
Improved efficiency of a multi-index FEM for
computational uncertainty quantification

Josef Dick, Michael Feischl, Christoph Schwab

CRC Preprint 2018/22, August 2018

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu



Participating universities

Funded by

ISSN 2365-662X

2



IMPROVED EFFICIENCY OF A MULTI-INDEX FEM

FOR

COMPUTATIONAL UNCERTAINTY QUANTIFICATION∗

JOSEF DICK† , MICHAEL FEISCHL‡ , AND CHRISTOPH SCHWAB§

Abstract. We propose a multi-index algorithm for the Monte Carlo discretization of a linear,
elliptic PDE with affine-parametric input. We prove an error vs. work analysis which allows a
multi-level finite-element approximation in the physical domain, and apply the multi-index analysis
with isotropic, unstructured mesh refinement in the physical domain for the solution of the forward
problem, for the approximation of the random field, and for the Monte-Carlo quadrature error. Our
approach allows general spatial domains and unstructured mesh hierarchies. The improvement in
complexity is obtained from combining spacial discretization, dimension truncation and MC sampling
in a multi-index fashion. Our analysis improves cost estimates compared to multi-level algorithms for
similar problems and mathematically underpins the outstanding practical performance of multi-index
algorithms for partial differential equations with random coefficients.

Key words. multi-index, Monte Carlo, finite element method, uncertainty quantification
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1. Introduction. The term multi-index Monte Carlo method MIMC was first
coined in the work [4] as an extension of the multi-level Monte Carlo method MLMC
developed in [3]. Since then, the multi-level idea has been applied in many ar-
eas including high-dimensional integration, stochastic differential equations, and sev-
eral types of PDEs with random coefficients. Most of these works used multi-level
Monte Carlo algorithms, while few papers considered multi-level quasi-Monte Carlo
(MLQMC) algorithms [1, 2]. In the framework of PDEs with random coefficients, the
idea of the multi-level approach is to introduce a sequence of geometrically refined
grids and to compute finite element approximations of a given partial differential equa-
tion (PDE) with random coefficients on each level. By varying the Monte Carlo (MC)
sample size on each level of the finite element method (FEM) and by recombination of
the individual approximation, it is possible to reduce the total cost (up to logarithmic
factors) from cost(sampling)× cost(FEM) to cost(sampling) + cost(FEM), where
the individual cost terms are measured on the finest level. This idea was further ex-
tended in [4] to include more than one parameter which is quantized into levels. One
possible example for this approach, presented in [4], is to introduce anisotropic dis-
cretizations in the physical domain (as, e.g., sparse grid FE discretizations) for which
two (three) parameters control the element size in the coordinate direction. This
‘sparse grid’ approach has been combined with a heuristic, adaptive algorithm and a
Quasi-Monte Carlo algorithm in [6]. More examples of variations of this approach can
be found in [5, 7]. In these approaches, the construction of sparse grid hierarchies in
the physical domain to access the multi-index efficiency could impose obstructions on
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(christoph.schwab@sam.math.ethz.ch ).

1

mailto:dick@unsw.edu.au
mailto:michael.feischl@kit.edu
mailto:christoph.schwab@sam.math.ethz.ch 


2 J. DICK, M. FEISCHL, C. SCHWAB

the shape of the physical domains which are amenable to this kind of discretization.
In the present work, we follow a different (but, as we will show, very natural)

approach: we include the approximation of the random coefficients into the multi-
index discretization and convergence analysis. As we show, this is effective due to the
following consideration: apart from toy problems, it is almost impossible to obtain
exact (MC or also collocation or QMC) samples of the random coefficients, and often,
this particular part constitutes a major bottleneck in computations. It is therefore of
practical importance to improve efficiency of algorithms.

Although the presently proposed approach is, in principle, more general, we de-
velop it here for affine-parametric random coefficients in a standard, linear Poisson
model problem. We parametrize the uncertain diffusion coefficient by a dimensionally
truncated KL expansion, i.e.

A(x, ω) = φ0(x) +
∞∑

j=1

φj(x)ψj(ωj) ≈ Aν(x, ω) := φ0(x) +

sν∑

j=1

φj(x)ψj(ωj),

where {sν}ν∈N ⊂ N is an increasing sequence of “dimension truncation” parameters.
Given a quantity of interest G(·), the idea is to approximate the expectation

of the exact solution E(G(u)) by several instances of the “double difference” Dν
ℓ =

(uνℓ −uνℓ−1)−(uν−1
ℓ −uν−1

ℓ−1 ), where u
ν
ℓ denotes the FEM approximation of u on a mesh

of size hℓ and with respect to the approximation Aν of the exact random coefficient.
This leads to

E(G(u)) ≈
∑

0≤ℓ+ν≤N

QmN−ℓ−ν
(G(Dν

ℓ )),

where QmN−ℓ−ν
denotes a MC sampling rule with given sample size mN−ℓ−ν ∈ N such

that m0 < m1 < · · · < mN . The main result of this work is to prove that the above
approximation is (up to logarithmic factors) optimal in the sense that it is as good as
the approximation given by the naive approach QmN (G(u

N
N )), where all components

are computed on the finest level, while reducing the computational cost.
The error/cost estimates from Section 6 show that the distribution of work among

the individual levels is optimal up to logarithmic factors. This can be seen from to the
fact that the multi-index algorithm achieves the same (up to logarithmic factors) cost
versus error ratio than the worst ratio of each of the involved algorithms (FEM, Monte
Carlo, approximation of the random coefficient). Since a combined algorithm of this
form cannot be more efficient than each of its components, this shows optimality.

2. Model problem. We chose a simple Poisson model problem to give a concise
presentation of the ideas and proof techniques. The authors are confident that very
similar techniques can be used to include more general model problems. Moreover,
we focus on the standard case of H2-regularity of the Poisson problem. Intermediate
cases with less regularity can be included with the same arguments, but are left out
for the sake of clarity.

2.1. Abstract setting. Let D ⊆ Rd be a bounded Lipschitz domain for d ∈
{2, 3} and let (Ω,Σ,P) denote a probability space.

Define the parametrized bilinear form

a(A,ω;u, v) :=

∫

D

A(x, ω)∇u(x) · ∇v(x) dx
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for some diffusion coefficient A : D × Ω → [0,∞) which satisfies A(·, ω) ∈ L∞(D) for
almost all ω ∈ Ω. Here, H1

0 (D) denotes the usual Sobolev space of weak derivatives
given by

H1
0 (D) :=

{
v ∈ L2(D) : ∇v ∈ L2(D)d, v|∂D = 0

}
.

We assume a sequence of approximations (Aν)ν∈N of A = A∞ which satisfy Aν(·, ω) ∈
W 1,∞(D) for almost all ω ∈ Ω as well as

lim
ν→∞

‖A−Aν‖L∞(Ω;W 1,∞(D)) = 0.(2.1)

Furthermore, we assume for ν ∈ N ∪ {∞}

0 < amin(ω) ≤ inf
x∈D

Aν(x, ω) ≤ sup
x∈D

Aν(x, ω) ≤ amax(ω) <∞.(2.2)

For brevity, we define aνω(·, ·) := a(Aν , ω, ·, ·). Finally, suppose the right-hand side
f ∈ H−1(D). We embed L2(D) in H−1(D) via the compact embedding v 7→ 〈v , ·〉D
for all v ∈ L2(D).

