2(∂Ω)), u0
j ∈ L2(Ω), cj ∈ C(0, T ;L∞(Ω)) and the

vector fields βj ∈ C(0, T ;W 1,∞(Ω)).

(A2): There exists a postive constant c0 such that cnj ≥ c0, and the ensemble mean satisfies the
condition

|c̄n − cnj | < min{c̄n, c̄n−1}, ∀x ∈ Ω and 1 ≤ n ≤ N, 1 ≤ j ≤ J. (2.1)

It is worth mentioning that we don’t assume any conditions like (2.1) on the functions βj . The
function τ is a piecewise constant function independent of j satisfying

min
1≤j≤J

(τ +
1

2
βj · n) ≥ 1

2
max

1≤j≤J
‖βj‖0,∞,∀x ∈ ∂Th. (2.2)

Next, let Π` and PM denote the standard L2 projection operators Π` : L2(K) → P`(K) and
PM : L2(e)→ Pk(e) satisfying

(Π`w, vh)K = (w, vh)K , ∀vh ∈ P`(K), (2.3a)

〈PMw, v̂h〉e = 〈w, v̂h〉e, ∀v̂h ∈ Pk(e). (2.3b)

The following error estimates for the L2 projections are standard:
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Lemma 1. Suppose k, ` ≥ 0. There exists a constant C independent of K ∈ Th such that

‖w −Π`w‖K ≤ Ch`+1|w|`+1,K , ∀w ∈ H`+1(K), (2.4a)

‖w − PMw‖∂K ≤ Chk+1/2|w|k+1,K ∀w ∈ Hk+1(K). (2.4b)

Moreover, the vector L2 projection Π` is defined similarly.

We choose the initial conditions u0
jh = Πk+1u0, q

0
jh = −∇u0

jh/c
0
j . To make the presentation

simple for the stability, we assume gj = 0 for j = 1, 2 · · · , J in this section.

Lemma 2. If condition (2.1) holds, then the Ensemble HDG formulation is unconditionally stable
and we have the following estimate:

max
1≤n≤N

‖unjh‖2Th +
N∑

n=1

‖unjh − un−1
jh ‖

2
Th + ∆t

N∑
n=1

‖
√
c̄nqnjh‖2Th + ‖

√
τ(unjh − ûnjh)‖2∂Th

≤ C∆t
N∑

n=1

‖fnj ‖2Th + C‖u0
jh‖2Th + C‖q0

jh‖2Th .

Proof. Take (rh, vh, v̂h) = (qnjh, u
n
jh, û

n
jh) in (1.7), use the polarization identity

(a− b)a =
1

2
(a2 − b2 + (a− b)2), (2.5)

and add the Equation (1.7a) and Equation (1.7b) together to give

‖unjh‖2Th − ‖u
n−1
jh ‖

2
Th

2∆t
+
‖unjh − u

n−1
jh ‖

2
Th

2∆t
+ ‖
√
c̄nqnjh‖2Th + ‖

√
τ(unjh − ûnjh)‖2∂Th

= −(β
n · ∇unjh, unjh)Th + 〈(βn · n)unjh, û

n
jh〉∂Th + ((cn − cnj )qn−1

jh , qnjh)Th

+ ((β
n − βn

j ) · ∇un−1
jh , unjh)Th − 〈(β

n − βn
j ) · n, un−1

jh ûnjh〉∂Th + (fnj , u
n
jh)Th .

(2.6)

By Green’s formula and the fact 〈(βn · n)ûnjh, û
n
jh〉∂Th = 0, we have

−(β
n · ∇unjh, unjh)Th + 〈(βn · n)unjh, û

n
jh〉∂Th ≤

1

2
‖
√
|βn · n|(unjh − ûnjh)‖2∂Th .

Hence, condition (2.2) gives

‖unjh‖2Th − ‖u
n−1
jh ‖

2
Th

2∆t
+
‖unjh − u

n−1
jh ‖

2
Th

2∆t
+ ‖
√
c̄nqnjh‖2Th +

1

2
‖
√
τ(unjh − ûnjh)‖2∂Th

≤ ((cn − cnj )qn−1
jh , qnjh)Th + ((β

n − βn
j ) · ∇un−1

jh , unjh)Th

− 〈(βn − βn
j ) · n, un−1

jh ûnh〉∂Th + (fnj , u
n
jh)Th

= R1 +R2 +R3 +R4.

Next, we estimate {Ri}4i=1. First, by the condition (2.1), there exist 0 < α < 1 such that

R1 = ((cn − cnj )qn−1
jh , qnjh)Th ≤

α

2
‖
√
c̄nqnjh‖2Th +

α

2
‖
√
c̄n−1qn−1

jh ‖
2
Th .
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The term R2 +R3 needs a detailed argument. For simplicity, let γ = β
n − βn

j . We have

R2 +R3 = (γ · ∇un−1
jh , unjh)Th − 〈γ · n, u

n−1
jh ûnjh〉∂Th

= ((γ −Π0γ) · ∇un−1
jh , unjh)Th − 〈(γ −Π0γ) · n, un−1

jh ûnjh〉∂Th
+ (Π0γ · ∇un−1

jh , unjh)Th − 〈Π0γ · n, un−1
jh ûnjh〉∂Th

= ((γ −Π0γ) · ∇un−1
jh , unjh)Th − 〈(γ −Π0γ) · n, un−1

jh ûnjh〉∂Th
+ (c̄nqnjh,Π0γu

n−1
jh )Th − ((c̄n − cnj )qn−1

jh ,Π0γu
n−1
jh )Th ,

where we used Equation (1.7a) in the last identity. Hence,

R2 +R3 = ((γ −Π0γ) · ∇un−1
jh , unjh)Th − 〈(γ −Π0γ) · n, un−1

jh ûnjh〉∂Th
+ (c̄nqnjh,Π0γu

n−1
jh )Th − ((c̄n − cnj )qn−1

jh ,Π0γu
n−1
jh )Th

≤
∑
K∈Th

‖γ −Π0γ‖∞,K‖∇un−1
jh ‖K‖u

n
jh‖K

+
∑
K∈Th

‖γ −Π0γ‖∞,∂K‖un−1
jh ‖∂K(‖ûnjh − unjh‖∂K + ‖unjh‖∂K)

+ ‖Π0γ‖∞,Th‖c̄
nqnjh‖Th‖u

n−1
jh ‖Th

+ ‖(c̄n − cnj )Π0γ‖∞,Th‖q
n−1
jh ‖Th‖u

n−1
jh ‖Th

= R31 +R32 +R33 +R34.

For R31, use the local inverse inequality:

R31 ≤ C
∑
K∈Th

hK‖γ‖1,∞,Kh
−1
K ‖u

n−1
jh ‖K‖u

n
jh‖K ≤ C(‖un−1

jh ‖
2
Th + ‖unjh‖2Th).

Apply the trace inequality and inverse inequality for the term R32 to give

R32 ≤ C
∑
K∈Th

hK‖γ‖1,∞,Kh
−1/2
K ‖un−1

jh ‖K(‖ûnjh − unjh‖∂K + h
−1/2
K ‖unjh‖K)

≤ C(‖un−1
jh ‖

2
Th + ‖unjh‖2Th) +

1

4
‖
√
τ(ûnjh − unjh)‖2∂Th .

For the terms R33 and R34, use Young’s inequality to obtain

R33 ≤
1− α

4
‖
√
c̄nqnjh‖2Th + C‖un−1

jh ‖
2
Th ,

R34 ≤
1− α

4
‖
√
c̄n−1qn−1

jh ‖
2
Th + C‖un−1

jh ‖
2
Th .

The Cauchy-Schwarz inequality for the term R4 gives

R4 = (fnj , u
n
jh)Th ≤

1

2
(‖fnj ‖2Th + ‖unjh‖2Th).

