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Abstract. Algebraic multigrid (AMG) is often an effective solver for symmetric positive defi-
nite (SPD) linear systems resulting from the discretization of general elliptic PDEs, or the spatial
discretization of parabolic PDEs. However, convergence theory and most variations of AMG rely
on A being SPD. Hyperbolic PDEs, which arise often in large-scale scientific simulations, remain a
challenge for AMG, as well as other fast linear solvers, in part because the resulting linear systems
are often highly nonsymmetric. Here, a novel convergence framework is developed for nonsymmetric,
reduction-based AMG, and sufficient conditions derived for `2-convergence of error and residual. In
particular, classical multigrid approximation properties are connected with reduction-based measures
to develop a robust framework for nonsymmetric, reduction-based AMG.

Matrices with block-triangular structure are then recognized as being amenable to reduction-
type algorithms, and a reduction-based AMG method is developed for upwind discretizations of
hyperbolic PDEs, based on the concept of a Neumann approximation to ideal restriction (nAIR).
nAIR can be seen as a variation of local AIR (`AIR) introduced in previous work, specifically targeting
matrices with triangular structure. Although less versatile than `AIR, setup times for nAIR can be
substantially faster for problems with high connectivity. nAIR is shown to be an effective and scalable
solver of steady state transport for discontinuous, upwind discretizations, with unstructured meshes,
and up to 6th-order finite elements, offering a significant improvement over existing AMG methods.
nAIR is also shown to be effective on several classes of “nearly triangular” matrices, resulting from
curvilinear finite elements and artificial diffusion.

1. Introduction. Solving large, sparse linear systems is fundamental to the nu-
merical solution of partial differential equations (PDEs). For high-dimensional PDEs,
even a moderate resolution of the discrete problem can lead to enormous problem
sizes, which require highly efficient, parallel solvers. Ultimately, it is important that
a solver is both algorithmically scalable (fast), with a cost in floating point operations
linear or near-linear with the number of unknowns, and scalable in parallel (scalable),
where these operations can be efficiently distributed across many processors. For sym-
metric positive definite (SPD) matrices, such as those that arise in the discretization
of elliptic PDEs or the spatial discretization of a parabolic PDE in time, a number
of fast, scalable, iterative or direct methods have been developed. However, there re-
mains a lack of fast, scalable solvers for the highly nonsymmetric matrices that arise
in the discretization of hyperbolic PDEs and full space-time discretizations of general
PDEs. A subset of such highly nonsymmetric matrices are block-triangular matrices,
with blocks that are small enough to invert directly, which is one focus of this work.

For PDEs of elliptic type, algebraic multigrid (AMG) is among the fastest class of
linear solvers. When applicable, AMG converges in linear complexity with the number
of degrees-of-freedom (DOFs), and scales in parallel like O(log2(P )), up to hundreds
of thousands of processors, P [6]. Originally, AMG was designed for essentially SPD
linear systems, and convergence of AMG is relatively well understood in the SPD
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2 MANTEUFFEL, MÜNZENMAIER, RUGE, AND SOUTHWORTH

setting [10,11,26,60,63]. Nonsymmetric matrices pose unique difficulties for AMG in
theory and in practice. In particular, coarse-grid correction, a fundamental part of
AMG’s fast convergence, is generally not a contraction in the nonsymmetric setting,
meaning that coarse-grid correction can increase error. There have been efforts to
develop AMG theory and methods in the nonsymmetric setting [13, 36, 39, 42, 46, 46–
48, 57, 61]. However, the theoretical understanding of nonsymmetric AMG remains
limited, with very few convergence bounds proved in norm, and there has yet to be a
robust and scalable AMG solver for highly nonsymmetric problems.

For the most part, previous work on nonsymmetric AMG has appealed to tra-
ditional AMG thought, where coarse-grid correction captures (right) singular vectors
associated with small singular values and relaxation attenuates error associated with
large singular values. Here, we take a different, reduction-based approach, appealing
to the premise that certain “ideal” restriction and interpolation operators can lead to a
reduction-based (nonsymmetric) AMG method. Although a reduction-based solver is
not a new concept, here we recognize (i) an important class of linear systems for which
reduction can be highly effective, and (ii) develop a theoretical framework explaining
the convergence of nonsymmetric reduction-based AMG in norm.

Background on sparse triangular systems, reduction, and reduction-based AMG
is given in Section 2. A novel convergence framework is then developed for non-
symmetric, reduction-based AMG in Section 3, including sufficient conditions for
`2-convergence of error and residual, and a formal connection of reduction-based
AMG to classical multigrid approximation properties. Section 4 then recognizes block-
triangular and near-triangular matrices to be well-suited for reduction-based AMG,
and discusses such operators in the context of discontinuous discretizations of advec-
tion. In particular, for hyperbolic-type PDEs, a Neumann approximation to the ideal
restriction operator (nAIR) provides an accurate, sparse approximation, and an AMG
algorithm referred to as nAIR is developed based on this principle. This is a similar
approach to that developed in [40] (`AIR), but nAIR can offer setup-times that are
orders of magnitude faster than `AIR in some cases. Steady state transport is used
as a model problem, which arises in large-scale simulation of neutron and radiation
transport [1, 5, 18, 31, 51]. Results in Section 6 show that nAIR outperforms current
state-of-the art methods, and is able to attain an order-of-magnitude reduction in
residual in only 1–2 iterations, even for high-order discretizations on unstructured
grids.

2. Reduction-based algebraic multigrid.

2.1. Triangular matrices and parallelism. Sparse matrices with triangular
structure arise in a number of interesting settings. In contrast to elliptic and parabolic
PDEs, the solution of hyperbolic PDEs lies on characteristic curves, and the solution
at any point depends only on the solution upwind along its given characteristic. This
allows for very steep gradients or “fronts” to propagate through the domain. Due
to such behavior, discontinuous, upwind discretizations are a natural approach to
discretizing many hyperbolic PDEs [14,44,45,52]. For a fully upwinded discretization,
the resulting matrix has a block-triangular structure in some (although potentially
unknown) ordering. Implicit time-stepping schemes or steady state solutions then
require the solution of such linear systems. There has also been growing interest in
parallel-in-time solvers. Although most work on these has been geometric in nature,
one can also consider algebraically solving the sparse matrix equations associated with
a full space-time discretization. Such discretizations using an explicit time-stepping
scheme (for any PDE) result in triangular matrices, and an implicit time-stepping
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scheme coupled with an upwind discretization of a hyperbolic PDE also leads to a
block triangular matrix.

Solving linear systems with block-triangular structure is easy in serial using a for-
ward or backward solve. However, there are cases where a block-triangular solve arises
in the parallel setting. In particular, any time an upwind advective discretization is
either (i) part of a larger PDE discretization that cannot be stored on a small number
of processors, or (ii) coupled to other variables that are not inverted easily and require
parallel preconditioners, a triangular-type solve is necessary in parallel. Scheduling
algorithms have been developed for sparse matrices that can add some level of paral-
lelism to this process, but such algorithms are primarily relevant for shared memory
environments [2,4,34,35], and, from the perspective of simulation of PDEs, efficiency
in a distributed-memory environment is fundamental. In the simplest case of a per-
fectly structured processor grid of squares/cubes over some d-dimensional domain,
and a fixed, constant direction of flow, a forward solve in parallel scales like O(P 1/d)
for P processors [5]. However, for non-constant flow or non-uniform processor grids
with respect to the flow and domain, this convergence can suffer. In fact, for any pro-
cessor configuration over a given domain, it is straightforward to construct a velocity
field for advection such that a distributed forward solve takes P communication steps
to complete. Even if each step of this process is fast, linear or even square-root scaling
in P is poor parallel performance.

Iterative-type methods offer an alternative (potentially) more amenable to paral-
lelism. However, Krylov and most other traditional iterative-type methods are gen-
erally either divergent or too slow (with respect to convergence) to be considered
a tractable approach, and solving large, sparse, block-triangular linear systems in
(distributed-memory) parallel environments remains a difficult task. Geometric multi-
grid has been applied to hyperbolic PDEs and upwind discretizations using the well-
known line-smoother approach [3,50,64], but such an approach requires a fixed/known
direction over which to relax and has limits in terms of parallel scalability. When con-
sidering time-dependent hyperbolic PDEs, explicit time-stepping schemes can be used
to avoid solving linear systems. But, explicit schemes suffer from stability constraints,
such as the Courant-Friedrichs-Lewy (CFL) condition, which often require extremely
small time steps, a process that is sequential and can limit performance in the parallel
setting. AMG is known to scale like O(logP ) in parallel, and an AMG solver that
is effective on block triangular and near-triangular matrices would overcome many of
the aforementioned difficulties.

