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Hedge and Speculate: Replicating Option Payoffs with Limit and Market Orders\ast 
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Abstract. We consider an agent who takes a short position in a contingent claim and employs limit orders
(LOs) and market orders (MOs) to trade in the underlying asset to maximize expected utility of
terminal wealth. The agent solves a combined optimal stopping and control problem where trading
has frictions: MOs (executed by the agent and other traders) have permanent price impact and pay
exchange fees, and LOs earn the spread (relative to the midprice of the asset) and pay no exchange
fees. We show how the agent replicates the payoff of the claim and also speculates in the asset to
maximize expected utility of terminal wealth. In the strategy, MOs are used to keep the inventory on
target, to replicate the payoff, and LOs are employed to build the inventory at favorable prices and
boost expected terminal wealth by executing roundtrip trades that earn the spread. We calibrate
the model to the E-mini contract that tracks the S\&P 500 index, provide numerical examples of the
performance of the strategy, and prove that our scheme converges to the viscosity solution of the
dynamic programming equation.
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1. Introduction. In the classical approach to pricing and hedging contingent claims, a
widespread approach is to use delta hedging. The objective of this hedge-portfolio is to repli-
cate the payoff of the claim, which typically requires dynamically rebalancing the portfolio,
and only under ideal conditions is the claim perfectly replicated.

The theory of dynamic replication of payoffs relies on a number of assumptions including
the absence of price impact stemming from taking positions in the underlying and other
trading costs. Traditional models assume that the buying and selling activity of the hedger
does not affect the dynamics of the asset. This assumption contradicts the empirical finding
that trades may have an impact on the prices the hedger receives, i.e., a temporary impact
on execution prices, and may have a permanent impact on the price of the asset.

Furthermore, assuming the hedger can take positions in the underlying asset at no cost
other than the price of the asset is also incorrect in the vast majority of cases. A clear example
where this assumption fails is in order-driven equity markets. In these markets, trading with
aggressive market orders (MOs) is expensive because they incur exchange fees and the assets
normally trade with a spread about their midprice. That is, the price paid for one share is
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HEDGE AND SPECULATE 791

more than the cash received from selling one share when MOs are used.
Earlier models of pricing and replication of claims have been designed without considering

how assets are traded in modern electronic markets. In this paper we show how an agent who
shorts a European-style claim replicates its terminal payoff while taking speculative positions
in the underlying asset to maximize expected utility of terminal wealth.

We consider an agent who solves a combined optimal stopping and control problem where
the underlying asset is traded in an order-driven market. The agent employs a combination of
limit orders (LOs) and MOs during the life of the strategy; see Gu\'eant, Lehalle, and Fernandez-
Tapia (2012) and Cartea and Jaimungal (2015a). LOs are executed at better prices than the
quoted midprice: buy LOs are executed at the midprice minus a premium, and sell LOs are
executed at the midprice plus a premium. The premium earned by the LOs is the depth at
which the agent posts sell and buy LOs. Thus, LOs are desirable in the agent's strategy, but
their execution is uncertain. If the agent requires certainty in execution, she employs MOs
which are more costly because they pay exchange fees and are filled at prices worse than the
quoted midprice of the asset; see Cartea and Jaimungal (2015a).

We show how the agent aims to replicate the terminal payoff of the contingent claim and
simultaneously speculates in the asset to maximize expected utility of terminal wealth. In the
optimal strategy, MOs are used to keep the inventory on target to replicate the payoff, and
LOs are employed to (i) build the inventory at favorable prices and without price impact, and
(ii) boost expected terminal wealth by executing roundtrip trades that earn the spread.

Our model incorporates a number of important features such as permanent price impact
and adverse selection costs. Orderflow from MOs typically affects the midprice of the underly-
ing asset; see, for instance, Cartea and Jaimungal (2016). When MOs arrive in the exchange,
the midprice of the asset jumps by a random amount in the direction of the trade. Under
the optimal strategy, the agent accounts for this price impact when she posts LOs to protect
herself from adverse selection costs. These costs arise when a market participant sends a
MO that is filled by the agent's LO, and immediately after the midprice jumps in the same
direction as the MO. We find that the volume of shares the agent is willing to post in the
limit order book (LOB) depends on the exposure to adverse selection costs.

Our work is closest to that of Gu\'eant and Pu (2015), who consider the pricing and hedging
of European call options in illiquid markets (see also Gu\'eant (2016)). Gu\'eant and Pu assume
a Bachelier model for the midprice dynamics of the underlying asset of the options. In their
model the hedger only executes MOs, and does so by choosing a continuous trading rate.
Illiquidity in the market precludes frictionless hedging of the options. Thus, the authors
assume that MOs executed by the hedger have (linear in the speed of trading) permanent
impact on the price of the underlying and incur execution costs (also a function of the speed
of trading MOs).

We depart from Gu\'eant and Pu in a number of aspects. The main difference is that in our
model the hedger employs both LOs and MOs in the trading strategy. LOs are continuously
updated in the market, and MOs are modeled as an impulse control. In practice, hedgers draw
on both types of order to replicate options at the most favorable prices, and more so in illiquid
markets where MOs affect prices, may walk the LOB, and pay exchange fees. On the other
hand, LOs are filled at better prices than the midprice of the underlying---LOs earn at least
half the bid-ask spread and pay no fees. In our model, MOs from all market participants (notD
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792 \'ALVARO CARTEA, LUHUI GAN, AND SEBASTIAN JAIMUNGAL

only the hedger's) have a permanent impact on the price of the underlying asset. Conditional
on a MO arriving in the exchange, the underlying price jumps in the direction of the trade.
Finally, in our model the hedger not only targets an amount of shares or cash to settle the
options, but also executes speculative trades to maximize expected utility of wealth.

In recent years, advances in optimal execution have inspired a new stream of literature.
Rogers and Singh (2010) formulated a stochastic control problem where an agent minimizes
the integrated squared error between her inventory process and the option delta. A simi-
lar formulation can be found in Naujokat and Westray (2011) and Bank, Soner, and Vo{\ss}
(2017), where the former allows the agent to post passive orders and the latter allows for
non-Markovian controls. Almgren and Li (2016) consider intraday hedging of an option for an
agent whose trades have price impact. The authors formulate a general model and provide an
explicit solution when the option's gamma is approximately constant and the agent's trades
have permanent and temporary price impact. The optimal hedge trades smoothly towards the
classical Black--Scholes delta, where the trading intensity is proportional to the instantaneous
mishedge and is inversely proportional to illiquidity.

Moreover, in the extant literature, several attempts have been made to incorporate trans-
action costs when trading assets. Leland (1985) proposes a discrete-time hedging strategy as
an alternative to the Black--Scholes model when the transaction costs are proportional to the
volumes traded in a given time interval. Soner, Shreve, and Cvitani\'c (1995) show how to hedge
a European call option in a Black--Scholes model with proportional transaction costs; see also
Mohamed (1994) and Marco and Antonio (1994). Barles and Soner (1998) use indifference
pricing to derive pricing formulae for European call options under proportional transaction
costs and also assume that transaction costs are proportional to the volumes traded. Other ex-
amples include Boyle and Vorst (1992), Davis, Panas, and Zariphopoulou (1993), and Cvitani\'c
and Karatzas (1996).

Another stream of literature examines the effects of market impact on option pricing and
volatility. Cetin, Jarrow, and Protter (2004) extended the Black--Scholes framework by adding
a stochastic supply curve for the underlying asset. Their model was later extended by Roch
(2011) to incorporate permanent price impact. A similar set-up was also proposed by Bank
and Baum (2004). Lions and Lasry (2007) show how the trading activity of a large investor
affects the volatility of the asset.

The remainder of the paper is organized as follows. Section 2 describes the model com-
ponents and the optimal control problem solved by the agent, and in section 3 we derive its
associated dynamic programming equation (DPE). Section 4 presents a numerical example
of the strategy's performance when the agent sells a call option written on the S\&P E-mini
Futures. Section 5 contains proofs for the convergence of the numerical scheme we adopt.
Section 6 offers conclusions, and we collect other proofs in Appendix A.

2. Model. Fix a complete filtered probability space (\Omega ,\scrF ,\BbbP ,\BbbF = (\scrF t)0\leq t\leq \^T ), where \BbbF is
the natural filtration generated by the collection of observable processes we describe below.
At time t = 0 the agent sells an option written on a traded asset (the case where the agent
buys an option is similar). The option expires at time \widehat T and can only be exercised by the
buyer at expiry, i.e., it is a European-style claim, and we assume that the option is physically
settled. The agent is risk-averse and trades the underlying asset of the option over the timeD
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HEDGE AND SPECULATE 793

window [0, T ] to maximize her expected utility at time T , where T \leq \widehat T .
The asset is traded in an order-driven exchange that matches orders from participants

who provide liquidity using LOs with those who take liquidity by executing MOs. The agent
employs four types of orders to trade the underlying asset: market buy order (MBO), market
sell order (MSO), limit buy order (LBO), and limit sell order (LSO).