We add (2.6) from n = 1 to n = N , and use the above inequalities to get

max
1≤n≤N

‖unjh‖2Th +

N∑
n=1

‖unjh − un−1
jh ‖

2
Th + ∆t

N∑
n=1

‖
√
c̄nqnjh‖2Th + ‖

√
τ(unjh − ûnjh)‖2∂Th

≤ C∆t

N∑
n=1

‖eun

jh ‖2Th + C∆t

N∑
n=1

‖fnj ‖2Th + C‖u0
jh‖2Th + C‖q0

jh‖2Th .

Gronwall’s inequality applied to the above inequality gives the desired result.
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3 Error analysis

The strategy of the error analysis for the Ensemble HDG method is based on [3] and [5]. First, we
define the HDG projections, and use an energy argument to obtain an optimal convergence rate for
the ensemble solutions. Second, we define an HDG elliptic projection as in [3], which is a crucial
step to get the superconvergence. Next, we give our main results, and in the end, we provide a
rigorous error estimation for our Ensemble HDG method.

Throughout, we assume the data and the solution of (1.1) are smooth enough, and the initial
conditions (q0

jh, u
0
jh) of the Ensemble HDG system (1.7) are chosen as in Section 2.

3.1 HDG projection

For any t ∈ [0, T ], let (Πj
V qj ,Π

j
Wuj) be the HDG projection of (qj , uj), where Πj

V qj and Πj
Wuj

denote components of the HDG projection of qj and uj into Vh and Wh, respectively. On each

element K ∈ Th, (Πj
V qj ,Π

j
Wuj) satisfy the following equations

(Πj
V qj + βjΠ

j
Wuj , r)K = (qj + βjuj , r)K , (3.1a)

(Πj
Wuj , w)K = (uj , w)K , (3.1b)

〈Πj
V qj · n+ βj · nΠj

Wuj + τΠj
Wuj , µ〉e = 〈qj · n+ βj · nuj + τuj , µ〉e, (3.1c)

for all (r, w, µ) ∈ [Pk−1(K)]d × Pk−1(K) × Pk(e) and for all faces e of the simplex K. We notice
the projections are only determined by (3.1c) when k = 0. The proof of the following lemma is
similar to a result established in [5] and hence is omitted.

Lemma 3. Suppose the polynomial degree satisfies k ≥ 0 and also τ > 0. Then the system (3.1)
is uniquely solvable for Πj

V qj and Πj
Wuj . Furthermore, there is a constant C independent of K

and τ such that for `qj , `uj in [0, k]

‖Πj
V qj − qj‖K ≤ Ch

`qj +1

K |qj |H`qj+1
(K)

+ Ch
`uj +1

K |uj |H`uj+1
(K)

,

‖Πj
Wuj − uj‖K ≤ Ch

`uj +1

K |uj |H`uj+1
(K)

+ Ch
`qj +1

K |∇ · qj |H`qj (K)
.

3.2 Main results

We can now state our main result for the Ensemble HDG method.

Theorem 1. Let (qnj , u
n
j ) and (qnjh, u

n
jh) be the solution of (1.1) at time tn and (1.7), respectively.

If the coefficients cj satisfy (2.1), then we have

max
1≤n≤N

‖unj − unjh‖Th ≤ C(hk+1 + ∆t), (3.3a)√√√√∆t

N∑
n=1

‖qnj − qnjh‖2Th ≤ C(hk+1 + ∆t). (3.3b)

Moreover, if k ≥ 1, the elliptic regularity inequality (6.4) holds and the coefficients of the PDEs
are independent of time, then we have√√√√∆t

N∑
n=1

‖unj − un?jh‖2Th ≤ C(hk+2 + ∆t), (3.4)

where un?jh is the postprocessed approximation defined in (3.17).
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Remark 1. To the best of our knowledge, all previous works only contain suboptimal L2 conver-
gence rate for the ensemble solutions uj ; our result (3.3) is the first time to obtain the optimal
L∞(0, T ;L2(Ω)) convergence rate on a general polygonal domain Ω. Moreover, if the coefficients of
the PDEs are independent of time, then after an element-by-element postprocessing, we obtain the
superconvergent rate (3.4) under some conditions on the domain; for example, a convex domain is
sufficient. This is also the first such result in the literature.

3.3 Proof of (3.3) in Theorem 1

Lemma 4. For all n = 1, 2, · · · , N , we have the following equalities:

(cnj Πj
V q

n
j , rh)Th − (Πj

Wu
n
j ,∇ · rh)Th + 〈PMu

n
j , rh · n〉∂Th = (cnj (Πj

V q
n
j − qnj ), rh)Th ,

and

(∇ ·Πj
V q

n
j , vh)Th − 〈Π

j
V q

n
j · n, v̂h〉∂Th + 〈τ(Πj

Wu
n
j − PMu

n
j ), vh − v̂h〉∂Th

+ (βn
j · ∇Πj

Wu
n
j , vh)Th − 〈β

n
j · n, (Π

j
Wu

n
j )v̂h〉∂Th

= (fnj − ∂tunj , vh)Th ,

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh and j = 1, 2, · · · , J .

Proof. By the definitions of Πj
W in (3.1b), PM in (2.3b), and the first equation (1.1), we get

(cnj Πj
V q

n
j , rh)Th − (Πj

Wu
n
j ,∇ · rh)Th + 〈PMu

n
j , rh · n〉∂Th

= (cnj q
n
j , rh)Th − (Πj

Wu
n
j ,∇ · rh)Th + 〈PMu

n
j , rh · n〉∂Th + (cnj (Πj

V q
n
j − qnj ), rh)Th

= (cnj q
n
j , rh)Th − (unj ,∇ · rh)Th + 〈unj , rh · n〉∂Th + (cnj (Πj

V q
n
j − qnj ), rh)Th

= (cnj q
n
j +∇unj , rh)Th + (cnj (Πj

V q
n
j − qnj ), rh)Th

= (cnj (Πj
V q

n
j − qnj ), rh)Th .

This proves the first identity.

Next, we prove the second identity. First

(∇ ·Πj
V q

n
j , vh)Th − 〈Π

j
V q

n
j · n, v̂h〉∂Th + 〈τ(Πj

Wu
n
j − PMu

n
j ), vh − v̂h〉∂Th

+ (βj · ∇Πj
Wuj , vh)Th − 〈β

n
j · n, (Π

j
Wu

n
j )v̂h〉∂Th

= (∇ · qnj , vh)Th + (∇ · (Πj
V q

n
j − qnj ), vh)Th − 〈Π

j
V q

n
j · n, v̂h〉∂Th

+ 〈τ(Πj
Wu

n
j − PMu

n
j ), vh − v̂h〉∂Th + (βn

j · ∇unj , vh)Th

+ (βn
j · ∇(Πj

Wu
n
j − unj ), vh)Th − 〈β

n
j · n, (Π

j
Wu

n
j )v̂h〉∂Th .

By the definition of Πj
V and Πj

W in (3.1a) and ∇ · βn
j = 0, we have

(∇ · (Πj
V q

n
j − qnj ), vh)Th + (βn

j · ∇(Πj
Wu

n
j − unj ), vh)Th

= −(Πj
V q

n
j − qnj ,∇vh)Th + 〈(Πj

V q
n
j − qnj ) · n, vh〉∂Th

− (βn
j (Πj

Wu
n
j − unj ),∇vh)Th + 〈(βn

j · n)(Πj
Wu

n
j − unj ), vh〉∂Th

= 〈(Πj
V q

n
j − qnj ) · n, vh〉∂Th + 〈(βn

j · n)(Πj
Wu

n
j − unj ), vh〉∂Th .