2.2. Reduction-based AMG. Reduction consists of solving of a problem by
equivalently solving multiple smaller problems. In thinking about triangular systems,
a direct forward or backward solve is a reduction algorithm: starting with a system
of size n × n, eliminate one DOF, and reduce the problem to size (n − 1) × (n − 1).
Although this is a sequential algorithm, it suggests that reduction is an effective and
tractable approach for triangular systems, which we demonstrate in this paper.

Given an n × n matrix A, suppose the n DOFs are partitioned into nc C-points
and nf F-points. For explanation, assume that the unknowns have been ordered
with the F-points followed by the C-points. In this context, a well-known example of
reduction is a 2× 2 block LDU decomposition:[

Aff Afc
Acf Acc

]−1
=

[
I −A−1ffAfc
0 I

] [
A−1ff 0

0 K−1A

] [
I 0

−AcfA−1ff I

]
.(1)

Here, solving Ax = b is reduced to solving two systems, Aff ∈ RnF×nF and the Schur
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complement, KA := Acc − AcfA−1ffAfc ∈ RnC×nC . LDU decompositions assume that

the action of A−1ff is available to compute the action of the first and third matrix blocks
in (1), while in practice it is typically not. However, approximating such a decomposi-
tion is the goal behind numerous preconditioners. In fact, a two-level reduction-based
AMG method can be posed as a variant of a block LDU decomposition, which is what
we develop here by algebraically approximating the operators that lead to reduction
in (1): AcfA

−1
ff and A−1ffAfc.

Algebraic multigrid applied to the linear system Ax = b, A ∈ Rn×n, consists of
two processes: relaxation and coarse-grid correction, designed to be complementary
in the sense that they effectively reduce error associated with different parts of the
spectrum of A. Relaxation often takes the form

xk+1 = xk +M−1(b−Axk),(2)

where M−1 is some approximation to A−1 such that the action of M−1 can be easily
computed. Coarse-grid correction typically takes the form

xk+1 = xk + P (RAP )−1R(b−Axk),(3)

where P ∈ Rn×nc and R ∈ Rnc×n are interpolation and restriction operators, respec-
tively, between Rn and the next coarser grid in the AMG hierarchy, Rnc , and back.
Denote the projection Π := P (RAP )−1RA. A two-level V (1, 1)-cycle is then given by
combining coarse-grid correction in (3) with pre- and post-relaxation steps as in (2),
resulting in a two-grid error propagation operator of the form

ETG = (I −M−1postA)(I −Π)(I −M−1preA).

A classical AMG approach is used here, where a CF-splitting of DOFs defines the
coarse grid [10,55]. Operators A,P , and R can then be written in block form:

A =

[
Aff Afc
Acf Acc

]
, P =

[
W
I

]
, R =

[
Z I

]
,(4)

where W ∈ Rnf×nc interpolates to F-points via linear combinations of coarse-grid
DOFs, and Z ∈ Rnc×nf restricts F-point residuals. Note that (4) implicitly assumes
the same CF-splitting forR and P , although the sparsity patterns for nonzero elements
of ZT and W may be different. For notation, denote the coarse-grid operator:1

K : = RAP = ZAffW +AcfW + ZAfc +Acc.(5)

Define the “ideal restriction” and “ideal interpolation” operators as

Rideal :=
[
−AcfA−1ff I

]
, Pideal :=

[
−A−1ffAfc

I

]
,

These operators define the LDU reduction in (1). Note that K := KA with P = Pideal

or R = Rideal, independent of the other. Ideal interpolation has been explored in
the context of reduction-based geometric multigrid methods [22, 23, 28, 54], and is
well-motivated under classical AMG theory for SPD matrices, where it is optimal in

1K is used to denote the coarse-grid operator instead of the traditional notation, Ac, to avoid
confusion with subscripts denoting C-points.



NONSYMMETRIC REDUCTION-BASED AMG 5

a certain sense with respect to two-grid convergence [26, 63]. Ideal restriction was
also discussed in the context of reduction in [26] and, in [40, Section 2.3], shown
to be the unique restriction operator that gives an exact coarse-grid correction at
C-points, independent of interpolation. This result, along with a corollary on ideal
interpolation [40, Section 2.2], are summarized in the following results.

Lemma 1 (Ideal restriction). For a given CF-splitting, assume that Aff is non-
singular and let A,P , and R take the block form as given in (4). Then, an exact
coarse-grid correction at C-points is attained for all e if and only if R = Rideal. Fur-
thermore, the error in coarse-grid correction is given by

(I −Π)e =

[
ef −Wec

0

]
.(6)

A coarse-grid correction using Rideal followed by an exact solve on F-points, results
in an exact two-grid solver, independent of W .

Corollary 2 (Ideal interpolation). For a given CF-splitting, assume that Aff
is nonsingular and let A,P , and R take the block form as given in (4). Then, an
exact solve on F-points, followed by a coarse-grid correction using P := Pideal, yields
an exact two-level solver, independent of Z.

Thus, in the nonsymmetric setting, ideal transfer operators are “ideal” in a reduc-
tion sense: when coupled with an exact solve on F-points, Rideal and Pideal each lead
to an exact two-level method, independent of the accompanying interpolation and
restriction operators, respectively. Note that the ordering of solving the coarse- and
fine-grid problems is important: in order to be an exact reduction, the F-point solve
must follow coarse-grid correction with Rideal, while the F-point solve must precede
coarse-grid correction with Pideal.

2.3. Relation to existing methods. Schur-complement preconditioning and
reduction-based solvers are not new to the literature. Numerous algorithms have been
based on a block LDU decomposition (1) and approximate Schur complement (for ex-
ample, [8, 17, 38, 42, 43, 46, 56]). Reduction has also been studied in the multigrid
and AMG context, originally in the geometric setting [28, 54], more recently alge-
braically [12, 37], and also as the basis for the multigrid reduction-in-time (MGRIT)
parallel-in-time method [21–23]. MGRIT is designed for nonsymmetric problems, but
is geometric in nature and relies on the very specific matrix structure that arises in
time integration, more or less a block 1D advection problem. The AMG developments
in [12,37] are fully algebraic and reduction-based, but assume a Galerkin coarse grid,
meaning restriction is defined as R = PT . For the highly nonsymmetric systems con-
sidered here, this is typically not a good choice [40,41], motivating a Petrov-Galerkin
method, where R 6= PT . Unfortunately, choosing R 6= PT also introduces new difficul-
ties, because if R and P are not “compatible” in some sense, the norm of coarse-grid
correction can be � 1 [40,41], leading to a divergent method.

Approximating the ideal restriction or interpolation operators has also been con-
sidered in other (non-reduction-based) AMG methods, including [39, 49, 61]. Also
motivated in a block-LDU sense, ideal restriction and interpolation are approximated
in [61] by performing a constrained minimization over a fixed sparsity pattern for R
and P . A similar constrained minimization approach for nonsymmetric systems was
used in [39,49], where ideal operators of A∗A and AA∗ for P and R, respectively, are
approximated using a constrained minimization. In these cases, the solvers appeal
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to more classical convergence theory by enforcing constraints to interpolate certain
(known) vectors associated with small singular values exactly.

The AIR algorithm, developed here and in [40], takes a somewhat converse ap-
proach. Building on the discussion in Section 2.2, AIR relies on an accurate approx-
imation to Rideal, and couples this with an accurate F-relaxation scheme to achieve
a reduction-based algorithm. In particular, the focus is on reduction through the
ideal restriction operator. In [40, Lemma 1], it is shown that for R 6= Rideal, care
must also be taken when building P to ensure a stable coarse-grid correction. Theory
developed here indicates that when R approximates Rideal, building interpolation to
accurately capture right singular vectors associated with small singular values is suffi-
cient for a stable coarse-grid correction, as well as two-grid convergence in the `2- and
A∗A-norms. How accurately the derived conditions require P to interpolate modes
depends on how accurately R ≈ Rideal.

This paper can be seen as a companion paper to the `AIR method developed
in [40]. The theory developed here is more general than that in [40], and provides
rigorous explanation as to why better interpolation methods are needed when consid-
ering advection-diffusion-reaction [40] compared with pure advection-reaction (here
and [40]). Conversely, the method developed here is less general than `AIR, effective
primarily on the purely advective or nearly advective case, but as a result, also has
a significantly cheaper setup cost. The basic idea is that `AIR approximates ideal
restriction by solving many small, dense, linear systems, which can be moderately
expensive as the problem size grows. nAIR recognizes that, for advective-type dis-
cretizations, a similar approximation can be obtained by a few sparse matrix products.
A detailed algorithmic comparison of nAIR and `AIR can be found in [40].

