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LOAD-DEPENDENT MACHINE FAILURES IN PRODUCTION

NETWORK MODELS∗

SIMONE GÖTTLICH† AND STEPHAN KNAPP†

Abstract. In this paper, a production model based on (hyperbolic) differential equations with
stochastic and load-dependent machine failures is introduced. We derive the model on the base of a
well-established deterministic model and show its well-posedness. To do so, we make use of the theory
of piecewise deterministic Markov processes and fuse it with the theory of the underlying deterministic
production model. Finally, we compare the load-dependent model to the already established load-
independent model and highlight the new properties in numerical examples.
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1. Introduction. Mathematical models for production systems as well as supply
chains are a recent research topic and a variety of modeling approaches are taken into
account. Most of these models are either based on discrete event simulations [2, 3] or
Newton-type dynamics [22] resulting in a microscopic production model. Macroscopic
production models naturally arise from the microscopic production models and are
based on ordinary differential equations (ODEs) [21], hyperbolic partial differential
equations (PDEs) [2, 11, 12, 14, 19] or a mixture of both [10, 13, 20]. In [9] a
comprehensive overview of macroscopic production models is given. We focus on the
macroscopic production network model from [9, 24], where the deterministic dynamics
is given by a coupled system of hyperbolic PDEs and ODEs.

In [17, 23, 24], stochastic effects are introduced into macroscopic production mod-
els, where externally given stochastic capacity functions to model machine failures (or
capacity drops) are used. The randomness in capacities strongly influences the dy-
namics of the production and leads to interesting system behavior. Up to now, the
capacity of a production step is determined by, e.g., machine restrictions or the number
of workers and the assumption that machine failures are independent of the produc-
tion process. The latter assumption is quite restrictive since a high workload implies a
high abrasion of machines, or stressful working conditions for individuals lead to more
sickness, whereas an empty production is not affected by machine failures. This moti-
vates to introduce an influence of the production on the machine failure probabilities
as well, and we obtain a bidirectional relation between the deterministic production
and the random machine failures.

Different to existing approaches [17, 23, 24], where the capacities are stochastic
processes inserted into the deterministic production model as capacity functions, we
have to consider the deterministic production dynamics and the random capacity
functions, simultaneously.

From the mathematical point of view, we consider the production together with
the capacity process as a whole stochastic process. The theory of piecewise determin-
istic Markov processes, which is well developed in e.g. [15, 25, 16] is the key to show
well-posedness. In most applications of piecewise deterministic Markov processes, the
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deterministic dynamics is given by a system of ODEs [1, 15, 16] or by parabolic PDEs
[1]. In this context, the state space is “nice”, i.e. a Borel space but in the context of
hyperbolic conservation laws the solution space is not a Borel space in general. Since
we consider a system of coupled PDEs and ODEs, where the PDEs are of hyperbolic
type, we face the difficulty that the natural space for scalar hyperbolic PDEs, i.e.,
the space of functions with bounded total variation forms no Borel space, and the
standard theory of piecewise deterministic Markov processes with general state space
fails. Luckily, the semigroup of the deterministic production network can be extended
to a semigroup on a Borel space such that we workaround this issue by using the
extended semigroup to construct the stochastic process.

This manuscript is organized as follows: in section 2, we introduce the base
deterministic production network model and extend it to a Markovian load-dependent
production network model in a second step. This section is followed by section 3, where
the numerical treatment of the load-dependent model is introduced and applied to an
example, where we highlight the differences and similarities of the load-independent
and the load-dependent model numerically.

2. Modeling Equations. This section briefly recalls the base deterministic
model from [9, 20] in the first subsection 2.1, which is extended to a load-dependent
stochastic production network model in the subsequent subsection 2.2.

2.1. Brief Introduction to the Deterministic Model. Let G = (V , C) be
a directed graph consisting of a set C = {1, . . . , N} of arcs, where N ∈ N and a
non empty set of vertices V . We interpret every arc as a processor equipped with a
storage or queue, respectively, in front of it. According to [9], the processor e ∈ C
is characterized by the length Le, which is mapped on the interval [ae, be] ⊂ R.
Therefore, the queue is located at x = ae, directly at the corresponding vertex s(e) ∈
V . Additionally, a processing velocity ve > 0 and a time-dependent capacity µe(t) ≥ 0
are given user-defined parameters. As usual in graph theory, we denote by δ−v and
δ+v the set of all ingoing and outgoing arcs for every vertex v ∈ V . At all inflow
vertices v ∈ Vin = {v ∈ V : δ−v = ∅} a time-dependent inflow function Gvin(t) is
prescribed and for every v ∈ V with |δ+v | > 0 we have time-dependent distribution
rates Av,e(t) ∈ [0, 1], e ∈ δ+v satisfying

∑

e∈δ+v
Av,e(t) = 1. We call the directed graph

G together with the described properties and parameters a production network in the
following. We now further specify the notation of a deterministic production network
model:

Definition 2.1 (Deterministic production network model). Let G = (V , C) be
a production network. The deterministic production network model is defined by the
following equations:

∂tρ
e(x, t) + ∂xf

e(t, ρe(x, t)) = 0,(2.1)

fe(t, ρe(x, t)) = min{veρe(x, t), µe(t)},(2.2)

ρe(x, 0) = ρe0(x),(2.3)

veρe(ae, t) = ge
out

(t),(2.4)

∂tq
e(t) = ge

in
(t)− ge

out
(t),

qe(0) = qe0
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for x ∈ (ae, be) with

ge
in
(t) =

{

As(e),e(t)
∑

ẽ∈δ−
s(e)

f ẽ(t, ρẽ(bẽ, t)) if s(e) /∈ Vin,

G
s(e)
in

(t) if s(e) ∈ Vin,

and

ge
out

(t) =

{

min{ge
in
(t), µe(t)} if qe(t) = 0,

µe(t) if qe(t) > 0

for all e ∈ C, t ∈ [0, T ], T > 0 and given initial conditions ρe0 and qe0.