8
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Using (∇ · qnj , vh)Th + (βn
j · ∇unj , vh)Th = (fnj − ∂tunj , vh)Th and (3.1c), we have

(∇ ·Πj
V q

n
j , vh)Th − 〈Π

j
V q

n
j · n, v̂h〉∂Th + 〈τ(Πj

Wu
n
j − PMu

n
j ), vh − v̂h〉∂Th

+ (βj · ∇Πj
Wuj , vh)Th − 〈β

n
j · n, (Π

j
Wu

n
j )v̂h〉∂Th

= (fnj − ∂tunj , vh)Th + 〈(Πj
V q

n
j − qnj ) · n, vh − v̂h〉∂Th

+ 〈τ(Πj
Wu

n
j − PMu

n
j ), vh − v̂h〉∂Th + 〈(βn

j · n)(Πj
Wu

n
j − unj ), vh − v̂h〉∂Th

= (fnj − ∂tunj , vh)Th .

Then, substracting the result of Lemma 4 from the Ensemble HDG system (1.7) gives the
following error equations.

Lemma 5. For ηu
n

jh = unjh−Πj
Wu

n
j , ηq

n

jh = qnjh−Πj
V q

n
j and ηû

n

jh = ûnjh−PMu
n
j , for all j = 1, 2, · · · , J ,

we have the following error equations:

(c̄nηq
n

jh , rh)Th − (ηu
n

jh ,∇ · rh)Th + 〈ηûn

jh , rh · n〉∂Th
= ((c̄n − cnj )(qn−1

jh −Πj
V q

n
j ), rh)Th − (cnj (Πj

V q
n
j − qnj ), rh)Th ,

(3.6a)

and

(∂+
t η

un

jh , vh)Th + (∇ · ηq
n

jh , vh)Th − 〈η
qn

jh · n, v̂h〉∂Th + (β
n · ∇ηun

jh , vh)Th

− 〈βn · n, ηun

jh v̂h〉∂Th + 〈τ(ηu
n

jh − ηûjh), vh − v̂h〉∂Th
= (∂tu

n
j − ∂+

t Πj
Wu

n
j , vh)Th + ((β

n − βn
j ) · ∇(un−1

jh −Πj
Wu

n
j ), vh)Th

− 〈(βn
j − βn

j ) · n, (un−1
jh −Πj

Wu
n
j )v̂h〉∂Th ,

(3.6b)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh and n = 1, 2, · · · , N .

Lemma 6. If condition (2.1) holds, then we have the following error estimate:

max
1≤n≤N

‖ηun

jh ‖Th +

√√√√∆t
N∑

n=1

‖
√
cnηq

n

jh ‖2Th ≤ C
(
hk+1 + ∆t

)
. (3.7)

Proof. We take (rh, vh, v̂h) = (ηq
n

jh , η
un

jh , η
ûn

jh ) in (3.6), use the identity (2.5) and add Equation (3.6a)
and Equation (3.15) together to get

‖ηun

jh ‖2Th − ‖η
un−1

jh ‖2Th
2∆t

+
‖ηun

jh − ηu
n−1

jh ‖2Th
2∆t

+ ‖
√
c̄nηq

n

jh ‖
2
Th + ‖

√
τ(ηu

n

jh − ηû
n

jh )‖2∂Th
= −(β

n · ∇ηun

jh , η
un

jh )Th + 〈βn · n, ηun

jh η
ûn

jh 〉∂Th + ((cn − cnj )(qn−1
jh −Πj

V q
n
j ), ηq

n

jh )Th

+ (∂tu
n
j − ∂+

t Πj
Wu

n
j , η

un

jh )Th + ((β
n − βn

j ) · ∇(un−1
jh −Πj

Wu
n
j ), ηu

n

jh )Th

− 〈(βn − βn
j ) · n, (un−1

jh −Πj
Wu

n
j )ηû

n

jh 〉∂Th . (3.8)

By Green’s formula and the fact 〈(βn · n)ηû
n

jh , η
ûn

jh 〉∂Th = 0, we have

(β
n · ∇ηun

jh , η
un

jh )Th − 〈β
n · n, ηun

jh η
ûn

jh 〉∂Th ≤
1

2
‖
√
|βn · n|(ηun

jh − ηû
n

jh )‖2∂Th .

9
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Condition (2.2) and equality (3.8) give

‖ηun

jh ‖2Th − ‖η
un−1

jh ‖2Th
2∆t

+
‖ηun

jh − ηu
n−1

jh ‖2Th
2∆t

+ ‖
√
c̄nηq

n

jh ‖
2
Th +

1

2
‖
√
τ(ηu

n

jh − ηû
n

jh )‖2∂Th
≤ ((cn − cnj )(qn−1

jh −Πj
V q

n
j ), ηq

n

jh )Th + (∂tu
n
j − ∂+

t Πj
Wu

n
j , η

un

jh )Th

+
[
((β

n − βn
j ) · ∇(un−1

jh −Πj
Wu

n
j ), ηu

n

jh )Th

−〈(βn − βn
j ) · n, (un−1

jh −Πj
Wu

n
j )ηû

n

jh 〉∂Th
]

− (cnj (Πj
V q

n
j − qnj ), ηq

n

jh )Th

= R1 +R2 +R3 +R4.

(3.9)

Next, we estimate {Ri}4i=1. By the condition (2.1), there exist 0 < α < 1 such that

R1 = ((cn − cnj )(ηq
n−1

jh −∆t∂+
t Πj

V q
n
j ), ηq

n

jh )Th

≤ α

2

(
‖
√
c̄nηq

n

jh ‖
2
Th + ‖

√
c̄n−1ηq

n−1

jh ‖2Th
)

+ C∆t2‖∂+
t Πj

V q
n
j ‖2Th ,

R2 = (∂+
t (unj −Πj

Wu
n
j )− ∂+

t u
n
j + ∂tu

n
j , η

un

jh )Th

≤ C
(
‖∂+

t (unj −Πj
Wu

n
j )‖2Th + ‖∂+

t u
n
j − ∂tunj ‖2Th + ‖ηun

jh ‖2Th
)
,

R4 ≤
1− α

8
‖
√
c̄nηq

n

jh ‖
2
Th + Ch2k+2(|unj |2k+1 + |qnj |2k+1).

If we directly estimate R3, we will obtain only suboptimal convergence rates. Therefore, we need
a refined analysis for this term. For simplicity, let γ = β

n−βn
j . The following argument is similar

to the proof of the stability Section 2; to make the proof self-contained, we include these details
here. First

R3 = (γ · ∇(un−1
jh −Πj

Wu
n
j ), ηu

n

jh )Th − 〈γ · n, (u
n−1
jh −Πj

Wu
n
j )ηû

n

jh 〉∂Th
= ((γ −Π0γ) · ∇(un−1

jh −Πj
Wu

n
j ), ηu

n

jh )Th

− 〈(γ −Π0γ) · n, (un−1
jh −Πj

Wu
n
j )ηû

n

jh 〉∂Th
+ (Π0γ · ∇(un−1

jh −Πj
Wu

n
j ), ηu

n

jh )Th − 〈Π0γ · n, (un−1
jh −Πj

Wu
n
j )ηû

n

jh 〉∂Th .

By the error equation (3.6a), we have

(Π0γ · ∇(un−1
jh −Πj

Wu
n
j ), ηu

n

jh )Th − 〈Π0γ · n, (un−1
jh −Πj

Wu
n
j )ηû

n

jh 〉∂Th
= (∇ · [Π0γ(un−1

jh −Πj
Wu

n
j )], ηu

n

jh )Th − 〈[(Π0γ · n)(un−1
jh −Πj

Wu
n
j )], ηû

n

jh 〉∂Th
= (c̄nηq

n

jh , [Π0γ(un−1
jh −Πj

Wu
n
j )])Th + (cnj (Πj

V q
n
j − qnj ), [Π0γ(un−1

jh −Πj
Wu

n
j )])Th

− ((c̄n − cnj )(qn−1
jh −Πj

V q
n
j ), [Π0γ(un−1

jh −Πj
Wu

n
j )])Th .

