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A DATA-DRIVEN MCMILLAN DEGREE LOWER BOUND∗

JEFFREY M. HOKANSON†

Abstract. In the context of linear time-invariant systems, the McMillan degree prescribes
the smallest possible dimension of a system that reproduces the observed dynamics. When these
observations take the form of impulse response measurements where the system evolves without
input from an unknown initial condition, a result of Ho and Kalman reveals the McMillan degree
as the rank of a Hankel matrix built from these measurements. Unfortunately using this result
in experimental practice is challenging as measurements are invariably contaminated by noise and
hence the Hankel matrix will almost surely be full rank. Hence practitioners estimate the rank
of this matrix—and thus the McMillan degree—by manually setting a threshold separating large
singular values corresponding to the non-zero singular values of the noise-free Hankel matrix and small
singular values corresponding to perturbation of zero singular values of the noise-free Hankel matrix.
Here we replace this manual threshold with a threshold guided by Weyl’s theorem. Specifically,
assuming measurements are perturbed by additive Gaussian noise we construct a probabilistic upper
bound on how much the singular values of the noise-free Hankel matrix can be perturbed; this
provides a conservative threshold for estimating the rank, and hence the McMillan degree. This result
follows from a new probabilistic bound on the 2-norm of a random Hankel matrix with normally
distributed entries. Unlike existing results for random Hankel matrices, this bound features no
unknown constants and, moreover, is within a small factor of the empirically observed bound. This
bound on the McMillan degree provides an inexpensive alternative to more general model order
selection techniques such as the Akaike Information Criteria (AIC).

Key words. McMillan degree, random matrix, Hankel matrix, model order selection, system
identification, modal analysis, exponential fitting
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1. Introduction. Here we consider discrete-time, linear time-invariant dynami-
cal systems that map an input u ∈ ℓ∞(N) to an output y ∈ ℓ∞(N). Such systems are
uniquely defined via their impulse response h ∈ ℓ1(N) though a discrete convolution

(1.1) y = h ∗ u where [h ∗ u]k :=

k∑

j=0

hjuk−j .

In system identification [11], the goal is to recover the system described by h through
observations of pairs of inputs u and outputs y. Rather than recovering h explicitly,
typically one recovers a state-space model instead. State-space models take the form

(1.2)

{
xj = Axj−1 + buj, x−1 = 0

yj = c∗xj

}
where xj ,b, c ∈ C

q, A ∈ C
q×q.

An important hyperparameter for many system identification algorithms is the dimen-
sion the state-space q in (1.2). However, this dimension is not unique. For example,
the impulse response of the system in (1.2) is {c∗Akb}∞k=0; an enlarged system with
A → [A 0

0 ⋆ ], b → [ b0 ], and c → [ c0 ] has the same impulse response. As identify-
ing smaller systems requires fewer parameters and less computation, we ask: what
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2 JEFFREY M. HOKANSON

is the smallest possible state-space system whose impulse response is h? This is the
McMillan degree [25, Rmk. 6.7.4],

(1.3) M(h) := min
q∈N

q s.t. ∃ b, c ∈ C
q, A ∈ C

q×q with hk = c∗Akb ∀k ∈ N,

named in honor of Brockway McMillan’s pioneering work on this subject [18, 19].
Remarkably, the McMillan degree can be computed without explicitly recovering a
minimal realization with matrices A, b, and c appearing in the optimizer of (1.3).

Theorem 1.1 (Ho and Kalman [12, Thm. 2 Cor.]). Let H∞ denote the infinite

Hankel matrix built from h ∈ ℓ1(N), then

(1.4) M(h) = rank(H∞) := sup
n∈N

rank(Hn,n) where H∞ :=




h0 h1 h2 · · ·
h1 h2 h3 · · ·
h2 h3 h4 · · ·
...

...
...

. . .




and Hm,n ∈ Cm×n denotes the m× n leading principal submatrix of H∞.

At first glance, it would appear straightforward to apply Ho and Kalman’s result
to estimate the McMillan degree in experimental practice. By providing an impulse
response input, u = {1, 0, 0, 0, . . .}, we can directly measure the impulse response
h in the output y. However, this poses two challenges. One is that we necessarily
only measure finite data and hence cannot build the infinite-dimensional matrix H∞.
Instead we can only construct a lower bound on the McMillan degree from the rank of
Hm,n. A more substantive challenge is that experimental measurements are invariably
contaminated with noise. So rather than measuring hk, we can only measure a noisy
version h̃k. If we build the analogous Hankel matrix H̃m,n ∈ Cm×n from h̃k,

(1.5) Hm,n :=




h0 h1 · · · hn−1

h1 h2 · · · hn

...
...

hm−1 hm · · · hm+n−2


 H̃m,n :=




h̃0 h̃1 · · · h̃n−1

h̃1 h̃2 · · · h̃n

...
...

h̃m−1 h̃m · · · h̃m+n−2



,

then even if Hm,n is low rank, H̃m,n may be, and likely is, full rank. Thus we cannot
naively apply Ho and Kalman’s theorem to compute the McMillan degree.