From the mathematical point of view, the deterministic production network model
is a coupled system of PDEs and ODEs, where the PDEs are scalar hyperbolic conser-
vation laws. Total variation plays a key role in the theory of hyperbolic conservation
laws, and we define, as in [27], the total variation of a function f : I → R on an
interval I ⊂ R as

TVI(f) = sup

{

N
∑

i=1

|f(xi)− f(xi−1)| : x0 < x1 < · · · < xN ∈ I,N ∈ N

}

.

If f : (a, b)× (0, T ) → R is a function of two variables, we use the Tonelli-Cesari
variation (cf. [7]), which is given by

VTC(f) = inf{VT(g) : g = f almost everywhere} with

VT(g) =

∫ b

a

TV[0,T ](g(x, ·))dx +

∫ T

0

TV[a,b](g(·, t))dt.

We denote by BV((a, b)) and BV((a, b)× (0, T )) the sets of functions f with bounded
total variation TV(a,b)(f) <∞ and bounded variation VTC(f) <∞, respectively.

Since the partial differential equations of the deterministic production network
model are of hyperbolic type, we need the concept of weak entropy solutions to define
a network solution later on. The following definition of a weak entropy solution is
taken from [5] and adapted to the deterministic production network model.

Definition 2.2 (Weak entropy solution). A function ρ ∈ BV((ae, be)× (0, T )) is
a weak entropy solution to (2.1)-(2.4) if for almost all x ∈ (ae, be) we have ρ(x, 0) =
ρ0(x) and for all k ∈ R and all φ ∈ C2

0 ([a
e, be)× (0, T )) with φ ≥ 0, it holds

∫ T

0

∫ be

ae
|ρ(x, t) − k|φt(x, t) + sgn(ρ(x, t)− k)|fe(t, ρ(x, t)) − fe(t, k)|φx(x, t)dxdt

≥ −

∫ T

0

sgn

(

ge
out

(t)

ve
− k

)

|fe(t, lim
xցae

x/∈B

ρ(x, t)) − fe(t, k)|φ(ae, t)dt,

where B is a set of measure zero, sgn(x) is the sign function, and C2
0 ([a

e, be)× (0, T ))
is the set of all twice continuously differentiable functions with compact support in
[ae, be)× (0, T ).

Thus, we are able to define a solution of the production network model as follows:
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Definition 2.3 (Network solution). X (t) = (ρ1(t), q1(t), . . . , ρN (t), qN (t)) is a
network solution of the deterministic production network model from definition 2.1 if
for every e = 1, . . . , N the functions ρe are weak entropy solutions to (2.1)-(2.4) and

qe(t) = qe0 +

∫ t

0

(ge
in
(s)− ge

out
(s))ds

holds for every t ∈ [0, T ].

Since a weak entropy solution is of bounded variation, we expect conditions on
the initial and boundary values to guarantee the well-posedness of a network solution,
as the following theorem 2.4 collected from [9] shows.

Theorem 2.4. Let G = (V , C) be a production network with time-independent
capacities and TV(0,T )(G

v
in) < ∞ for every v ∈ Vin. Then, there exists a semigroup

(St, t ∈ [0, T ]) on

D =
{

(ρ1, q1, . . . , ρN , qN ) : ρe ∈ L1((ae, be)), qe ∈ R≥0, e = 1, . . . , N
}

equipped with the norm

‖(ρ1, q1, . . . , ρN , qN )‖ =

N
∑

e=1

‖ρe‖L1((ae,be)) + |qe|,

which satisfies
1. Ss+tu = Ss(Stu) and S0u = u for every u ∈ D,
2. the mapping t 7→ Stu is continuous,
3. for every t ∈ [0, T ], the operator St satisfies ‖Stu − Stũ‖ ≤ ‖u − ũ‖ for all
u, ũ ∈ D,

4. for every

u ∈ D̃ = {(ρ1, q1, . . . , ρN , qN ) ∈ D : TV(ae,be)(ρ
e) <∞, e = 1, . . . , N},

the function t 7→ Stu is a unique network solution,
5. for every u ∈ D̃ there exists L̃ > 0 such that ‖Stu−Ssu‖ ≤ L̃|t− s| for every
s, t ∈ [0, T ],

6. Stu ∈ D̃ for every u ∈ D̃.

We comment theorem 2.4 briefly below. The proof can be found in [9] and is based
on a wave front tracking method. Furthermore, the Lipschitz continuity of the third
statement allows the extension of the solution operator St on D̃ to the domain D by
considering the closure of all functions in D̃ with respect to the norm given above,
see also [4]. Following the proof in [9], we deduce

‖Stu− Ssu‖ ≤

(

L̂+

N
∑

e=1

TV(ae,be)(ρ
e(·, s))

)

|t− s|

for u ∈ D̃, s < t and L̂ > 0 a constant depending on the capacities, the velocities and
the external inflows only. Since the Lipschitz constant in the time variable depends on
the total variation of the solution, we cannot expect Lipschitz continuity for general
data u ∈ D. But one can show the continuity in time, i.e. statement two of the
theorem, directly. The following remark is essential for subsection 2.2 and imposes
why we patiently introduced the semigroup on D.



LOAD-DEPENDENT MACHINE FAILURES IN PRODUCTION NETWORK MODELS 5

Remark 2.5. The space D with the norm given in theorem 2.4 is a Polish space,
i.e. it is a Borel space with the σ-algebra generated by the topology induced by the
norm. In detail, L1((ae, be)) and R are complete and separable normed vector spaces
with respect to the L1 and Euclidean Norm, respectively. The Cartesian product
of countable many Polish spaces with the product topology is again a Polish space,
see [18]. Since we have only finitely many processors, the space D is a Polish space.
However, the space D̃ is no Polish space since it is not complete with respect to the
presented norm. If we apply the total variation norm, the space is even not separable.
Thus, we are not able to guarantee the existence of regular conditional probabilities
on D̃.