Below we propose the dynamics of the midprice of the traded asset and describe the
dynamics of trading activity, including that of LOs and MOs.

Bid-ask spread and tick size. We denote by S = (St)t\in [0,T ] the midprice of the underlying
asset. Midprices take on values on a grid determined by the tick size in the exchange. Here
we denote the tick size by \sigma > 0 and assume that the asset trades with a bid-ask spread fixed
at \sigma .

Agent's limit orders. The agent's LOs are always posted at the best bid or best ask, i.e.,
LSOs are posted at the price level St+\sigma /2, and LBOs at the price level St - \sigma /2. The volume
of the LBOs posted by the agent is denoted by the process \ell + = (\ell +t )t\in [0,T ], and the volume

of the LSOs is denoted by the process \ell  - = (\ell  - t )t\in [0,T ].

Agent's market orders. We denote by \tau 0+ = (\tau 0+k )k\geq 1 the times at which the agent sends
MBOs, and we denote their volume by m+ = (m+

k )k\geq 1. Similarly, \tau 0 - = (\tau 0 - k )k\geq 1 are the
times at which the agent sends MSOs, and we denote their volume by m - = (m - 

k )k\geq 1. Here,
\tau 0\pm are sequences of increasing stopping times and m+

k (resp., m - 
k ) are \scrF \tau 0+k

-measurable

(resp., \scrF \tau 0 - k
-measurable) strictly positive integer-valued random variables. In subsection 2.1

we specify the values that m\pm 
k takes on.

We define the processes M0+ = (M0+
t )t\in [0,T ] and M

0 - = (M0 - 
t )t\in [0,T ] via

M0+
t =

\infty \sum 
k=1

1\tau 0+k \leq t and M0 - 
t =

\infty \sum 
k=1

1\tau 0 - k \leq t

as the total number of MBOs and MSOs that the agent has executed up to time t, respectively.
We also define the processes \BbbM 0+ = (\BbbM 0+

t )t\in [0,T ] and \BbbM 0 - = (\BbbM 0 - 
t )t\in [0,T ] via

\BbbM 0+
t =

\infty \sum 
k=1

m+
k 1\tau 0+k \leq t and \BbbM 0 - 

t =
\infty \sum 
k=1

m - 
k 1\tau 0 - k \leq t

as the accumulated volume of MBOs and MSOs the agent has executed up to time t, respec-
tively.

Other market participants' market orders. We assume that there is enough liquidity at
the best prices to fill incoming MOs. Thus, all MSOs are executed at the price St  - \Upsilon and all
MBOs are executed at St +\Upsilon , where \Upsilon consists of the half-spread \sigma /2 (i.e., half a tick) plus
a liquidity taking fee.

MBOs and MSOs sent by other market participants arrive in the exchange at the arrival
times of a homogeneous Poisson process. Buy orders arrive with intensity \lambda + and sell orders
with intensity \lambda  - . The counting processes for buy and sell MOs are denoted by M+ =
(M+

t )t\in [0,T ] and M - = (M - 
t )t\in [0,T ], respectively, with associated event times denoted by

\tau + = (\tau +k )k\geq 1 and \tau  - = (\tau  - k )k\geq 1, respectively. We assume the agent's short position in theD
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794 \'ALVARO CARTEA, LUHUI GAN, AND SEBASTIAN JAIMUNGAL

contingent claim is relatively small compared to the trading volume of the underlying asset.
Hence it is sufficient for her to post LOs of relatively small size, and we can assume that her
LOs are always executed in full.

Conditional on the arrival of the kth MO, the agent's LO is filled according to a Bernoulli
random variable \zeta k with probability of success \rho . The random variables \zeta k are independent
of all other random variables and independent and identically distributed (i.i.d.). We denote
by L+ = (L+

t )t\in [0,T ] and L
 - = (L - 

t )t\in [0,T ] the counting processes for the agent's filled LBOs
and LSOs, respectively. Our assumption on \zeta k represents uncertainty in LO execution. For
example, under the time-priority rule, each level of the LOB is executed with a first-in-first-
out rule. Thus, the fill probability of a LO depends on its price, position in the queue, and
size of the MO. This randomness is captured by \zeta k.

Midprice dynamics. Changes in the midprice of the asset reflect the arrival of information
that affects the value of the asset. We assume that buying and selling pressure from MOs has
an impact on the midprice, and other information and news also affect the midprice of the
asset; see, for example, Cartea and Jaimungal (2015b).

Changes in the midprice are given by

(1) dSt = \sigma (dP+
t  - dP - 

t ) ,

where P+
t = (P+

t )t\in [0,T ] is the upward pressure on the midprice exerted by market participants

as a result of MBOs and reshuffling of LSOs. Similarly, P - 
t = (P - 

t )t\in [0,T ] represents the
downward pressure on the midprice as a result of MSOs and changes in LOs. For more
general price impact functions, see Almgren (2003), Bouchard, Loeper, and Zou (2017), and
Cetin, Soner, and Touzi (2010).

We assume that P\pm 
t have the following form:

P+
t = Z+

t +

M+
t\sum 

k=1

\xi +k +

M0+
t\sum 

k=1

\xi 0+k ,(2)

P - 
t = Z - 

t +

M - 
t\sum 

k=1

\xi  - k +

M0 - 
t\sum 

k=1

\xi 0 - k .(3)

We explain the various objects in the three terms on the right-hand side of (2).
The first term represents exogenous changes in the midprice due to reshuffling of LSOs as

a result of information and news that are impounded in the midprice of the asset. Specifically,
Z\pm = (Z\pm 

t )t\in [0,T ] are independent Poisson processes with intensity \theta , and are independent of
all other processes and random variables.

The second term,
\sum M+

t
k=1 \xi 

+
k , is a compound Poisson process that represents the price impact

of MBOs sent by all market participants (excluding the agent). Moreover, \xi + = (\xi +k )k\geq 1 is a
sequence of i.i.d. Bernoulli random variables with constant success probability \alpha . Recall that
M+

t is a homogeneous Poisson process with arrival rate \lambda +; thus, every time a MBO arrives,
the midprice jumps by \xi +.

The third term,
\sum M0+

t
k=1 \xi 

0+
k , represents the price impact of the agent's MBOs. Upon

the agent sending a buy MO, the midprice jumps up by the random amount \xi 0+. TheseD
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HEDGE AND SPECULATE 795

midprice innovations are characterized by \xi 0+ = (\xi 0+k )k\geq 1, which is a sequence of \scrF \tau 0+k
-

measurable Bernoulli random variables. Each \xi 0+k has probability of success \beta +(m+
k ), where

\beta + : \BbbZ + \mapsto \rightarrow [0, 1] is a deterministic function. We could assume that the price impact of other
market participants' MOs is a function of the volume of the order.

The three terms on the right-hand side of (3) have a similar interpretation. The first term
represents changes in the midprice due to reshuffling of LOs in the sell side of the book. The
second term represents the price impact of market participants' MSOs, where \xi  - = (\xi \pm k )k\geq 1

is a sequence of i.i.d. Bernoulli random variables with constant probability of success \alpha . And
the third term is the price impact of the agent's MSOs, where (\xi 0 - k )k\geq 1 is a sequence of
\scrF \tau 0 - k

-measurable Bernoulli random variables. Each \xi 0 - k has probability of success \beta  - (m - 
k ).

2.1. The agent's optimization problem. The agent's objective is to maximize expected
utility of wealth at time T . Recall that the agent sells a contingent claim expiring at \widehat T \geq T ,
trades the underlying asset over the time window [0, T ], and the claim is physically settled.
We denote by Q = (Qt)t\in [0,T ] the agent's inventory, which takes on integer values, and we
restrict the strategies so that q \leq Qt \leq \=q, where \=q and q are the maximum and the minimum
inventory level the agent is willing to hold. As a result of the agent's LO and MO activity,
the inventory Qt process satisfies the stochastic differential equation (SDE)

(4) dQt = \ell  - t - dL - 
t  - \ell +t - dL+

t + d\BbbM 0+
t  - d\BbbM 0 - 

t ,

and the volumes of the agent's LOs and MOs are such that

\ell +t \in \{ 0, 1, . . . , \=q  - Qt\} ,(5a)

\ell  - t \in \{ 0, 1, . . . , Qt  - q\} ,(5b)

m+
k \in \{ 0, 1, . . . , \=q  - Q\tau +k

\} ,(5c)

m - 
k \in \{ 0, 1, . . . , Q\tau  - k

 - q\} (5d)

for 0 \leq t \leq T and k \geq 1, so the strategy obeys the inventory constraints.
The agent's cash process is represented by X = (Xt)t\in [0,T ] and satisfies the SDE

(6) dXt =  - 
\bigl( 
St -  - \sigma 

2

\bigr) 
\ell  - t - dL

 - 
t +

\bigl( 
St - + \sigma 

2

\bigr) 
\ell +t - dL

+
t + (St -  - \Upsilon ) d\BbbM 0 - 

t  - (St - +\Upsilon ) d\BbbM 0+
t .