1.1. Lower Bound. Weyl’s theorem provides a way to use Ho and Kalman’s
theorem to obtain a lower bound for the McMillan degree. Recall the rank of any
matrix A ∈ Cm×n is the number of nonzero singular values; denoting the kth singular
value of A as σk(A)

(1.6) rank(A) =

min(m,n)∑

k=1

I[σk(A)], I[α] :=

{
0, α < 0;

1, α ≥ 0;

where I is the indicator function. Using Weyl’s theorem [14, Cor. 7.3.8] provides a

bound connecting the singular values of Hm,n and H̃m,n:

(1.7) |σk(H̃m,n)− σk(Hm,n)| ≤ ‖H̃m,n −Hm,n‖2.
This provides a lower bound on the singular values of Hm,n:

(1.8) σk(Hm,n) ≥ σk(H̃m,n)− ‖H̃m,n −Hm,n‖2.
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Fig. 1.1. An example estimating the McMillan degree using the singular values of H̃17,16. Here
the true impulse response h was generated from a real state-space system with McMillan degree six
with A = diag[0.9 − 0.4i, 0.9 + 0.4i, 0.9 + 0.2i, 0.9 − 0.2i, 0.7, 0.60], b = 1, and c = 1. On the

left, even with no noise all the singular values of H̃17,16 are nonzero as a result of finite precision

computation, but it is easy to identify a threshold for computing the rank of H̃17,16. In the middle
with a moderate amount of noise, the magnitude of the trailing singular values has increased, but
visually we can still identify a threshold for identfying the McMillan degree. Note that the bound
given in Theorem 3.1 matches visual intuition. On the right with a significant amount of noise the
bound underestimates the McMillan degree as four. This is as expected as our result only provides
a lower bound on the McMillan degree.

Combining this result, equation (1.6), and Theorem 1.1 provides a lower bound on
the McMillan degree

(1.9) M(h) ≥ rank(Hm,n) ≥
min(m,n)∑

k=1

I[σk(H̃m,n)− ‖H̃m,n −Hm,n‖2].

Although this bound requires computing a quantity we cannot measure—namely the
threshold ‖H̃m,n − Hm,n‖2—if this threshold is sufficiently small, we can visually
identify an appropriate approximate threshold as illustrated in Figure 1.1; see, e.g.,
[24, subsec. 3.5]. This is necessary even with exact data in Hm,n (rounding to floating
point accuracy) as computing the SVD using standard, backward stable algorithms

implies we recover the singular values of a nearby H̃m,n, not those of Hm,n.

1.2. Bounding Noise. In order to make the lower bound on the McMillan
degree in (1.9) practical, we must estimate the threshold ‖H̃m,n −Hm,n‖2. Here we

make the assumption that the noise in h̃k is additive and independent of hk so that
h̃k = hk + gk. Thus the threshold is the 2-norm of a structured random matrix Gm,n:

(1.10) Gm,n :=




g0 g1 · · · gn−1

g1 g2 · · · gn
...

...
gm−1 gm · · · gm+n−2


 = H̃m,n −Hm,n.

In this paper we construct a probabilistic upper bound on ‖Gm,n‖2 in Theorem 3.1
under the assumption that {gk}∞k=0 samples two variants of Gaussian random noise.
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1.2.1. Real Gaussian. The first case considers real-valued Gaussian random
noise. Here we denote the first N entries of {gk}∞k=0 as the vector gN ∈ RN and
assume gN samples a real-valued multivariate normal distribution with mean zero
and covariance Σ ∈ RN×N , denoted gN ∼ N (0,Σ) where Σ is a symmetric positive
definite (SPD) matrix; gN has probability density

(1.11) p(gN ) = (2π)−
N
2 (detΣ)−

1

2 exp[− 1
2g

⊤
NΣ−1gN ].

1.2.2. Complex Gaussian. The second case considers complex-valued Gauss-
ian random noise, again denoting the first N entries of {gk}∞k=0 as gN ∈ CN . Complex
normal distributions require more care to define than their real counterparts. One
approach is to describe gN in terms of its real and imaginary parts,

(1.12)

[
RegN

ImgN

]
∼ N

([
0

0

]
,

[
Σ11 Σ12

Σ⊤
12 Σ22

])
where

[
Σ11 Σ12

Σ⊤
12 Σ22

]
is SPD.

Instead we follow Schreier and Scharf [23] and characterize gN via an augmented
complex vector g

N
∈ C2N containing gn and its conjugate gN [23, sec. 2.1]1

(1.13) g
N

:=

[
gN

gN

]
=

[
I iI
I −iI

] [
RegN

ImgN

]
.