2.2. Load-dependent Model. We introduce machine failures in the determin-
istic production network model by using random and piecewise-constant capacity
processes to incorporate machine failures, see e.g. [17, 23, 24]. The major benefit
compared to the previous works is that we allow machine failure probabilities, which
might depend on the densities and queue-lengths and hence induce a bidirectional
relation between the production process and the machine failure probabilities. We
consider the production dynamics coupled to the machine failures as a whole stochas-
tic process, where the theory of piecewise deterministic Markov processes taken from
[25] provides the essential tools.

In the following, we assume a production network with N queue-processor units.
To ease the notation, we reorder the set D and consider

D = R
N
≥0 ×

N

×
e=1

L1((ae, be)).

Let Sµuv : D → D be the semigroup with capacities µ = (µ1, . . . , µN ) ∈ R
N
≥0 from

theorem 2.4 starting from u ∈ [0, T ] and with v ∈ [u, T ]. For every processor, we
introduce the state values of the capacities as ~r = (r1, . . . , rN ), and to capture the
complete dynamics of the process, we set the state space

E =
N

×
e=1

{1, . . . , Ce} ×D,

where C1, . . . , CN ∈ N denote the possible number of capacities of processors 1, . . . , N
here. The state space E is equipped with the σ-algebra E and to map from ~r to the
realized capacity, we introduce the function

µ :
N

×
e=1

{1, . . . , Ce} → R
N
≥0

~r 7→ (µ1(r1), . . . , µ
N (rN )).

We give the following definition for the load-dependent production network model.

Definition 2.6 (MLDPNM). A Markovian load-dependent production network
model (MLDPNM) is defined via a stochastic process X = ((~r(t), ~q(t), ~ρ(t)), t ∈ [0, T ])
on some probability space (Ω,A, P ) with values in E, which satisfies the following
conditions:

1. X(0) = x0 P -a.s. for some initial data x0 ∈ E.
2. X is a Markov process with respect to the natural filtration FX = (FX

t , t ∈
[0, T ]).
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3. There exist transition rate functions

λeij : [0, T ]× R≥0 × L1((ae, be)) → R≥0,

i, j = 1, . . . , Ce satisfying λeii =
∑Ce

j=1,j 6=i λ
e
ij such that for every t ∈ (0, T ),

(~r, ~q, ~ρ) ∈ E holds

P (re(t+∆t) = j|X(t) = (~r, ~q, ~ρ)) =
(

1−∆tλerere(t, q
e, ρe)

)

1re(j)

+ ∆tλerej(t, q
e, ρe)(1− 1re(j)) + o(∆t)(2.5)

for every e = 1, . . . , N and for every j = 1, . . . , Ce as ∆t→ 0.

4. There exists a capacity function µ : ×N
e=1{1, . . . , C

e} → R
N
≥0 and a set N ∈ A

with P (N ) = 0 such that for every ω ∈ N c, there exist times T0 = 0 ≤
T1 ≤ · · · ≤ TM = T such that, for every k = 0, . . . ,M − 1, the capacity
t 7→ µ(~r(t, ω)) is constant on [Tk, Tk+1) and

(~q(t, ω), ~ρ(t, ω)) = S
µ(~r(Tk,ω))
Tkt

(~q(Tk, ω), ~ρ(Tk, ω))

on [Tk, Tk+1).

We define the complete deterministic dynamics as

φst : E → E,

(~r, ~q, ~ρ) 7→ φst(~r, ~q, ~ρ) =

(

~r

S
µ(~r)
st (~q, ~ρ)

)

(2.6)

for every 0 ≤ s ≤ t ≤ T , and we can conclude the following properties of the mapping
φst, which will be a crucial point for showing the existence of an MLDPNM.

Lemma 2.7.
1. We have for every 0 ≤ s < t < u ≤ T and for every y ∈ E the semigroup

property
φsu(y) = φtu(φst(y)).

2. For every t ∈ [0, T ] and y ∈ E, we have φtt(y) = y.
3. For every s ∈ [0, T ] and y ∈ E, the mapping t 7→ φst(y) is continuous.
4. The mapping φ : {(s, t, y) ∈ [0, T ]2×E : s ≤ t} → E is continuous and conse-

quently measurable.

Proof. Without loss of generality, we assume µ(r) = r. The first two statements
follow directly from the semigroup property of Srst, i.e., S

r
su = SrtuS

r
st and S

r
tt = Id, the

identity; see theorem 2.4. Additionally, we know from theorem 2.4 that the mapping
t 7→ Srst is continuous, which proves the third statement. To prove the last statement
of this lemma, one can show with properties 1., 2. and 3. the continuity of the mapping
φ : {(s, t, y) ∈ [0, T ]2 × E : s ≤ t} → E in a standard way.

To keep with the notation in [25], we define for every y = (~r, ~q, ~ρ) ∈ E and B ∈ E
the mappings

ψ(t, y) =

N
∑

e=1

λerere(t, (qe, ρe)),(2.7)

η(t, y, B) =

N
∑

e=1

Ce

∑

l=1,l 6=re

λerel(t, (qe, ρe))

ψ(t, y)
ǫ(r1,...,re−1,l,re+1,...,rN ,~q,~ρ)(B),(2.8)
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where
λeij : [0, T ]× R≥0 × L1((ae, be)) → R≥0,

i, j = 1, . . . , Ce are given rate functions, satisfying λeii =
∑Ce

j=1,j 6=i λ
e
ij and ǫx the Dirac

measure with unit mass in x. Both functions ψ and η model the information about the
distribution between the machine failures and the distribution of the corresponding
capacity value, see theorem 2.8 later. We assume a uniform upper bound λ =

∑N
e=1 λ

e

on the rate functions, i.e.

sup{λeij(t, q, ρ) : i, j = 1, . . . , Ce, t ∈ [0, T ], (q, ρ) ∈ D} ≤ λe.(2.9)

We are able to state a so-called thinning algorithm for the MLDPNM, where we adopt
some ideas of [26]. Let (ξi, i ∈ N) be a sequence of independent identically distributed
(iid) exponentially distributed random variables with mean (λ)−1 on some probability
space (Ω,A, P ), and let (Ui, i ∈ N) be a sequence of iid uniformly distributed random
variables on [0, 1] on the same probability space and independent of (ξi, i ∈ N). If
Tn = tn ∈ [0, T ) and Yn = yn ∈ E, then algorithm 2.1 produces the next time of a
machine failure Tn+1 and a corresponding value of the whole system Yn+1.