The assumptions imply ellipticity and continuity of the bilinear form, i.e., for
almost all ω ∈ Ω

inf
ν∈N∪∞

inf
u∈H1

0 (D)

aνω(u, u)

‖u‖2H1(D)

≥ amin(ω)(2.3)

as well as

sup
ν∈N∪∞

sup
u,v∈H1

0 (D)

aνω(u, v)

‖u‖H1(D)‖v‖H1(D)
≤ amax(ω).(2.4)

The Lax-Milgram lemma proves unique solvability of the problem: Find u : D ×
Ω → R with u(ω) ∈ H1

0 (D) such that

a(A,ω;u(ω), v) = 〈f , v〉D for all v ∈ H1
0 (D) a.e. in Ω.

Finally, we are interested in the expectation of a certain quantity of interest G(·)
which is a deterministic, bounded linear functional G(·) : H1

0 (D) → R, i.e.

E(G(u)) ∈ R.

We assume that G has an-L2 representer, i.e., g ∈ L2(D) such that

G(v) =

∫

D

gv dx for all v ∈ H1
0 (D).

2.2. Finite element discretization. We assume a sequence of nested trian-
gulations (Tℓ)ℓ∈N with corresponding spaces (Xℓ)ℓ∈N (such that Xℓ ⊆ Xk ⊂ H1

0 (D)
for all ℓ ≤ k). We assume the following approximation property of the spaces Xℓ:
There exists a constant Capprox > 0 and a monotone sequence (hℓ)ℓ∈N with hℓ > 0
and limℓ hℓ = 0 such that all u ∈ H2(D) satisfy

inf
v∈Xℓ

‖u− v‖H1(D) ≤ Capproxhℓ‖u‖H2(D).(2.5)
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For convenience, we assume hℓ+1 ≥ Cunifhℓ for all ℓ ∈ N and for some constant
Cunif > 0. (A popular example would be to have uniform triangulations Tℓ with
mesh-width hℓ and to define the spaces Xℓ as piecewise-linear functions on Tℓ.)

Define the Galerkin approximation uνℓ (ω) ∈ Xℓ as the unique solution of

aνω(u
ν
ℓ (ω), v) = 〈f , v〉D for all v ∈ Xℓ and almost all ω ∈ Ω.

(Note that unique solvability follows from the Lax-Milgram lemma and (2.3)–(2.4).)
Consider the solution operators Sνℓ (ω) : H

−1(D) → Xℓ defined by Sνℓ (ω)f := uνℓ (ω).
Moreover, let (Sνℓ (ω))

−1 : Xℓ → H−1(D) be defined by

((Sνℓ (ω))
−1u)(v) := aνω(u, v) for all u ∈ Xℓ, v ∈ H1

0 (D).

For brevity, we will omit the random parameter and just write Sνℓ := Sνℓ (ω). Moreover,
we write Sν∞f := uν , where uν(ω) ∈ H1

0 (D) is the unique solution of

aνω(u
ν(ω), v) = 〈f , v〉D for all v ∈ H1

0 (D).

Thus, uν denotes the exact solution corresponding to Aν and ((Sν∞(ω))−1·)(v) :=
aνω(·, v) ∈ H−1(D).

We restrict to domains D ⊆ R
d, which imply H2-regularity of the exact solution

as long as f ∈ L2(D), i.e., there exists a constant Creg > 0 such that all ω ∈ Ω satisfy

sup
ν∈N

‖Sν∞f‖H2(D) ≤
Creg

amin(ω)2
(1 + ‖Aν(ω)‖W 1,∞(D))‖f‖L2(D)(2.6)

for all f ∈ L2(D) (Note that if the standard Poisson equation satisfies H2 regu-
larity, (2.6) follows as an immediate consequence). Possible examples of domains D
which satisfy this property include domains with C2-boundary ∂D or convex Lipschitz
domains.

Lemma 2.1. We have

‖Sνℓ ‖H−1(D)→H1(D) ≤ amin(ω)
−1

as well as

‖(Sνℓ )−1‖Xℓ→H−1(D) ≤ amax(ω).

Proof. The result follows immediately from (2.3)–(2.4).

3. Product structure of the approximation error. The main purpose of
this section is to prove the product error estimate of Theorem 3.9 below at the end of
this section. This error estimate factors the total error into error contributions of the
approximation of the random coefficient A ≈ Aν and finite element approximation
error hℓ → 0. We will restate several well-known results from finite-element analysis,
as we will make use of the exact dependence on the constants.

In view of the multi-index decomposition in Section 6, we consider the difference
of differences

Dν
ℓ := (uνℓ − uνℓ−1)− (uν−1

ℓ − uν−1
ℓ−1 ) : Ω → Xℓ.

The goal is to get an error estimate of product form, as this allows us to obtain nearly
optimal complexity estimates. The key observation is that there holds

Dν
ℓ ≈ (Sνℓ − S

ν
ℓ−1)(S

ν
ℓ )

−1(Sνℓ − S
ν−1
ℓ )f,
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where the error term can be controlled.
In the following, we use the operator norm for bilinear forms b(·, ·) : X × X → R

for a Hilbert space X , i.e.,

‖b‖ := sup
x,y∈X\{0}

|b(x, y)|
‖x‖X ‖y‖X

.

Lemma 3.1. Given A,B : Ω → L∞(D), there holds

‖a(A,ω, ·, ·)− a(B,ω, ·, ·)‖ ≤ ‖A(ω)−B(ω)‖L∞(D) for all ω ∈ Ω.

Moreover, we have for all ℓ, ν, µ ∈ N

‖Sνℓ f − S
µ
ℓ f‖H1(D) ≤ amin(ω)

−2‖Aν(ω)−Aµ(ω)‖L∞(D)‖f‖L2(D).

Proof. We have for almost all ω ∈ Ω that

|a(A,ω, u, v)− a(B,ω, u, v)| ≤
∫

D

|A(x, ω) −B(x, ω)||∇u||∇v| dx

≤ ‖A(ω)−B(ω)‖L∞(D)‖u‖H1(D)‖v‖H1(D).

With this, (2.3), and Lemma 2.1, there holds for ω ∈ Ω

amin(ω)‖Sνℓ f − S
µ
ℓ f‖2H1(D) ≤ aνω(S

ν
ℓ f − S

µ
ℓ f, S

ν
ℓ f − S

µ
ℓ f)

= 〈f , Sνℓ f − S
µ
ℓ f〉D − aνω(S

µ
ℓ f, S

ν
ℓ f − S

µ
ℓ f)

= (aµω − aνω)(S
µ
ℓ f, S

ν
ℓ f − S

µ
ℓ f)

≤ amin(ω)
−1‖Aν −Aµ‖L∞(D)‖f‖L2(D)‖Sνℓ f − S

µ
ℓ f‖H1(D).

This concludes the proof.

Lemma 3.2 (Galerkin orthogonality). There holds Galerkin orthogonality for all

k, ℓ ∈ N ∪ {∞}, ν ∈ N and all f ∈ H−1(D) in the form

aνω(S
ν
kf, v) = aνω(S

ν
ℓ f, v) for all v ∈ Xmin{ℓ,k} and all ω ∈ Ω.

Particularly, this implies Sνℓ (S
ν
k)

−1 = idXk
for all ℓ ≥ k and k <∞.

Proof. By definition, we have

aνω(S
ν
kf, v) = 〈f , v〉D = aνω(S

ν
ℓ f, v).