Finally, theory on convergence of nonsymmetric AMG in the
√
A∗A-norm was

developed simultaneously with this work in [41]. There, approximation properties
are assumed on R and P . Here, we replace one approximation property assumption
on either R or P with a measure of distance of R or P from ideal restriction or
interpolation, respectively, and consider convergence in the `2- and A∗A-norms. If
this distance cannot be made small, then one should revert back to a framework as
in [41], focusing on more traditional approximation properties for P and R.

3. Convergence of reduction-based AMG.

3.1. Framework. Let A, P , and R take the form introduced in (4). Error
propagation of coarse-grid correction is given by I − Π, where Π = P (RAP )−1RA is
a (generally non-orthogonal in any known inner product) projection onto the range
of P (Section 2). The motivation for AIR as an AMG algorithm is straightforward.
Recall that ideal restriction gives an exact approximation at C-points, independent of
interpolation. Following this with a direct solve on F-points gives an exact two-level
method (Lemma 1). Although we do not expect ideal restriction in practice, here
we assume that an accurate approximation to Rideal leads to an accurate solution at
C-points, which we follow with F-relaxation to distribute this accuracy to F-points.

Let ∆F be an approximation to A−1ff . First, measures of the accuracy of F-
relaxation as well as the difference between ideal interpolation and restriction and the
interpolation and restriction used in practice are defined, respectively, as

δF = I −∆FAff ,

δP = AffW +Afc,

δR = ZAff +Acf .
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Here, δR and δP are measured relative to ‖A‖. Throughout the paper it will be
assumed that A has been scaled so that ‖A‖ ∼ O(1). However, ‖A‖ is explicitly
carried through the derivation of bounds and proofs of convergence for completeness.

The error-propagation matrix associated with F-point relaxation is given by

EF =

[
I 0
0 I

]
−
[

∆F 0
0 0

] [
Aff Afc
Acf Acc

]
=

[
δF −∆FAfc
0 I

]
.

The product of these two error matrices, E := EF (I − Π), can be put into a very
convenient form [40],

E =

[
I 0
0 I

]
−
([

∆F 0
0 0

]
+

[
I −∆FAff −∆FAfc

0 I

] [
W
I

]
K−1

[
Z I

]) [ Aff Afc
Acf Acc

]
=

[
I 0
0 I

]
−
[
I Ŵ
0 I

] [
∆F 0
0 K−1

] [
I 0
Z I

] [
Aff Afc
Acf Acc

]
,

where

Ŵ = (I −∆FAff )W −∆FAfc = δFW −∆FAfc.(7)

If ∆F = A−1ff , then Ŵ becomes ideal interpolation. The better ∆F approximates

A−1ff , the closer Ŵ is to ideal interpolation. Here, Ŵ is referred to as the “effective
interpolation” of this method [40].

Next, note that E has the form

E = I −M−1A = M−1(M −A),(8)

where

M =

[
I 0
−Z I

] [
∆−1F 0

0 K

] [
I −Ŵ
0 I

]
=

[
∆−1F Afc − (∆−1F −Aff )W

−Z∆−1F K + Z∆−1F Ŵ

]
.(9)

A little extra work using (5) yields

K + Z∆−1F Ŵ = Acc +AcfW + ZAfc + ZAffW + Z∆−1F (I −∆FAff )W − ZAfc
= Acc +AcfW + ZAffW + Z(∆−1F −Aff )W

= Acc +AcfW + Z∆−1F W.

Using (9),

M −A =

[
∆−1F −Aff −(∆−1F −Aff )W

−(Z∆−1F +Acf ) (Z∆−1F +Acf )W

]
(10)

=

[
∆−1F −Aff

−(Z∆−1F +Acf )

] [
I −W

]
.(11)
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Similarly, M−1 can be expanded as

M−1 =

[
I Ŵ
0 I

] [
∆F 0
0 K−1

] [
I 0
Z I

]
=

[
∆F + ŴK−1Z ŴK−1
K−1Z K−1

]
.(12)

As mentioned in (8), the error-propagation matrix is given by E = M−1(M −A).
The residual-propagation matrix is similar, given by R = AEA−1 = (M − A)M−1.
Each of these can now be assembled to a convenient outer-product form.

For error propagation, combining (11) with (12) gives

E =

[
∆F + ŴK−1Z ŴK−1
K−1Z K−1

] [
∆−1F −Aff

−(Z∆−1F +Acf )

] [
I −W

]
=

[
(I −∆FAff )− ŴK−1(ZAff +Acf )

−K−1(ZAff +Acf )

] [
I −W

]
=

[
δF − ŴK−1δR
−K−1δR

] [
I −W

]
.(13)

Likewise, using (7), (11), and (12), the residual-propagation matrix is given by

R =

[
∆−1F −Aff

−(Z∆−1F +Acf )

] [
∆F (I − δPK−1Z) −∆F δPK−1

]
.(14)

The outer-product formulation provides a natural representation of powers of Ek and
Rk, where

Ek =

[
δF − ŴK−1δR
−K−1δR

]
Gk−1

[
I −W

]
,(15)

Rk =

[
∆−1F −Aff

−(Z∆−1F +Acf )

]
Gk−1

[
∆F (I − δPK−1Z) −∆F δPK−1

]
.(16)

In particular, it is easily verified from (7), (13) and (14) that

G =
[
I −W

] [ δF − ŴK−1δR
−K−1δR

]
= δF + ∆F δPK−1δR(17)

= δF + (I − δF )A−1ff δPK−1δR(18)

is identical for Ek and Rk.
This is a fundamental observation for proving convergence-in-norm of reduction-

based AMG. In particular, it is often the case that ‖E‖ and/or ‖R‖ are greater
than one. However, (15) and (16) show that raising error- and residual-propagation
to powers is equivalent to considering powers of a different matrix, G (18). Thus,
bounding ‖G‖ can lead to a convergent method, which is summarized in the following
lemma.

Lemma 3. Let W , Z, and ∆F be chosen such that

‖G‖ = ‖δF + ∆F δPK−1δR‖ = ρ < 1.0.
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Then, the iteration will converge with bounds

‖ek‖ ≤ ρk−1
∥∥∥∥[ δF − ŴK−1δR

−K−1δR

]∥∥∥∥ ∥∥[ I −W
]∥∥ ‖e0‖,

‖rk‖ ≤ ρk−1
∥∥∥∥[ ∆−1F −Aff
−(Z∆−1F +Acf )

]∥∥∥∥ ∥∥[ ∆F (I − δPK−1Z) −∆F δPK−1
]∥∥ ‖r0‖.

Proof. The proof follows from (15), (16), (17), and the discussion above.

Note that the bound on ‖rk‖ is independent of ‖A‖, but the separate terms are not.
This can easily be adjusted by scaling the second and third terms by 1/‖A‖ and ‖A‖,
respectively.

In Section 4.1, we show that it is often possible in practice to construct Z such that
‖δR‖ is quite small relative to ‖A‖. Recall that, for hyperbolic problems, ‖K−1‖ =
O(1/h). On a relatively coarse grid, it is possible that ‖δR‖ � O(h) and, consequently,
‖G‖ < 1.0, regardless of W . In fact, W = 0 is a reasonable choice in that context
because that choice reduces the complexity of K, making the algorithm more efficient.
However, in general, a better W may be necessary for convergence. The following
section develops conditions for which ‖G‖ < 1.

Remark 4 (Pre-F-relaxation). Because ideal restriction gives an exact coarse-grid
correction at C-points, thus far we have considered post-F-relaxation to distribute this
accuracy to F-points. If instead, P is chosen to approximate Pideal, a pre-F-relaxation
scheme may be more appropriate (see Corollary 2). It is easy to show that pre-F-
relaxation enjoys the same asymptotic behavior as post-F-relaxation.

3.2. Two-grid convergence. In this section, conditions are derived to bound
‖G‖ ≤ ρ < 1. The focus of this work is on problems for which ‖δF ‖, and ‖δR‖ or ‖δP ‖,
can be made small relative to ‖A‖. However, for a given family of discretizations, ‖δR‖
and ‖δP ‖ are typically fixed, independent of h; that is, the accuracy of approximation
to ideal operators does not improve as h → 0. To bound ‖G‖ < 1 as h → 0,
additional measures must be taken to account for the term δPK−1δR in (18), because
‖K−1‖ ∼ O(1/h). To do so, we consider a classical multigrid “weak approximation
property” for P and R.

Definition 5 (WAP on P with respect to SPD A). An interpolation operator, P ,
satisfies the weak approximation property (WAP) with respect to SPD matrix A, with
constant CP if, for any v on the fine grid, there exists a wc on the coarse grid such
that

‖v − Pwc‖2 ≤
CP
‖A‖〈Av,v〉.