Algorithm 2.1 Thinning algorithm

i = 1
si = tn + ξi
while Ui > ψ(si, φtnsi(yn)) · (λ)

−1 do

si+1 = si + ξi
i = i+ 1

end while

Tn+1 = si
Generate Yn+1 ∼ η(si, φtnsi(yn), ·)

Algorithm 2.1 can be interpreted as follows: starting from Yn at time Tn, we
simulate an exponentially distributed random variable ξ1 with mean (λ)−1 and solve
the deterministic system until the time s1 = tn+ ξ1(ω), see figure 1. Then, we decide
by an acceptance-rejection method whether we switch or keep the value Yn while
the acceptance-rejection method accepts with probability ψ(s1, φtns1(yn)) and rejects
with probability 1−ψ(s1, φtns1(yn)). In figure 1, the time s1 is rejected and Tn+1 = s2
is accepted. If a time is accepted, the new state Yn+1 is simulated according to the
probability distribution η(si, φtnsi(yn), ·).

✲
Tn−1 Tn

❞×
s1

❞

Tn+1 t

✻

µe(t)

t
Yn−1

t
Yn

t
Yn+1

Fig. 1: Thinning algorithm example

The following theorem 2.8 contains the information about the probability distri-
bution of the times of capacity drops and the corresponding state values generated by
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algorithm 2.1. We need this information to prove the existence and property three of
a MLDPNM later on. Within the proof of theorem 2.8, we need the following useful
tool: let, for some [a, b] ⊂ R, the function f : [a, b] → R be continuous and x0 ∈ [a, b];
then, it holds that

∫ b

x0

f(x1)

∫ b

x1

f(x2) · · ·

∫ b

xm−1

f(xm)dxm · · · dx1 =
1

m!

(

∫ b

x0

f(z)dz

)m

(2.10)

for every m ∈ N. The proof is an application of the integration by parts formula.

Theorem 2.8. Assume that the sequence ((Tn, Yn), n ∈ N0) is constructed with
algorithm 2.1 and T0 = t0, Y0 = y0 for some t0 ∈ [0, t) and y0 ∈ E. Then, for every
n ∈ N and t0 < t1 < . . . tn ≤ t, y1, . . . , yn ∈ E, it holds that

P (Tn+1 ≤ t|Tn = tn, Yn = yn, . . . , T0 = t0, Y0 = y0)

= 1− e−
∫

t

tn
ψ(τ,φtnτ (yn))dτ ,(2.11)

P (Yn+1 ∈ B|Tn+1 = t, Tn = tn, Yn = yn, . . . , T0 = t0, Y0 = y0)

= η(t, φtnt(yn), B)(2.12)

for every B ∈ E.

Proof. The second statement (2.12) of the theorem follows directly from the last
line of algorithm 2.1. We now only have to show the first statement, where we follow
the ideas in [8] for the inhomogeneous Poisson process. Since the algorithm used to
generate Tn+1 and Yn+1 only needs the values of Tn and Yn, we have

P (Tn+1 ≤ t|Tn = tn, Yn = yn, . . . , T0 = t0, Y0 = y0) = P (Tn+1 ≤ t|Tn = tn, Yn = yn).

By defining

ψ̃(s) =
ψ(s, φtns(yn))

λ
, si = tn +

i
∑

l=1

ξl and M = inf{m ∈ N : Um ≤ ψ̃(sm)},

we can write Tn+1 = sM . Thus,

P (Tn+1 ≤ t|Tn = tn, Yn = yn) =

∞
∑

m=1

P (sm ≤ t,M = m|Tn = tn, Yn = yn)

and

P (sm ≤ t,M = m|Tn = tn, Yn = yn)

= P (sm ≤ t, U1 > ψ̃(s1), . . . , Um−1 > ψ̃(sm−1), Um ≤ ψ̃(sm)|Tn = tn, Yn = yn)

=

∫

Rm

1[0,t−tn](hm(~x))ψ̃(tn + hm(~x))
m−1
∏

i=1

(1− ψ̃(tn + hi(~x)))λ
m
e−λhm(~x)

1Rm

≥0
(~x)d~x,

where we used that ξ1, . . . , ξm are iid exponentially distributed and hi(~x) =
∑i

l=1 xl.
We use the transformation τk = hk(~x), which implies xk = τk − τk−1 with τ0 = 0.
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The last integral reads with integration by substitution, see, e.g., [6],

∫

Rm

1[0,t−tn](τm)ψ̃(tn + τm)

m−1
∏

i=1

(1− ψ̃(tn + τi))λ
m
e−λτm

m
∏

i=1

1R≥0
(τk − τk−1)d~τ

=

∫

[0,t−tn]m
ψ̃(tn + τm)

m−1
∏

i=1

(1− ψ̃(tn + τi))λ
m
e−λτm

m
∏

i=1

1R≥0
(τk − τk−1)d~τ

=

∫ t−tn

0

(1− ψ̃(tn + τ1))

∫ t−tn

τ1

(1− ψ̃(tn + τ2))

· · ·

∫ t−tn

τm−1

ψ̃(tn + τm)λ
m
e−λτmdτm · · · dτ1.

We define for k = 1, . . . ,m

ak =

∫ t−tn

0

(1 − ψ̃(tn + τ1))

∫ t−tn

τ1

(1 − ψ̃(tn + τ2))

· · ·

∫ t−tn

τk−1

(1− ψ̃(tn + τk))λ
k
e−λτkdτk · · · dτ1

and for k = 0, we set a0 = 1. Rewriting

∫ t−tn

τm−1

ψ̃(tn + τm)λ
m
e−λτmdτm

= −

∫ t−tn

τm−1

(1− ψ̃(tn + τm))λ
m
e−λτmdτm + λ

m−1
(eλτm−1 − e−λ(t−tn))

implies

P (sm ≤ t,M = m|Tn = tn, Yn = yn)

= − am + am−1

− λ
m−1

e−λ(t−tn)
∫ t−tn

0

(1− ψ̃(tn + τ1)) · · ·

∫ t−tn

τm−2

(1 − ψ̃(tn + τm−1))dτm−1 · · · dτ1

= am−1 − am − e−λ(t−tn)
1

(m− 1)!