Now consider the covariance of g
N
. As the expected value of g

N
is zero, the covariance

matrix is simply the expected value of the outer product g
n
g∗
n
(cf. [23, sec. 2.2])

(1.14) E(g
N
g∗
N
) = E

([
I iI
I −iI

] [
RegN

ImgN

] [
RegN

ImgN

]∗ [
I iI
I −iI

]∗)

=

[
Σ11 +Σ22 − iΣ12 + iΣ⊤

12 Σ11 −Σ22 + iΣ12 + iΣ⊤
12

Σ11 −Σ22 − iΣ12 − iΣ⊤
12 Σ11 +Σ22 + iΣ12 − iΣ⊤

12

]
=

[
Γ Γ̃

Γ̃
∗
Γ

]
.

In contrast with real normal distributions, which are completely described by their
mean and covariance, describing gN requires the mean, the Hermitian covariance

matrix Γ ∈ CN×N , and the symmetric complementary covariance matrix Γ̃ ∈ CN×N .
There is a case where specifying a complex normal distribution simplifies and the

resulting random variable acts similar to the real case. For a generic complex random
variable z we say:

• z is proper if the complementary covariance E[(z−E[z])(z−E[z])⊤ ] is zero [23,
Def. 2.1];

• z is circular if the probability density of any complex rotation eiθz for θ ∈
[0, 2π) is identical to that of z [23, Def. 2.4] (this requires E[z] = 0).

For a complex normally distributed random variable z with zero mean, z is proper
if and only if z is circular [23, Res. 2.11]. Hence circular Gaussian random variables
are completely specified by their covariance Γ ∈ CN×N . Here we exclusively consider
circular Gaussian random variables, denoted gN ∼ CN (0,Γ) where Γ ∈ CN×N is
Hermitian positive definite; then gN ∈ CN has probability density [23, Res. 2.5]

(1.15) p(gN ) = π−n det(ΓN )−1 exp[−g∗
NΓ−1gN ].

1 We denote the conjugate of g by g and the complex conjugate transpose of g by g∗; whereas
Schreier and Scharf denote the conjugate of g by g∗ and the complex conjugate transpose of g by gH.
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1.3. Related Problems. Estimating the McMillan degree via this Hankel ma-
trix approach is closely related to many problems in system identification and signal
processing [8]. For example, given a complex sinusoidal signal

(1.16) y(t) =

q∑

k=1

αke
ωkt αk, ωk ∈ C,

we can compute the number of components q by considering the McMillan degree of
the sequence {y(δj)}∞j=0 for some time step δ > 0; cf. [8, subsec. 2.3].

1.4. Contributions. Here we develop a new probabilistic upper bound on the
2-norm of a random Hankel matrix Gm,n in Theorem 3.1 based on a circulant em-
bedding. Unlike existing results for random Hankel matrices (summarized in sub-
section 2.2) we are able to obtain an upper bound with a fixed probability with no
unknown constants matching existing asymptotic rate results. Combined with (1.9),
this upper bound on ‖Gm,n‖2 allows us to obtain a lower bound on the McMillan

degree of noisy measurements of the impulse response h̃, extending Ho and Kalman’s
result for noisy data. As illustrated in section 6, this bound provides a practical esti-
mate of the McMillan degree. Replacing this probabilistic upper bound on ‖Gm,n‖2
with an empirical estimate as described in section 5 provides an even sharper es-
timate. Finally, estimating the McMillan degree based on the singular values of a
Hankel matrix compares favorably to model selection approaches such as the Akaike
Information Criteria (AIC). Model selection requires identifying a minimal realiza-
tion for each potential McMillan degree, a process that is both expensive and prone
to identify an unrepresentative local minimum far from the global minimizer. By
using our Hankel matrix approach for estimating the McMillan degree we avoid this
expense and complication.

2. Background. Estimating the McMillan degree touches on four distinct do-
mains: fast Hankel-vector products, structured random matrices, heuristics from en-
gineering practice, and model order selection. In the following, we briefly review
relevant results from each domain.

2.1. Fast Hankel Matrix-vector Products. Although H̃m,n ∈ Cm×n is a
dense matrix, we can exploit the Hankel structure to provide fast matrix-vector prod-
ucts [22, sec. 3.4] and hence accelerate the computation of the SVD. One approach
for fast Hankel vector products is to recognize a Hankel matrix can be embedded
inside a circulant matrix, which in turn can be diagonalized by the discrete Fourier
transform (DFT) matrix. This allows the product H̃m,nx to be computed using only
O(N logN) operations where N = m + n − 1, rather than the O(mn) operations
normally required. These inexpensive inner products can then accelerate the compu-
tation of the SVD when using an iterative eigensolver like ARPACK [16], with the
leading k singular values be computed in approximately O(kN logN) operations.