To see the second statement, note that for v ∈ Xk and w ∈ Xℓ, there holds by
definition of the inverse

aνω(S
ν
ℓ (S

ν
k)

−1v, w) = ((Sνk)
−1v)(w) = aνω(v, w).

This and the positive definiteness of aνω conclude the proof.

For the next lemma, we define the energy norm

‖u‖ω,ν := (aνω(u, u))
1/2.

Note that (2.3)–(2.4) ensure amin(ω)‖ · ‖H1(D) ≤ ‖ · ‖ω,ν ≤ amax(ω)
1/2‖ · ‖H1(D) for

almost all ω ∈ Ω and for all ν ∈ N.
There holds the following variant of Céa’s lemma:
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Lemma 3.3 (Céa’s lemma). For v : Ω → Xℓ, ω ∈ Ω, and k ≤ ℓ, we have

‖(Sµℓ (S
µ
ℓ )

−1 − S
µ
k (S

µ
ℓ )

−1)v(ω)‖H1(D) ≤ amin(ω)
−1 inf

w∈Xk

‖v(ω)− w‖ω,µ

≤ amin(ω)
−1amax(ω)

1/2 inf
w∈Xk

‖v(ω)− w‖H1(D).

Proof. For almost all ω ∈ Ω, Galerkin orthogonality guarantees

aµω
(
(Sµℓ (S

µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v, (Sµℓ (S
µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v
)

= aµω
(
(Sµℓ (S

µ
ℓ )

−1 − S
µ
k (S

µ
ℓ )

−1)v, Sµℓ (S
µ
ℓ )

−1v − w
)

for all w ∈ Xk. Since aνω is a scalar product with respective norm ‖ · ‖ω,ν, we have

aµω
(
(Sµℓ (S

µ
ℓ )

−1 − S
µ
k (S

µ
ℓ )

−1)v, Sµℓ (S
µ
ℓ )

−1v − w
)

≤ ‖(Sµℓ (S
µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v‖ω,µ‖Sµℓ (S
µ
ℓ )

−1v − w‖ω,µ.

Ellipticity (2.3), norm equivalence amin(ω)‖ · ‖H1(D) ≤ ‖ · ‖ω,ν ≤ amax(ω)
1/2‖ · ‖H1(D),

and the fact that ω was arbitrary conclude the proof.

The following lemma bounds the difference of the Galerkin projections Sνk(S
ν
ℓ )

−1

for different parameters ν.

Lemma 3.4. There holds for ℓ, k, ν, µ ∈ N, all v : Ω → Xℓ, and all ω ∈ Ω

‖(Sνk(Sνℓ )−1 − S
µ
k(S

µ
ℓ )

−1)v(ω)‖H1(D)

≤ Cproj(ω)‖(Aν −Aµ)(ω)‖L∞(D) inf
w∈Xk

‖v(ω)− w‖H1(D),

where Cproj(ω) := amin(ω)
−2amax(ω).

Proof. For k ≥ ℓ, we have Sνk(S
ν
ℓ )

−1 = idXℓ
= S

µ
k(S

µ
ℓ )

−1 and thus the assertion
holds trivially. Assume k < ℓ. Define vk := (Sνk(S

ν
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v : Ω → Xℓ.
Ellipticity (2.3) of aνω(·, ·) together with Galerkin orthogonality shows for ω ∈ Ω

amin(ω)‖vk(ω)‖2H1(D) ≤ aνω(vk(ω), vk(ω)) = aνω((S
ν
ℓ (S

ν
ℓ )

−1 − S
µ
k (S

µ
ℓ )

−1)v(ω), vk(ω)).

Since Sνℓ (S
ν
ℓ )

−1 = idXℓ
= S

µ
ℓ (S

µ
ℓ )

−1, we have

amin(ω)‖vk(ω)‖2H1(D) ≤ aνω((S
µ
ℓ (S

µ
ℓ )

−1 − S
µ
k (S

µ
ℓ )

−1)v(ω), vk(ω))

= aµω((S
µ
ℓ (S

µ
ℓ )

−1 − S
µ
k (S

µ
ℓ )

−1)v(ω), vk(ω))

+ (aνω − aµω)((S
µ
ℓ (S

µ
ℓ )

−1 − S
µ
k (S

µ
ℓ )

−1)v(ω), vk(ω)).

The first term on the right-hand side above is zero due to Galerkin orthogonality.
Therefore, we obtain

‖vk(ω)‖2H1(D) . ‖aνω − aµω‖‖(Sµℓ (S
µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v(ω)‖H1(D)‖vk(ω)‖H1(D).(3.1)

As shown in Lemma 3.1, there holds ‖aνω − aµω‖ ≤ ‖(Aν − Aµ)(ω)‖L∞(D). Moreover,
we have by Céa’s lemma (Lemma 3.3)

‖(Sµℓ (S
µ
ℓ )

−1 − S
µ
k (S

µ
ℓ )

−1)v(ω)‖H1(D) ≤ amin(ω)
−1amax(ω)

1/2 inf
w∈Xk

‖v(ω)− w‖H1(D).

This together with (3.1) concludes the proof.
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For the statement of the next result, we recall the definition of the double differ-
ence

Dν
ℓ := (uνℓ − uνℓ−1)− (uν−1

ℓ − uν−1
ℓ−1 ) : Ω → Xℓ.

Lemma 3.5. There holds for all ω ∈ Ω

‖Dν
ℓ (ω)‖H1(D) ≤ ‖(Sνℓ − S

ν
ℓ−1)(S

ν
ℓ )

−1(Sνℓ − S
ν−1
ℓ )f‖H1(D)

+ Cproj(ω)‖(Aν −Aν−1)(ω)‖L∞(D) inf
w∈Xk

‖uν−1
ℓ (ω)− v‖H1(D).

(3.2)

Proof. Straightforward expansion of the equation and Sνℓ (S
ν
k)

−1 = idXk
, k ≤ ℓ

from Lemma 3.2 show

Dν
ℓ = ((Sνℓ − S

ν
ℓ−1)− (Sν−1

ℓ − S
ν−1
ℓ−1 ))f

= (Sνℓ − S
ν
ℓ−1)(S

ν
ℓ )

−1(Sνℓ − S
ν−1
ℓ )f − (Sνℓ−1(S

ν
ℓ )

−1
S
ν−1
ℓ − S

ν−1
ℓ−1 )f.

The last term on the right-hand side satisfies

‖(Sνℓ−1(S
ν
ℓ )

−1
S
ν−1
ℓ − S

ν−1
ℓ−1 )f‖H1(D)

≤ ‖(Sν−1
ℓ−1 (S

ν−1
ℓ )−1

S
ν−1
ℓ − S

ν−1
ℓ−1 )f‖H1(D)

+ ‖(Sνℓ−1(S
ν
ℓ )

−1 − S
ν−1
ℓ−1 (S

ν−1
ℓ )−1)Sν−1

ℓ f‖H1(D).

(3.3)

The first term on the right-hand side satisfies for all v ∈ Xℓ−1

aνω((S
ν−1
ℓ−1 (S

ν−1
ℓ )−1

S
ν−1
ℓ − S

ν−1
ℓ−1 )f, v) = aνω((S

ν−1
ℓ (Sν−1

ℓ )−1
S
ν−1
ℓ − S

ν−1
ℓ )f, v) = 0

and thus ‖(Sν−1
ℓ−1 (S

ν−1
ℓ )−1S

ν−1
ℓ − S

ν−1
ℓ−1 )f‖H1(D) = 0. For the second term on the

right-hand side of (3.3), Lemma 3.4 with µ = ν − 1 and k = ℓ− 1 proves

‖(Sνℓ−1(S
ν
ℓ )

−1 − S
ν−1
ℓ−1 (S

ν−1
ℓ )−1)Sν−1

ℓ f‖H1
0(D)

. ‖Aν(ω)−Aν−1(ω)‖L∞(D) inf
v∈Xℓ−1

‖uν−1
ℓ (ω)− v‖H1(D).