(

λ

∫ t−tn

0

(1 − ψ̃(tn + τ))dτ

)m−1

with (2.10). Summing over m, using the telescopic sum and the definition of the
exponential function, leads to

P (Tn+1 ≤ t|Tn = tn, Yn = yn) =

∞
∑

m=1

P (sm ≤ t,M = m|Tn = tn, Yn = yn)

= a0 − lim
m→∞

am − e−λ(t−tn)e
∫

t−tn

0
λ(1−ψ̃(tn+τ))dτ

= 1− 0− e−
∫

t

tn
ψ(τ,φtnτ (yn)dτ),

where we used a0 = 1 and limm→∞ am = 0. This completes the proof.

The following, with our notation and situation adapted theorem 2.9, taken from
[25], provides the main tool to show the existence of a MLDPNM.
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Theorem 2.9. Let φ : {(s, t, y) ∈ [0, T ]2 × E : s ≤ t} → E be measurable and
satisfy statements 1.-3. of lemma 2.7. Assume that (t, y) 7→ ψ(t, y) is B([0, T ])⊗ E-

measurable and that, for every (t, y) ∈ [0, T ]×E, it holds that
∫ t+h

t
ψ(τ, φtτ (y))dτ <∞

for some h = h(t, y) > 0 sufficiently small. Let for every t ∈ [0, T ] the mapping
(y,B) 7→ η(t, y, B) be a Markovian kernel on (E, E), and let the function (t, y) 7→
η(t, y, B) B([0, T ]) ⊗ E-measurable for every B ∈ E with η(t, y, {y}) = 0 for every
(t, y) ∈ [0, T ] × E. If µ =

∑

n∈N0,Tn<∞ ǫ(Tn,Yn) is a stable random counting mea-
sure determined by the marked point process ((Tn, Yn), n ∈ N) on (Ω,A, P ) satisfying
statements 1. and 2. of theorem 2.8, then (X(t), t ∈ [0, T ]) defined by

X(t) = φTN(t)t(YN(t)) with X(0) = Y0 = x0 and N(t) = inf{n ∈ N : Tn ≤ t < Tn+1}

is a piecewise deterministic Markov process on (Ω,A, P ) with respect to the natural
filtration.

The next theorem 2.10 addresses the question of the existence of an MLDPNM.

Theorem 2.10. Let a production network be given. Additionally, we have

C1, . . . , CN ∈ N, µ :
N

×
e=1

{1, . . . , Ce} → R
N
≥0

and continuous transition rate functions

λeij : [0, T ]× R≥0 × L1((ae, be)) → R≥0,

i, j = 1, . . . , Ce, e ∈ C satisfying λeii =
∑Ce

j=1,j 6=i λ
e
ij and (2.9). Then, there exists for

all initial data (r0, q0, ρ0) ∈ E an MLDPNM.

Proof. We use theorem 2.9 to show the existence. Let φ be as in (2.6); then,
from lemma 2.7, we deduce the assumptions on φ that we need for theorem 2.9. By
defining ψ and η via (2.7) and (2.8), we can use assumption (2.9) and conclude the
integrability

∫ t+h

t

ψ(τ, φt,τ (y))dτ ≤ λh.

Since the rate functions λeij are measurable and since i, j ∈ {1, . . . , Ce} is a finite
set, the mappings (t, y) 7→ ψ(t, y) and (t, y) 7→ η(t, y, B) are measurable. We deduce

η(t, y, {y}) = 0 from λeii =
∑C

j=1,j 6=i λ
e
ij , and with η(t, y, E) = 1, we easily see that

(y,B) 7→ η(t, y, B) defines a Markovian kernel.
Let ((Tn, Yn), n ∈ N) be constructed with algorithm 2.1. The corresponding counting
measure is stable since, by thinning, the number of jumps is less than the number of
jumps of the Poisson process with rate λ, which is stable; see [25]. Statements 1. and
2. of theorem 2.8 are satisfied by construction, and (X(t), t ∈ [0, T ]) with

X(t) = φTN(t)t(YN(t)) with X(0) = Y0 = x0, and N(t) = inf{n ∈ N : Tn ≤ t < Tn+1},

is a piecewise deterministic Markov process with respect to the natural filtration by
theorem 2.9. Thus, (X(t), t ∈ [0, T ]) satisfies conditions 1., 2. and 4. of definition 2.6.
It remains to show condition 3. The Markov property and the fact that the state space
is a Polish space allows us to construct a canonical coordinate process (X̃(t), t ∈ [0, T ])
on some probability space (Ω̃, Ã, P̃ ), which starts in y ∈ E having the same finite
dimensional distributions like (X(t), t ∈ [0, T ]). Let ẽ ∈ C and j ∈ {1, . . . , C ẽ}; then,

P (rẽ(t+∆t) = j|X(t) = y) = P̃ (r̃ẽ(∆t) = j|X̃(0) = y)
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for every y ∈ E and (X̃(t), t ∈ [0, T ]), the canonical coordinate process starting in
y = (r, q, ρ) with

ψ̃(τ, y) = ψ(t+ τ, y) and

η̃(τ, y, B) = η(t+ τ, y, B).

We compute

P̃ (r̃ẽ(∆t) = j|X̃(0) = y) = P̃ (r̃ẽ(∆t) = j, T̃1 ≤ ∆t|X̃(0) = y)

+P̃ (r̃ẽ(∆t) = j|T̃1 > ∆t, X̃(0) = y)P (T̃1 > ∆t|X̃(0) = y)

with T̃1 the first jump time of the process (X̃(t), t ∈ [0, T ]). The function

f(τ) =

N
∑

e=1

λerere(τ, S
r
tτ (q, ρ))

is continuous with the assumptions, and lemma 2.7 can be applied such that

P (T̃1 ≤ ∆t|X̃(0) = y) = 1− e−
∫

t+∆t

t
f(τ)dτ

= ∆tf(t) + o(∆t).