2.2. Structured Random Matrices. The spectral properties of structured
random matrices have only started to be explored in the past two decades. The
distribution of the singular values of a random Hankel matrix (and hence the 2-
norm) was posed as an open problem in a 1999 paper by Bai [3]. Byrc, Dembo, and
Jiang were the first to establish the limiting spectral distribution for Hankel matrices
with independent and identically distributed (iid) Gaussian entries in 2006 [5]. The
next year, Meckes provided bounds on the distribution of the 2-norm under weaker
assumptions that entries are uniformly subgaussian, independent, but not necessarily
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identically distributed [20]. Combining Meckes’ Theorem 1 and Theorem 3 we know
the growth rate of E‖Gn,n‖2 as a function of n; assuming the entries of Gn,n are
iid Gaussian random variables with zero mean and unit variance, then there exists
0 < c1 < c2 such that

(2.1) c1
√
n logn ≤ E‖Gn,n‖2 ≤ c2

√
n logn ∀n > 0.

Similar results were established under even weaker constraints for the distribution of
the entries by Adamczak [1] and Nekrutkin [21]; the latter also treated non-square
Hankel matrices. Note that although our results require a more restrictive assumption
that entries ofGn,n sample a multivariate Gaussian distribution, we provide a different
result: a computable probabilistic upper bound on ‖Gn,n‖2.

2.3. Heuristics for Estimating McMillan Degree. Although rigorous esti-
mates of the 2-norm of a random Hankel matrix have only been available for the past
two decades, many authors in the 1970s, 1980s, 1990s recognized that the singular
values of H̃m,n could be used to infer the McMillan degree. For example, in 1985
Juang and Pappa suggested picking a threshold manually to separate singular values
into those associated with Hm,n and those associated with noise [15, p.622]—a process
that as illustrated in Figure 1.1 sometimes yields an obvious choice, but that some-
times can be misleading. This manual selection approach also appears in more recent
work using matrices related to Hm,n; see, e.g.,[17, §16.3], [29], and [28]. Other au-
thors have attempted to provide estimates of ‖Gm,n‖2 to select this threshold in (1.9).
For example, Holt and Antill bounded the norm of a Hankel matrix by its Frobenius
norm [13, eq. (19)]. Assuming g2n−1 ∼ N (0, ǫI),

(2.2) ‖Gn,n‖2 ≤ ‖Gn,n‖F =⇒ E[‖Gn,n‖2] ≤ E[‖Gn,n‖F] =
√
n2E[g20 ] = nǫ

However this bound is far too conservative: from (2.1) we know ‖Gn,n‖2 grows with
n like O(

√
n logn), whereas this bound is O(n). Another threshold that has been

suggested when g2n−1 ∼ N (0, ǫI) is ǫ
√
n; see, e.g., [9, eq. (4.3)] and [26, §IV.C]. This

is based on the expected value of H̃∗
n,nH̃n,n

E[H̃∗
n,nH̃n,n] = H∗

n,nHn,n + E[G∗
n,nHn,n] + E[H∗

n,nGn,n] + E[G∗
n,nGn,n]

= H∗
n,nHn,n + ǫ2nI

(2.3)

whose eigenvalues are all shifted upwards by ǫ2n; hence the singular values of the
matrix square root of E[H̃∗

n,nH̃n,n] are shifted upwards by ǫ
√
n. However this thresh-

old makes a mistake interchanging expectation and the eigenvalues: the eigenvalues of
E[H̃∗

n,nH̃n,n] are not the expected eigenvalues of H̃∗
n,nH̃n,n. The result is a threshold

that is too permissive as it grows like O(
√
n) whereas we should expect O(

√
n logn).

2.4. Model Selection. Model selection provides an alternative perspective on
estimating the McMillan degree using generic statistical tools for selecting the most
parsimonious model among a set of candidate models. In the context of estimating
the McMillan degree, the candidate models are realizations consisting of matrices
A ∈ Cq×q and vectors b, c ∈ Cq for differing dimensions q. There are a large number
of different criteria for selecting the most parsimonious model, see, e.g., [6]. Here
we focus on information theoretic approaches which score candidate models on both
likelihood and number of parameters. The Akaike Information Criteria (AIC) [2] is
one such popular model selection criteria where the score of each model is proportional
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to the number of free parameters minus the log-likelihood. In our context, for either
real gn ∼ N (0,Σn) or complex circular gn ∼ CN (0,Σn) Gaussian random noise, the
AIC score for a model of degree q is:

(2.4) AIC(q) ∝ 2 min
A∈C

q×q

b,c∈C
q

∥∥∥∥∥∥∥
Σ− 1

2







h̃0

h̃1

...
h̃n−1


−




c∗A0b
c∗A1b

...
c∗An−1b








∥∥∥∥∥∥∥

2

2

+ 4q + constant.

