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Abstract

This paper provides a general framework for modeling financial contagion in a system with obligations

in multiple illiquid assets (e.g., currencies). In so doing, we develop a multi-layered financial network that

extends the single network of Eisenberg and Noe [2001]. In particular, we develop a financial contagion

model with fire sales that allows institutions to both buy and sell assets to cover their liabilities in the

different assets and act as utility maximizers.

We prove that, under standard assumptions and without market impacts, equilibrium portfolio hold-

ings exist and are unique. However, with market impacts, we prove that equilibrium portfolio holdings

and market prices exist which clear the multi-layered financial system. In general, though, these clear-

ing solutions are not unique. We extend this result by considering the tâtonnement process to find the

unique attained equilibrium. The attained equilibrium need not be continuous with respect to the initial

shock; these points of discontinuity match those stresses in which a financial crisis becomes a systemic

crisis. We further provide mathematical formulations for payment rules and utility functions satisfying

the necessary conditions for these existence and uniqueness results.

We demonstrate the value of our model through illustrative numerical case studies. In particular, we

study a counterfactual scenario on the event that Greece re-instituted the drachma on a dataset from

the European Banking Authority.
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1 Introduction

As defined in Feinstein [2017], “financial contagion occurs when the distress of one bank jeopardizes the health

of other financial firms.” Many recent works on the topic have focused on modeling aspects of the 2007-2009

financial crisis, as that event proved that systemic crises can have terrible costs. However, such contagious

events have occurred at other times in the recent past, e.g., the 1997 Asian financial crisis. In that crisis,

among others, currency fluctuations between the US dollar and, e.g., Thai baht and Indonesian rupiah caused

the debt-to-income ratios of firms to jump. This caused a positive feedback loop in the currency fluctuations,

thus intensifying the contagion. In fact, Dell’Ariccia et al. [2011] and references therein showed that foreign

currency obligations for banks statistically increase the chance of a banking crisis in a nation. However,

in contrast to the financial contagion models of Eisenberg and Noe [2001], Feinstein [2017], many historical

financial crisis involved obligations and incomes in multiple currencies (that must be fulfilled in the quoted

currency) and illiquidity in the currency markets (see, e.g., Allayannis et al. [2003]). That is, in a general

sense, many historical crises exist as the outcome of a multi-layered financial network of obligations between

financial institutions in multiple illiquid assets insofar as they exhibit three key components: (i) distinct

networks of interbank obligations in each currency with (ii) intra-layer connections via payments made in

the individual currencies and (iii) inter-layer interactions through asset transfers (and price impacts) between

the different currencies and layers of the network. As such, this current paper will focus on an extension of

Eisenberg and Noe [2001] to allow for a multi-layered network of obligations, notably allowing for firms to

transfer wealth between multiple (illiquid) assets or currencies causing price impacts to the exchange rates.

Eisenberg and Noe [2001] propose a network model for the spread of defaults in the financial system.

In that proposed model, banks hold liquid assets which are used to pay off liabilities; unpaid liabilities

may infect additional firms and cause them to default on some of their liabilities as well. That paper

proves conditions for existence and uniqueness of the clearing payments and provides a method for com-

puting the equilibrium clearing payments. This model has been extended to account for time dynam-

ics in, e.g., Kusnetsov and Veraart [2019], Capponi and Chen [2015], Banerjee et al. [2018]. Additionally,

the basic clearing payment model of Eisenberg and Noe [2001] has been relaxed to consider bankruptcy

costs (e.g., Elsinger [2009], Rogers and Veraart [2013], Elliott et al. [2014], Glasserman and Young [2015],

Weber and Weske [2017], Capponi et al. [2016]) and cross-holdings (e.g., Elsinger [2009], Elliott et al. [2014],

Weber and Weske [2017]). Illiquid assets and fire sale dynamics have been included in the setting of such

network models in, e.g., Cifuentes et al. [2005], Nier et al. [2007], Gai and Kapadia [2010], Amini et al.

[2015], Chen et al. [2016], Weber and Weske [2017], Amini et al. [2016] for a single (representative) asset and

Feinstein [2017], Feinstein and El-Masri [2017] for multiple assets. Empirical studies of the aforementioned
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financial contagion models have been conducted in, e.g., Elsinger et al. [2006], Upper [2011], Cont et al.

[2013], Glasserman and Young [2015]. One of the key contributions of these works is the conclusion that

the local connections, via contractual liabilities, do not capture most financial contagion. This motivates

our current study for considering the role of illiquid assets and currencies on financial contagion. Measures

of systemic risk have been studied in, e.g., Chen et al. [2013], Kromer et al. [2016], Feinstein et al. [2017],

Biagini et al. [2019], Armenti et al. [2018].