Altogether, this concludes the proof.

The following result is well-known and we reprove it in our setting for the conve-
nience of the reader.

Lemma 3.6 (Aubin-Nitsche duality). There holds for all v ∈ H1
0 (D) that

‖v − S
ν
ℓ (S

ν
∞)−1v‖L2(D) ≤ Capprox

Creg

amin(ω)2
(1 + ‖Aν(ω)‖W 1,∞(D))hℓ‖v‖H1(D).

Proof. Let ι : L2(D) → H−1(D) be the usual embedding via the L2(D)-scalar
product. Define V := v − Sνℓ (S

ν
∞)−1v. We have with Galerkin orthogonality and by

symmetry of aνω for all w ∈ Xℓ

‖v − S
ν
ℓ (S

ν
∞)−1v‖2L2(D) = aνω(S

ν
∞ ◦ ι(V ), V ) = aνω(S

ν
∞ ◦ ι(V )− w, V )

≤ ‖Sν∞ ◦ ι(V )− w‖H1(D)‖V ‖H1(D).
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Since w ∈ Xℓ was arbitrary, we get with (2.5) and (2.6)

‖v − S
ν
ℓ (S

ν
∞)−1v‖2L2(D)

≤ Capproxhℓ‖Sν∞ ◦ ι(V )‖H2(D)‖V ‖H1(D)

≤ Capprox
Creg

amin(ω)2
(1 + ‖Aν(ω)‖W 1,∞(D))hℓ‖v − S

ν
ℓ (S

ν
∞)−1v‖L2(D)‖V ‖H1(D).

With Lemma 2.1, we show ‖V ‖H1(D) ≤ (1 + amin(ω)
−1amin(ω))‖v‖H1(D) and thus

conclude the proof.

The following result bounds the first term on the right-hand side of the estimate
in Lemma 3.5 by an error estimate in product form.

Lemma 3.7. There holds for all ω ∈ Ω

‖(Sνℓ − S
ν
ℓ−1)(S

ν
ℓ )

−1(Sνℓ − S
ν−1
ℓ )f‖H1(D)

≤ C̃prod(ω)hℓ‖(Aν −Aν−1)(ω)‖W 1,∞(D)‖f‖L2(D),

where C̃prod(ω) ≃ Cunifamin(ω)
−5amax(ω)

1/2(1+maxi∈{0,1} ‖Aν−i(ω)‖W 1,∞(D))
2 > 0.

Proof. First, Céa’s lemma (Lemma 3.3) shows for v : Ω → Xℓ
‖(Sνℓ − S

ν
ℓ−1(ω))(S

ν
ℓ )

−1v‖H1(D) ≤ amin(ω)
−1 inf

w∈Xℓ−1

‖v(ω)− w‖ω,ν .

Let v := (Sνℓ−S
ν−1
ℓ )f and choose w := Sνℓ−1(S

ν
∞)−1v. Then, there holds with Galerkin

orthogonality aνω(w, v − w) = aνω(v − Sνℓ−1(S
ν
∞)−1v, w) = 0 and hence

‖v − w‖2ω,ν = aνω(v, v − w) = aνω(u
ν − S

ν−1
ℓ f, v − w)

= aν−1
ω (uν − S

ν−1
ℓ f, v − w) + (aνω − aν−1

ω )(uν − S
ν−1
ℓ f, v − w)

= aν−1
ω (uν , v − w)− 〈f , v − w〉D + (aνω − aν−1

ω )(uν − S
ν−1
ℓ f, v − w),

where we just inserted and subtracted aν−1
ω (·, ·). This, then leads to

‖v − w‖2ω,ν = aν−1
ω (uν , v − w)− aνω(u

ν , v − w) + (aνω − aν−1
ω )(uν − S

ν−1
ℓ f, v − w)

= −(aνω − aν−1
ω )(Sν−1

ℓ f, v − w)

= −(aνω − aν−1
ω )(uν−1, v − w) − (aνω − aν−1

ω )(uν−1
ℓ − uν−1, v − w),

where we used S
ν−1
ℓ f = uν−1

ℓ and we added and subtracted the corresponding exact
solution uν−1. Using the definition of the bilinear forms as well as integration by
parts, the above reads

‖v − w‖2ω,ν =

∫

D

(
∇(Aν −Aν−1) · ∇uν−1 + (Aν −Aν−1)∆uν−1

)
(v − w) dx

− (aνω − aν−1
ω )(uν−1

ℓ − uν−1, v − w)

≤ ‖Aν −Aν−1‖W 1,∞(D)‖uν−1‖H2(D)‖v − w‖L2(D)

+ ‖aνω − aν−1
ω ‖‖uν−1

ℓ − uν−1‖H1(D)‖v − w‖H1(D).

Finally, Lemma 3.6 shows

‖v − w‖L2(D) . hℓ−1amin(ω)
−2(1 + ‖Aν−1(ω)‖W 1,∞(D))‖v‖H1(D)

. hℓ−1amin(ω)
−3(1 + ‖Aν−1(ω)‖W 1,∞(D))‖f‖L2(D),
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where the last estimate uses Lemma 2.1. Assumption (2.5), together with the Céa
lemma (Lemma 3.3), implies

‖uν−1
ℓ − uν−1‖H1(D) . amin(ω)

−1amax(ω)
1/2hℓ‖uν−1‖H2(D).

Together with (2.6), we obtain

‖uν−1‖H2(D) . amin(ω)
−2(1 + ‖Aν−1(ω)‖W 1,∞(D)‖f‖L2(D)

and thus conclude the proof.

Finally, we have collected all the ingredients to obtain the full error estimate in
product form.

Proposition 3.8. There holds for all ω ∈ Ω

‖Dν
ℓ (ω)‖H1(D) ≤ Cprod(ω)hℓ‖(Aν −Aν−1)(ω)‖W 1,∞(D)‖f‖L2(D),

where Cprod(ω) ≃ C̃prod(ω)(1 + amax(ω)) > 0.

Proof. The first term on the right-hand side of (3.2) is bounded by Lemma 3.7.
For the second term, we use (2.5) together with (2.6) to obtain a similar bound.
Finally, we exploit that hℓ ≥ Cunifhℓ−1 and conclude the proof.

Since we are interested in the error of the goal functional G(·), we may exploit a
standard Aubin-Nitsche duality argument to double the rate of convergence.

Theorem 3.9. There holds for all ω ∈ Ω

|G(Dν
ℓ (ω))| ≤ Cprod(ω)h

2
ℓ min

{
1, ‖(Aν −Aν−1)(ω)‖W 1,∞(D)

}
‖f‖L2(D)‖g‖L2(D)

with Cprod(ω) > 0 depending on Cprod(ω) from Proposition 3.8 via

Cprod(ω) ≃ amin(ω)
−5amax(ω)‖Aν(ω)‖W 1,∞(D)‖Aν−1(ω)‖W 1,∞(D)Cprod(ω).