The first two terms in the right-hand side of (6) represent changes in the agent's cash position
due to filled LOs. The last two terms represent changes in cash due to the agent's executed
MOs. Note that the cash process does not take into account the value of the agent's inventory.

We denote by G : (\sigma \BbbZ ) \mapsto \rightarrow \BbbR the value function of the contingent claim. At time t = 0 the
agent receives cash for the contingent claim, and at expiry the value of the claim is G(ST ).
We assume the agent's initial wealth X0 consists of the premium she obtains from selling
the contingent claim. Below, in subsection 3.1 we show how the agent employs indifference
pricing to calculate the premium charged for the claim. In the remainder of the analysis, for
simplicity we assume the expiry of the contingent claim and the agent's horizon are the same,
i.e., \widehat T = T .D
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The agent's preferences are given by an exponential utility function of wealth, and her
value function is

(7) H(t, x, s, q) = sup
(\ell \pm ,\tau 0\pm ,m\pm )\in \scrA 

\BbbE t,x,s,q

\Bigl[ 
 - e - \gamma (XT+ST QT - G(ST ) - C(QT ,ST ))

\Bigr] 
,

where \gamma > 0 is the agent's risk-aversion parameter and \BbbE t,x,s,q[ \cdot ] denotes the \BbbP expectation
conditional on the initial condition Xt - = x, Qt - = q, and St - = s. Here, \scrA denotes the set
of admissible strategies in which \ell \pm = (\ell \pm t )0\leq t\leq T are \scrF -adapted processes, \tau 0\pm = (\tau 0\pm k )k\geq 1 are
sequences of \scrF -stopping times, and m\pm = (m\pm 

k )k\geq 1 are sequences of \scrF \tau 0\pm k
-measurable random

variables. Moreover, \ell \pm and m\pm satisfy (5) pointwise. The function C : \BbbZ \times (\sigma \BbbZ ) \mapsto \rightarrow \BbbR 
represents other costs the agent incurs at the terminal date to account for any additional
terminal transaction costs. For example, if the option is physically settled, the agent may
have to adjust her terminal inventory position to settle the option or unwind inventory that
is not required (see the example in (14a) which corresponds to the case of physically settling
a call option).

Table 1 summarizes the parameters of the model. It also shows parameter values that we
employ below in section 4 when we illustrate the performance of the model.

Table 1
Model parameters. The last column shows parameter values that we use below when we illustrate features

and performance of the strategy.

Parameter Description Value

\theta rate of exogenous midprice changes 107.7/hour
\lambda \pm rate of arrival of other participants' MOs (+: buy,  - : sell) 4492.4/hour
\rho probability of agent's LO being filled 0.0171
\alpha probability of price impact of other participants' MOs 0.094
T time horizon of optimization problem to maturity 1 hour
\^T expiry of the option 1 hour
\sigma bid-ask spread (tick size) 0.25
\Upsilon half-spread 0.125

(assuming no MO fee)
\beta \pm (m) agent's price impact 0.01\times m
\gamma agent's risk-aversion parameter 0.1
q0 initial inventory 0
\=q maximum inventory 10
q minimum inventory 0

3. The dynamic programming equations. To solve the combined optimal stopping and
control problem, we employ the dynamic programming principle. Standard results imply that
the value function (7) is the unique viscosity solution to the quasi-variational inequality (QVI)

max
\Bigl\{ 
(\partial t + \scrL )H(t, x, s, q)

+ max
\ell +\in \{ 0,...,\=q - q\} 

\bigl\{ 
\lambda  - \BbbE 

\bigl[ 
H

\bigl( 
t, x - \ell +

\bigl( 
s - \sigma 

2

\bigr) 
\zeta , s - \sigma \xi  - , q + \ell + \zeta 

\bigr) 
 - H(t, x, s, q)

\bigr] \bigr\} 
+ max

\ell  - \in \{ 0,...,q - q\} 

\bigl\{ 
\lambda + \BbbE 

\bigl[ 
H

\bigl( 
t, x+ \ell  - 

\bigl( 
s+ \sigma 

2

\bigr) 
\zeta , s+ \sigma \xi +, q  - \ell  - \zeta 

\bigr) 
 - H(t, x, s, q)

\bigr] \bigr\} 
;(8)
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max
m+\in \{ 1,...,\=q - q\} 

\bigl\{ 
\BbbE 
\bigl[ 
H

\bigl( 
t, x - m+ (s+\Upsilon ) , s+ \sigma \xi 0+, q +m+

\bigr) 
 - H(t, x, s, q)

\bigr] \bigr\} 
;

max
m - \in \{ 1,...,q - q\} 

\bigl\{ 
\BbbE 
\bigl[ 
H

\bigl( 
t, x+m - (s - \Upsilon ) , s - \sigma \xi 0 - , q  - m+

\bigr) 
 - H(t, x, s, q)

\bigr] \bigr\} \Bigr\} 
= 0 ,

subject to the terminal condition

H(t, x, s, q) =  - e - \gamma (x+s q - G(s) - C(s,q)) .

The infinitesimal generator \scrL in (8) acts on a smooth function g(t, x, s, q) as follows:

\scrL g(t, x, s, q) = \theta (g(t, x, s+ \sigma , q) + g(t, x, s - \sigma , q) - 2 g(t, x, s, q)) .

The expectation operators in the second and third lines of the QVI are with respect to the
random variables \zeta , \xi , and the expectation operator in the last two lines of the QVI is with
respect to the random variables \xi 0\pm . Recall that \zeta , \xi , \xi 0\pm are independent Bernoulli random
variables with probability of success \rho , \alpha , and \beta \pm (m\pm ), respectively.

The terms in the QVI have the following interpretation. The term on the right-hand side
of the first line of (8) represents the changes in the value function due to time and exogenous
changes in the midprice that result from reshuffling of LOs.

The second line represents the changes in the value function due to other market partic-
ipants' incoming MSOs, which are filled by the agent's LBOs with probability \rho , and which
generate price impact on the midprice (represented by \xi ).

Similarly, the third line represents the changes in the value function due to other agents'
MBOs. Finally, the fourth and fifth lines account for changes in the value function due to the
agent's MOs. Recall that \Upsilon consists of the half-spread \sigma /2 plus a liquidity taking fee.

To simplify (8), we adopt the ansatz

(9) H(t, x, s, q) =  - e - \gamma (x+s q+h(t,s,q))

and derive the QVI satisfied by h(t, s, q):

0 = min

\Biggl\{ 
 - \gamma \partial th(t, s, q) + \theta 

\Bigl( 
e - \gamma (q \sigma +h(t,s+\sigma ,q) - h(t,s,q)) + e - \gamma ( - q \sigma +h(t,s - \sigma ,q) - h(t,s,q))  - 2

\Bigr) 
+ \lambda  - min

\ell +\in \{ 0,1,...,\=q - q\} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma (\ell + \sigma 

2 \zeta  - (q+\ell + \zeta )\sigma \xi +h(t,s - \sigma \xi ,q+\ell +\zeta ) - h(t,s,q))  - 1
\Bigr] \Bigr\} 

+ \lambda + min
\ell  - \in \{ 0,1,...,q - q\} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma (\ell  - \sigma 

2 \zeta +(q - \ell  - \zeta )\sigma \xi +h(t,s+\sigma \xi ,q - \ell  - \zeta ) - h(t,s,q))  - 1
\Bigr] \Bigr\} 

;

min
m+\in \{ 0,1,...,\=q - q\} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma ( - m+\Upsilon +h(t,s+\sigma \xi 0+,q+m+) - h(t,s,q))  - 1

\Bigr] \Bigr\} 
;

min
m - \in \{ 0,1,...,q - q\} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma ( - m - \Upsilon +h(t,s - \sigma \xi 0 - ,q - m - ) - h(t,s,q))  - 1

\Bigr] \Bigr\} \Biggr\} 
,

(10)

subject to the terminal condition h(T, s, q) =  - G(s) - C(s, q).
We can extend our approach by assuming other (concave) utility functions. The advantage

of employing an exponential utility function is that wealth factors out using the ansatz (9),
and hence the dimension of the QVI is reduced.D
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3.1. Indifference price of contingent claim. The agent determines the premium for the
options she sells using indifference pricing (see, e.g., Carmona (2008)). We define the indif-
ference price of the options as the amount I \geq 0 that makes the agent indifferent between the
following two scenarios:

1. The agent does not sell contingent claims. She employs all the aforementioned order
types (MBO, MSO, LBO, and LSO) to maximize her expected utility at time T ,
subject to the same inventory constraint (q \leq Qt \leq \=q).