The main advance that we wish to study in these models is a more complete picture of how illiquid

assets impact systemic risk; in particular, we are concerned with the implications of physical obligations in

multiple currencies. Within this scope, prior work has focused on fire sales in which the various financial

firms will liquidate their assets in case of a cash shortfall thus driving down the asset value. Further, we

will demonstrate that such modeling inherently produces systemic crises due to the market switching the

attained equilibria and thus having jumps in the response of banks and the market. However, to the best

of our knowledge, none of the prior works in the Eisenberg and Noe [2001] setting permit a multi-layered or

interconnected financial network of obligations with liabilities in multiple assets and payments in physical

assets rather than in some numéraire. We refer to Bookstaber and Kenett [2016] for a discussion of why

multi-layered systems are important and can affect financial contagion; this is of particular importance due

to the role that currency movements have on systemic risk (Dell’Ariccia et al. [2011]). In such a model,

firms no longer only have obligations in the numéraire asset (cash) only, but in, e.g., multiple currencies

or securities. We refer to Montagna and Kok [2013], Battiston et al. [2016], Poledna et al. [2015] for other

approaches to modeling interconnected financial networks. We will tackle this problem, and extend works

further, by allowing for solvent firms to invest via a utility maximization problem, thereby permitting such

firms to purchase assets at the fire sale price.

The systemic risk studied in this paper, insofar as it relates to currency crises, should be viewed as

studying extreme events such as the abandonment of a currency peg. If symmetry exists to balance the

buying and selling of a currency (due to the notion of “buy low and sell high” as depicted by the wealth

maximizing utility in Example 5.1), the exchange rates will generally be very stable as illustrated by low

volatility in the foreign exchange markets. However, when an asymmetry exists between initial holdings (in

a local currency) and obligations (in a major currency, e.g., US dollars), and with atypical monetary policy,

the multilayered network can cause large fluctuations in exchange rates. It is this latter scenario we concern

ourselves with in this work.

Notably, we will prove only the existence of clearing solutions in markets with price impacts. This is

comparable to, e.g., Cifuentes et al. [2005], in which the clearing payments are not necessarily unique due to

the introduction of fire sales. In order to determine the attained clearing solution, we introduce the use of
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the tâtonnement process which has previously been used to study financial contagion in Bluhm et al. [2014].

Of particular interest, due to the nonuniqueness of the clearing solutions, the attained equilibria need not be

continuous with respect to the initial shock. Specifically, this jump implies that a small perturbation in shock

can greatly influence the attained clearing solution. This has far reaching consequences for stress testing

as discrete stresses may miss this point of discontinuity and thus underestimate the true risk of financial

contagion.

The organization of this paper is as follows. First, in Section 2, we will introduce the mathematical

and financial setting. In Section 3, we first develop the general modeling framework. We consider markets

without price impacts (Section 3.1) followed by markets with price impacts (Section 3.2). We find conditions

so that there exists a clearing solution (Section 3.2) and consider the tâtonnoment process to find the attained

market equilibrium (Section 3.3). These are the main results of this work. Section 4 is used to provide specific

mathematical examples with meaningful financial interpretations that fit the results of Sections 3. Numerical

case studies are provided in Section 5. In particular, beyond demonstrating the impact of differing choices of

payment rules and utility parameters on the equilibrium response in toy models, we provide a numerical case

study to consider the impacts on contagion of having a single currency split into two. This is meaningful

as it has been threatened in recent years for the Greek economy; in studying the so-called Grexit event, we

calibrate the financial system to 2011 stress testing data from the European Banking Authority. The proofs

of the theoretical results are provided in the appendix.

2 The stylized balance sheet

Consider a financial system with n financial institutions (e.g., banks, hedge funds, or pension plans) and a

financial market with m illiquid assets (possibly currencies). We denote by y ∈ R
n×m
+ the realized portfolio

holdings of the institutions and by q ∈ R
m
++ the prices of the assets in some numéraire. We assume throughout
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Marked-to-Market Book Value

Assets Liabilities

Endowment (Asset 1)
q1x

1
i

Interbank (Asset 1)
q1
∑n

j=1 L
1
ji

Endowment (Asset 2)
q2x

2
i

Interbank (Asset 2)
q2
∑n

j=1 L
2
ji

Total (Asset 1)
q1p̄

1
i

Total (Asset 2)
q2p̄

2
i

Book Capital

(a) Marked-to-market book for firm i, i.e. assuming all
liabilities are paid in full.