Proof. Let gν ∈ H1
0 (Ω) such that G(·) = aνω(·, gν) (note that such a function

always exists due to the ellipticity (2.3) of aν−1
ω ). There holds for v, w ∈ Xℓ−1

G(Dν
ℓ ) = aνω(u

ν
ℓ − uνℓ−1, g

ν)− aν−1
ω (uν−1

ℓ − uν−1
ℓ−1 , g

ν−1)

= aνω(u
ν
ℓ − uνℓ−1, g

ν − v)− aν−1
ω (uν−1

ℓ − uν−1
ℓ−1 , g

ν−1 − v),

where we used Galerkin orthogonality (Lemma 3.2) to insert v ∈ Xℓ−1. Adding and
subtracting of aνω(·, ·) leads to

G(Dν
ℓ ) = aνω(u

ν
ℓ − uνℓ−1, g

ν − v)− aνω(u
ν−1
ℓ − uν−1

ℓ−1 , g
ν−1 − v)

+ (aνω − aν−1
ω )(uν−1

ℓ − uν−1
ℓ−1 , g

ν−1 − v)

= aνω(u
ν
ℓ − uνℓ−1, g

ν−1 − v)− aνω(u
ν−1
ℓ − uν−1

ℓ−1 , g
ν−1 − v)

+ (aνω − aν−1
ω )(uν−1

ℓ − uν−1
ℓ−1 , g

ν−1 − v) + aνω(u
ν
ℓ − uνℓ−1, g

ν − gν−1 − w),

where we added and subtracted aνω(u
ν
ℓ − uνℓ−1, g

ν−1) and inserted w ∈ Xℓ−1 using
Galerkin orthogonality (Lemma 3.2). Recalling the definition of Dν

ℓ , we end up with

G(Dν
ℓ ) = aνω(D

ν
ℓ , g

ν−1 − v) + (aνω − aν−1
ω )(uν−1

ℓ − uν−1
ℓ−1 , g

ν−1 − v)

+ aνω(u
ν
ℓ − uνℓ−1, g

ν − gν−1 − w).
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Lemma 3.1 and the Céa lemma (Lemma 3.3) together with (2.5) and (2.6) allows us
to estimate

|G(Dν
ℓ )| . amax(ω)‖Dν

ℓ ‖H1(D)‖gν−1 − v‖H1(D)

+ ‖Aν −Aν−1‖L∞(D)‖uν−1
ℓ − uν−1

ℓ−1 ‖H1(D)‖gν−1 − v‖H1(D)

+ ‖uνℓ − uνℓ−1‖H1(D)‖gν − gν−1 − w‖H1(D)

. amax(ω)‖Dν
ℓ ‖H1(D)‖gν−1 − v‖H1(D)

+ amin(ω)
−3amax(ω)

1/2(1 + ‖Aν−1(ω)‖W 1,∞(D))‖f‖L2(D)hℓ(
‖Aν −Aν−1‖L∞(D)‖gν−1 − v‖H1(D) + ‖gν − gν−1 − w‖H1(D)

)
.

(3.4)

Since G(·) =
∫
D
g(x)(·) dx for some g ∈ L2(D), we obtain from (2.6) that gν , gν−1 ∈

H2(D). Therefore, and since v ∈ Xℓ−1 was arbitrary, (2.5) and (2.6) show

inf
v∈Xℓ−1

‖gν−1 − v‖H1(D) . amin(ω)
−2(1 + ‖Aν−1(ω)‖W 1,∞(D))hℓ‖g‖L2(D).

Moreover, there holds for all v ∈ H1
0 (D)

aνω(g
ν − gν−1, v) = 〈g , v〉D − aνω(g

ν−1, v) = (aν−1 − aν)(gν−1, v)

=

∫

D

(
∇(Aν −Aν−1) · ∇gν−1 + (Aν −Aν−1)∆gν−1

)
v dx.

It is easy to see that the right-hand side is of the form 〈r , v〉D for some r ∈ L2(D)
with

‖r‖L2(D) ≤ 2‖Aν −Aν−1‖W 1,∞(D)‖gν−1‖H2(D) . ‖Aν −Aν−1‖W 1,∞(D)‖g‖L2(D).

Therefore, (2.6) shows

‖gν − gν−1‖H2(D) . amin(ω)
−2(1 + ‖Aν(ω)‖W 1,∞(D))‖Aν −Aν−1‖W 1,∞(D)‖g‖L2(D).

Since w ∈ Xℓ−1 in (3.4) was arbitrary, the same argument and (2.5) show

inf
w∈Xℓ−1

‖gν − gν−1 − w‖H1(D)

. hℓamin(ω)
−2(1 + ‖Aν(ω)‖W 1,∞(D))‖Aν −Aν−1‖W 1,∞(D)‖g‖L2(D).

Altogether, we conclude the proof by use of Proposition 3.8, the above estimates, and
insertion in (3.4). The minimum in the statement follows from standard arguments
which we will sketch briefly. There holds

G(uνℓ − uνℓ−1) = aνω(u
ν
ℓ − uνℓ−1, g

ν) = aνω(u
ν
ℓ − uνℓ−1, g

ν − v)

for all v ∈ Xℓ−1. As above, choosing v = Sνℓ (S
ν
∞)−1gν and Lemma 3.3 together

with (2.5) leads to

|G(uνℓ − uνℓ−1)| . ‖uνℓ − uνℓ−1‖H1(D)hℓ−1‖g‖L2(D)

. h2ℓ−1‖f‖L2(D)‖g‖L2(D).

This concludes the proof.
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4. Approximation of the random coefficient. This section gives two exam-
ples of how to choose the random coefficient A(x, ω) as well as the approximations
Aν(x, ω). The first one will be the standard KL-expansion, whereas the second one
will come from a novel technique to generate random fields by use of H-matrices.

4.1. KL expansion. In this section, we assume Ω = [0, 1]N and define ω =
(ωi)i∈N. We assume that Aν is of the form

Aν(x, ω) := φ0(x) +

sν∑

j=1

ψj(ωj)φj(x)(4.1)

for functions φj ∈ W 1,∞(D) and ψj ∈ L∞([0, 1], [−Cψ, Cψ]) for some fixed Cψ > 0.
We assume that the series converges absolutely in W 1,∞(D) for all ω ∈ Ω and hence
define

A(x, ω) := A∞(x, ω) := φ0(x) +

∞∑

j=1

ψj(ωj)φj(x).

Moreover, we assume that (2.2) holds.

Theorem 4.1. Under the assumptions of the current section, there holds

‖G(Dν
ℓ )‖L∞(Ω) ≤ CKLh

2
ℓ

sν∑

i=sν−1+1

‖φi‖W 1,∞(D)‖f‖L2(D)‖g‖L2(D).(4.2)

The constant CKL > 0 depends on Cψ but is independent of ℓ, ν, and ω.

Proof. The estimate follows immediately by definition of Aν and Theorem 3.9.

4.2. KL expansion with uniform random variables. In many cases, it is
possible to reduce (4.1) to the simplified form

Aν(x, ω) := φ0(x) +

sν∑

j=1

ωjφj(x),(4.3)

where now Ω = [−1/2, 1/2]N and ess infx∈D φ0(x) > 0 .

Remark 4.2. Note that theoretically, the case from Section 4.1 can always be
reduced to the present case. However, in many cases, this requires the user to compute
all function φj in advance, which of course is computationally impractical.