2. At time t = 0 the agent receives the cash amount I and commits to delivering the
payoffs at time T , again employing all order types to maximize her expected utility.

In scenario 1, the agent solves the optimal control problem:

(11) \widetilde H(t, x, s, q) = sup
(\ell \pm ,\tau 0\pm ,m\pm )\in \scrA 

\BbbE t,x,s,q

\Bigl[ 
 - e - \gamma (XT+ST QT - \~C(QT ))

\Bigr] 
,

where \~C(QT ) represents other (transaction) costs that arise from unwinding terminal inven-
tory.

Classical results (e.g., Pham (2009)) suggest that \widetilde H satisfies (8), subject to the terminal
condition \widetilde H(T, x, s, q) =  - e - \gamma (x+s q - \~C(q)) .

By adopting the ansatz \widetilde H(t, x, s, q) =  - e - \gamma (x+s q+\~h(t,s,q)), we can show that \widetilde h(t, s, q) satisfies
(10) subject to the terminal condition \widetilde h(T, s, q) =  - \~C(q).

On the other hand, in scenario 2, the agent solves the problem where the indifference price
I(t, x, s, q) satisfies

H(t, x+ I(t, x, s, q), s, q) = \widetilde H(t, x, s, q) .

It is straightforward to see that I can be expressed in terms of h(t, s, q) and \widetilde h(t, s, q):
I(t, s, q) = \widetilde h(t, s, q) - h(t, s, q) ,

where we suppress x in I(t, x, s, q) because there is no dependency on wealth.

3.1.1. The value of limit orders. The agent maximizes expected utility of terminal wealth
by (i) trading in the underlying asset to ensure that the payoff of the options is settled, and
(ii) taking speculative positions in the underlying asset to benefit from roundtrip trades.1 A
key driver of revenues in the agent's strategy is the use of LOs, in both (i) and (ii), because
they are priced at the midprice plus or minus half-spread when selling or buying the asset,
respectively.

Analogous to finding the value of the option using indifference pricing, we may also use
indifference pricing to determine the value of employing LOs in the agent's strategy. To this
end, consider the following problem:

(12) \widehat H(t, x, s, q) = sup
(\tau 0\pm ,m\pm )\in \widehat \scrA \BbbE t,x,s,q

\Bigl[ 
 - e - \gamma (XT+ST QT - G(ST ) - C(ST ,QT ))

\Bigr] 
,

1The agent behaves like a market maker; see Avellaneda and Stoikov (2008), Cartea, Jaimungal, and Penalva
(2015), and Gu\'eant (2017).D
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where \widehat \scrA denotes the set of strategies \{ (\ell \pm , \tau 0\pm ,m\pm ) \in \scrA : (\ell \pm t )t\in [0,T ] = 0\} , i.e., the set of

admissible strategies where the agent uses MOs only. By adopting the ansatz \widehat H(t, x, s, q) =

 - e - \gamma (x+s q+\widehat h(t,s,q)), we can show that \widehat h(t, s, q) satisfies a modification of (10) in which the
optimization over \ell \pm is removed, subject to the terminal condition \widehat h(T, s, q) =  - G(s) - C(s, q).
The agent's indifference price of LOs is defined as the function I lo(t, x, s, q) such that

H(t, x, s, q) = \widehat H(t, x+ I lo(t, x, s, q), s, q) .

Thus, the value of the LOs is given by

I lo(t, s, q) = h(t, s, q) - \widehat h(t, s, q) ,(13)

where h(t, s, q) solves the QVI (10), and provides the agent's value function when she can
employ LOs and MOs in the strategy. We suppress x in I lo(t, x, s, q) because there is no
dependency on wealth.

4. Numerical example. In this section we employ numerical methods to illustrate the
performance and features of the agent's strategy. At time t = 0 the agent sells European calls
written on the S\&P 500 E-mini Futures and trades in the underlying to maximize expected
utility of terminal wealth.

Data. We employ high-frequency data from the Chicago Mercantile Exchange (CME) to
estimate the model parameters. We focus on the S\&P E-mini contract that matures on July
20, 2014 and use messages sent to the exchange to build the LOB on March 24, 2014. Our
data set contains all messages (FIX format) that traders see to track the liquidity makers and
takers in the exchange.2 Finally, we employ data between 10:00 and 15:30 Eastern time to
exclude the excessive trading activity which normally occurs around market open and close.

The E-mini contract is worth \$50\times (S\&P 500 index) and trades with tick size \sigma = \$12.5.
In what follows, we report the price of the contract as the original price divided by 50 to
reflect the value of the index.

Parameter estimation.
\bullet Arrival rate of MOs. To estimate the rate of MO arrivals, we divide the total number
of MOs (buy and sell) in the data set by the total time of 5.5 hours. Next, we count
the total number of price changes not due to an incoming MO, divide it by the total
time 5.5 hours, and obtain an estimate of the rate of exogenous price changes, which
in our model is represented by the parameter \theta . The estimates for the rate of MO
arrivals and the rate of exogenous price changes are for both sides of the LOB.

\bullet Permanent price impact. For an estimate of the probability of midprice changes after
MO arrivals from other traders we use the proportion of MOs that results in a midprice
change (i.e., consume at least the first level of the LOB) to estimate the parameter \alpha .

\bullet Fill rate of LOs. Finally, to estimate the probability of the agent's LO being filled
by an incoming MO, i.e., the parameter \rho , we assume that the position of the agent's
LO in the queue is uniformly distributed in the best bid or ask level when a MO

2FIX is the protocol that CME employs to communicate changes in the LOB. See https://www.cmegroup.
com/market-data/files/fix-fast-market-data-message-specification.pdf.D
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arrives. Therefore, the probability that the agent's LO is filled by an incoming MO is
pi = Mi/L\tau i , where Mi is the size of the ith MO and L\tau i is the total volume posted
in the first level of the LOB when the ith MO arrives. We report the median of pi as
our estimate of \rho .

The first four rows in Table 1 report parameter estimates for \theta , \lambda , \rho , \alpha .

Agent's optimal trading. We assume that the agent sells N call options, and denote by
S the price of the underlying S\&P E-mini Futures. All options expire at time T and have the
same strike priceK. The options are physically settled; i.e., if the option expires in-the-money,
the agent delivers N shares and collects the cash amount N \times K.

The options' payoffs and other costs incurred by the agent at the terminal date T are
given by

G(ST ) = N (ST  - K)+ ,(14a)

C(ST , QT ) = \scrC (QT , N)1ST\geq K + \scrC (QT , 0)1ST<K ,(14b)

where the operation (x)+ represents max(x, 0), \scrC : \BbbZ 2 \mapsto \rightarrow \BbbR , and \scrC (q1, q2) denotes other costs
and fees the agent incurs when changing her inventory position from q1 to q2. For example, if
the option expires in-the-money, and the accumulated inventory is QT < N , the agent must
purchase N - QT shares to physically settle the options. The cost of these extra shares consists
of the sum of (i) (N  - QT )ST , which is the market price of shares purchased at the terminal
date, plus (ii) the cost \Upsilon , which includes the half-spread and liquidity taking fees, in addition
to any other fees that may arise from executing the trade---these costs are included in (14b).

In the results of the simulations reported below we assume that the agent is short N = 10
call options. At the time of selling the options the underlying asset is trading at S0 = 1, 856.50
and we assume that the options are written at-the-money; thus K = S0. Transaction fees and
the penalty imposed by the agent stemming from adjusting the inventory position at time T
are given by the function

(15) \scrC (q1, q2) = \Upsilon \varphi | q1  - q2| ,

where \varphi \geq 1 is a terminal penalty parameter. Recall that \Upsilon consists of the half-spread \sigma /2 plus
a liquidity taking fee. Thus, \varphi = 1 represents the costs of unwinding the terminal inventory
position in the exchange. When \varphi > 1, \scrC contains additional inventory penalties which do
not affect the agent's wealth, but do affect the agent's trading strategy. For example, a high
value of the penalty parameter \varphi forces the strategy to reach the terminal date T with the
correct number of shares to settle the option. In the simulations we assume \varphi = 1.05, so the
strategy reaches the terminal date with the required level of inventory, i.e., QT = N if the
options end up in-the-money, or QT = 0 if the options expire out-of-the-money.