The second term in the AIC encodes the number of real degrees of freedom in the
model. Although A, b, and c have a collective q2 + 2q degrees of freedom, there are
only effectively 4q degrees of freedom. Without loss of generality we can assume c = 1

and that A is diagonal as non-diagonalizable matrices are nowhere dense in C
q×q [10,

p. 2739]; this leaves 2q complex parameters or 4q real parameters. Then the AIC
selects the q minimizing AIC(q). The challenge with this approach is its expense: for
each candidate McMillan degree a minimal realization {A,b, c} must be constructed.

3. Random Hankel Matrix 2-Norm Bound. We now establish our main
result: a probabilistic upper bound on the 2-norm of a random Hankel matrix whose
entries are drawn from a multivariate normal distribution.

Theorem 3.1. Suppose gN ∈ C
N is a random variable and Gm,n ∈ C

m×n is a

Hankel matrix constructed from gN as in (1.10) where N = m+ n− 1, then

(3.1) ‖Gm,n‖2 ≤ α
√
N with probability p(α)

where p(α) depends on the distribution of gN :

if gN ∼ N (0, I), then p(α) =

{
erf(α/2) (1− e−α2/2)(N−1)/2, N odd;

erf(α/2)2(1− e−α2/2)N/2−1, N even;
(3.2a)

if gN ∼ CN (0, I), then p(α) = (1− e−α2/2)N ;(3.2b)

if gN ∼ N (0,Σ), then p(α) = γ(N/2, α2/(2‖Σ1

2 ‖22))/Γ(N/2);(3.2c)

if gN ∼ CN (0,Σ), then p(α) = γ(N,α2/‖Σ 1

2 ‖22)/Γ(N)(3.2d)

where Γ denotes the Gamma function, Γ(s) :=
∫∞
0

ts−1e−t dt, γ is the lower in-

complete gamma function, γ(s, x) :=
∫ x

0 ts−1e−t dt, and erf is the error function,

erf(x) := 2π−1/2
∫ x

0
e−t2 dt.

We are able to state this result for any rectangular Hankel matrix Gm,n as the
first component of the proof—a circulant embedding to obtain a bound in terms of
the DFT of gN—yields the same bound for any Hankel matrix the same generating
data of length N = m + n − 1. The second component then takes this bound and
generates a probabilistic upper bound assuming a particular distribution for gN .

3.1. Asymptotic Growth. Before proving this result, we ask: does ‖Gn,n‖2
grow at the same rate as n → ∞ as the bound provided by Meckes [20, Thm. 3],
namely O(n logn)? This is true for the circular complex normal case (3.2b). For a
fixed probability τ ∈ (0, 1), then the α satisfying τ = p(α) is

(3.3) α =

√
−2 log(1− τ

1

N ) =
√
2 logN − log(log τ)2 +O(N−1) = O(logN)
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Fig. 3.1. A comparison of the upper bounds from Theorem 3.1 for ‖Gm,n‖2 for increasing N

where m = ⌈N−1

2
⌉ and n = ⌊N−1

2
⌋. The solid curves show the bounds from Theorem 3.1 which

hold when the covariance matrix of gN is the identity matrix; the dashed lines show bound allowing
other covariance matrices. The curves show the 1st, 50th, and 99th percentiles. The red bars show
an empirical estimate of ‖Gm,n‖2 based on 103 Monte Carlo samples, showing the bound β that
holds with probability τ ; the bars similarly correspond to the 1st, 50th, and 99th percentiles.

as N → ∞. Here we used a Taylor expansion of the exponential in τ
1

N = exp[log[τ
1

N ]]
to obtain this estimate. Hence in (3.1), ‖Gn,n‖2 = O(

√
N logN) = O(n logn) with

probability τ when gN ∼ CN (0, I).
Figure 3.1 compares an empirical estimate the distribution of ‖Gn,n‖2 to the

bounds provided by Theorem 3.1. We observe that both the real and circular com-
plex normal distribution bounds in (3.2a) and (3.2b) match the expected asymptotic
growth rate of O(

√
n logn). Moreover, for these two cases, the bound is only approx-

imately 2.5 times larger than the empirical estimate.

3.2. Circulant Embedding Bound. The first step in establishing Theorem 3.1
bounds ‖Gm,n‖2 by embedding Gm,n. This circulant matrix is diagonalized by the
discrete Fourier transform matrix (DFT) allowing us to obtain its 2-norm. Although
this circulant embedding technique has long been used for fast Hankel matrix-vector
products [22, sec. 3.4], this is, to the best of our knowledge, the first time this embed-
ding technique has been used to obtain bounds on the norm of a Hankel matrix.