Therefore, it holds that

P̃ (r̃ẽ(∆t) = j|T̃1 > ∆t, X̃(0) = y)P (T̃1 > ∆t|X̃(0) = y)

= (1−∆tf(t))1j(r) + o(∆t)

= (1−∆tψ(t, y))1j(r) + o(∆t)

as ∆t→ 0. We set

B =
ẽ−1

×
i=1

{1, . . . , Ci} × {j} ×
N

×
i=ẽ+1

{1, . . . , Ci} ×D

and compute

P (r̃(∆t) = j, T̃1 ≤ ∆t|X̃(0) = y) = P (Ỹ1 ∈ B, T̃1 ≤ ∆t|X̃(0) = y) + o(∆t).

This is valid because the probability of strictly more than one jump in [0,∆t] is of
order o(∆t). Due to the continuity of f and λ, we can again calculate

P (Ỹ1 ∈ B, T̃1 ≤ ∆t|X̃(0) = y)

=

∫ ∆t

0

η̃(s, Srtt+s(q, ρ), B)
d

ds
(1− e−

∫
s

0
f(t+τ)dτ)ds

=

∫ ∆t

0

η(t+ s, Srtt+s(q, ρ), B)ψ(t, y)e−
∫

s

0
f(t+τ)dτ )ds

= η(t, y, B)ψ(t, y)∆t+ o(∆t).

In the following, we compute η(t, y, B)ψ(t, y) in several steps. For fixed e ∈ {1, . . . , N}
and l ∈ {1, . . . , Ce} with l 6= re, we obtain

ǫ(r1,...,re−1,l,re+1,...,rN ,~q,~ρ)(B) = ǫl({j})1e(ẽ) + ǫrẽ({j})(1− 1e(ẽ))
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from the structure of the set B. Hence,

Ce

∑

l=1
l 6=re

λerel(t, (qe, ρe))ǫ(r1,...,re−1,l,re+1,...,rN ,~q,~ρ)(B)

= 1e(ẽ)(1 − 1re(j))λ
e
rej + (1− 1e(ẽ)) + ǫrẽ({j})(1− 1e(ẽ))λ

e
rere

from
∑Ce

l=1,l 6=re
λerel = λerere by assumption. Summing over e leads to

η(t, y, B)ψ(t, y)

=

N
∑

e=1

Ce

∑

l=1
l 6=re

λerel(t, (qe, ρe))ǫ(r1,...,re−1,l,re+1,...,rN ,~q,~ρ)(B)

= (1− 1rẽ(j))λ
ẽ
rẽj + 1rẽ(j)

N
∑

e=1
e6=ẽ

λerere

= (1− 1rẽ(j))λ
ẽ
rẽj + 1rẽ(j)(ψ(t, y)− λẽrẽrẽ).

Consequently, we end up with

P̃ (r̃ẽ(∆t) = j|X̃(0) = y) = (1 − 1rẽ(j))∆tλ
ẽ
rẽj

+ 1rẽ(j)∆t(ψ(t, y)− λẽrẽrẽ)

+ 1rẽ(j)(1 −∆tψ(t, y)) + o(∆t)

= (1 − 1rẽ(j))∆tλ
ẽ
rẽj + 1rẽ(j)(1−∆tλẽrẽrẽ) + o(∆t)

and finish the proof.

Before we numerically analyze the MLDPNM in the subsequent section, we give
some comments on this model. If we assume ρe0 ∈ BV((ae, be)), we can use prop-
erty 6. of theorem 2.4 and conclude from algorithm 2.1 with (2.7)-(2.8) that ρe(t) ∈
BV((ae, be)) P -a.s. Hence, there exists a set N ∈ A such that

t 7→ S
µ(r(Tk(ω),ω))
Tk(ω)t

(q(Tk(ω), ω), ρ(Tk(ω), ω))

is a network solution on [Tk(ω), Tk+1(ω)) for all k and ω ∈ Ω \ N . We claimed
the uniform upper bound on the transition rates in equation (2.9), which is quite
restrictive. From the deterministic production network model, we deduce formally
the subsequent bounds on the solution:

1. qe(t) ≤ qmax
e with

qmax
e =







qe0 +
∫ T

0
G
s(e)
in (t)dt if s(e) ∈ Vin,

qe0 +
∑

ẽ∈δ−
s(e)

µmax
ẽ

∫ T

0 As(e),e(t)dt otherwise,

µmax
e = max

r=1,...,Ce

µe(r)

2. if veρe0(x) ≤ µe, we have veρe(x, t) ≤ µe, and in general,

ρe(x, t) ≤ max
{

‖ρe0‖L∞((a,b)),
µmax
e

ve

}

.
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We obtain these bounds P -a.s. for the MLDPNM, which allows us to relax the uniform
bound on the transition rates as follows: there exist 0 < λe <∞, such that

sup
{

λeij(t, q, ρ) : i, j = 1, . . . , Ce, t ∈ [0, T ], (q, ρ) ∈ R≥0 × L1((ae, be));

q ≤ qmax
e , 0 ≤ ρ ≤ max

{

‖ρe0‖L∞ ,
µmax
e

ve

}}

≤ λe(2.13)

for every e = 1, . . . , N .

3. Numerical Treatment and Computational Results. As proposed in [23,
24], we use the fact that a PDE-ODE system can be solved deterministically between
the random switching times in the sense of a piecewise deterministic process [15].

Therefore, we have to address two issues to state a suitable numerical approxima-
tion for a MLDPNM: first, the generation of the marked point process ((Tn, Yn), n ∈
N0) and second, the approximation of the deterministic PDE-ODE system between
the random times.

The generation of the marked point process ((Tn, Yn), n ∈ N0) is straightforward
with algorithm 2.1 and the numerical approximation of the deterministic evolution
between the jump times can be performed with the scheme presented in [24]. Therein,
the queue lengths are approximated with a forward Euler method and the densities
are approximated with a left-sided upwind scheme and coupled by the boundary
conditions to an approximation to the network solution.