Table 1 presents the remaining parameters required to perform the simulations. In par-
ticular, it shows the following: expiry of the options, tick size of exchange, half-spread, price
impact function of the agent's MOs, the agent's risk-aversion parameter, initial inventory, and
inventory constraints.

4.1. Features of the optimal strategy. In this section we solve the QVI system (10)
numerically to illustrate a number of features of the agent's strategy. Below, in subsection 4.2D
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(a) Market buy order
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(b) Limit buy order

Figure 1. Optimal strategy when q = 0. Colors represent size of orders.

we perform simulations to explore the performance of the agent's strategy, and in section 5
we provide details of our numerical scheme and proof of its convergence.

Here we discuss how the agent employs MOs and LOs depending on the level of inventory,
midprice, and remaining time to expiry of the contingent claims to maximize her expected
utility of terminal wealth.

Figure 1 shows heat-maps of the agent's optimal strategy when the inventory is fixed at
q = 0. On the left panel, the colored areas show the regions in which the agent executes MOs
of various volumes, and the empty (i.e., white) area shows the region in which she does not
execute any MOs. Similarly, the right panel shows the optimal posting of buy LOs across
time and moneyness of the options.

In particular, the left panel of Figure 1 shows that as the option moves deeper in-the-
money, the agent executes larger volumes of MBOs in anticipation of the option expiring
in-the-money. The left panel also shows that everything else equal, when the option is in-the-
money, as the option expiry approaches, the agent executes larger volumes of MBOs.

On the other hand, the right panel of Figure 1 shows that when the option is out-of-the-
money and the stock price is trading not ``too far"" from the strike, the agent posts LBOs with
volume of 5 shares. As the option moves further out-of-the-money, the agent posts smaller
LBOs. Moreover, at a fixed asset price, as maturity approaches, the posted volume decreases.

Figure 2 shows the optimal strategy when the inventory is fixed at q = 5; recall that the
agent is short N = 10 call options. When the option is close to at-the-money, the agent does
not execute MOs, but rather posts LOs on both sides of the LOB to maximize revenues by
earning the spread from speculative roundtrip trades. As time approaches maturity, if the
option is in-the-money, the agent increases the volume of the LBOs and eventually executes a
MBO, but still posts sell LOs to maximize revenues from speculative trades. Similarly, if the
option is out-of-the-money, the agent increases the volume of the LSOs and, nearer expiry,
the strategy eventually executes a MSO, but still posts buy LOs to maximize revenues from
speculative roundtrip trades. Moreover, there are regions where the agent posts only LBOs
(when the option is moderately in-the-money) or only LSOs (when the option is moderately
out-of-the-money), but if the option moves significantly in- or out-of-the money, she executes
MBOs or MSOs.

The value the agent attaches to the use of LOs depends on the agent's level of risk-aversion.D
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(a) Market order (q = 5)
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(c) Limit sell order (q = 5)

Figure 2. Optimal strategy when q = 5. Colors represent size of orders, where a positive (negative) value
means a buy (sell) order.

0.2 0.4 0.6 0.8

Time

1844

1856.5

1869

P
ri
c
e

q = 1

q = 3

q = 5

q = 7

(a) Market buy order
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(b) Market sell order

Figure 3. Innermost boundaries of the region where agent immediately executes a MO. At each point in
the left (right) panel, the color represents the minimum inventory level such that agent immediately executes a
MBO (MSO) when the midprice lies below (above) the boundary for that inventory level.

LOs can increase both the (i) expected revenues that stem from speculative roundtrip trades,
and (ii) volatility of the agent's terminal cash position. Thus, as the level of risk-aversion
increases, the strategy employs more MOs and relies less on LOs to boost revenues with
speculative roundtrip trades, i.e., trades off expected revenue against volatility of revenues.
We return to this point in the discussion of Figure 4 and at the end of this section.

There are other notable features here. Figure 2(a) contains two inner boundaries separat-
ing the plane into three different regions: the upper colored region, the middle white region,
and the lower colored region. Inside the middle region, the agent does not execute MOs, and
as soon as a boundary is reached, the agent immediately executes a MBO (upper region) or
a MSO (lower region) and the inventory jumps to a different level. As a result, any point
(t, S) in the interior of the colored regions is not attainable unless the agent starts with this
particular inventory level at time t and St = S. Figure 3 shows the strategy's innermost
boundaries for different levels of inventory. The left (right) panel shows the boundaries for a
given inventory level at which the agent would execute a MBO (MSO) when the asset price
lies above (below) that boundary.D
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Next we focus on a sample path to illustrate how the strategy behaves dynamically. Figure
4(a) shows a sample path of the midprice, with the strike price depicted by a horizontal line.
For this particular realization of the midprice, the option stays in-the-money early on, then
switches moneyness a few times before maturity and eventually expires out-of-the-money.

Panel 4(b) shows the strategy's acquired inventory, where solid circles denote the execution
of MOs. For this particular price path, most of the changes in the strategy's inventory are due
to filled LOs. Moreover, early on, the strategy sends a MO (indicated by the red dot) taking
the inventory to q = 2, and near expiry, when the midprice is dropping, and in anticipation
of the options expiring out-of-the-money, the strategy executes a series of sell MOs (indicated
by the green dots), so at expiry qT = 0.

To glean additional insight into what the strategy does, panel 4(c) shows the inventory
path which the strategy targets using LOs. The red and blue lines represent the levels at
which the inventory would jump if the posted LOs were filled, i.e., Qt+ \ell 

+
t if the LBO is filled

and Qt  - \ell  - t if the LSO is filled. For this simulation, the agent posts both LBOs and LSOs
simultaneously most of the time. In doing so, the agent is aiming to profit from the bid-ask
spread while simultaneously hedging the option payoff.

For illustrative purposes, panel 4(c) also shows the inventory path that would result if the
agent employs the classical delta strategy to hedge the options using MOs. Without market
impact and adverse selection, the high-frequency limit of our model results in a Brownian
motion midprice dynamics. Hence, the delta-hedge strategy we show here is that resulting
from the Bachelier model. We observe that the inventory position targeted by LOs is always
above or below that targeted by a delta hedge because the strategy seeks to profit from the
spread that accrues each time a roundtrip is completed.

To calculate the delta-hedge positions we assume that the midprice follows the arithmetic
Brownian motion

(16) St = \sigma BWt ,

whereW = (Wt)t\in [0,T ] is a standard Brownian motion, and we choose the volatility parameter

\sigma B so that it matches the volatility of the midprice in model (1) in the absence of the agent's
MOs. Furthermore, we assume that the Brownian motion is independent of all other random
variables in the model. Thus, one can show that

(\sigma B)2 = \BbbV 

\left[  Z+
t +

M+
t\sum 

k=1

\xi +k  - Z - 
t  - 

M - 
t\sum 

k=1

\xi  - k

\right]  / t
= \sigma 2 (2 \theta + 2\lambda \alpha ) ,

where \BbbV [ \cdot ] denotes the variance operator.
Interestingly, in Figure 4, the LOs in the strategy target inventory levels which contain

the delta-hedge position, but this is not always the case. Figure 5 is similar to Figure 4, but
the value of the risk-aversion parameter is \gamma = 1 and panel (c) shows the Bachelier delta is not
always enclosed by the targeted optimal level of inventory. For example, at around t = 0.65,
the Bachelier delta requires an inventory position larger than that sought by the agent who
targets an inventory level with LOs.D
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(c) Delta and limit order targets

Figure 4. Sample path of price (a) and inventory (b). The red and blue lines in (c) show the inventory levels
that the strategy targets using LOs. The posted buy volume is such that if the buy LO is filled, the inventory
will jump to the quantity shown in the red line. Similarly, if the posted sell volume is such that if the sell LO
is filled, the inventory will jump to the inventory shown in the blue line. The orange line is the option delta
calculated from a Bachelier model.