This gives

R3 = ((γ −Π0γ) · ∇(un−1
jh −Πj

Wu
n
j ), ηu

n

jh )Th

− 〈(γ −Π0γ) · n, (un−1
jh −Πj

Wu
n
j )ηû

n

jh 〉∂Th
+ (c̄nηq

n

jh ,Π0γ(un−1
jh −Πj

Wu
n
j ))Th + (cnj (Πj

V q
n
j − qnj ), [Π0γ(un−1

jh −Πj
Wu

n
j )])Th

− ((c̄n − cnj )(qn−1
jh −Πj

V q
n
j ),Π0γ(un−1

jh −Πj
Wu

n
j ))Th .

10
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Hence,

R3 ≤
∑
K∈Th

‖γ −Π0γ‖∞,K‖∇(un−1
jh −Πj

Wu
n
j )‖K‖ηu

n

jh ‖K

+
∑
K∈Th

‖γ −Π0γ‖∞,∂K‖un−1
jh −Πj

Wu
n
j ‖∂K(‖ηûn

jh − ηu
n

jh ‖∂K + ‖ηun

jh ‖∂K)

+ ‖Π0γ‖∞,Th‖c̄
nηq

n

jh ‖Th‖u
n−1
jh −Πj

Wu
n
j ‖Th

+ ‖(c̄n − cnj )Π0γ‖∞,Th‖q
n−1
jh −Πj

V q
n
j ‖Th‖u

n−1
jh −Πj

Wu
n
j ‖Th

+ ‖cnj Π0γ‖∞,Th‖ Πj
V q

n
j − qnj ‖Th‖u

n−1
jh −Πj

Wu
n
j ‖Th

= R31 +R32 +R33 +R34 +R35.

For R31, use the local inverse inequality:

R31 ≤ C
∑
K∈Th

hK‖γ‖1,∞,Kh
−1
K ‖u

n−1
jh −Πj

Wu
n
j ‖K‖ηu

n

jh ‖K

≤ C
∑
K∈Th

‖un−1
jh −Πj

Wu
n
j ‖K‖ηu

n

jh ‖K

≤ C(‖ηun−1

jh ‖2Th + ∆t2‖∂+
t Πj

Wu
n
j ‖2Th + ‖ηun

jh ‖2Th).

Apply the trace inequality and inverse inequality for the term R32 to give

R32 ≤ C
∑
K∈Th

hK‖γ‖1,∞,Kh
−1/2
K ‖un−1

jh −Πj
Wu

n
j ‖K(‖ηûn

jh − ηu
n

jh ‖∂K + h
−1/2
K ‖ηun

jh ‖K)

≤ C
∑
K∈Th

‖un−1
jh −Πj

Wu
n
j ‖K(‖ηûn

jh − ηu
n

jh ‖∂K + ‖ηun

jh ‖K)

≤ C(‖ηun−1

jh ‖2Th + ∆t2‖∂+
t Πj

Wu
n
j ‖2Th + ‖ηun

jh ‖2Th) +
1

4
‖
√
τ(ηû

n

jh − ηu
n

jh )‖2∂Th .

For the terms R33, R34, R35 and R4, use Young’s inequality to obtain

R33 ≤
1− α

8
‖
√
c̄nηq

n

jh ‖
2
Th + C(‖ηun−1

jh ‖2Th + ∆t2‖∂+
t Πj

Wu
n
j ‖2Th),

R34 ≤
1− α

8
‖
√
c̄nηq

n−1

jh ‖2Th +
∆t2

4
‖∂+

t Πj
V q

n
j ‖2Th

+ C(‖ηun−1

jh ‖2Th + ∆t2‖∂+
t Πj

Wu
n
j ‖2Th),

R35 ≤ Ch2k+2(|unj |2k+1 + |qnj |2k+1) + C(‖ηun−1

jh ‖2Th + ∆t2‖∂+
t Πj

Wu
n
j ‖2Th).

We add (3.9) from n = 1 to n = N , use the above inequalities to get

max
1≤n≤N

‖ηun

jh ‖2Th + ∆t
N∑

n=1

‖
√
c̄nηq

n

jh ‖
2
Th

≤ C∆t
N∑

n=1

‖ηun

jh ‖2Th + C
N∑

n=1

(∆t3‖∂+
t Πj

Wu
n
j ‖2Th + ∆t3‖∂+

t Πj
V q

n
j ‖2Th)

+ C
N∑

n=1

(∆t‖∂+
t (unj −Πj

Wu
n
j )‖2Th + ∆t‖∂+

t u
n
j − ∂tunj ‖2Th)

+ Ch2k+2
N∑

n=1

∆t(|unj |2k+1 + |qnj |2k+1) + ‖ηu0

jh‖2Th + ‖ηq
0

jh‖
2
Th .

(3.10)

11
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Now we move to bound the terms on the right side of the above inequality as follows,

∆t3
N∑

n=1

‖∂+
t Πj

Wu
n
j ‖2Th = ∆t

N∑
n=1

∫
Ω

[∫ tn

tn−1

∂tΠ
j
Wu

n
j dt

]2

≤ C∆t2‖∂tΠj
Wu

n
j ‖2L2(0,T ;L2(Ω)),

∆t3
N∑

n=1

‖∂+
t Πj

V q
n
j ‖2Th = ∆t

N∑
n=1

∫
Ω

[∫ tn

tn−1

∂tΠ
j
V q

n
j dt

]2

≤ C∆t2‖∂tΠj
V q

n
j ‖2L2(0,T ;L2(Ω)),

and

∆t

N∑
n=1

‖∂+
t (unj −Πj

Wu
n
j )‖2Th = ∆t−1

N∑
n=1

∫
Ω

[∫ tn

tn−1

∂t(u
n
j −Πj

Wujdt)

]2

≤ C‖∂t(unj −Πj
Wuj)‖

2
L2(0,T ;L2(Ω)),

∆t
N∑

n=1

‖∂+
t u

n
j − ∂tunj ‖2Th = ∆t−1

N∑
n=1

∫
Ω

[∫ tn

tn−1

(t− tn−1)∂ttujdt

]2

≤ C∆t2‖∂ttuj‖2L2(0,T ;L2(Ω)).

Gronwall’s inequality and the estimates above applied to (3.10) give the result.

From Lemma 6 and the estimate in Lemma 3 we complete the proof of (3.3) in Theorem 1.

3.4 Proof of (3.4) in Theorem 1

To prove (3.4) in Theorem 1, we follow a similar strategy taken by Chen, Cockburn, Singler and
Zhang [3] and introduce an HDG elliptic projection in Section 3.4.1. We first bound the error
between the solutions of the HDG elliptic projection and the exact solution of the system (1.1).
Then we bound the error between the solutions of the HDG elliptic projection and the Ensemble
HDG problem (1.7). A simple application of the triangle inequality then gives a bound on the
error between the solutions of the Ensemble HDG problem and the system (1.1). We note that
the coefficients of the PDEs are independent of time throughout this section. Hence, we drop the
superscript n from cnj ,β

n
j and the ensemble means cn,β

n
.

3.4.1 HDG elliptic projection

For any t ∈ [0, T ], let (qjh, ujh, ûjh) ∈ Vh ×Wh ×Mh be the solutions of the following steady state
problems

(cjqjh, rh)Th − (ujh,∇ · rh)Th + 〈ûjh, rh · n〉∂Th = −〈gj , rh · n〉E∂h , (3.11a)

(∇ · qjh, vh)Th − 〈qjh · n, v̂h〉∂Th + 〈τ(ujh − ûjh), vh − v̂h〉∂Th
+(βj · ∇ujh, vh)Th − 〈βj · n, ujhv̂h〉∂Th = (fj −Πj

W∂tuj , vh)Th + 〈τgj , vh〉E∂h , (3.11b)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh and j = 1, 2, · · · , J .