It turns out that in this case, an improved version of Theorem 3.9 (see Theorem 4.7
at the end of this section) can be derived by arguments already used for quasi-Monte
Carlo estimates (see, e.g., the works [1, 2] and the references therein). Given a subset
Ω′ ⊆

∏
j∈N

C, we define for all j ∈ N

Ω′
j :=

{
ωj ∈ C : ∃ωi ∈ C, i ∈ N \ {j} such that ω = (ω1, ω2, . . .) ∈ Ω′

}
.

Lemma 4.3. Assume that Ω′ ⊇ Ω is such that all results of Section 3 hold true

with Ω′ instead of Ω. Then the function F : Ω′
j → C, ωj 7→ G(Sνℓ (ω)f) is holomorphic

for all j ∈ N.
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Proof. Fix j ∈ N. Given z ∈ C, define ω + z ∈ CN by (ω + z)i = ωi for all i 6= j
and (ω + z)j = ωj + z. Let z be sufficiently small such that there exits ε ≥ 2|z| with
Bε(ω) ⊆ Ω′. By definition, we have for v ∈ Xℓ

0 = aνω+z(S
ν
ℓ (ω + z)f, v)− aνω(S

ν
ℓ (ω)f, v)

=

∫

D

(Aν(x, ω + z)−Aν(x, ω))∇S
ν
ℓ (ω + z)f · ∇v dx+ aνω(S

ν
ℓ (ω + z)f − S

ν
ℓ (ω)f, v).

Let gν ∈ Xℓ denote the representer of G(·)|Xℓ
with respect to aνω. This and the above

allows us to compute

G(Sνℓ (ω + z)f)−G(Sνℓ (ω)f)

z
=
aνω(S

ν
ℓ (ω + z)f − Sνℓ (ω)f, g

ν)

z

= −
∫

D

Aν(x, ω + z)−Aν(x, ω)

z
∇S

ν
ℓ (ω + z)f · ∇gν dx.

(4.4)

Since Aν is holomorphic, Cauchy’s integral formula shows for Bε(ωj) ⊂ Ω′
j that

∣∣∣
Aν(x, ω + z)−Aν(x, ω)

z
− ∂ωjA

ν(x, ω)
∣∣∣

=
1

2π

∣∣∣
∫

∂Bε(ωj)

1

z

( Aν(x, y)

(y − (ωj + z))
− Aν(x, y)

(y − ωj)

)
− Aν(x, y)

(y − ωj)2
dy

∣∣∣

=
1

2π

∣∣∣
∫

∂Bε(ωj)

Aν(x, y)

(y − ωj − z)(y − ωj)
− Aν(x, y)

(y − ωj)2
dy

∣∣∣

=
1

2π

∣∣∣
∫

∂Bε(ωj)

Aν(x, y)z

(y − ωj − z)(y − ωj)2
dy

∣∣∣

. ε−2‖Aν‖L∞(Ω×D)|z|.

This uniform convergence in |z| together with Lemma 3.1 shows that passing to the
limit z → 0 in (4.4) leads to

∂ωjG(S
ν
ωf) = −

∫

D

∂ωjA
ν(x, ω)∇S

ν
ℓ (ω)f · ∇gν dx ∈ C.

This shows that F is complex differentiable and thus holomorphic.

Lemma 4.4. Let (̺j)j∈N be a positive sequence such that

Ω ⊂ Ω′ :=
∏

j∈N

B1+̺j (0)

and that all the results of Section 3 hold true with Ω′ instead of Ω. Given ℓ, ν ∈ N,

the function F νℓ : Ω → R, ω 7→ G(Dν
ℓ (ω)) satisfies

‖∂αωF νℓ ‖L∞(Ω)

‖f‖L2(D)‖g‖L2(D)

≤
{
0

∑∞
i=sν+1 αi > 0,

Cder
α!h2

ℓ∏
∞
i=1 ̺

αi
i

min{1, supω∈Ω′ ‖Aν −Aν−1‖W 1,∞(D)} else,

for all multi-indices α ∈ NN with |α| < ∞. The constant Cder > 0 depends only on

Cprod from Theorem 3.9.
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Proof. For brevity of presentation, we fix ℓ and ν and write F := F νℓ . Lemma 4.3
shows that F can be extended to a function F : Ω′ → C, which is holomorphic in each
coordinate ωj. Moreover, Lemma 3.1 proves that F is uniformly continuous in Ω.
Therefore, we obtain immediately by induction that F satisfies the multidimensional
analog of Cauchy’s integral formula for all ω ∈ Ω′

F (ω) = (2πi)−n
∫

∂Bε1 (ωd1
)

· · ·
∫

∂Bεn (ωdn)

F (z)

(z1 − ωd1) . . . (zn − ωdn)
dz1 . . . dzn,

where (d1, . . . , dn) ∈ Nn contains exactly n-different dimensions and εi > 0, i =
1, . . . , n are chosen sufficiently small such that the integration domains of the contour
integrals above are contained in Ω′. This shows immediately that for any multi-index
α ∈ NN with |α| <∞, ∂αωF is holomorphic in each variable. Thus, iterated application
of Cauchy’s integral formula shows for all ω ∈ Ω that

∂αωF (ω) =
( ∞∏

i=1

αi 6=0

αi!

2πi

) ∫
∏

∞
i=1

αi 6=0

∂B̺i
(ωi)

F (z)∏∞
i=1

αi 6=0
(zi − ωi)α+1

dz .

This shows immediately

|∂αωF (ω)| ≤
( ∞∏

i=1

αi 6=0

αi!

2π
2π̺−αi

i

)
‖F‖L∞(Ω′) ≤ α!

( ∞∏

i=1

̺−αi

i

)
‖F‖L∞(Ω′).

This and Theorem 3.9 with Aν(ω) = φ0 +
∑ν

i=1 ωiφi conclude the proof.

Lemma 4.5. Define for sufficiently small δ > 0

βi :=
‖φi‖W 1,∞(D)

(ess infx∈D φ0(x)− 2δ)
.

Given ℓ, ν ∈ N, the function F : Ω → R, ω 7→ G(Dν
ℓ (ω)) satisfies

‖∂αωF‖L∞(Ω) ≤ C̃der

{
0

∑∞
i=sν+1 αi > 0,(∏sν

i=1 β
αi

i

)
h2ℓ‖f‖L2(D)‖g‖L2(D) else,

for all multi-indices α ∈ NN
0 with |α| ≤ 2. The constant C̃der > 0 depends only on

Cder, δ, and (φj)j∈N.

Proof. Given α ∈ NN0 with |α| ≤ 2 an admissible sequence (̺j)j∈N in Lemma 4.4
is, given ε > 0,

̺j :=

{
(infx∈D φ0(x) − 2δ)αj/2‖φj‖−1

W 1,∞(D) for all j ∈ N with αj > 0,

ε for all j ∈ N with αj = 0.

This sequence satisfies

inf
ωi∈B1+̺i

(0):i∈N

ℜ
(
φ0 +

ν∑

i=1

ωiφi
)
≥ φ0 − (ess inf

x∈D
φ0(x) − 2δ)− ε

∞∑

i=1

‖φj‖L∞(D) ≥ δ

for sufficiently small ε > 0 (here ℜ denotes the real part). Moreover, the term
‖φ0 +

∑ν
i=1 ωiφi‖W 1,∞(D) remains uniformly bounded in Ω′ :=

∏∞
i=1 B1+̺i(0). This
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ensures that Ω′ satisfies all the assumptions required for Ω and thus all results of
Section 3 remain valid for Ω′ instead of Ω. In particular, the constant Cprod(ω) from
Theorem 3.9 is uniformly bounded in ω ∈ Ω′. It is also obvious that ω 7→ Aν(x, ω) is
holomorphic in each coordinate in Ω′, with derivative

∂ωjA
ν(x, ω) =

{
φj(x) for j ≤ sν ,

0 else.