Standard deviation of the optimal inventory. We employ the expression for the dynamics
of the inventory (4) to derive the drift of the agent's inventory and to derive the standard
deviation of the inventory when it is not optimal to execute MOs. In the region where the
agent does not execute MOs, the drift of the inventory is given by

(17) \mu (t, s, q) = lim
\delta \rightarrow 0

\BbbE t,x,s,q [Qt+\delta ] - q

\delta 
= \rho 

\bigl( 
\lambda + \ell  - (t, s, q) - \lambda  - \ell +(t, s, q)

\bigr) 
for t \in [0, T ], q \in \{ q, . . . , \=q\} , and s \in \sigma \BbbZ . Recall that \ell \pm represents the number of shares the
agent posts on the buy and sell sides of the book. We obtain values of \mu (t, s, q) for any q \in \BbbR 
by linear interpolation, and we define q\ast (t, s) as the unique point satisfying \mu (t, s, q\ast (t, s)) = 0,
so that q\ast (t, s) represents the optimal inventory to hold at time t given St = s.

Moreover, we define the variance of inventory at the optimal inventory level to hold as

v(t, s) = lim
\delta \rightarrow 0

\BbbV t,x,s,q\ast (t,s) [Qt+\delta  - q\ast (t, s)]

\delta D
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(c) Delta and limit order targets

Figure 5. Example of an instance where the optimal inventory diverges from the Bachelier delta, \gamma = 1.
At time t = 0.65, the Bachelier delta is outside the band.

=\rho 
\Bigl[ 
\lambda +

\bigl( 
\ell  - (t, s, q\ast (t, s))

\bigr) 2
+ \lambda  - 

\bigl( 
\ell +(t, s, q\ast (t, s))

\bigr) 2\Bigr] 
.(18)

We define the standard deviation of the optimal inventory as
\sqrt{} 
v(t, s). The quantity

\sqrt{} 
v(t, s)

measures the variability of the agent's inventory when she holds the optimal inventory level.
Panels (a) and (b) of Figure 6 show the optimal level of inventory and the contour plot

of the standard deviation of the optimal inventory v(t, s). The standard deviation is largest
when the option is at-the-money.

Figure 7 shows how the agent values the use of LOs in the trading strategy. The vertical
axis shows the indifference price of LOs, i.e., I lo(0, s, q) computed using (13), where we assume
the inventory is q = 0 and s = \$1856.5, and the horizontal axis represents different values
of the risk-aversion parameter \gamma . Observe that as the agent becomes more risk-averse, the
value she attaches to the use of LOs diminishes. When the agent's degree of risk-aversion is
extremely high, the optimal trading strategy relies much less on LOs and mainly employs MOs
to guarantee that at the terminal date the agent has the correct amount of the underlying
asset to settle the option. The use of LOs increases the gains from speculative roundtrip trades
and incurs no exchange fees; however, LOs introduce additional tracking error and make the
agent's terminal wealth more volatile.D
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Figure 6. Sample path of price and inventory.
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Figure 7. Indifference price for being able to post LOs (s = 1856.5 and q = 0).

Finally, we discuss how the optimal strategy accounts for adverse selection costs. Recall
that the agent's and other market participants' MOs have permanent impact on the midprice
of the underlying asset. This price impact is captured by the random variables \xi \pm , \xi 0\pm . As
this impact becomes larger (on average), the agent's strategy relies less on LOs. That is,
everything else being equal, the agent will execute more MOs, and LOs are adjusted in two
ways: (i) posting fewer LOs, and (ii) adjusting the volume of LOs downwards. In this way
the agent strikes the optimal balance between how often and how many shares she posts at
the best bid and best ask of the LOB, and the number of MOs she executes. (In the interest
of space we do not include figures to show the effect of adverse selection on the agent's LOs
and MOs.)

4.2. Simulations: Financial performance of the strategy. To illustrate the financial
performance of the strategy we simulate 105 sample paths of the midprice. We show how the
strategy maximizes the agent's expected utility of wealth while replicating the payoff of the N
call options. Figure 8 shows the value of the payoff of the 10 call options (solid line) and the
strategy's terminal wealth (blue circles), assuming low risk-aversion (\gamma = 0.1) in the left panel,
and high risk-aversion (\gamma = 0.3) in the right panel. In both cases, for all simulations shownD
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Figure 8. Terminal value of the agent's portfolio.
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Figure 9. Terminal value of the
agent's portfolio when she adopts the
Bachelier strategy.

here, the agent super-replicates the call option. Part of what drives the ``super-replication""
is due to the indifference price the agent charges the client. This price accounts for jump-
risk, adverse selection costs, bid-ask spreads, and exchange fees, all of which increase the
indifference price. On the other hand, the potential profits from roundtrip trades using LOs
lower the price. Nonetheless, we see the overall effect is that the strategy lies above the payoff
in all scenarios.

Clearly, as the agent becomes more risk-averse, the strategy becomes more conservative,
so it relies more on MOs and less on LOs. By executing more MOs the agent increases the
certainty with which she achieves the desired level of inventory, but pays higher costs due to
crossing the spread, in addition to MO fees, and forgoes opportunities to earn the spread with
LOs. On the other hand, as the agent become less risk-averse, the strategy relies more on LOs
and less on MOs. In this case the agent earns the spread when LOs are filled but bears more
volatility in the wealth because there is no guarantee that the LOs will be filled. These effects
can be appreciated in Figure 8, and are also seen in Figure 10, where we show the histogram
of total number of executed MOs and matched LOs for the agent's strategy. Clearly, when
\gamma = 0.3, the agent uses more MOs and fewer LOs. Thus, she pays higher transaction costs on
average and has a lower terminal portfolio value. These costs are, however, transferred to the
client through the indifference price.

Figure 9 shows the cost of replicating the options in the Bachelier model. Here, the
premium charged by the agent for the options is calculated using the Bachelier model, and
the delta-hedge strategy is implemented as follows. At every point in time the agent calculates
and rounds the Bachelier delta to the nearest integer. If the strategy's inventory is different
from this integer, the agent executes a MO so the inventory remains on target. For every
simulation shown in the figure we see the strategy is a sub-replication one because MOs cross
the spread and pay a fee.

Figure 11 shows the agent's mean terminal wealth as a function of the standard deviation
of terminal wealth when \gamma varies from 0.1 to 0.3. As \gamma increases, both the mean and the
standard deviation of terminal wealth decrease. As the agent becomes more risk-averse the
strategy employs more MOs and fewer LOs. This mix of market and limit orders reduces
the variance of terminal wealth, but as a tradeoff also reduces the mean of terminal wealthD
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Figure 10. Histogram of number of market/limit orders.
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Figure 11. Risk-reward plot for
the agent's terminal wealth.

because the strategy does not reap the benefits from employing LOs.

5. Convergence results. In this section, we describe the numerical algorithm we employ
to solve for the value function and obtain the optimal trading strategy. We restrict the
asset price to take values on a finite grid \=\BbbS := \{ k \sigma : k \in \BbbZ , kmin \leq k \leq kmax\} for some
kmin \leq kmax \in \BbbZ . In this way, the system of QVIs shown in (10) becomes a coupled system
of ordinary differential equations indexed by (s, q) on \=\BbbS \times \BbbQ , where \BbbQ = \{ q, . . . , \=q\} . We write
\BbbS := \=\BbbS /\{ kmin \sigma , kmax \sigma \} (i.e., excluding the end points) and denote by n (resp., m) the number
of elements in the set \BbbS (resp., \BbbQ ). We seek a bounded viscosity solution u : [0, T ] \rightarrow \BbbR n\times m

to the following system of QVIs:

(19)

\biggl\{ 
Fs,q(t, u, \partial tus,q) = 0 , 0 \leq t < T,

us,q(T ) =  - G(s) - C(s, q) ,

for all (s, q) \in \=\BbbS \times \BbbQ . The mapping F is defined as

(20) Fs,q(t, u, p) = min\{ Ls,q(t, u, p),M
+
s,q(t, u),M

 - 
s,q(t, u)\} ,

where

(21a) Ls,q(t, u, p) =  - \gamma p+ \kappa us,q + \theta Js,q(t, u) + \lambda  - K+
s,q(t, u) + \lambda +K - 

s,q(t, u) ,

(21b) M+
s,q(t, u) = min

m+\in \{ 0,1,...,\=q - q\} 

\biggl\{ 
\BbbE 
\biggl[ 
e
 - \gamma ( - m+\Upsilon +us+1s \not =kmax\sigma \sigma \xi 0+,q+m+  - (1+\kappa )us,q)  - 1

\biggr] \biggr\} 
,

(21c) M - 
s,q(t, u) = min

m - \in \{ 0,1,...,q - q\} 

\biggl\{ 
\BbbE 
\biggl[ 
e
 - \gamma ( - m - \Upsilon +us - 1s \not =kmin\sigma \sigma \xi 0 - ,q - m -  - (1+\kappa )us,q)  - 1

\biggr] \biggr\} 
,

(21d) Js,q(t, u) =

\left\{     
e - \gamma (q \sigma +us+\sigma ,q - us,q) + e - \gamma ( - q \sigma +us - \sigma ,q - us,q)  - 2 , s \in \BbbS ,
2 e - \gamma (q \sigma +us+\sigma ,q - us,q)  - 2 , s = kmin \sigma ,

2 e - \gamma ( - q \sigma +us - \sigma ,q - us,q)  - 2 , s = kmax \sigma ,D
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K+
s,q(t, u) = min

\ell +\in \{ 0,1,...,\=q - q\} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma (\ell + \sigma 

2 \zeta  - (q+\ell + \zeta )\sigma \xi +us - \sigma \xi ,q+\ell +\zeta  - us,q)  - 1
\Bigr] \Bigr\} 

,(21e)

K - 
s,q(t, u) = min

\ell  - \in \{ 0,1,...,q - q\} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma (\ell  - \sigma 

2 \zeta +(q - \ell  - \zeta )\sigma \xi +us+\sigma \xi ,q - \ell  - \zeta  - us,q)  - 1
\Bigr] \Bigr\} 

,(21f)

where \kappa \downarrow 0 is a robustness parameter. In all the above equations, we define min\{ \emptyset \} = +\infty .
Our first result is a comparison principle for the QVI (19).