The proofs of the following estimates are given in Section 6.
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Theorem 2. For any t ∈ [0, T ] and for all j = 1, 2, · · · , J , we have

‖Πj
V qj − qjh‖Th ≤ CAj , (3.12a)

‖Πj
Wuj − ujh‖Th ≤ Ch

min{k,1}Aj , (3.12b)

‖∂t(Πj
V qj − qjh)‖Th ≤ CBj , (3.12c)

‖∂t(Πj
Wuj − ujh)‖Th ≤ Ch

min{k,1}Bj , (3.12d)

‖∂tt(Πj
Wuj − ujh)‖Th ≤ Ch

min{k,1}Cj , (3.12e)

where

Aj = ‖uj −Πj
Wuj‖Th + ‖qj −Πj

V qj‖Th + ‖∂tuj −Πj
W∂tuj‖Th ,

Bj = ‖∂tuj −Πj
W∂tuj‖Th + ‖∂tqj −Πj

V ∂tqj‖Th + ‖∂ttuj −Πj
W∂ttuj‖Th ,

Cj = ‖∂ttuj −Πj
W∂ttuj‖Th + ‖∂ttqj −Πj

V ∂ttqj‖Th + ‖∂tttuj −Πj
W∂tttuj‖Th .

Note that Theorem 2 bounds the error between the HDG elliptic projection of the solutions and
the exact solutions of the system (1.1). In the next three steps, we are going to bound the error
between the HDG elliptic projection of the ensemble solutions and the solutions of the Ensemble
HDG problem (1.7).

3.4.2 The equations of the projection of the errors

Lemma 7. For eu
n

jh = unjh − unjh, eq
n

jh = qnjh − qnjh and eû
n

jh = ûnjh − û
n
jh, for all j = 1, 2, · · · , J , we

have the following error equations

(c̄eq
n

jh , rh)Th − (eu
n

jh ,∇ · rh)Th + 〈eûn

jh , rh · n〉∂Th = ((c̄− cj)(qn−1
jh − qnjh), rh)Th , (3.13a)

and

(∂+
t e

un

jh , vh)Th + (∇ · eq
n

jh , vh)Th − 〈e
qn

jh · n, v̂h〉∂Th + (β · ∇eun

jh , vh)Th

− 〈β · n, eun

jh v̂h〉∂Th + 〈τ(eu
n

jh − eûjh), vh − v̂h〉∂Th − (∂+
t u

n
jh − ∂tΠ

j
Wu

n
j , vh)Th

= ((β − βj) · ∇(un−1
jh − unjh), vh)Th − 〈(βj − βj) · n, (un−1

jh − unjh)v̂h〉∂Th , (3.13b)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh and n = 1, 2, · · · , N .

The proof of Lemma 7 follows immediately by simply subtracting Equation (3.11) from Equa-
tion (1.7).

3.4.3 Energy argument

Lemma 8. If condition (2.1) and the elliptic regularity inequality (6.4) holds, then we have the
following error estimate:

max
1≤n≤N

‖eun

jh ‖Th ≤ C
(
hk+1+min{k,1} + ∆t

)
. (3.14)

Proof. The following proof is similar to the proof in Section 3.3; to make the proof self-contained,
we include the details here. We take (rh, vh, v̂h) = (eq

n

jh , e
un

jh , e
ûn

jh ) in (3.13), use the identity (2.5)

13
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and add Equation (3.13a) - Equation (3.13b) together to get

‖eun

jh ‖2Th − ‖e
un−1

jh ‖2Th
2∆t

+
‖eun

jh − eu
n−1

jh ‖2Th
2∆t

+ ‖
√
c̄eq

n

jh ‖
2
Th + ‖

√
τ(eu

n

jh − eû
n

jh )‖2∂Th
= −(β · ∇eun

jh , e
un

jh )Th + 〈β · n, eun

jh e
ûn

jh 〉∂Th + ((c− cj)(qn−1
jh − qnjh), eq

n

jh )Th

+ (∂+
t u

n
jh − ∂tΠ

j
Wu

n
j , e

un

jh )Th + ((β − βj) · ∇(un−1
jh − unjh), eu

n

jh )Th

− 〈(β − βj) · n, (un−1
jh − unjh)eû

n

jh 〉∂Th .

(3.15)

By Green’s formula and the fact 〈(β · n)eû
n

jh , e
ûn

jh 〉∂Th = 0, we have

(β · ∇eun

jh , e
un

jh )Th − 〈β · n, e
un

jh e
ûn

jh 〉∂Th ≤
1

2
‖
√
|β · n|(eun

jh − eû
n

jh )‖2∂Th .

Condition (2.2) and equality (3.15) give

‖eun

jh ‖2Th − ‖e
un−1

jh ‖2Th
2∆t

+
‖eun

jh − eu
n−1

jh ‖2Th
2∆t

+ ‖
√
c̄eq

n

jh ‖
2
Th +

1

2
‖
√
τ(eu

n

jh − eû
n

jh )‖2∂Th
≤ ((c− cj)(qn−1

jh − qnjh), eq
n

jh )Th + (∂+
t u

n
jh − ∂tΠ

j
Wu

n
j , e

un

jh )Th

+ ((β − βj) · ∇(un−1
jh − unjh), eu

n

jh )Th − 〈(β − βj) · n, (un−1
jh − unjh)eû

n

jh 〉∂Th
= T1 + T2 + T3.

Next, we estimate {Ti}3i=1. By the condition (2.1), there exist 0 < α < 1 such that

T1 = ((c− cj)(eq
n−1

jh −∆t∂+
t q

n
jh), eq

n

jh )Th

≤ α

2

(
‖
√
c̄eq

n

jh ‖
2
Th + ‖

√
c̄eq

n−1

jh ‖2Th
)

+ C∆t2‖∂+
t q

n
jh‖2Th ,

T2 = (∂+
t (unjh −Πj

Wu
n
j ) + ∂+

t Πj
Wu

n
j − ∂tΠ

j
Wu

n
j , e

un

jh )Th

≤ C
(
‖∂+

t (unjh −Πj
Wu

n
j )‖2Th + ‖∂+

t Πj
Wu

n
j − ∂tΠ

j
Wu

n
j ‖2Th + ‖eun

jh ‖2Th
)
.

To treat the term T3, we use the technique in the proof of Lemma 6, where we treat the term R3.
For γ = β − βj , we have

T3 ≤
∑
K∈Th

‖γ −Π0γ‖∞,K‖∇(un−1
jh − unjh)‖K‖eu

n

jh ‖K

+
∑
K∈Th

‖γ −Π0γ‖∞,∂K‖un−1
jh − unjh‖∂K(‖eûn

jh − eu
n

jh ‖∂K + ‖eun

jh ‖∂K)

+ ‖Π0γ‖∞,Th‖c̄e
qn

jh ‖Th‖u
n−1
jh − unjh‖Th

+ ‖(c̄− cj)Π0γ‖∞,Th‖q
n−1
jh − qnjh‖Th‖u

n−1
jh − unjh‖Th

= T31 + T32 + T33 + T34.

For T31, use the local inverse inequality:

T31 ≤ C(‖eun−1

jh ‖2Th + ∆t2‖∂+
t u

n
jh‖2Th + ‖eun

jh ‖2Th).

14
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Apply the trace inequality and inverse inequality for the term T32 to give

T32 ≤ C
∑
K∈Th

hK‖γ‖1,∞,Kh
−1/2
K ‖un−1

jh − unjh‖K(‖eûn

jh − eu
n

jh ‖∂K + h
−1/2
K ‖eun

jh ‖K)

≤ C(‖eun−1

jh ‖2Th + ∆t2‖∂+
t u

n
jh‖2Th + ‖eun

jh ‖2Th) +
1

4
‖
√
τ(eû

n

jh − eu
n

jh )‖2∂Th .