Moreover, since |α| ≤ 2 there holds

∞∏

i=1

̺−αi

i ≤
∞∏

i=1

βαi

i .

This, together with Lemma 4.4 concludes the proof.

Lemma 4.6. Let g ∈ L∞(Ω) be sufficiently smooth and let g depend only on the

first s ∈ N dimensions, i.e., ∂ωig = 0 for all i > s. For 0 ≤ r ≤ s and x =
(x1, x2, . . . , xs) ∈ Ωs, define the function space

Psr (Ω) := span
{
f ∈ L∞(Ω) : f(x) =

s∑

i=r+1

α(x1, . . . , xr)xi, α(x1, . . . , xr) ∈ R
}
.

Assume that ω ∈ Ω with ωi = 0 for all i > r implies g(ω) = 0. Then, there holds

‖g(ω)‖L∞(Ω) ≤
s∑

i=r+1

‖∂ωig‖L∞(Ω).

Moreover, there exists g0 ∈ Psr (Ω) such that

‖g(ω)− g0(ω)‖L∞(Ω) ≤
1

2

s∑

i=r+1

i∑

j=r+1

‖∂ωi∂ωjg‖L∞(Ω).

Proof. Let ω ∈ R
s. There holds

g(ω) = g(ω1, . . . , ωr, 0, . . .)︸ ︷︷ ︸
=0

+
s∑

i=r+1

∫ ωi

0

∂ωig(ω1, . . . , ωi−1, ti, 0, . . .) dti

=

s∑

i=r+1

∫ ωi

0

(
∂ωig(ω1, . . . , ωr, 0, . . .)

+

∫ ti

0

∂2ωi
g(ω1, . . . , ωi−1, si, 0, . . .) dsi

+

i−1∑

j=r+1

∫ ωj

0

∂ωj∂ωig(ω1, . . . , ωj−1, sj , 0, . . .) dsj

)
dti.

Since the first integrand on the right-hand side does not depend on ωi, the above
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implies

g(ω) =

s∑

i=r+1

(
ωi∂ωig(ω1, . . . , ωr, 0, . . .)

+

∫ ωi

0

(∫ ti

0

∂2ωi
g(ω1, . . . , ωi−1, si, 0, . . .) dsi

+

i−1∑

j=r+1

∫ ωj

0

∂ωj∂ωig(ω1, . . . , ωj−1, sj , 0, . . .) dsj

)
dti

)
.

Since there holds (ω 7→ ωi∂ωig(ω1, . . . , ωr, 0, . . .)) ∈ Psr (Ω) for all i ≥ r+1, we conclude
the proof.

Theorem 4.7. Under the assumptions of the current section, there holds

‖G(Dν
ℓ )‖L∞(Ω) ≤ CKLh

2
ℓ

sν∑

i=sν−1+1

‖φi‖W 1,∞(D)‖f‖L2(D)‖g‖L2(D).(4.5)

Moreover, there exists g0 ∈ Psνsν−1
(Ω) such that

‖G(Dν
ℓ )− g0‖L∞(Ω)

≤ CKLh
2
ℓ

sν∑

i=sν−1+1

sν∑

j=sν−1+1

‖φi‖W 1,∞(D)‖φj‖W 1,∞(D)‖f‖L2(D)‖g‖L2(D).
(4.6)

The constant CKL > 0 is independent of ℓ, ν, and ω.

Proof. The first estimate (4.5) follows from the definition of Aν and Theorem 3.9.
For (4.6), the function g(ω) := Dν

ℓ (ω) satisfies the requirements of Lemma 4.6 with
r = sν−1. Hence, the result follows immediately from Lemma 4.6 and Lemma 4.5.

5. Monte Carlo integration. This section discusses the Monte Carlo quadra-
ture rules. While for the H-matrix case, the standard rule will be used, the KL-
expansion case allows us to increase the order of convergence by symmetrization of
the Monte Carlo rule. This section defines the Monte Carlo integration for the case
that the random coefficient is given by a KL-expansion as discussed in Sections 4.1–
4.2.

We make the standard assumption that the functions φi from (4.3) satisfy

‖φj‖W 1,∞(D) ≤ CKLj
−r for all j ∈ N(5.1)

for some r > 1.

Lemma 5.1. Define the Monte Carlo rule

QM (g) :=
1

M

M∑

i=1

g(X i)

for uniformly distributed i.i.d X i ∈ [−1/2, 1/2]sν . Then, under the assumptions of

Section 4.1 given ℓ, ν ∈ N, the function F : Ω → R, ω 7→ G(Dν
ℓ (ω)) satisfies

√
EMC|E(F )−QM (F )|2 ≤ CMCs

1−r
ν−1

h2ℓ√
M

‖f‖L2(D)‖g‖L2(D).

Here, EMC(·) denotes integration over the combined probability spaces of the X i, i =
1, . . . ,M , whereas E(·) denotes integration over Ων .
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Proof. The statement follows immediately from the standard Monte Carlo error
estimate, Theorem 4.1, and the fact that

∑sν
j=sν−1+1 j

−r . s1−rν−1.

By symmetrization of the Monte Carlo sequence, we are able to increase the order
of convergence in the truncation parameter ν.

Lemma 5.2. Define the symmetric Monte Carlo rule

QM (g) :=
1

2M

M∑

i=1

(g(X i
1, . . . , X

i
sν ) + g(X i

1, . . . , X
i
sν−1

,−X i
sν−1+1, . . . ,−X i

sν )),

where the X i ∈ [−1/2, 1/2]sν are i.i.d. and uniformly distributed. Under the assump-

tions of Section 4.2, there holds QM (g0) = 0 for all g0 ∈ Psνsν−1
(Ω). Moreover, given

ℓ, ν ∈ N, the function F : Ω → R, ω 7→ G(Dν
ℓ (ω)) satisfies

√
EMC|E(F )−QM (F )|2 ≤ CMCs

2(1−r)
ν−1

h2ℓ√
M

‖f‖L2(D)‖g‖L2(D).

Here, EMC(·) denotes integration over the combined probability spaces of the Xi, i =
1, . . . , 2m, whereas E(·) denotes integration over Ων .

Proof. First, we notice that for g0 ∈ P1
sν−1

(Ω), there holds

g0(X
i
1, . . . , X

i
sν ) = −g0(X i

1, . . . , X
i
sν−1

,−X i
sν−1+1, . . . ,−X i

sν ).

Therefore, we have QM (g0) = 0 for all g0 ∈ P1
sν−1

(Ω). Thus, the statement follows
from the standard Monte Carlo error estimate and Theorem 4.7, where we note with
(5.1)

sν∑

i=sν−1+1

sν∑

j=sν−1+1

‖φi‖W 1,∞(D)‖φj‖W 1,∞(D)

.

∞∑

i=sν−1+1

∞∑

j=sν−1+1

i−rj−r . (sν−1)
2(−r+1).