In the following, we introduce reasonable choices for the load-dependent rate
functions λeij and, in a second step, we analyze the impact of the load-dependency of
the production network model on performance measures

3.1. Utilization Ratio and Work-In-Progress. At the beginning, the load-
dependent model was motivated by a load-dependent probability of machine failures.
Mathematically, the load-dependent probabilities are included by load-dependent
transition rate functions, which we specify in the following. Let X be a MLDPNM
and we assume a network consisting of a single queue-processor unit for simplicity
here. Then, we define the Utilization Ratio UR by

UR: E → [0, 1]

X(t) 7→
1

µmax(b − a)

∫ b

a

min{µ(r(t)), vρ(x, t)}dx,

which corresponds to the average production flow compared to the maximal produc-
tion flow of the machine at time t. A meaningful assumption is the dependence of
capacity drops given by the rates λ on the Utilization Ratio of the machine. Specif-
ically, if there is no production (UR = 0), there is no reason for a breakdown and
only machine care has to be done with a rate λdown,min ≥ 0. If the production is
at the capacity limit (UR = 1), we expect a higher probability of a machine fail-
ure caused by high abrasion. In the case of two possible capacities, i.e., C = 2 and
µ(1) = µmin, µ(2) = µmax, a simple relationship is given by the linear relation

λ21(q(t), ρ(t)) = λdown,min + (λdown,max − λdown,min)UR(2, q(t), ρ(t)),(3.1)

where λdown,max > 0 is the rate of a machine failure in the case of a production at
maximal capacity. A simple calculation shows

|λ21(q, ρ)− λ21(q̃, ρ̃)| ≤
(λdown,max − λdown,min)v

µmax(b− a)
‖ρ− ρ̃‖L1((a,b))
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and implies the Lipschitz continuity of this rate function.
It remains to define a dependence of the production on the rate function in the case
of a repair. One possible dependence can be given by the Ratio of Work In Progress
and the maximal amount of goods in the machine RWIP, which we define by

RWIP: E → [0, 1]

X(t) 7→
v

µmax(b− a)

∫ b

a

ρ(x, t)dx.

In the case of a low work in progress, the machine can easily be repaired: there are
fewer goods that have to be removed for repairs. With a high work in progress, this
takes more time. Let λrep,max > 0 be the repair rate in the case of an empty system,
and let λrep,min ≥ 0 be the repair rate for a full machine such that λrep,max ≥ λrep,min.
Again, the simplest relation is the linear relation

λ12(q(t), ρ(t)) = λrep,max − (λrep,max − λrep,min)RWIP(1, q(t), ρ(t)).(3.2)

This rate function is again Lipschitz continuous with

|λ12(q, ρ)− λ12(q̃, ρ̃)| ≤
v(λrep,max − λrep,min)

µmax(b − a)
‖ρ− ρ̃‖L1((a,b)).

Provided vρ0 ≤ µmax, the choice

λ = max{λdown, λrep,max}

is a uniform bound on the transition rates and can be used for the thinning algorithm
2.1. All these ideas can be extended to more capacity states and to general network
topologies in a straightforward way.

3.2. Performance Measures. To evaluate the performance of the production
network and its numerical behavior, performance measures need to be defined. For
our purposes, these are the mean queue-load, the mean outflow and the distribution of
the random variables. According to [23, 24], the cumulative sum of all queue-lengths
and the cumulative outflow until time t ≥ 0 are given by

qnet(t) =
∑

e∈C

∫ t

t0

qe(s)ds, Gnet
out(t) =

∫ t

0

∑

v∈Vout

∑

e∈δ−v

fe(s, ρe(be, s))ds,

where Vout = {v ∈ V : δ+v = ∅}. Since the above measures are random variables with
unknown distributions, some estimators (e.g., moments) are required. We denote
as common by Y the mean value estimator of Y ∈ {Gnet

out(t), q
net(t)}. The strong

convergence of these estimators follows directly from the law of large numbers, i.e.,
Gnet

out(t), q
net(t) are finite for finite time horizons.

3.3. Comparison of Load-dependent with Load-independent Model.

We study a production network model, which topology is given by the diamond
network in figure 2. Here, α1, α2 ∈ [0, 1] are two distribution parameters, i.e., a
percentage of α1 is fed from processor one into queue two (A1,2(t) = α1), 1−α1 from
one to three (A1,3 = 1 − α1) and the same for α2 from processor two to queue five
and 1 − α2 to queue four. In our numerical investigations we set the distribution
parameters fixed with the values α1 = α2 = 0.5.
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Fig. 2: Diamond network with seven processors

All processors have the same lengths le = be− ae = 1 with ae = 0 and they share
the same processing velocities ve = 1, the same capacity states, i.e., Ce = 2 and the
same capacity functions µe = 2 · 12. We assume that all processors have the same
transition rates, where

λdown,min = (1− β)λdown,ref, λdown,max = 2λdown,ref − λdown,min and

λrep,min = (1− β)λrep,ref, λrep,max = 2λrep,ref − λrep,min.

The rates λdown,ref > 0 and λrep,ref > 0 are reference rates and set to λdown,ref = 1
0.85

and λrep,ref = 1
0.15 in our simulations. The parameter β ∈ [0, 1] allows to study

the influence of the load-dependency in the following. More precisely, the choice
β = 0 leads to the load-independent and the choice β ∈ (0, 1] to the load-dependent
model. We remark that the case β = 0 is exactly the model presented in [24]. The
network inflow is given by G1

in(t) = 1.5, which is lower than the mean capacity in
the load-independent case, i.e., the (stationary) availability of a processor is given by

λrep,ref

λdown,ref+λrep,ref = 0.85 and consequently, the (stationary) expected capacity is 1.7.
For the numerical approximation we use equidistant grids given by a spatial dis-

cretization with ∆x = 1
10 and a time discretization with ∆t = ∆x, which satisfies the

CFL condition. The following results are based on a simulation run with a sample
size of 104, and we always start with an intact and empty production.