For the terms T33 and T34, use Young’s inequality to obtain

T33 ≤
1− α

8
‖
√
c̄eq

n

jh ‖
2
Th + C(‖eun−1

jh ‖2Th + ∆t2‖∂+
t u

n
jh‖2Th),

T34 ≤
1− α

8
‖
√
c̄eq

n−1

jh ‖2Th +
∆t2

4
‖∂+

t q
n
jh‖2Th + C(‖eun−1

jh ‖2Th + ∆t2‖∂+
t u

n
jh‖2Th).

We add (3.15) from n = 1 to n = N , and use the above inequalities to get

max
1≤n≤N

‖eun

jh ‖2Th +

N∑
n=1

‖eun

jh − eu
n−1

jh ‖2Th + ∆t

N∑
n=1

‖
√
c̄eq

n

jh ‖
2
Th + ‖

√
τ(eu

n

jh − eû
n

jh )‖2Th

≤ C∆t
N∑

n=1

‖eun

jh ‖2Th + C
N∑

n=1

(∆t3‖∂+
t u

n
jh‖2Th + ∆t3‖∂+

t q
n
jh‖2Th)

+ C

N∑
n=1

(∆t‖∂+
t (unjh −Πj

Wu
n
j )‖2Th + ∆t‖∂+

t Πj
Wu

n
j − ∂tΠ

j
Wu

n
j ‖2Th)

+ C‖eq
0

jh‖
2
Th + C‖eu0

jh‖2Th .

(3.16)

Now we move to bound the terms on the right side of the above inequality as follows,

∆t3
N∑

n=1

‖∂+
t u

n
jh‖2Th = ∆t

N∑
n=1

∫
Ω

[∫ tn

tn−1

∂tu
n
jhdt

]2

≤ C∆t2‖∂tunjh‖2L2(0,T ;L2(Ω)),

∆t3
N∑

n=1

‖∂+
t q

n
jh‖2Th = ∆t

N∑
n=1

∫
Ω

[∫ tn

tn−1

∂tq
n
jhdt

]2

≤ C∆t2‖∂tqnjh‖2L2(0,T ;L2(Ω)),

∆t

N∑
n=1

‖∂+
t (unjh −Πj

Wu
n
j )‖2Th ≤ C‖∂t(ujh −Πj

Wuj)‖
2
L2(0,T ;L2(Ω)),

∆t
N∑

n=1

‖∂+
t Πj

Wu
n
j − ∂tΠ

j
Wu

n
j ‖2Th ≤ C∆t2‖∂ttΠj

Wuj‖
2
L2(0,T ;L2(Ω)).

Gronwall’s inequality and the estimates above applied to (3.16) give the result.

3.4.4 Superconvergence error estimates by postprocessing

The following element-by-element postprocessing is defined in [11]: Find un?jh ∈ Pk+1(K) such that

for all (zh, wh) ∈ [Pk+1(K)]⊥ × P0(K)

(∇un?jh ,∇zh)K = −(cjq
n
jh,∇zh)K , (3.17a)

(un?jh , wh)K = (uh, wh)K , (3.17b)

where [Pk+1(K)]⊥ = {zh ∈ Pk+1(K)|(zh, 1)K = 0}.
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Lemma 9. For any t ∈ [0, T ] and k ≥ 1, we have the following error estimate for the postprocessed
solution:

‖Πk+1u
n
j − un?jh‖Th ≤ C‖Π

j
Wu

n
j − unjh‖Th + Ch‖cj(qnjh − qnj )‖Th

+ Ch‖∇(unj −Πk+1u
n
j )‖Th .

Proof. By the properties of ΠW and Πk+1, we obtain

(Πj
Wu

n
j , w0)K = (unj , w0)K , for all w0 ∈ P0(K),

(Πk+1u
n
j , w0)K = (unj , w0)K , for all w0 ∈ P0(K).

Hence, for all w0 ∈ P0(K), we have

(ΠWu
n
j −Πk+1u

n
j , w0)K = 0.

Let enjh = un?jh − unjh + Πj
Wu

n
j −Πk+1u

n
j . Equation (3.17) and an inverse inequality give

‖∇enjh‖2K = (∇(un?jh − ujh),∇enj,h)K + (∇(Πj
Wu

n
j −Πk+1u

n
j ),∇enjh)K

= (−∇unjh − cjqnjh,∇enjh)K + (∇(Πj
Wu

n
j −Πk+1u

n
j ),∇enjh)K

= (∇(Πj
Wu

n
j − unjh)− (qnjh − qnj ) +∇(unj −Πk+1u

n
j ),∇enjh)K .

This implies

‖∇enjh‖K ≤ C(h−1
K ‖Π

j
Wu

n
j − unjh‖K + ‖cj(qnjh − qnj )‖K + ‖∇(unj −Πk+1u

n
j )‖K). (3.18)

Since (eh, 1)K = 0, apply the Poincaré inequality and the estimate (3.18) to give

‖enjh‖K ≤ ChK‖∇enjh‖K
≤ C(‖Πj

Wu
n
j − unjh‖K + hK‖cj(qnjh − qnj )‖K + hK‖∇(unj −Πk+1u

n
j )‖K).

Hence, we have

‖Πk+1u
n
j − un?jh‖Th ≤ ‖Πk+1u

n
j −Πj

Wu
n
j − un?jh + unjh‖Th + ‖Πj

Wu
n
j − unjh‖Th

≤ C‖Πj
Wu

n
j − unjh‖Th + Ch‖cj(qnjh − qnj )‖Th

+ Ch‖∇(unj −Πk+1u
n
j )‖Th .

From Lemma 9 and the estimate in (2.4a) we complete the proof of (3.4) in Theorem 1.

4 Numerical experiments

In this section, we present some numerical tests of the Ensemble HDG method for parameterized
convection diffusion PDEs. Although we derived the a priori error estimates for diffusion domi-
nated problems, we also present numerical results for the convection dominated case to show the
performance of the Ensemble HDG method for the convection dominated diffusion problems. For
all examples, we take τ = 1 + max1≤j≤J ‖βj‖0,∞ so that (2.2) is satisfied, the coefficients cj satisfy
the condition (2.1), and a group of simulations are considered containing J = 3 members. Let Euj
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be the error bewteen the exact solution uj at the final time T = 1 and the Ensemble HDG solution
uNjh, i.e., Euj = ‖uNj − uNjh‖Th . Let

Eqj =

√√√√∆t
N∑

n=1

‖qnj − qnjh‖2Th , and Eu?j =

√√√√∆t
N∑

n=1

‖unj − un?jh‖2Th .

Example 1. We first test the convergence rate of the Ensemble HDG method for diffusion domi-
nated PDEs on a square domain Ω = [0, 1]× [0, 1]. The data is chosen as

c1 = 0.26959, c2 = 0.26633, c3 = 0.30525,

β1 = 1.6797[y, x], β2 = 1.6551[y, x], β3 = 1.1626[y, x],

uj = sin(t) sin(x) sin(y)/j, qj = −1/cj∇uj , j = 1, 2, 3,

and the initial conditions, boundary conditions, and source terms are chosen to match the exact
solution of Equation (1.1).

In order to confirm our theoretical results, we take ∆t = h when k = 0 and ∆t = h3 when k = 1.
The approximation errors of the Ensemble HDG method are listed in Table 1 and the observed
convergence rates match our theory.
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Table 1: History of convergence for Example 1.