Proposition 1. The system (19) admits a comparison principle, i.e., if u (resp., v) is an
upper (resp., lower) semicontinuous subsolution (resp., supersolution), then u \leq v.

Proof. For the proof see Appendix A.

We introduce the finite difference scheme F \epsilon = (F \epsilon 
s,q) : [0, T ]\times \BbbR m\times n \times C([0, T ]) \rightarrow \BbbR m\times n

by the formula

F \epsilon 
s,q(t, u, \phi (\cdot )) = min\{ L\epsilon 

s,q(t, u, \phi (\cdot )) , M+
s,q(t, u) , M

 - 
s,q(t, u)\} ,

where

L\epsilon 
s,q(t, r, \phi (\cdot )) =  - \gamma \phi (t+ \epsilon ) - rs,q

\epsilon 
+ \theta Js,q(t, r) + \lambda  - K+

s,q(t, r) + \lambda +K - 
s,q(t, r) .

Let
\BbbT \epsilon := \{ tj := \epsilon j : 0 \leq N\} ,

where \epsilon > 0 is chosen so that N := T
\epsilon \in \BbbZ +. We show that the solution u\epsilon = (u\epsilon s,q),

u\epsilon s,q : \BbbT \epsilon \rightarrow \BbbR , of the discrete problem

(22)

\biggl\{ 
F \epsilon 
s,q(tj , u

\epsilon (tj), u
\epsilon 
s,q) = 0 , 0 \leq j \leq N  - 1 ,

u\epsilon s,q(T ) =  - G(s) - C(s, q)

can be used to approximate the solution of (19).

Proposition 2. The following are true:
(C1) For all bounded functions u = (us,q), v = (vs,q) with us,q, vs,q \in C[0, T ] and us,q \leq vs,q

on [0, T ], suppose r, r\prime \in \BbbR m\times n satisfies rs\ast ,q\ast  - r\prime s\ast ,q\ast = maxs,q\{ rs,q  - r\prime s,q\} = \delta \geq 0
and Ms\ast ,q\ast (t, r) \geq 0; then we have

F \epsilon 
s\ast ,q\ast (t, r, us\ast ,q\ast + \delta ) - F \epsilon 

s\ast ,q\ast (t, r
\prime , vs\ast ,q\ast ) \geq min\{ (Ms\ast ,q\ast (t, r

\prime ) + 1)\gamma , 1\} \kappa \delta .

(C2) For any \epsilon > 0 and any bounded function \phi \in C([0, T ]), fix t \in [0, T ] and r = (rs,q) \in 
\BbbR m\times n; then the functions

r \mapsto \rightarrow F \epsilon 
s,q(t, r, \phi )

are uniformly continuous for r in a bounded set, uniformly in t \in [0, T ].
(C3) For every \psi = (\psi s,q), \psi s,q \in C([0, T ]) \cap C1((0, T )), t \in [0, T ], and \delta > 0, there exists

\epsilon > 0 such that

| F \epsilon 
s,q(t, \psi (t), \psi s,q) - Fs,q(t, \psi , \partial t\psi s,q)| \leq \delta , q \leq q \leq \=q .D
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(C4) There exists \epsilon 0 > 0 such that for any \epsilon \in (0, \epsilon 0), there exists a bounded solution
u\epsilon = (u\epsilon s,q), u

\epsilon 
s,q : \BbbT \epsilon \rightarrow \BbbR of the discrete problem (22).

Proof. For the proof see Appendix A.

With the above results, we define the candidate super- and subsolution of (19) as

us,q(t) = lim inf
\epsilon \rightarrow 0,t\prime \rightarrow t

u\epsilon s,q(t
\prime ) ,(23)

\=us,q(t) = lim sup
\epsilon \rightarrow 0,t\prime \rightarrow t

u\epsilon s,q(t
\prime )(24)

for all t \in [0, T ], q \leq q \leq \=q.
Proposition 2 allows us to apply the arguments of Proposition 3.3 of Briani, Camilli, and

Zidani (2012) to show that u = (us,q) and \=u = (\=us,q) are supersolution and subsolution of
(19). By Proposition 1, we have u \geq \=u. The opposite direction is true by definition and we
have that u = u = \=u is the viscosity solution of (19).

6. Conclusions. We show how an agent maximizes expected utility of wealth when she
takes a position in a contingent claim and employs limit and market orders to trade in the
underlying of the claim. The agent solves a combined optimal stopping and stochastic control
problem, and we characterize the solution in terms of a Hamilton--Jacobi--Bellman quasi-
variational inequality (QVI). We employ a numerical scheme to solve the QVI and prove a
convergence result for the scheme.

In our model, market orders from all traders (including the agent) have price impact and
pay other exchange related fees. The price impact is permanent and creates adverse selection
costs when the agent's limit orders are filled. That is, the midprice of the underlying asset
jumps in the direction of the market order.

We discuss a particular case where the agent takes a short position in European options
written on the E-mini that tracks the S\&P500 index. MOs are expensive because they cross
the spread and pay fees to the exchange, but guarantee execution, so the agent employs
these to keep the inventory on target. The agent employs limit and market orders to hedge
the exposure to the contingent claim, and also engages in speculative trades to maximize
expected utility of wealth.

LOs, on the other hand, do not incur exchange fees, but there is no guarantee that they
will be filled in time. We show that the agent's strategy relies on LOs not only to achieve the
desired inventory target, which depends on time to expiry and moneyness of the contingent
claim, but are also employed in speculative trades to earn the spread from roundtrip trades.

The agent's strategy accounts for adverse selection costs by (i) controlling how often she
posts LOs on the bid and ask of the LOB, and (ii) the volume posted in the LO. If adverse
selection costs increase (decrease), the strategy relies more (less) on MOs and less (more) on
LOs.

Finally, we note that speculative trades may be curbed by regulation. Section 619 of the
Dodd--Frank Act,3 known as the Volcker Rule, bans proprietary trading by commercial banks.
Thus, the strategy derived in this paper cannot be employed by banks that either trade on

3See https://www.govinfo.gov/content/pkg/PLAW-111publ203/html/PLAW-111publ203.htm.D
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behalf of a client (i.e., hedge a client's position) or execute proprietary trades that are backed
by deposits of their clients.

Appendix A. Proofs. The following proposition is later used in the proof of the comparison
principle.

Proposition 3. Let u = (us,q), v = (vs,q) \in \BbbR n\times m. Suppose that us\ast ,q\ast  - vs\ast ,q\ast = maxs,q\{ us,q - 
vs,q\} \geq 0 and M\pm 

s\ast ,q\ast (t, v) \geq 0; then

Fs\ast ,q\ast (t, u, p) - Fs\ast ,q\ast (t, v, p) \geq min(1, \gamma )\kappa (us\ast ,q\ast  - vs\ast ,q\ast ) .

Proof of Proposition 3. It suffices to show the following:

Ls\ast ,q\ast (t, u, p) - Ls\ast ,q\ast (t, v, p) \geq \kappa (us\ast ,q\ast  - vs\ast ,q\ast ) ,(25)

M+
s\ast ,q\ast (t, u) - M+

s\ast ,q\ast (t, v) \geq \gamma \kappa (us\ast ,q\ast  - vs\ast ,q\ast ) ,(26)

M - 
s\ast ,q\ast (t, u) - M - 

s\ast ,q\ast (t, v) \geq \gamma \kappa (us\ast ,q\ast  - vs\ast ,q\ast ) .(27)

To show (25), note that us\ast ,q\ast  - vs\ast ,q\ast = maxs,q\{ us,q - vs,q\} implies us,q - us\ast ,q\ast \leq vs,q - vs\ast ,q\ast 
for all s and q. This further implies Js\ast ,q\ast (t, u) \geq Js\ast ,q\ast (t, v), K

+
s\ast ,q\ast (t, u) \geq K+

s\ast ,q\ast (t, v), and

K - 
s\ast ,q\ast (t, u) \geq K - 

s\ast ,q\ast (t, v). The rest are straightforward calculations.