Recall that the Schur complement of A is KA = Acc − AcfA−1ffAfc. Comparing
the coarse-grid operator (5) with the Schur complement yields

K −KA = (ZAff +Acf )A−1ffAfc + (ZAff +Acf )W

= (ZAff +Acf )A−1ff (AffW +Afc)

= δRA
−1
ff δP .(19)

Now, assume that P satisfies the WAP with respect to A = A∗A, with constant CP .
Then, for every v = (vTf ,v

T
c )T ,

inf
wc

∥∥∥∥( vf
vc

)
−
(
W
I

)
wc

∥∥∥∥2 ≤ CP
‖A∗A‖‖Av‖2.(20)
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Let ŵc satisfy the infimum above. Then,

‖vf −Wvc‖ ≤ ‖vf −W ŵc‖+ ‖W (ŵc − vc)‖
≤ ‖vf −W ŵc‖+ ‖W‖‖ŵc − vc‖.

Noting from (20) that ‖vf −W ŵc‖2 + ‖vc − ŵc‖2 ≤ CP

‖A∗A‖‖Av‖2, we can form a

constrained maximization problem and bound

‖vf −Wvc‖ ≤
√
CP (1 + ‖W‖2)

‖Av‖
‖A‖ := CW

‖Av‖
‖A‖ ,

where CW :=
√
CP (1 + ‖W‖2). In particular, let vf = −A−1ffAfcvc. Then,

‖A−1ff δPvc‖ = ‖(W +A−1ffAfc)vc‖ ≤ CW
‖Av‖
‖A‖ = CW

‖KAvc‖
‖A‖ .(21)

Following from (19) and (21), observe that

‖Kvc‖ ≥ ‖KAvc‖ − ‖(KA −K)vc‖
= ‖KAvc‖ − ‖δRA−1ff δPvc‖

≥ (1− CW
‖δR‖
‖A‖ )‖KAvc‖.

Note that, givenW with WAP constant CW , we may choose Z so that CW ‖δR‖ < ‖A‖.
Later, CW ‖δR‖ will be chosen slightly smaller. Combining, we arrive at

‖A−1ff δPK−1‖ = sup
vc 6=0

‖A−1ff δPvc‖
‖Kvc‖

≤ CW
‖A‖ − CW ‖δR‖

.

This result is generalized in the following Lemma.

Lemma 6. Suppose P satisfies the WAP with respect to A∗A, with constant CP .
Then, if Z is chosen such that CW ‖δR‖ < ‖A‖,

‖A−1ff δPK−1‖ ≤
CW

‖A‖ − CW ‖δR‖
, ‖δPK−1‖ ≤

CW ‖Aff‖
‖A‖ − CW ‖δR‖

,

where CW = CP
√

1 + ‖W‖2. Similarly, suppose R∗ satisfies the WAP with respect to

AA∗, with constant CR. Define CZ =
√
CR(1 + ‖Z‖2) and assume that CZ‖δP ‖ <

‖A‖. Then,

‖K−1δRA−1ff ‖ ≤
CZ

‖A‖ − CZ‖δP ‖
, ‖K−1δR‖ ≤

CZ‖Aff‖
‖A‖ − CZ‖δP ‖

.

Proof. The results follow from the above discussion and noting that ‖δPK−1‖ ≤
‖Aff‖‖A−1ff δPK−1‖. Results for R follow a similar derivation as that for P .

The above discussion is summarized in the following results.

Theorem 7. Let A, P , and R be defined as above. If W is chosen so that P
satisfies the WAP with respect to A∗A, with constant CP , then Z can be chosen to
approximate −AcfA−1ff and ∆F can be chosen to approximate A−1ff so that

‖G‖ ≤ ‖δF ‖+
(

1 + ‖δF ‖
) CW ‖δR‖
‖A‖ − CW ‖δR‖

= ρ < 1,

where CW = CP
√

1 + ‖W‖2.
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Proof. The proof follows from Lemma 6 and the bound using (17),

‖G‖ ≤ ‖δF ‖+ (1 + ‖δF ‖)‖δR‖‖A−1ff δPK−1‖.

Theorem 8. Let A, P , and R be defined as above. If Z is chosen so that R
satisfies the WAP with respect to AA∗ and constant CR, then W can be chosen to
approximate −A−1ffAfc and ∆F can be chosen to approximate A−1ff such that

‖G‖ ≤ ‖δF ‖+ (1 + ‖δF ‖)
CZ‖δP ‖

‖A‖ − CZ‖δP ‖
= ρ < 1,

where CZ = CR
√

1 + ‖Z‖2.

Proof. The proof follows from the discussion above and the proof of Theorem 7.

Theorems 7 and 8 give insight into the roles of restriction, interpolation, and F-
relaxation. F-relaxation can help convergence bounds, but only to a certain extent.
For an exact solve on F-points, ‖δF ‖ = 0. Then, for example, in Theorem 7, to
ensure that ‖G‖ ≤ ρ < 1, we must have CW ‖δR‖/‖A‖ ≤ ρ

ρ+1 < 1
2 . This can be

accomplished both through a more accurate interpolation with respect to the WAP
or a more accurate approximation to ideal restriction. As ‖δF ‖ increases, that is, F-
relaxation becomes less effective, interpolation and restriction must improve through
reduced CW and/or ‖δR‖.

The `2-convergence of error and residual also follows from Theorems 7 and 8 and
Lemma 3. Although it is possible that ‖E‖, ‖R‖ > 1, if the hypothesis are satisfied,
there exists k1 and k2 such that ‖Ek1‖, ‖Rk2‖ < 1. Iterations before these values of
k are reached may appear to be diverging, but they will eventually converge with
asymptotic factor ρ. How long it takes to reach asymptotic convergence depends on
the other matrix blocks in E ,R. This has been observed in practice.

Consider ‖E‖ and ‖R‖ with respect to the size of the mesh. From (13), it is clear
that choosing e = (0, eTc )T yields ‖E‖ ≥ ‖K−1δR‖. In the case that A is a discrete
approximation of a PDE, ‖K−1‖ may grow with n, the size of the system, whereas,
‖δR‖ may be fixed. Although ‖G‖ = ρ is independent of n, without additional
approximation properties on Z, the norm of E may not be bounded independent of
n. This would lead to a method for which it takes more iterations to reach a given
accuracy as the problem size increases. Building on Lemma 6, conditions for residual
and error propagation bounded independent of n are given in the following corollary.

Corollary 9 (Bounded Residual and Error). Assume that P satisfies the WAP
with respect to A∗A, with constant CP , Theorem 7 holds, and the condition numbers
of Aff and ∆F are independent of problem size. Then, for k ≥ 0, ‖Rk‖ is bounded,
independent of problem size, and converges with asymptotic rate ≤ ρ.

If, in addition, R∗ satisfies a WAP with respect to AA∗, then for k ≥ 0, ‖Ek‖ is
bounded, independent of problem size and converges with asymptotic rate ≤ ρ.

Proof. Consider the terms in (16). Under the assumption that P satisfies a WAP
with respect to A∗A, it was shown in Lemma 6 that ‖δPK−1‖ is bounded independent
of n. All other terms in the equation are bounded independent of n. Likewise, consider
the terms in (15). From Lemma 6, if R∗ satisfies a WAP with respect to AA∗, then
‖K−1δR‖ is bounded independent of n.

Remark 10 (C-point relaxation). In a two-level setting, adding relaxation over C-
points as part of the pre- or post-relaxation scheme offers little to no improvement
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of convergence. Suppose Z = −Acf∆R, where ∆F = ∆R, that is, the same approxi-
mation is used for F-relaxation as for approximating Rideal. Now, consider following
the F-point relaxation with a C-point relaxation. Similar to F-point relaxation, the
error-propagation operator associated with C-point relaxation is given by

EC =

[
I 0
0 I

]
−
[

0 0
0 ∆C

] [
Aff Afc
Acf Acc

]
,

where ∆C is an approximation to A−1cc . Noting that the C-point rows of (M −A) are
zero when Z = −Acf∆F (see (10)), multiplying by E yields

ECE = I −
(
M−1 +

[
0 0
0 ∆C

]
(M −A)M−1)

)
A

= I −M−1A = EE .

This demonstrates that, in the context of a two-grid method, with reasonable choice
of Z, C-point relaxation does not improve the solution. In the multilevel setting, C-
point relaxation can offer some improvement in convergence, but remains much less
important than F-relaxation.