Degree h√
2

Eq1 Eu1 Eu?1
Error Rate Error Rate Error Rate

k = 0

2−1 8.5356E-01 8.0704E-02 1.3681E-01
2−2 5.3683E-01 0.67 4.6752E-02 0.79 5.7997E-02 1.24
2−3 2.9377E-01 0.87 2.4599E-02 0.93 2.6288E-02 1.14
2−4 1.5300E-01 0.94 1.2677E-02 0.96 1.2902E-02 1.03
2−5 7.8021E-02 0.97 6.4474E-03 0.98 6.4760E-03 0.99

k = 1

2−1 2.6429E-01 4.2641E-02 4.3413E-02
2−2 7.5086E-02 1.82 1.0472E-02 2.03 6.1017E-03 2.83
2−3 1.9707E-02 1.93 2.6345E-03 1.99 7.9146E-04 2.95
2−4 5.0211E-03 1.97 6.6870E-04 1.98 1.0026E-04 2.98
2−5 1.2653E-03 1.99 1.6896E-04 1.98 1.2598E-05 2.99

Degree h√
2

Eq2 Eu2 Eu?2
Error Rate Error Rate Error Rate

k = 0

2−1 8.5466E-01 8.1522E-02 1.3739E-01
2−2 5.3907E-01 0.66 4.8107E-02 0.76 5.9168E-02 1.22
2−3 2.9567E-01 0.87 2.5614E-02 0.91 2.7258E-02 1.12
2−4 1.5420E-01 0.94 1.3277E-02 0.95 1.3495E-02 1.01
2−5 7.8696E-02 0.97 6.7714E-03 0.97 6.7992e-03 0.99

k = 1

2−1 2.6577E-01 4.2796E-02 4.3973E-02
2−2 7.5666E-02 1.81 1.0405E-02 2.04 6.2024E-03 2.83
2−3 1.9879E-02 1.93 2.6069E-03 2.00 8.0552E-04 2.94
2−4 5.0673E-03 1.97 6.6105E-04 1.98 1.0209E-04 2.98
2−5 1.2772E-03 1.99 1.6699E-04 1.99 1.2832E-05 2.99

Degree h√
2

Eq3 Eu3 Eu?3
Error Rate Error Rate Error Rate

k = 0

2−1 8.0839E-01 3.4525E-02 1.1145E-01
2−2 5.0993E-01 0.66 2.2025E-02 0.65 3.9756E-02 1.49
2−3 2.7915E-01 0.87 1.2282E-02 0.84 1.5196E-02 1.39
2−4 1.4529E-01 0.94 6.5117E-03 0.92 6.9102E-03 1.14
2−5 7.4042E-02 0.97 3.3567E-03 0.96 3.4076E-03 1.02

k = 1

2−1 2.4988E-01 4.0593E-02 3.9155E-02
2−2 6.9685E-02 1.84 1.1221E-02 1.86 5.5006E-03 2.83
2−3 1.8087E-02 1.95 2.9375E-03 1.93 7.1138E-04 2.95
2−4 4.5831E-03 1.98 7.5247E-04 1.96 8.9813E-05 2.99
2−5 1.1520E-03 1.99 1.9046E-04 1.98 1.1261E-05 3.00

Example 2. Next, we perform Ensemble HDG computations for the convection dominated case
with exact solutions haveing interior layers. But we do not attempt to compute convergence rates
here; instead for illustration we plot all the ensemble members {ujh}3j=1 at the final time T = 0.1
and also plot the exact solution for comparsion. We can see that the Ensemble HDG method is
able to capture the very sharp interior layers in the solution with almost no oscillatory behavior,
see e.g. Figures 1 to 3.

The domain is Ω = [0, 1]× [0, 1] and it is uniformly partition into 131072 triangles (h =
√

2/256)
and also ∆t = 1/1000. The initial conditions, boundary conditions, and source terms are chosen
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Figure 1: Left is the exact solution u1 and right is u1h computed by Ensemble HDG.

Figure 2: Left is the exact solution u2 and right is u2h computed by Ensemble HDG.

to match Equation (1.1) for the data

c1 = 104, c2 = 2× 104, c3 = 3× 104,

β1 = [2, 3], β2 = [3, 4], β3 = [4, 5],

and the exact solutions {uj}3j=1 are chosen as

u1 = sin(t)x(1− x)y(1− y)

1

2
+

arctan 2
√
c1

(
1
12 −

(
x− 1

3

)2 − (y − 1
2

)2)
π

 ,
u2 = sin(t)x(1− x)y(1− y)

1

2
+

arctan 2
√
c2

(
1
14 −

(
x− 1

2

)2 − (y − 1
3

)2)
π

 ,
u3 = sin(t)x(1− x)y(1− y)

1

2
+

arctan 2
√
c3

(
1
16 −

(
x− 1

2

)2 − (y − 1
2

)2)
π

 .
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Figure 3: Left is the exact solution u3 and right is u3h computed by Ensemble HDG.

Figure 4: Left is solution u1h and right is the postprocessed solution u?1h.

Example 3. Fianlly, we perform the Ensemble HDG method for a group of convection dominated
problems without exact solutions. In this example, the problems exhibit not interior layers but
boundary layers. It is well known that the boundary layers are more difficult than interior layers
for all numerical methods. Since in Example 2 the Ensemble HDG captured the interior layers
without oscillations, we didn’t plot the postprocessed solutions there. However, our numerical test
shows that the postprocessed solutions u?jh are better than ujh for solutions with boundary layers;
see e.g. Figures 4 to 6. We note there is no superconvergent rate even for a single convection
dominated diffusion problem PDE using HDG methods, see, e.g. [18].

We plot all the ensemble members ujh and u?jh at the final time T = 0.1 for comparsion. The
domain, the mesh, the time step, the bounday conditions and the initial conditions are the same
with Example 2. For the other data, we take

c1 = 60, c2 = 120, c3 = 180,

β1 = [2, 3], β2 = [3, 4], β3 = [4, 5],

f1 = 2, f2 = 5, f3 = 8.

20



A Superconvergent Ensemble HDG Method for Parameterized Convection Diffusion Equations

Figure 5: Left is solution u2h and right is the postprocessed solution u?2h.

Figure 6: Left is solution u3h and right is the postprocessed solution u?3h.
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5 Conclusion

In this work, we first devised a superconvergent Ensemble HDG method for parameterized con-
vection diffusion PDEs. This Ensemble HDG method shares one common coefficient matrix and
multiple RHS vectors, which is more efficient than performing separate simulations. We proved
optimal error estimates for the flux qj and the scalar variable uj ; moreover, we obtained the super-
convergent rate for uj . As far as we are aware, this is the first time in the literature.

There are a number of topics that can be explored in the future, including devising high order
time stepping methods, a group of convection dominated diffusion PDEs, and stochastic PDEs.
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6 Appendix

In this section we only give a proof for (3.12a) and (3.12b), since the rest are similar. To prove
(3.12c)-(3.12e), we differentiate the error equations in Lemma 10 with respect to time t. It is easy
to check that the operators Πj

W commute with the time derivative, i.e., ∂tΠ
j
Wuj = Πj

W∂tuj , since
the velocity vector fields βj are independent of time t.

6.1 The equations of the projection of the errors

Lemma 10. We have the following equalities

(cjΠ
j
V qj , rh)Th − (Πj

Wuj ,∇ · rh)Th + 〈PMuj , rh · n〉∂Th = (cj(Π
j
V qj − qj), rh)Th ,

(∇ ·Πj
V qj , vh)Th − 〈Π

j
V qj · n, v̂h〉∂Th + 〈τ(Πj

Wuj − PMuj), vh − v̂h〉∂Th
+(βj · ∇Πj

Wuj , vh)Th − 〈βj · n,Πj
Wuj v̂h〉∂Th = (fj − ∂tuj , vh)Th ,

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh.

The proof is similar to the proof of Lemma 4, hence we omit it here.
To simplify the notation, we set

ε
uj

h = ujh −Πj
Wuj , ε

qj
h = qjh −Πj

V qj , ε
ûj

h = ûjh − PMuj .

Subtract (3.11) from (1.7) to get the following

Lemma 11. We have the error equations

(cjε
q
jh, rh)Th − (εujh,∇ · rh)Th + 〈εûjh, rh · n〉∂Th = (cj(Π

j
V qj − qj), rh)Th , (6.2a)

(∇ · εqjh, vh)Th − 〈ε
q
jh · n, v̂h〉∂Th + (βj · ∇εujh, vh)Th + 〈τ(εujh − εûjh), vh − v̂h〉∂Th

−〈βj · n, εujhv̂h〉∂Th = (∂tuj − ∂tΠj
Wuj , vh)Th . (6.2b)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh.
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6.2 Estimates for qj

Lemma 12. We have

‖√cjεqjh‖Th + ‖
√
τ(εujh − εûjh)‖∂Th

≤ C‖∂tuj − ∂tΠj
Wuj‖Th + C‖qj −Πj

V qj‖Th + C‖εujh‖Th .