Lemma 3.2. Suppose gN and Gm,n are defined as in Theorem 3.1, then

(3.4) ‖Gm,n‖2 ≤
√
N‖FNgN‖∞

where [FN ]j,k = N− 1

2 e−2πijk/N is the DFT matrix.

Proof. Let CN ∈ CN×N be a circulant matrix [14, §0.9.6] whose first column is
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gN and recalling N = m+ n− 1,

(3.5) CN =




g0 gm+n−2 . . . gn−1 gn−2 . . . g1
g1 g0 . . . gn gn−1 . . . g2
...

. . .
...

...
...

gm−1 gm−2 . . . g0 gm+n−2 . . . gm
gm gm−1 . . . g1 g0 . . . gm+1

...
...

...
. . .

...
gm+n−2 gm+n−3 . . . gn−1 gn−2 . . . g0




Note the Hankel matrix Gm,n ∈ C
m×n appears in the boxed region of CN with

reversed columns. Hence the multiplication Gm,nxn can be written as

(3.6) Gm,nxn =
[
0 Im

]
CN

[
Jn

0

]
xn

where Im ∈ Cm×m is the identity matrix and Jm ∈ Cn×n is the identity matrix with
columns reversed. Then, as the matrix 2-norm is induced by the vector 2-norm,

‖Gm,n‖2 := max
xn∈Cn\{0}

‖Gm,nxn‖2
‖xn‖2

= max
xn∈Cn\{0}

∥∥∥∥
[
0 Im

]
CN

[
Jn

0

]
xn

∥∥∥∥
2

‖xn‖2
(3.7)

≤ max
xn∈Cn\{0}

∥∥∥∥CN

[
Jn

0

]
xn

∥∥∥∥
2

‖xn‖2
≤ max

yN∈CN\{0}

‖CNyN‖2
‖yN‖2

= ‖CN‖2.(3.8)

Finally, to bound the norm of CN we note that since CN is a circulant matrix, it has
spectral decomposition [22, eq. (3.27)],

(3.9) CN = F∗
NΛNFN , ΛN =

√
N diag(FNgN ),

and then, as the 2-norm is unitarily invariant,

(3.10) ‖CN‖2 = ‖F∗
NΛNFN‖2 = ‖ΛN‖2 =

√
N‖FNgN‖∞.

3.3. Bounds on Noise. We now seek to bound ‖FNgN‖∞ for four different
distributions associated with gN , corresponding to the four cases in (3.2). Here we
denote the probability of an expression being true by P; e.g., the probability of z ≤ α
being true for some random variable z is P[z ≤ α] := E[I[α − z]].

Lemma 3.3. Suppose gN ∼ CN (0, I) and α ≥ 0, then

(3.11) P[ ‖FNgN‖∞ ≤ α] = (1 − e−α2/2)N .

Proof. We begin by characterizing FNgN . Note E[FNgN ] = 0 and hence the
covariance and complementary covariance matrices are

(3.12) E[FNgNg∗
NF∗

N ] = FNIF∗
N = I E[FNgNg⊤

NF⊤
N ] = FN0F⊤

N = 0

where the second statement follows as gN is circular. Hence FNgN is a circular
Gaussian random variable with FNgN ∼ CN (0, I); cf. [23, subsec. 2.3.1]. As such,
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the k entry of FNgN is independent of the ℓth entry when k 6= ℓ and hence

(3.13) P[ ‖FNgN ]‖∞ ≤ α] = P[ max
k

|e∗kFNgN | ≤ α] =

N−1∏

k=0

P[ |e∗kFNgN | ≤ α]

where ek denotes the kth column of the identity. Note e∗kFNgN has the distribution

(3.14) e∗kFNgN ∼ CN (0, 1).

Hence |e∗kFNgN | follows a Rayleigh distribution (i.e., χ2, a χ-distribution with two
degrees of freedom) with the cumulative density function [23, eq. (2.74)]

(3.15) P[ |e∗kFNgN | ≤ α] = 1− e−α2/2.

Combining this with (3.13) provides the desired probability.

The analogous result for real Gaussian random variables gN ∼ N (0, I) requires
additional care as the entries of FNgN are no longer independent—half of the entries
are conjugates of the other half.

Lemma 3.4. Suppose gN ∼ N (0, I) and α ≥ 0, then

(3.16) P[ ‖FNgN‖∞ ≤ α] =

{
erf(α/2) (1 − e−α2/2)(N−1)/2, N odd;

erf(α/2)2(1 − e−α2/2)N/2−1, N even.

Proof. First, we write the real random variable gN as a function of the complex
circular normal variable zN ∼ CN (0, I):

(3.17) gN = 2−
1

2 (zN + zN ) ∼ N (0, I).