4. The triangular case. Building on the previous section, this section devel-
ops an accurate approximation to Rideal for matrices with block-triangular or near-
triangular structure. Numerical examples demonstrate the accuracy of nAIR in the
context of convergence constants derived in Section 3. Although reduction can be
achieved with ideal restriction or interpolation, focusing on ideal restriction allows
for coupling the nAIR method with established interpolation methods. One result
here is that error and residual propagation of nAIR are nilpotent in the case of block-
triangular matrices, which compensates for inaccurate interpolation near boundaries.

As motivation, consider a block-discontinuous discretization of a steady state
advection or advection-reaction equation in two dimensions,

b · ∇u+ c(x, y)u = f,

for arbitrary velocity field b(x, y) (without cycles, or else the problem is not well
posed), forcing function f , reaction field c(x, y), and some inflow and outflow boundary
conditions (for example, see Section 6). Suppose a uniform square mesh is used in two
dimensions. Then, for many discretizations, such as discontinuous Galerkin, among
others, DOFs in each element of the mesh depend on exactly two other elements in the
mesh, specifically the two elements upwind with respect to the direction of flow, and
each element in the mesh corresponds to a non-overlapping block in the matrix. In
the multigrid context, consider a block red-black coarsening scheme, where C-points
and F-points represent entire finite elements, as shown in Figure 1.

For linear finite elements, the DOFs corresponding to a block discretization are
often located at the vertices of the mesh, with one DOF contained in each element
touching a given vertex. For higher-order discretizations, there are more DOFs, but
the underlying principle remains the same: all DOFs in a given finite element only
depend on DOFs within that element, or DOFs in either of the two upwind elements.
Looking at Figure 1, note that for any velocity field b(x, y), all F-point blocks depend
only on C-point blocks, and C-point blocks depend only on F-point blocks. If A is
scaled to have unit diagonal, then it follows that the submatrix Aff = I, and thus,
ideal restriction and exact F-relaxation are trivial to compute in practice.
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Fig. 1: Element-wise “block” red-black (or white-gray) coarsening of uniform struc-
tured grid in two-dimensions.

Of course, this example holds for a block diffusion discretization as well (that is,
Aff = I there as well). However, for advection, the coarse-grid operator RAP =
Acc − AcfA−1ffAfc = I − AcfAfc maintains a similar structure to the fine grid. Note
that for any C-point, the corresponding row of RAP = I − AcfAfc is nonzero in
C-point blocks that can be reached through a C-F-C path in the graph. Generally
for an advection problem, (i) each C-point has about three coarse-grid connections,
(ii) all connections are upwind (and, thus, strictly lower triangular in the matrix),
and (iii) at least one of these connections is essentially cross-stream, making it a weak
connection. In this case, coarsening similar to Figure 1 based on strong connections
leads to an Aff 6= I, but for which A−1ff is well conditioned and easily approximated
with a sparse matrix. In contrast, each coarse-grid point in a diffusion discretization
is connected to eight other points, making A−1ff and Rideal difficult to approximate
effectively in a sparse manner, and multilevel reduction much more difficult.

On unstructured meshes, non-quadrilateral elements, higher dimensions, or coarser
grids in an AMG hierarchy, it is typically not the case that Aff = I. Nevertheless,
similar principles suggest that A−1ff can be approximated efficiently, which is confirmed
directly in Section 4.2 and implicitly in numerical results of Section 6.

4.1. Neumann approximate ideal restriction. For general matrices, a naive
and often ineffective approach to approximate A−1ff is to use a truncated Neumann
expansion. However, in the case of block-triangular matrices, particularly those re-
sulting from the discretization of differential operators, a truncated Neumann inverse
expansion can provide a remarkably accurate approximation. For ease of notation,
assume that A has been scaled to have unit diagonal, and suppose we have deter-
mined a CF-splitting (or block CF-splitting if A is block lower triangular). Then, let
Aff = I − Lff , where Lff is the strictly lower triangular part of Aff . Because Lff
is nilpotent, A−1ff can be written as a finite Neumann expansion:2

A−1ff = (I − Lff )−1 =

df+1∑
i=0

Liff .(22)

2Because there are no cycles in the graph of Lff , the degree of nilpotency is given by the
maximum graph distance between any two F-points, say df . In the case of an acyclic graph, this is
equivalent to the longest path problem. For discretizations of differential operators that result in an
acyclic graph, it is generally the case that df � nf .
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To approximate A−1ff , we consider an order-k approximation given by truncating (22):

∆(k) :=
∑k
i=0 L

i
ff , for some 0 ≤ k ≤ df . Define a restriction operator based on a

Neumann approximate ideal restriction (nAIR):

R :=
[
−Acf∆(k) I

]
.

Error in ∆(k) as an approximate inverse can be measured as I − ∆(k)Aff = Lk+1
ff ,

which gives a measure of how accurately we approximate Rideal.
Note that the error relation I − ∆(k)Aff = Lk+1

ff does not require Aff to be

lower triangular. However, triangular structure is fundamental to Lkff being small as
k increases, particularly when considering the discretization of differential operators.
Consider Lff as the adjacency matrix of a directed acyclic graph. Then (Lkff )ij
gives the sum of weighted walks of length k from vertex i to vertex j (weight given by
product of the walk’s edges). Thus, we are interested in the number of F-F connections
and size of the weights. For the discretization of differential operators, off-diagonal
elements are typically small relative to the diagonal, and an AMG CF-splitting is
chosen to eliminate strong F-F connections. In the case of triangular matrices, such
as an upwind discretization of advection, regardless of the problem dimension, there
only exist walks from node i to nodes j downstream of i, in the direction along
the characteristic. This means that the sparsity pattern of Lkff only reaches out to
neighbors in effectively one direction. Thus, as k increases, the number of neighbors
within distance k should not increase significantly, while the product of edges should
decay rapidly.

Remark 11 (Nilpotent Error Propagation). It is straight forward to show that if
A is lower triangular in some ordering and ∆R, ∆P , and ∆F are truncated Neumann
approximations to A−1ff , then two-grid error propagation based on Jacobi F-relaxation
is strictly lower triangular. Moreover, multilevel error propagation, with coarse-grid
correction based on nAIR and Jacobi F-relaxation, is also strictly lower triangular
and, thus, nilpotent.

Although, the degree of nilpotency is not sufficiently small to be considered prac-
tical, nilpotency of error propagation is directly impactful near the boundaries of the
domain, where DOFs actually fall off the nilpotent cliff in O(1) iterations. AMG often
struggles with interpolation near domain boundaries, and the nilpotent behavior of
nAIR eliminates this problem. This benefit has been observed in practice.

4.2. Evaluating constants. This section considers nAIR applied to discontin-
uous Galerkin discretizations of the steady state transport equation and an advection-
diffusion-reaction equation, with diffusion coefficient κ. Both discretizations are on
unstructured meshes with a moving (non-constant) velocity field and material dis-
continuities of 108 between different subdomains. Further details on the transport
discretization can be found in Section 6. The advection-diffusion-reaction equation
follows an analogous derivation, and is discussed in [40]. Recall, when approximat-
ing ideal restriction (as opposed to ideal interpolation), the theoretical constants of
interest are

δF = I −∆FAff , δR = ZAff +Acf ,

as well as the constant for which P satisfies a WAP (see Theorem 7). The purpose
of this section is to demonstrate that, on an interesting and difficult model problem,
nAIR leads to ‖δF ‖ � 1, ‖δR‖ � ‖A‖, where A has been scaled so that ‖A‖ ∼ O(1).)
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Following from Theorem 7, we then show that strong two-grid convergence is provable
under minimal assumptions on P for the transport equation. Results also show why
the reduction approach is successful for advection discretizations, but less effective for
diffusive problems.

Figure 2 plots ‖δF ‖ and ‖δR‖ as a function of number of iterations and degree of
Neumann expansion, respectively. In practice, it is usually not a good idea to form
transfer operators using neighbors further than distance two, unless coarsening aggres-
sively, due to the rapid increase in the number of nonzeros in coarse-grid operators.
Similarly, transfer operators are typically only formed based on strong connections
in the matrix, again to limit coarse-grid fill in, particularly in the multilevel setting.
Here, strong connections for each row are defined as entries larger than φ times the
largest row element (positive or negative).