Proof. We take (rh, vh, v̂h) = (εqjh, ε
u
jh, ε

û
jh) in (6.2), and add them together to get

‖√cjεqjh‖
2
Th + ‖

√
τ(εujh − εûjh)‖2Th + (βj · ∇εujh, εujh)Th − 〈βj · n, εujhεûjh〉∂Th

= (cj(Π
j
V qj − qj), ε

q
jh)Th + (∂tuj − ∂tΠj

Wuj , ε
u
jh)Th .

By Green’s formula and the fact 〈(βj · n)εûjh, ε
û
jh〉∂Th = 0 we have

(βj · ∇εujh, εujh)Th − 〈βj · n, εujhεûjh〉∂Th ≤
1

2
‖
√
|βj · n|(εujh − εûjh)‖2∂Th . (6.3)

Then by condition (2.2), we get the desired result.

6.3 Dual arguments

The next step is the consideration of the dual problems:

cjΦj +∇Ψj = 0 in Ω,

∇ ·Φj − βj · ∇Ψj = Θj in Ω,

Ψj = 0 on ∂Ω.

(6.4)

Elliptic regularity. To obatin the superconvergent rate, we are going to assume that the domain
Ω is such that for any Θj ∈ L2(Ω), we have the regularity estimates for these boundary value
problems (6.4):

‖Φj‖H1(Ω) + ‖Ψj‖H2(Ω) ≤ C‖Θj‖L2(Ω). (6.5)

It is well known that this holds whenever Ω is a convex polyhedral domain.

Lemma 13. If the elliptic regularity inequality (6.4) holds, then we have the error estimates

‖√cjεqjh‖Th + ‖
√
τ(εujh − εûjh)‖∂Th ≤ CAj ,

‖εujh‖Th ≤ Ch
k+min{k,1}Aj ,

where

Aj = ‖uj −Πj
Wuj‖Th + ‖qj −Πj

V qj‖Th + ‖∂tuj −Πj
W∂tuj‖Th .

Proof. Similar to Lemma 10, we have the following equations:

(cjΠ
j
V Φj , rh)Th − (Πj

WΨ,∇ · rh)Th + 〈PMΨj , rh · n〉∂Th = (cj(Π
j
V Φj −Φj), rh)Th ,

(∇ ·Πj
V Φj , vh)Th − 〈Π

j
V Φj · n, v̂h〉∂Th + 〈τ(Πj

WΨ− PMΨj), vh − v̂h〉∂Th
−(βj · ∇Πj

WΨj , vh)Th + 〈βj · n,Πj
Wuj v̂h〉∂Th = (Θj , vh)Th .
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Take (rh, vh, v̂h) = (εqjh, ε
u
jh, ε

û
jh) and Θj = εujh above to get,

‖εujh‖2Th = (∇ ·Πj
V Φj , ε

u
jh)Th − 〈Π

j
V Φj · n, εûjh〉∂Th

+ 〈τ(Πj
WΨj − PMΨj), ε

u
jh − εûjh〉∂Th

− (βj · ∇Πj
WΨj , ε

u
jh)Th + 〈βj · n,Πj

WΨjε
û
jh〉∂Th .

By (6.2a) one gets

‖εujh‖2Th = (cjε
q
jh,Π

j
V Φj)Th − (cj(Π

j
V qj − qj),Π

j
V Φj)Th + 〈βj · n,Πj

WΨjε
û
jh〉∂Th

+ 〈τ(Πj
WΨj − PMΨj), ε

u
jh − εûjh〉∂Th − (βj · ∇Πj

WΨj , ε
u
jh)Th .

Hence,

‖εujh‖2Th = (Πj
WΨj ,∇ · εqjh)Th − 〈PMΨj , ε

q
jh · n〉∂Th − (cj(Π

j
V Φj −Φj), ε

q
jh)Th

− (cj(Π
j
V qj − qj),Π

j
V Φj)Th + 〈τ(Πj

WΨj − PMΨj), ε
u
jh − εûjh〉∂Th

− (βj · ∇Πj
WΨj , ε

u
jh)Th + 〈βj · n,Πj

WΨjε
û
jh〉∂Th .

By Green’s formula one gets

‖εujh‖2Th = (Πj
WΨ,∇ · εqjh)Th − 〈PMΨj , ε

q
jh · n〉∂Th − (cj(Π

j
V Φj −Φj), ε

q
jh)Th

− (cj(Π
j
V qj − qj),Π

j
V Φj)Th + 〈τ(Πj

WΨ− PMΨ), εujh − εûjh〉∂Th
+ (βj · ∇εujh,Π

j
WΨj)Th + 〈βj · n,Πj

WΨj(ε
û
jh − εujh)〉∂Th

= (Πj
WΨj ,∇ · εqjh)Th − 〈PMΨj , ε

q
jh · n〉∂Th − (cj(Π

j
V Φj −Φj), ε

q
jh)Th

− (cj(Π
j
V qj − qj),Π

j
V Φj)Th + 〈τ(Πj

WΨj − PMΨj), ε
u
jh − εûjh〉∂Th

+ (βj · ∇εujh,Π
j
WΨj)Th − 〈βj · n, εujhPMΨj〉∂Th + 〈βj · n, εujhPMΨj〉∂Th

+ 〈βj · n,Πj
WΨj(ε

û
jh − εujh)〉∂Th .

By (6.2b) one gets

‖εujh‖2Th = −(cj(Π
j
V Φj −Φj), ε

q
jh)Th − (cj(Π

j
V qj − qj),Π

j
V Φj)Th

+ 〈βj · n, (εujh − εûjh)(PMΨj −Πj
WΨj)〉∂Th

+ (βj · ∇Πj
WΨj ,Π

j
Wuj − uj)Th + (∂tuj − ∂tΠj

Wuj ,Π
j
WΨj)Th

=
5∑

i=1

Ri.
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We estimate {Ri}5i=1 term by term:

R1 ≤ Ch‖Φj‖1‖εqjh‖Th
≤ Ch‖εujh‖2Th + Ch(‖uj −Πj

Wuj‖Th + ‖qj −Πj
V qj‖Th)‖εujh‖Th ,

R2 ≤ Chmin{k,1}‖Φj‖1‖qj −Πj
V qj‖Th ≤ Ch

min{k,1}‖εujh‖Th‖qj −Πj
V qj‖Th ,

R3 ≤ Ch
1
2

+min{k,1}‖Ψj‖2‖
√
τ(εujh − εûjh)‖∂Th

≤ Ch
1
2

+min{k,1}(‖uj −Πj
Wuj‖Th + ‖qj −Πj

V qj‖Th)‖εujh‖Th
+ Ch

1
2

+min{k,1}‖εujh‖2Th ,

R4 = ((βj −Π0βj) · ∇Πj
WΨj ,Π

j
Wuj − uj)Th

≤ Ch‖Ψj‖1‖uj −Πj
Wuj‖Th ≤ Ch‖ε

u
jh‖Th‖uj −Πj

Wuj‖Th ,

R5 ≤ Chmin{k,1}‖Ψj‖1‖∂tuj −Πj
W∂tuj‖Th ≤ Ch

min{k,1}‖εujh‖Th‖∂tuj −Πj
W∂tuj‖Th .

Hence, we have

‖εujh‖Th ≤ Ch
min{k,1}

(
‖uj −Πj

Wuj‖Th + ‖qj −Πj
V qj‖Th + ‖∂tuj −Πj

W∂tuj‖Th
)
.
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