Then, defining wN := FNzN ,

FNgN = 2−
1

2 (FNzN + FNzN ) = 2−
1

2 (wN + FNF⊤
NwN).(3.18)

Above, the matrix FNF⊤
N has the form

FNF⊤
N =

[
1 0⊤

0 JN−1

]
∈ R

N×N ,(3.19)

where JN−1 is the reversed identity matrix. Thus, the entries of FNgN are:

(3.20) e∗kFNgN = 2−
1

2 e∗k



[ w0

w1

...
wN−1

]
+




w0

wN−1

...
w1




 =

{
2

1

2 Re[w0], k = 0;

2−
1

2 (wk + wN−k) k 6= 0.

Then since wN = FNzN ∼ CN (0, I), each entry of FNgN is distributed like

e∗kFNgN ∼
{
N (0, 2), k = 0 or k = N/2;

CN (0, 1), otherwise;
(3.21)

with cumulative density functions

P[ |e∗kFNgN | ≤ α) =

{
erf(α/2), k = 0 or N/2;

1− e−α2/2, otherwise.
(3.22)
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Then since the first ⌊N/2⌋ entries of FNgN are independent of each other and the
remaining are fully determined by this first half, cf. (3.20), we have

P[ ‖FNgN‖∞ ≤ α] = P

[
max

k=0,...,⌊N/2⌋
|e∗kFNgN | ≤ α

]
=

⌊N/2⌋∏

k=0

P[ |e∗kFNgN | ≤ α].

(3.23)

Then using the entrywise expression (3.22) we obtain the desired bound.

Unfortunately we have been unable to find satisfying bounds on ‖FNgN‖∞ when
gN has covariance matrix that is not an identity matrix. Suppose gN ∼ CN (0,Σ) for
some Hermitian positive definite Σ; then FNgN ∼ CN (0,FNΣF∗

N ). As the entries
of FNgN are now correlated, we cannot separate the probabily of the max into the
product of probabilities (3.13). The following two bounds provide guideance in this
case, using the equivalence of finite dimensional norms and the fact FN is a unitary
matrix:

(3.24) ‖FNgN‖∞ ≤ ‖FNgN‖2 = ‖gN‖2.

Although this provides a bound, as evidenced in Figure 3.1, it does not achieve the
expected asymptotic growth rate of O(

√
N logN) as N → ∞.

Lemma 3.5. Suppose gN ∼ N (0,Σ) where Σ ∈ RN×N is symmetric positive

definite and α ≥ 0, then

(3.25) P[ ‖FNgN‖∞ ≤ α‖Σ 1

2 ‖2 ] = 1− Γ(N/2)−1γ(N/2, α2/2).

Proof. Writing gN = Σ
1

2wN where w ∼ N (0, I), then invoking (3.24),

‖FNgN‖∞ = ‖FNΣ
1

2wN‖∞ ≤ ‖FNΣ
1

2wN‖2 ≤ ‖Σ 1

2 ‖2‖wN‖2.(3.26)

The term ‖wN‖2 samples a χ-distribution with n degrees of freedom and the result
follows from this density’s cumulative distribution.

The proof for the complex case is identical except that the χ-distribution has a
total of 2N degrees of freedom, with half coming from the real part and half from the
imaginary part.

Lemma 3.6. Suppose gN ∼ N (0,Σ) where Σ ∈ CN×N is a Hermitian positive

definite matrix and α ≥ 0, then

(3.27) P[ ‖FNgN‖∞ ≤ α‖Σ 1

2 ‖2 ] = 1− Γ(N)−1γ(N,α2/2).

4. McMillan Degree Lower Bound. Having provided the bound on the norm
of a random Hankel matrix ‖Gm,n‖2 in Theorem 3.1, we now formally state the
McMillan degree lower bound based on this result.

Theorem 4.1. Suppose h ∈ ℓ1(N) is the impulse response of a system. Given

noisy measurements h̃k = hk + gk constructed into a Hankel matrix H̃m,n ∈ Cm×n,

the McMillan degree of h is bounded below by

(4.1) M(h) ≥
min(m,n)∑

k=1

I[σk(H̃m,n)− α
√
m+ n− 1 ] with probablity p(α)

where p(α) depends on the distribution of gm+n−1 as given in (3.2).
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Proof. From (1.9) and (1.10)

(4.2) M(h) ≥
min(m,n)∑

k=1

I[σk(H̃m,n)− ‖Gm,n‖2]

From Theorem 3.1 we obtain a probabilistic upper bound on ‖Gm,n‖2, which in turn
provides a probabilistic lower bound on M(h).

5. Empirical Bound. Before continuing to the numerical experiments, we note
that we need not necessarily rely on an exact, probabilistic upper bound of ‖Gm,n‖2.
Instead, as it is inexpensive to compute the 2-norm of a Hankel matrix (see sub-
section 2.1), we can instead sample many realisations of the noise to estimate the
cumulative density function associated with the 2-norm of this Hankel matrix. The
advantage of this approach is it provides sharper estimates of ‖Gm,n‖2 and is appli-
cable to a wider variety of distributions of gk. However because this is an empirical
estimate, we cannot provide the guarantees as in Theorem 4.1.