Looking at the left column of Figure 2, we see that for both 1st- and 4th-order
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Fig. 2: Using upwind DG, ‖δR‖ and ‖δF ‖ are displayed as a function of k, corre-
sponding to degree of Neumann expansion for nAIR and number of (block) smoothing
iterations for Jacobi F-relaxation. The top row corresponds to linear finite elements
and the bottom to 4th-order finite elements, while the left column corresponds to
steady state transport (no diffusion, κ = 0) and the right columns corresponds to a
diffusion-dominated advection-diffusion-reaction equation, κ = 1. δR is a function of
parameter φ < 1, where a Neumann expansion is only performed on strong connec-
tions (for row i, aij such that |aij | ≥ φ supj |aij |). In all cases, the discretization has
≈ 400, 000 DOFs, about half of which are F-points.
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discretizations of the steady state transport problem, nAIR based on distance-one or
-two strong neighbors is able to achieve ‖δR‖ between 10−5−10−3. Furthermore, three
iterations of F-relaxation leads to ‖δF ‖ ≈ 10−4, and four iterations improves this to
‖δF ‖ ≈ 10−6. In the diffusion-dominated case, κ = 1 (right column), results are not
as good. For linear elements, distance-two nAIR achieves at best ‖δR‖ ≈ 0.1 and four
iterations of F-relaxation only yields ‖δF ‖ ≈ 0.01, while the 4th-order discretization
is worse.

Table 1 plots two-grid convergence bounds from Theorem 7 as a function of con-
stants CW and ‖δR‖, for a fixed ‖δF ‖. Note that due to small ‖δR‖ and ‖δF ‖, only
mild assumptions must be made on interpolation for rapid two-grid convergence. Al-
though constants are likely to increase somewhat in the multilevel setting, the initial
discussion in Section 4 suggests that good approximations to A−1ff and Rideal can still
be obtained on coarser levels in the hierarchy.

‖δR‖ / CW 1 5 10 25 50 100 250 500

10−5 0.0001 0.0002 0.0002 0.0004 0.0006 0.001 0.002 0.005
10−4 0.0002 0.0006 0.0011 0.0026 0.0051 0.010 0.026 0.053
10−3 0.0011 0.0051 0.0102 0.0257 0.0527 0.111 0.334 –
0.01 0.0102 0.0527 0.1112 0.3335 – – – –
0.1 0.1112 – – – – – – –

Table 1: Theoretical two-grid convergence bounds as a function of ‖δR‖ and CW ,
assuming ‖δF ‖ = 10−4 and A has been scaled such that ‖A‖ ∼ O(1).

The constant CP , where CW :=
√
CP (1 + ‖W‖2), is evaluated in [41] for a hyper-

bolic steady state transport equation, discretized with SUPG and DG finite element
discretizations (for details, see Section 6 here or [41]). There, modified classical AMG
interpolation [19] is shown to have constant CP of 157 and 204 for SUPG and DG,
respectively. Typically ‖W‖ ' 1. Say ‖W‖ = 2. Then CW ≈ 28 and 32. Applying
the same tests to the one-point interpolation used here yields constants CP on the
order of 300 and 360, and CW ≈ 39 and 42. In practice, we find that the sparser
structure of one-point interpolation is advantageous in the multilevel setting, and we
see equivalent convergence with the two methods, despite the larger constant CW
using one-point interpolation.

Interestingly, in [41] an analogous algorithm to AIR for interpolation is numer-
ically shown to have constants CP ≈ 10 − 20 and CW ≈ 7 and 10. Furthermore,
tests suggest the constants may be independent of problem size, a property which
may not be the case for one-point and classical interpolation. Note that those tests
did not use an efficient algorithm to build the interpolation, and extending AIR-like
ideas to interpolation for hyperbolic-type problems is ongoing work. However, such
numbers indicate that better interpolation operators (than existing methods) can
be constructed for hyperbolic-type problems, and, with such interpolation, two-grid
convergence could be obtained with fairly weak approximations of Rideal.

5. Algorithm. The main components of nAIR follow that of a standard Petrov-
Galerkin multigrid scheme with no pre-relaxation. Section 5.1 introduces details on
the AMG components of nAIR, including parameters and routines for strength-of-
connection, CF-splitting, interpolation, restriction, and relaxation. Other details,
including support of block structure in matrices and a filtering procedure to reduce
complexity, are discussed in Section 5.2.
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5.1. AMG components. Effective F-relaxation and an accurate approxima-
tion to ideal restriction both require Aff to be relatively well conditioned. This
is consistent with motivation for a classical AMG strength-of-connection and CF-
splitting [10, 55], which are used here. Jacobi F-relaxation is used with one more
iteration than the degree of the Neumann approximation of Rideal. Restriction is
built using a degree-one Neumann expansion (22) applied to strong connections in
Aff , with connection drop-tolerance φ = 0.025. These parameters are motivated
through the comparison of nAIR with Rideal in Section 4.1.

From Theorem 7, if we approximate Rideal, then P should be built targeting
approximation properties, in a classical AMG sense. It turns out, classical AMG
interpolation formulae [10, 55] do not satisfy approximation properties on hyperbolic
transport discretizations [41]. Fortunately, R is a very accurate approximation to
Rideal for problems tested here, making interpolation less important. We propose a
“one-point interpolation” scheme, where each F-point is interpolated by value from
its strongest C-connection. One-point interpolation resembles a degree-zero Neumann
expansion, but P is sparser, having exactly one nonzero per row, and each nonzero
is set to one as opposed to the value of Afc.

3 This ensures that the constant is in
the range of interpolation, with minimal nonzero requirements of P . In practice, one-
point interpolation performs best compared to many different interpolation methods
tested in terms of total work and time to solution. In fact, `AIR was shown to have
good approximation properties for scalar hyperbolic problems in [41], and using these
ideas to develop improved interpolation methods for hyperbolic problems is ongoing
work.

5.2. Blocks, filtering, and parallelization. Some PDE discretizations lead to
matrix equations with a natural block structure. The two most common examples are:
(i) systems of PDEs, where a block in the matrix corresponds to multiple variables
discretized on a single spatial node, or (ii) block discontinuous discretizations, such as
discontinuous Galerkin (DG), where each finite element forms a block in the matrix.
In either case, a block lower triangular matrix can be transformed to lower triangular
by scaling the system by the block-diagonal inverse, or nAIR can be performed in the
block setting, coarsening and forming transfer operators by block. For most results, we
scale by the block-diagonal inverse because the two approaches have shown comparable
convergence factors, and forming nAIR in the setup phase is cheaper and simpler in
the scalar (non block) matrix case. However, Section 6.3 shows results for block nAIR
as well, where coarsening, restriction, interpolation, and relaxation are all done in a
block fashion.

One way to further reduce complexity in an AMG solver is truncating or lumping
operators. The idea is simple: remove entries from a matrix in the hierarchy, A`,
that are smaller than some threshold, typically with respect to the diagonal element
of the given row. Such methods have been used in AMG for symmetric problems
with diffusive components [9, 25, 59]). Heuristically, eliminating small entries is even
more appropriate in the hyperbolic setting, because the solution at any given point
only depends on the solution at other points upwind along the characteristic. In the
discrete setting, small entries that arise in matrix operations are often not aligned
with the characteristic and are more of a numerical effect, suggesting that some can

3One-point interpolation also resembles an unsmoothed aggregation interpolation operator, but
here some “aggregates” may have many points and others only one. In aggregation-based AMG,
aggregates are typically chosen to be comparable in size, and there are never aggregates of size one
that have strong connections in the matrix.
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be eliminated without degrading convergence. Numerical results confirm this; in
particular, removing entries in the case of SPD matrices is a delicate process [9,25,59],
but Section 6 shows that entries can be removed from discretizations of steady state
transport aggressively, without a degradation in convergence. For some drop-tolerance
ϕ, elements {aij | j 6= i, |aij | ≤ ϕ|aii|} are eliminated (that is, set to zero) for each
row i of matrix A`. A drop tolerance of ϕ = 10−3 has proved to be effective for many
problems tested, and is used for all results presented here.

Finally, nAIR applied to triangular systems is intended for highly parallel envi-
ronments, where traditional triangular solves are not easily parallelized. This work
focuses on algorithmic details and theory, and does not develop parallel performance
models or present parallel scaling results. However, it is well known that AMG
scales in parallel to hundreds of thousands of cores [6], with a communication cost
of O(logP ), for P processors [24, 32]. The algorithm developed here takes on the
form of a traditional AMG method, with the additional cost of building and storing
a restriction operator, which can be performed efficiently in parallel.

6. Numerical results. In this section, we apply nAIR to discontinuous dis-
cretizations of the steady state transport equation. For problems in which the steady
state is well posed (no cycles in flow), the steady state case is equivalent to the time
dependent problem with an infinite time step. In this context, successful results on
steady state flow also indicate that nAIR is applicable in the time-dependent regime
with implicit time-stepping schemes of arbitrary step size.