6. Multi-Index error control. The multi-index decomposition allows us to
exploit the product error estimates and hence to improve the complexity of the finite-
element/Monte Carlo algorithm. To that end, we rewrite the exact solution as (Qm
denotes one of the quadrature rules QM from Section 5 with M = 2m)

E(G(u)) =

∞∑

j=0

(Qmj −Qmj−1)(G(u))

=

∞∑

j=0

∞∑

ℓ=0

(Qmj −Qmj−1
)(G(uℓ − uℓ−1))

=
∞∑

j=0

∞∑

ℓ=0

∞∑

ν=0

(Qmj −Qmj−1
)(G(Dν

ℓ )),

where mj ∈ N and Qm−1
:= 0. By truncation of the series, we achieve a sparse

approximation, i.e., given N ∈ N

E(G(u)) ≈ GN :=
∑

0≤j+ℓ+ν≤N

(Qmj −Qmj−1)G(D
ν
ℓ ) =

∑

0≤ℓ+ν≤N

QmN−ℓ−ν
(G(Dν

ℓ )).
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We define two quantities to calculate the efficiency of the method: The error is defined
by

EN :=
√
Emc|E(G(u))−GN |2

whereas the cost model is defined by

CN := (The number of computational operations necessary to compute GN )

and obviously depends on the chosen method discussed below.
First, we establish the cost model. A standard FEM will ensure hℓ ≃ 2−ℓ which

implies #Tℓ ≃ 2dℓ. We assume a linear iterative solver such that solving the sparse
FEM system costs O(2dℓ).

Under the assumptions of Section 4.1 and 4.2, we assume that we can compute
the bilinear forms

aj(v, w) :=

∫

D

φj(x)∇v(x)∇w(x) dx for all v, w ∈ Xℓ

exactly in O(#Tℓ). Depending on the truncation parameters sν , we have to compute
sν bilinear forms aj(·, ·) to obtain in the affine case

aνω(v, w) =

sν∑

j=1

ωjaj(v, w),

resulting in a cost of O(2dℓsν). Altogether, this yields

CN ≃
∑

0≤j+ℓ+ν≤N

2mj2dℓsν

Using Lemma 5.1, we see that the multi-index error satisfies

EN = EMC

(∣∣∣
∑

N<j+ℓ+ν

(Qmj −Qmj−1
)G(Dν

ℓ )
∣∣∣
2)1/2

≤
∑

0≤ℓ+ν

EMC

(
|(E−Qmmax{0,N−ℓ−ν+1}

)G(Dν
ℓ )|2

)1/2

. ‖f‖L2(D)‖g‖L2(D)

∑

0≤ℓ+ν

2−mmax{0,N−ℓ−ν+1}/22−2ℓs1−rν−1.

An obvious choice of the parameters sν and mj is to balance the work spent on each
of the two tasks such that the three error contributions (FEM-discretization error,
truncation error, quadrature error) are of equal asymptotic order. Following this
idea, we define

mj := ⌈4j⌉ and sν := ⌈2 2ν
r−1 ⌉.

With this, we have

EN . ‖f‖L2(D)‖g‖L2(D)

∑

0≤ℓ+ν

2−2max{0,N−ℓ−ν+1}2−2ℓ2−2ν

. ‖f‖L2(D)‖g‖L2(D)(N + 1)22−2N

(6.1)



18 J. DICK, M. FEISCHL, C. SCHWAB

as well as

CN ≃
∑

0≤j+ℓ+ν≤N

24j2dℓ2
2ν

r−1 . 2max{4,d, 2
r−1

}N .(6.2)

Using the symmetrized Monte Carlo rule from Lemma 5.2, we see that the multi-index
error improves to

EN . ‖f‖L2(D)‖g‖L2(D)

∑

0≤ℓ+ν

2−mmax{0,N−ℓ−ν+1}/22−2ℓs
2(1−r)
ν−1 .

As above, we balance the contributions by

mj := ⌈4j⌉ and sν := ⌈2 ν
r−1 ⌉.

With this, we obtain the same error estimate as for the plain Monte Carlo rule (6.1),
but with an improved cost estimate of

Csymm
N . 2max{4,d, 1

r−1
}N .(6.3)

7. Numerical experiment. We provide numerical tests in 2D using a similar
example as in [1, Section 5.2]. We choose D = [0, 1]2 and define the coefficient A by

A(x, ω) := 1/2 +

∞∑

k1,k2=1

ωk1,k2
(k21 + k22)

2
sin(k1πx1) sin(k2πx2)

:= 1/2 +

∞∑

j=1

ωj
µj

sin(k1,jπx1) sin(k2,jπx2),

where µj := (k21,j + k22,j)
2 such that µi ≤ µj for all i ≤ j and ties are broken in an

arbitrary fashion. This ensures that the φj satisfy (5.1) with r = 2. The problem
then reads

a(A,ω;u, v) = f(v),

where f ∈ H−1/2−ε(D) for all ε > 0 is defined by

f(v) :=

∫

Γ

v(x1, x2)x1 dΓ(x1, x2) =
√
2

∫ 1

0

t v(t, 1 − t) dt

for Γ =
{
(0, 1) + r(1,−1) : 0 ≤ r ≤ 1

}
being a diagonal of D. Note that we choose

the weight x1 in the integral in the definition of the right-hand side to introduce some
non-symmetric quantities and thus avoid super-convergence effects. We consider the
quantity of interest G(u) :=

∫
D′ u dx, where D′ = (1/2, 1)2 ⊂ D. Whereas the

analysis of the present paper is focused on the full regularity case with right-hand
side f ∈ L2(D), we would like to remark that all the arguments remain valid in case
of reduced regularity (with corresponding reduced rates of convergence).

The discretization is done via linear finite elements Xℓ on a uniform triangulation
of [0, 1]2 into 22ℓ-elements (one example is shown in Figure 1). Note that the cost
model applies as we can compute the stiffness matrix exactly since the gradients of the
shape functions are constants and the anti-derivatives of products of sine functions are
known over triangles. Hence we have hℓ = 2−ℓ. The expected error for the FEM on
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Fig. 1. One level of mesh-refinement for the 2D example.
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Fig. 2. Relative errors or the multi-index algorithms with respect to the reference solution G

compared with the theoretical error bound 2−N (original algorithm (left) and symmetrized version
(right)). Both plots shows the average error curve of 500 runs of the algorithms. The shaded regions
contain 95% of the computed error curves.

level ℓ is O(hℓ) = O(2−ℓ). Thus we choose the mj := 2j as well as sν = ⌈2ν/(r−1)⌉ for
the original algorithm and sν = ⌈2ν/(2(r−1))⌉ for the symmetrized version. Therefore
we expect that the errors for both algorithms satisfy EN = O(2−N ) = O(hN ). This
is confirmed in Figure 2. For the numerical experiments, we compare with a reference
solution computed with a higher-order quasi-Monte Carlo method as proposed in [1].
The authors thank Dr. Hernandez for computing the reference value G = 0.011079....
To smooth out the effects of MC sampling, the plotted relative errors are averaged
over 500 runs of the respective multi-index algorithm (we also plot a shaded region
which contains 95% of all error curves).

8. Conclusion. The present work shows that the multi-index Monte Carlo al-
gorithm with the indices being the discretization parameters of the finite element
method, of the Monte Carlo method, and of the approximation of the random field is
superior to its multi-level counterpart. The error estimates are rigorous and the prod-
uct error estimate from Theorem 3.9 might be of independent interest. The method
can be combined with existing multi-index techniques which focus on sparse grids in
the domain to further reduce the computational effort.
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