It remains to show (26). Showing (27) is similar. Let us write (s, q) = (s\ast +\sigma \xi 0+, q\ast +m+).
Note that the left-hand side of (26) is greater than or equal to

min
m+\in \{ 0,1,...,\=q - q\ast \} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma ( - m+\Upsilon +us,q  - (1+\kappa )us\ast ,q\ast )  - e - \gamma ( - m+\Upsilon + vs,q  - (1+\kappa ) vs\ast ,q\ast )

\Bigr] \Bigr\} 
\geq min

m+\in \{ 0,1,...,\=q - q\ast \} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma ( - m+\Upsilon + vs,q  - (1+\kappa ) vs\ast ,q\ast )

\Bigl( 
e - \gamma (us,q - (1+\kappa )us\ast ,q\ast  - vs,q+(1+\kappa )vs\ast ,q\ast )  - 1

\Bigr) \Bigr] \Bigr\} 
\geq min

m+\in \{ 0,1,...,\=q - q\ast \} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma ( - m+\Upsilon + vs,q  - (1+\kappa ) vs\ast ,q\ast )

\Bigl( 
e\gamma \kappa (us\ast ,q\ast  - vs\ast ,q\ast )  - 1

\Bigr) \Bigr] \Bigr\} 
\geq \gamma \kappa (us\ast ,q\ast  - vs\ast ,q\ast )

\Bigl( 
M+

s\ast ,q\ast (t, v) + 1
\Bigr) 

\geq \gamma \kappa (us\ast ,q\ast  - vs\ast ,q\ast ).

Proof of Proposition 1. We prove the proposition by contradiction.
Suppose us\ast ,q\ast (\=t) - vs,q(\=t) = maxs,q sup[0,T ]\{ us,q - vs,q\} = \eta > 0. Without loss of generality,

we may assume 0 < \=t < T . Consider the family of upper semicontinuous functions

\Phi \epsilon (s, q, t, t
\prime ) = us,q(t) - vs,q(t

\prime ) - \phi \epsilon (t, t
\prime ) ,

where \phi \epsilon (t, t
\prime ) = 1

\epsilon | t  - t\prime | 2 and \epsilon > 0, and the bounded sequence (q\epsilon , s\epsilon , t\epsilon , t
\prime 
\epsilon ) attains the

maximum of \Phi \epsilon . By standard arguments, we have

\eta \epsilon = max\Phi \epsilon = \Phi \epsilon (q\epsilon , s\epsilon , t\epsilon , t
\prime 
\epsilon ) \rightarrow \eta ,

1

\epsilon 
| t\epsilon  - t\prime \epsilon | 2 \rightarrow 0 ,

as \epsilon \rightarrow 0.D
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Note that us\epsilon ,q\epsilon (\cdot )  - \phi \epsilon (\cdot , t\prime \epsilon ) attains maximum at t\epsilon . By the fact that u is a subsolution,
we have

Fs\epsilon ,q\epsilon (t\epsilon , u(t\epsilon ), \partial t\phi \epsilon ) \leq 0 .

Similarly we have
Fs\epsilon ,q\epsilon (t

\prime 
\epsilon , v(t

\prime 
\epsilon ), - \partial t\prime \phi \epsilon ) \geq 0 .

The above two inequalities yield

0 \geq Fs\epsilon ,q\epsilon (t\epsilon , u(t\epsilon ), \partial t\phi \epsilon ) - Fs\epsilon ,q\epsilon (t
\prime 
\epsilon , v(t

\prime 
\epsilon ), - \partial t\prime \phi \epsilon )

\geq Fs\epsilon ,q\epsilon (t\epsilon , u(t\epsilon ), \partial t\phi \epsilon ) - Fs\epsilon ,q\epsilon (t\epsilon , v(t
\prime 
\epsilon ), \partial t\phi \epsilon ) + Fs\epsilon ,q\epsilon (t\epsilon , v(t

\prime 
\epsilon ), \partial t\phi \epsilon ) - Fs\epsilon ,q\epsilon (t

\prime 
\epsilon , v(t

\prime 
\epsilon ), - \partial t\prime \phi \epsilon )

= min(1, \gamma )\kappa (us\epsilon ,q\epsilon (t\epsilon ) - vs\epsilon ,q\epsilon (t
\prime 
\epsilon )) + Fs\epsilon ,q\epsilon (t\epsilon , v(t

\prime 
\epsilon ), \partial t\phi \epsilon ) - Fs\epsilon ,q\epsilon (t

\prime 
\epsilon , v(t

\prime 
\epsilon ), - \partial t\prime \phi \epsilon )\underbrace{}  \underbrace{}  

(\frakA )

,

where the second inequality follows from Proposition 3. It is clear from the definition that
Fs\epsilon ,q\epsilon (\cdot , \cdot , \cdot ) is a continuous mapping from \BbbR 3 to \BbbR . Therefore the term (\frakA ) vanishes when
\epsilon \rightarrow 0. We have the required contradiction.

Proof of Proposition 2. The verification of conditions (C2), (C3), and (C4) is immediate.
For (C1), it suffices to show the following:

L\epsilon 
s\ast ,q\ast (t, r, us\ast ,q\ast + \delta ) - L\epsilon 

s\ast ,q\ast (t, r
\prime , vs\ast ,q\ast ) \geq \kappa \delta ,(28)

M+
s\ast ,q\ast (t, r) - M+

s\ast ,q\ast (t, r
\prime ) \geq (M+

s\ast ,q\ast (t, r
\prime ) + 1) \gamma \kappa \delta .(29)

M - 
s\ast ,q\ast (t, r) - M - 

s\ast ,q\ast (t, r
\prime ) \geq (M - 

s\ast ,q\ast (t, r
\prime ) + 1) \gamma \kappa \delta .(30)

To prove (28), note that rs\ast ,q\ast  - r\prime s\ast ,q\ast = maxs,q\{ rs,q - r\prime s,q\} implies rs,q - rs\ast ,q\ast \leq r\prime s,q - r\prime s\ast ,q\ast 
for all s, q, which further implies e - \gamma (rs,q - rs\ast ,q\ast ) \geq e

 - \gamma (r\prime s,q - r\prime 
s\ast ,q\ast ) for all s, q. The rest are

straightforward calculations.
It remains to prove (29). Proving (30) is similar. We write (s, q) = (s\ast + \sigma \xi 0+, q\ast +m+)

and proceed as in the proof of Proposition 3:

Ms\ast ,q\ast (t, r) - Ms\ast ,q\ast (t, r
\prime )

\geq min
m+\in \{ 0,1,...,\=q - q\ast \} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e - \gamma ( - m+\Upsilon + rs,q  - (1+\kappa ) rs\ast ,q\ast )  - e

 - \gamma ( - m+\Upsilon + r\prime s,q  - (1+\kappa ) r\prime 
s\ast ,q\ast )

\Bigr] \Bigr\} 
\geq min

m+\in \{ 0,1,...,\=q - q\ast \} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e
 - \gamma ( - m+\Upsilon + r\prime s,q  - (1+\kappa ) r\prime 

s\ast ,q\ast )
\Bigl( 
e
 - \gamma (rs,q - (1+\kappa )rs\ast ,q\ast  - r\prime s,q+(1+\kappa )r\prime 

s\ast ,q\ast )  - 1
\Bigr) \Bigr] \Bigr\} 

\geq min
m+\in \{ 0,1,...,\=q - q\ast \} 

\Bigl\{ 
\BbbE 
\Bigl[ 
e
 - \gamma ( - m+\Upsilon + r\prime s,q  - (1+\kappa ) r\prime 

s\ast ,q\ast )
\Bigl( 
e
\gamma \kappa (rs\ast ,q\ast  - r\prime 

s\ast ,q\ast )  - 1
\Bigr) \Bigr] \Bigr\} 

\geq \gamma \kappa (rs\ast ,q\ast  - r\prime s\ast ,q\ast )
\Bigl( 
M+

s\ast ,q\ast (t, r
\prime ) + 1

\Bigr) 
\geq \gamma \kappa (rs\ast ,q\ast  - r\prime s\ast ,q\ast )

\geq \gamma \kappa \delta .
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