The computational cost or complexity of an AMG algorithm is typically measured
in work units (WU), where one WU is the cost to perform one sparse matrix-vector
multiplication with the initial matrix. Operator complexity (OC) gives the cost in
WUs to perform one sparse matrix-vector multiplication on each level in an AMG
hierarchy, and cycle complexity (CC) gives the cost in WUs to perform one AMG iter-
ation, including pre- and post-relaxation, computing and restricting the residual, and
coarse-grid correction. For convergence factor ρ, the work-unit-per-digit-of-accuracy
(WPD), χwpd, is an objective measure of AMG performance, giving the total WUs
necessary to achieve an order-of-magnitude reduction in the residual:4

χwpd := − CC

log10(ρ)
:= − 1

log10(ρeff )
,

where ρeff = ρ1/CC is the effective convergence factor.

6.1. Test problems and discretizations. The model problem used here is the
steady state transport equation:

b(x, y) · ∇u+ c(x, y)u = q(x, y) D,
u = g(x, y) Γin,

(23)

for domain D and inflow boundary Γin. Multiple cases are studied that encom-
pass spatially dependent source terms, q(x, y), discontinuities in the material coef-
ficient, c(x, y), and constant and non-constant flow direction, b(x, y), over structured
and unstructured meshes. When b(x, y) is constant, we denote b(x, y) = Ω(θ) :=
(cos(θ), sin(θ)), for some angle θ. Two model domains are considered, the inset do-
main and block-source domain, shown with solutions in Figure 3. In each domain,

4Although WPD is a good measure of serial performance, it does not reflect parallel efficiency of
the algorithm.
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inflow boundaries consist of the south and west boundaries with inflow u = 1, and
the material coefficient c(x, y) is piecewise constant in both cases, with changes of
eight orders of magnitude, as shown in Figure 3. The inset domain has no source
(q = 0), while the block-source domain has an interior source q(x, y) = 1 in the in-
terior block. These terms (c(x, y) and q(x, y)) are fixed for all experiments, except
the non-triangular case (Section 6.4). Multiple velocity fields b(x, y) are considered.
Solutions with constant flow are shown in Figure 3, and several variations of the inset
domain with non-constant flow are shown in Figure 5 in Section 6.2. All numerical
experiments use c(x, y) and q(x, y) as specified in Figure 3, but multiple velocity fields
b(x, y) are considered.

1

1

0 u = 1

u = 1

0.5

0.5

0.25

c = 104

c = 10�4

(a) Inset domain

3

3

0 u = 1

u = 1 q

c (in) �!

c (in)c = 10�4

c (in) = 104

(b) Block-source domain

Fig. 3: Two domains for the steady state transport equation, with a constant velocity
field, b(x, y) = (cos(θ), sin(θ)), θ = 3π/16, source q = 1, and the respective solutions.

To accompany the different domains considered, multiple upwind discretizations
are implemented. A first-order lumped corner balance (LCB) finite element discretiza-
tion [44, 45] is applied on structured and unstructured meshes. Standard fully up-
winded discontinuous Galerkin (DG) discretizations [33,53] are also tested, with finite
element orders 1 − 6. A comprehensive introduction can be found in [20]. Standard
upwinded DG methods arise as special cases in [14] and for almost-scattering-free
problems in [52]. The structured meshes used are triangular crossed-square meshes,
conforming to the material discontinuities in c(x, y), while random triangulations,
again conforming to material discontinuities, are used as unstructured meshes. Ad-
ditional discretizations based on highly elongated meshes with curvilinear elements,
as well as continuous (linear) elements with artificial diffusion, are briefly explored in
Section 6.4.

As motivation for nAIR, we first highlight the difficulties that existing varieties of
AMG face solving these discretizations. Tests were run using the PyAMG library [7],
hypre [27], and ML [29]. Classical AMG methods are not well developed for the
nonsymmetric setting; methods such as BoomerAMG in hypre [32] use a Galerkin,
PTAP coarse grid, and are able to solve discontinuous transport discretizations based
on linear finite elements, with convergence factors on the order of 0.8–0.9. However,
convergence is not scalable and does not extend beyond linear elements. Aggregation-
and energy-minimization-based AMG methods are better developed for nonsymmet-
ric problems. The most successful existing solver appears to be the nonsymmetric
smoothed aggregation (NSSA) solver in the ML library [29, 57, 61]. With GMRES
acceleration, NSSA is able to converge on most problems tested here. In all cases,
however, NSSA takes several times more iterations than nAIR and often requires
significant relaxation, such as a V (3, 3)-cycle, for good convergence. For difficult
problems, nAIR offers a speedup of 5× or more over the current state-of-the-art.

6.2. Angular variation, non-constant flow, and 3d. Problems in higher
dimensions, anisotropies on unstructured meshes, and non-grid-aligned anisotropies
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can prove difficult for AMG solvers [39,58]. Here, we show nAIR to be robust in all of
these cases. Figure 4 shows performance of nAIR for LCB discretizations of the inset
problem on structured and unstructured meshes, with fixed angle Ω := b(x, y) =
(cos(θ), sin(θ)), and angles θ ∈ [0, π/2]. Because unstructured meshes are often used
in practice and typically more difficult from a solver perspective, further results use
an unstructured mesh and the angle is (arbitrarily) fixed to θ = 3π/16. 5
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Fig. 4: Convergence factors and WPD for nAIR applied to LCB discretizations of
the inset problem, with angles between 0 and π/2, on unstructured and structured
meshes, and ≈ 2.25M DOFs.

In addition to being robust with respect to angular variations, nAIR is insen-
sitive to flow direction and problem dimensionality. Figure 5 shows the solution to
three different non-constant flows defined on the inset domain, and the correspond-
ing performance of nAIR, along with results for a fixed direction on the inset and
block-source domain.

Table 2 shows results of nAIR applied to steady state transport in three dimen-
sions for different finite element orders. The three-dimensional domain is a unit cube,
with c(x, y) = 104 inside of a centered interior cube of size 0.5 × 0.5 × 0.5, and
c(x, y) = 10−4 outside of that subdomain, similar to the 2d inset domain (Figure 3).
A random tetrahedral mesh is used, conforming to discontinuities in c(x, y), and a
constant velocity field, b(x, y) = (sin(θ1) cos(θ2), sin(θ1) sin(θ2), cos(θ1) cos(θ2)). As
in 2d, choice of θ1 and θ2 does not affect results on an unstructured mesh (see Figure
4); here we use θ1 = θ2 = 3π/16. In all cases, nAIR is able to achieve fast convergence
at a moderate cost. Due to the increased matrix connectivity in three dimensions,
filtering is particularly useful here, reducing WPD by a factor of four or more in all
cases, and total time-to-solution (not shown) by factors of 3–4.

This is also a good example to demonstrate the speedup that nAIR can pro-
vide over `AIR in setup time. For 3rd-order elements in 3D, with about 2M DOFs,
distance-1 `AIR takes 2995 seconds to build the solver and 43 seconds to solve to 10−12

residual tolerance. Distance-one nAIR (approximately corresponding to distance-two
`AIR) takes only 38 second to setup and 52 seconds to solve. Despite convergence

5For some angles, nAIR converges faster on an unstructured mesh than a structured mesh.
However, the wall-clock time of the setup and solve phase is at least 2× faster in all cases for a
structured mesh over an unstructured mesh. It is possible that a structured mesh makes for a more
structured matrix amenable to matrix-vector operations, but a detailed analysis is outside the scope
of this work.
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factors that are slightly larger with nAIR compared to `AIR, the overall time to so-
lution is significantly smaller. Furthermore, it is simple and moderately cheap to go
from distance-one to distance-two nAIR; for example, the setup time here increases
modestly to about 60 seconds with distance-two nAIR, while distance-three `AIR
(approximately corresponding to distance-two nAIR) is completely intractable.

(a) b1(x, y) =
(cos(πy)2, cos(πx)2).

(b) b2(x, y) =
(sin(πy)2, sin(πx)2).

(c) b3(x, y) =
(y4, cos(πx/2)2).

b(x, y) Ωinset b1(x, y) b2(x, y) b3(x, y) Ωblock-source

ρ 0.20 0.26 0.17 0.24 0.25
CC 6.83 6.77 6.80 6.81 7.53
χWPD 9.68 11.46 8.89 10.89 12.36

Fig. 5: Convergence factor, CC, and WPD, for nAIR applied to variations in
flow direction, b(x, y), on the inset domain, and constant flow direction Ω =
(cos(3π/16), sin(3π/16)) on both domains. All discretizations have ≈ 9M DOFs.

degree FEM n nnz ρ CC χWPD ϕ Speedup

1 2.5M 24M 0.09 42.4 41.7 0 –
1 2.5M 24M 0.10 10.9 11.0 1e-3 3.9

2 1.9M 41M 0.12 38.4 42.8 0 –
2 1.9M 41M 0.13 8.5 9.9 1e-3 4.3

3 2.2M 85M 0.14 32.6 38.2 0 –
3 2.2M 85M 0.17 6.8 8.9 1e-3 4.3

Table 2: (3D) nAIR applied to first-, second-, and third-order discretizations of steady
state transport in three dimensions. The final column shows the speedup due to
filtering in terms of WPD. The rows in each block differ in drop tolerance, ϕ.