6. Numerical Examples. Here we provide two examples of our McMillan de-
gree lower bound: one with complex valued data with a system known McMillan
degree and another with real data with a highly reducible system. In these examples
we compute the AIC score using HSVD [4] to estimate the (approximate) optimal
model parameters of each candidate McMillan degree. Following the principles of
reproducible research, code for constructing these examples is available at https://
github.com/jeffrey-hokanson/McMillanDegree.

6.1. Complex Valued Data. This test problem from magnetic resonance spec-
troscopy [27, Tab. 1] considers sum of eleven complex exponentials.

(6.1) hk =

11∑

k=1

ake
135iπ/180e(2iπfk−dk)jδ

where δ = 1
3 × 10−3 and parameters

(6.2)
a = [ 75 150 75 150 150 150 150 150 1400 60 500 ]
f = [ −86 −70 −54 152 168 292 308 360 440 490 530 ]
d = [ 50 50 50 50 50 50 50 25 285.7 25 200 ].

To simulate detector noise, we add complex circular Gaussian random noise g ∼
CN (0, 152 I). This example we use a total of N = 256 measurements.

Figure 6.1 illustrates how different approaches estimate the number complex ex-
ponentials are present in h̃N ; recall from subsection 1.3, determining the number
of exponentials is equivalent to determining the McMillan degree. As expected, the
McMillan degree lower bound in Theorem 4.1 provides a lower bound on McMillan de-
gree. By using an empirical estimate of ‖Gm,n‖2 as described in 5 we obtain a sharper
and frequently correct estimate of the McMillan degree. This suggests that most of
the loss of accuracy in our bound occurs mainly in the embedding step (Lemma 3.2),
not in the use Weyl’s theorem for the singular values Theorem 4.1. The AIC performs
well in this case, but as it requires identifying requires more computation to obtain
the fits for each candidate number of exponentials.

https://github.com/jeffrey-hokanson/McMillanDegree
https://github.com/jeffrey-hokanson/McMillanDegree
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Fig. 6.1. The application of our bounds and the AIC to estimate the number of complex
exponentials embedded in complex Gaussian noise as described in subsection 6.1. The left plot shows
the distribution of the first twenty singular values of H̃129,128 constructed from 1000 realizations,
where the frequency is denoted by the width of the shaded region and the range is denoted by the
vertical black bar. The three right plots show the estimated model order using different techniques
and the true model order of eleven is denoted by the hollow black rectangle.

6.2. Real Valued Data. As a second example, we consider the clamped beam
model from the SLICOT benchmarks for model reduction [7]. This considers a beam
where the input is a force applied at the free boundary and the output is the displace-
ment at this boundary. Although originally a continuous time model, we can convert
this to a discrete-time system in the form of (1.2) using the matrix exponential

xj = eAδxj−1 + buj, where b, c,xj ∈ R
348, A ∈ R

348×348

yj = c⊤xj .
(6.3)

Here we take the time step δ = 0.1 and use N = 213 = 8192 measurements to which
we add real Gaussian noise with gN ∼ N (0, 10−2I). Although this example has a
McMillan degree of 348, corresponding to the dimension of A, it is highly reducible
and the singular values of Hm,n decay rapidly. This simulates real systems which may
have components that cannot be resolved due to noise.

Figure 6.2 illustrates different approaches for estimating the McMillan degree of
this system. Unlike the previous example, we have no hope of estimating the true
McMillan degree of A, as even in the absence of noise only 105 singular values of
H4097,4096 exceed 10−10. With the addition of noise we obtain a McMillan degree
lower bound of 8 using Theorem 4.1 and 12 using the empirical estimate. Both of
these are smaller than than the McMillan degree estimate provided by the AIC.

7. Conclusion. Here we have established an upper bound on the norm of a
random Hankel matrix with no unknown constants in Theorem 3.1 and used this
result to construct a lower bound on the McMillan degree from noisy impulse response
measurements in Theorem 4.1. As the examples in section 6 illustrate, this bound
provides a useful lower bound on the McMillan degree that can be applied to both
modal analysis and system identification. However in engineering practice, we expect
the empirically determined bound on ‖Gm,n‖2 to be more useful. It provides a sharper
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Fig. 6.2. The application of our bounds and the AIC to estimate the McMillan degree of the
beam model described in subsection 6.2. The left plot shows the distribution of singular values of
H̃4097,4096 over one thousand realizations as in Figure 6.1. The three plots on the right show the
estimated model order using different techniques.

bound and is easy to compute without knowledge of the underlying noise distribution
by using measurements of the system with no input.
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