Figure 3 shows the expected capacity with respect to the load-dependency scale
β for processor 1 and 7. The case β = 0 is well-known from [24] and reproduced here.
In fact, from the intact system with a capacity of µ = 2 at time zero, we observe
a convergence towards the stationary expected capacity of 1.7 for processor 1 and
2. Since for β > 0 the load influences the capacity, we distinguish the description
of processor 1 and 7. We start with the first processor: in the case β = 1, we
see a strong decreasing mean capacity, which implies a stuck in the system. The
stationary expected capacities for β = 0.25 and β = 0.5 are approximately 1.57 and
1.35, respectively. Consequently, the influence of the load-dependency on the mean
capacity is quite high.

For processor 7 we observe a similar trend regarding the stationary capacities
but they are less affected by the load-dependency. In fact, for β = 1, we observe an
expected capacity of 2 in the first periods until the first products reach the seventh
machine.

The different expected capacities allow the assumption that the expected queue
lengths are also affected by the workload-dependency, which is confirmed by fig-
ure 4. By increasing the load-dependency, the expected queue-length increases in
this example. The expected queue-length of the first processor increases slowly for
β ∈ {0, 0.25, 0.5}, moderately for β = 0.75 and very strongly for β = 1. Although
the last processor 7 shares the same properties of all other processors, the expected
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queue-length is much smaller compared to the first processor queue-lengths. This is
reasonable, since the products get stuck in the production as β increases.

(a) Processor 1 (b) Processor 7

Fig. 3: Mean capacity

(a) Processor 1 (b) Processor 7

Fig. 4: Mean queue-lengths

If we evaluate the expected accumulated network queue-lengths, i.e. the sum of
all queue-lengths until time t = 30 and vary β, we see the significant influence of
the load-dependency in figure 5 (a). In the same manner, the expected accumulated
network outflow decreases as β increases, see figure 5 (b).

The expected values contain no detailed information about the probability dis-
tribution of the accumulated network queue-lengths and outflow. Therefore, we con-
sider a corresponding histogram in figure 6 (a) and (b). On the x-axis, we have the
parameter-value, on the y-axis the load-dependency β and the color of the squares
indicate the relative frequency. We deduce the increasing mean of the accumulated



LOAD-DEPENDENT MACHINE FAILURES IN PRODUCTION NETWORK MODELS 17

network queue-lengths again but we also observe the distortion of the probability dis-
tribution as β changes. In detail, for β = 0 the distribution is more concentrated
at the expected value than for β > 0. Especially, the variance increases, which is
reasonable by the following arguments: if a capacity drop happens, the probability
that a capacity drop happens again after the repair is higher, since the processor is
fed with the maximal capacity of the filled queue. On the other hand, if the machine
is not affected by a capacity drop, the machine is emptied when the previous machine
breaks down and consequently all subsequent machines are less affected by capacity
drops. Summarizing together, the load-dependency increases the network dependency
and consequently the variance of the network queue-lengths. The same holds true for
the network outflow, see figure 6 (b).

(a) Accumulated network queue-lengths (b) Accumulated network outflow

Fig. 5: Mean network measures

(a) Accumulated network queue-lengths (b) Accumulated network outflow

Fig. 6: Histogram of network measures

In the following, we change the inflow function to G1
in(t) = 1 · 1[0,5)(t) + 2 ·

1[10,15)(t) + 0.5 · 1[20,25)(t) to analyze the transient behavior of the load-dependent
model numerically. Figure 7 shows the expected capacity of the first and last pro-
cessor. An increase of the load-dependency β reinforces the influence of the expected
capacity on the network inflow as one would expect. Processor 7 is less influenced
by the varying inflow than processor 1, which implies that the network exhibits a
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smoothing effect.
If we set a high load-dependency β = 1, we observe in figure 8 a high expected

queue-length and consequently a stuck of products in the machine. This happens
when the inflow jumps to the maximal capacity of 2 , which increases the probability
of a capacity drop significantly. The first jump from 0 to 1 inflow causes no stuck in
the processor and we conclude the importance of the inflow on the performance of the
production network.

(a) Processor 1 (b) Processor 7

Fig. 7: Mean capacity

(a) Processor 1 (b) Processor 7

Fig. 8: Mean queue-lengths

In figure 9 a histogram of the accumulated network queue-lengths and outflow
until time t = 30 is shown. The distribution for small β, i.e. β ∈ {0, 0.25, 0.5}
is concentrated around the expected value. If β = 1, the queue-lengths and the
outflow distribution is affected by a high variance and consequently totally different
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and spread. This is exactly the case when the products get stuck in the production
and we guess that there is a threshold β = β∗ at which the production network is
unstable in some sense.

(a) Accumulated network queue-lengths (b) Accumulated network outflow

Fig. 9: Histogram of network measures

4. Conclusions. We have introduced a load-dependent production network mo-
del, which deterministic dynamics is based on a system of coupled PDEs and ODEs.
The stochastic effects have been implemented into the model by random capacity
functions. Applying the theory of piecewise deterministic Markov processes, we have
been able to show the existence of the model by considering an extended solution
operator of the deterministic model. The construction of the stochastic production
network model directly provides a stochastic simulation algorithm. Together with
numerical approximation schemes for PDEs and ODEs, we can simulate sample paths
and analyze the load-dependent model with a Monte-Carlo approach. The focus of
the numerical study is the comparison of the load-independent and load-dependent
model, where we observe a big influence on the expected queue-loads and network
outflow. Also a distortion of the corresponding probability distributions emphasized
the impact of the load-dependency.

We use a standard Monte-Carlo ansatz to evaluate performance measures of the
production network model. This could be improved by more advanced Monte-Carlo
techniques in future work. Additionally, alternative performance measures such as
the profit could be introduced and investigated within an optimization framework.
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[23] S. Göttlich and S. Knapp, Semi-Markovian capacities in production network models, Dis-
crete Contin. Dyn. Syst. Ser. B, 22 (2017), pp. 3235–3258, https://doi.org/10.3934/dcdsb.
2017090.
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