6.3. Scaling in h and element order. Next, we study the scaling of nAIR with
respect to DOFs. One exciting feature of nAIR is its ability to solve high-order finite-
element discretizations, something that AMG methods often struggle with. Here,
V-cycles and F-cycles are considered, with degree of nAIR k = 1, 2 and 3. Although
F-cycles originate in full multigrid, which focuses on achieving discretization-level ac-
curacy in a single F-cycle [15], accuracy with respect to discretization is not considered
in this work. Instead, the F-cycle is used as it can provide more robust convergence
and scaling than a V-cycle, at a much lower cost than alternatives such as W-cycles
and K-cycles. Figure 6 shows scaling of WPD and convergence factor of nAIR ap-
plied to upwind DG discretizations of the inset problem, as a function of number of
DOFs. Although there remains a slow growth in WPD, likely due to an increase in
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iterations before asymptotic convergence rates are achieved, convergence factors have
effectively asymptoted for lower-order finite elements, and are leveling off even for
6th-order finite elements.
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Fig. 6: Scaling of convergence factor (solid lines) and WPD (dotted lines) as a function
of DOFs, for nAIR applied to upwind DG discretizations of the inset problem, with
nAIR degrees k = 1, 2 and 3, V-cycles and F-cycles, and finite-element degrees 1–6.

One benefit of the reduction approach is that convergence of nAIR can be im-
proved by increasing the accuracy of the Neumann approximation. Figure 6 demon-
strates that convergence is improved a notable amount by increasing k = 1 to k = 2,
and again for k = 2 to k = 3. This allows us to attain V-cycle convergence factors
on the order of ρ ≈ 0.2 for 6th-order finite elements. Similar improvements in con-
vergence can be obtained by decreasing the strength tolerance, φ, leading to a more
accurate approximation of A−1ff . Because increasing k also increase the density of
coarse-grid operators, in practice, one must find the balance between complexity and
convergence factors. Here, we see that the V-cycle with k = 2 appears to be the most
effective choice, because the WPD is less than that of k = 1, 3, or F-cycles for all
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finite element orders. The best choice in terms of total time (including setup) likely
depends on how many linear systems are being solved, and it is possible k = 1 is
faster for a single or small number of systems. Note that having the option to make
this choice is a benefit of AIR, because, in general, classical AMG methods do not
have a natural and robust way to improve convergence the way that increasing k can.

So far all results have employed scaling the matrix by the block-diagonal inverse.
However, nAIR is also amenable to a block implementation, where coarsening, restric-
tion, and interpolation are all done by block. This is particularly relevant for systems
of PDEs with coupled variables, where scaling out the block diagonal is unlikely to
capture the necessary couplings. Figure 7 demonstrates block nAIR applied to the
same problem as in Figure 6, this time directly using the DG block structure, for
orders 1, 2, and 3 finite elements. Convergence factors are similar to those achieved
by scaling by the block diagonal inverse. The WPD is higher because we do not filter
in the block setting, and because, when using a block sparse matrix, even zero entries
in otherwise nonzero blocks must be stored. This results in a larger OC and, thus,
larger WPD.
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Fig. 7: Scaling of convergence factor (solid lines) and WPD (dotted lines) as a function
of DOFs, for block-nAIR applied to upwind DG discretizations of the inset problem,
with nAIR degrees k = 2 and 3, V-cycles, finite-element degrees 1–3, and correspond-
ing block sizes 3, 6, and 10.

6.4. Non-triangular matrices. Finally, it is well-known that a Neumann ap-
proximation for ideal operators is, in general, not effective for non-triangular matrices,
such as a symmetric discretization of diffusion. However, for “nearly triangular” ma-
trices, nAIR remains an effective solver. Here, we demonstrate the performance of
nAIR on three such problems in Table 3.

P1 corresponds to a streamline upwind Petrov-Galerkin (SUPG) discretization of
(23) on the inset problem, using linear finite elements. SUPG discretizations use an
upwinded scheme for advection, with a small diffusive component added for stability
[16]. This results in a small, global, symmetric component added to a triangular
matrix. P2 and P3 correspond to 4th-order, upwind DG discretizations of (23) in
2d, on high-order curvilinear finite elements [62]. Here, c(x, y) = 2xy + 2x2 + 1.2,
b(x, y) = (1/

√
3, 1/
√

3), and q(x, y) is the right-hand side corresponding to the exact
solution u = (x2 + y2 + 1)/2 + cos(2.5(x + y))(b20 + b1). Curvilinear finite elements
can be non-convex and produce cycles in the mesh, wherein the resulting matrix for
a fixed direction of flow is mostly block triangular, with some number of strongly
connected components (SCCs) that are non-triangular and large in magnitude [30].
P2 has 97 SCCs of size two and 15 SCCs of 3–6 DOFs. P3 has 40 SCCs of size two,
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11 small SCCs with 3–6 DOFs, and one large SCC consisting of 1951 DOFs, implying
there is a substantial non-triangular block in the matrix.

It should be noted that even in serial, solving such a problem algebraically is
nontrivial, particularly when there is a global symmetric component. One approach is
to use a lower-triangular preconditioner that inverts the advective components exactly,
equivalent to an ordered Gauss-Seidel iteration. This would likely converge well;
however, without geometric knowledge of the velocity field and corresponding ordering
of DOFs in the matrix, the right relaxation ordering cannot be easily determined.
In [30], a cycle-breaking strategy was proposed to approximate an optimal relaxation
ordering in the context of larger transport simulations on meshes with curvilinear
elements. This proved successful on linear systems with SCCs, but convergence of the
larger transport “source iteration” was 2− 3× slower than using an exact solve, and
this approach does not overcome the inherent limitation of Gauss-Seidel in parallel.

Each of these problems is nearly triangular in a different regard. Here, we apply
one nAIR V-cycle as a preconditioner for GMRES, and results in Table 3 show nAIR
to be an effective preconditioner in all cases.

Problem n k ρ CC χWPD

P1 1553001 1 0.57 8.56 35.74

P2 88800 1 0.22 4.52 6.85
P2 88800 2 0.14 5.63 6.71

P3 88800 1 0.46 4.54 13.59
P3 88800 2 0.35 5.72 12.62

Table 3: Results of nAIR-preconditioned GMRES applied to the nearly-triangular
discretizations P1, P2, and P3, corresponding to an SUPG discretization of the inset
problem, and 4th-order DG discretizations of a variation in (23) on two meshes with
curvilinear elements, respectively (see text for details).

Classical AMG with GMRES acceleration does not converge on either problem.
NSSA using GMRES acceleration and Jacobi relaxation converges for both problems.
For the harder problem, P3, NSSA converges with factors on the order of ρ = 0.78 for
a V (2, 2)-cycle and ρ = 0.68 for a V (3, 3)-cycle, with cycle complexities likely on the
order of 8-9 and 11, respectively, and corresponding WPDs of 66 and 79.6 However,
this convergence is sensitive to parameters. For example, reasonable convergence is
attained for an aggregation threshold of φ = 0.2, but NSSA does not converge for
φ = 0.3, and iterations are halted due to a singular GMRES Hessenberg matrix for
φ = 0.1.

7. Conclusions. This work studies reduction-based AMG for highly nonsym-
metric matrices. Theory is developed indicating that, along with accurate approxi-
mations of the ideal operators, a scalable method also requires that interpolation or
restriction satisfy a classical multigrid approximation property. A reduction-based
AMG method is then developed, denoted nAIR, which is shown to be an effective
solver for upwind discretizations. Strong convergence factors are shown when nAIR
is applied to the steady state transport equation, on multiple domains, with high-
order upwind discretizations, and unstructured meshes or meshes with curvilinear

6ML does not detail complexity in the same manner as PyAMG, so these estimates are for
comparison purposes between NSSA and nAIR.
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elements. Although nAIR as presented here proves robust for several “nearly tri-
angular” problems, when significant non-triangular components are introduced, the
performance of nAIR will quickly degrade, and the more general variation, `AIR [40],
is more appropriate.

A serial implementation of nAIR is available in the PyAMG library [7], available
at https://github.com/ben-s-southworth/pyamg/tree/air, and a parallel implemen-
tation is now available in the hypre library [27] (https://github.com/hypre-space/
hypre).
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