Marked-to-Market Realized Balance Sheet

Assets Liabilities

Endowment (Asset 1)
q1x

1
i

Interbank (Asset 1)
q1
∑n

j=1 a
1
ji[p̄

1
j ∧ y1j ]

Endowment (Asset 2)
q2x

2
i

Interbank (Asset 2)
q2
∑n

j=1 a
2
ji[p̄

2
j ∧ y2j ]

Total (Asset 1)
q1p̄

1
i

Total (Asset 2)
q2p̄

2
i

Realized Capital

(b) Marked-to-market balance sheet for firm i before
transferring assets to cover liabilities.

Marked-to-Market Realized Holdings and Balance Sheet

Assets Liabilities

Holdings (Asset 1)
q1y

1
i

Holdings (Asset 2)
q2y

2
i

Transferred
Assets
2 ⇒ 1

Total (Asset 1)
q1p̄

1
i

Total (Asset 2)
q2p̄

2
i

Realized Capital

(c) Marked-to-market balance sheet for firm i after
transferring assets to cover liabilities.

Figure 1: Stylized balance sheet for firm i under price vector q.
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that the price of each asset is bounded away from zero. Throughout this paper we will use the notation

a ∧ b :=



















min(a11, b11) min(a12, b12) . . . min(a1d2
, b1d2

)

min(a21, b21) min(a22, b22) . . . min(a2d2
, b2d2

)

...
...

. . .
...

min(ad11, bd11) min(ad12, bd12) . . . min(ad1d2
, bd1d2

)



















,

a ∨ b :=



















max(a11, b11) max(a12, b12) . . . max(a1d2
, b1d2

)

max(a21, b21) max(a22, b22) . . . max(a2d2
, b2d2

)

...
...

. . .
...

max(ad11, bd11) max(ad12, bd12) . . . max(ad1d2
, bd1d2

)



















where a, b ∈ R
d1×d2 for some d1, d2 ∈ N. Additionally let a+ := a ∨ 0 and a− := (−a) ∨ 0 where a ∈ R

d for

some d ∈ N.

As described in Eisenberg and Noe [2001], any financial agent i ∈ {1, 2, ..., n} may be a creditor or obligor

to other agents. However, in contrast to Eisenberg and Noe [2001], we consider these liabilities in multiple

currencies that must be fulfilled in the physical assets rather than some numéraire. This distinction, while

unimportant in frictionless markets, will be necessary in Section 3.2 when considering the impact on prices

caused by the transactions undertaken by the firms. Let Lk
ij ≥ 0 be the contractual obligation of firm i

towards firm j in asset k. Further, we assume that no firm has an obligation to itself in any asset, i.e.,

Lk
ii = 0. The total liabilities of agent i in asset k are given by

p̄ki :=
n
∑

j=1

Lk
ij .

We can define the vector p̄k ∈ R
n
+ as the vector of total obligations of each firm in asset k. On the asset

side of the balance sheet, each firm i = 1, 2, ..., n has an initial endowment of xk
i ≥ 0 in each k = 1, 2, ...,m

asset. We refer to Figure 1a for a visual representation of the stylized book value of assets and liabilities

for a representative firm with m = 2 assets and with market prices q ∈ R
m
++. Though firms may alter

their borrowing based on market prices due to, e.g., new monetary policy in response to altered exchange

rates, modifying the balance sheet in such a way is outside the scope of the current work. We refer to

Schuldenzucker et al. [2017a,b], Banerjee and Feinstein [2019] for consideration of contingent liabilities in

the single (m = 1) asset setting.

The relative liabilities of firm i to firm j in asset k, i.e., the fractional amount of total liabilities of firm
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i towards firm j in asset k, are given by

akij =















Lk
ij

p̄k
i

if p̄ki > 0

1
n

if p̄ki = 0

.

We define the matrices Ak = (akij)i,j=1,2,...,n with the property (by construction)
∑n

j=1 a
k
ij = 1 for any i

and k. In the case that p̄ki = 0 we are able to choose akij arbitrarily, we let akij = 1
n

in that case so that

the summation is equal to 1. Any financial firm may default on their obligations in asset k if they do not

hold a sufficient number of that asset. We assume, as per Eisenberg and Noe [2001], that in case of default

the realized payments will be made in proportion to the size of the obligations, i.e., based on the relative

liabilities matrix Ak and without prioritization of payments to any firm. That is, the realized value (in

physical units) of firm i’s interbank assets in asset k is given by

n
∑

j=1

akji[p̄
k
j ∧ ykj ]

when firm j 6= i holds ykj units of asset k. Encoded in this equation is the notion that if firm j has more

assets than liabilities in asset k then it will pay out in full (akjip̄
k
j = Lk

ji), otherwise it will pay out its holdings

proportionally to what it owes. This realized balance sheet is depicted in Figure 1b with m = 2 assets and

with market prices q ∈ R
m
++.

As we consider the setting in which all liabilities must be paid in physical assets, we need to consider an

additional step to find the realized holdings for each bank in the system. For instance, Figure 1b depicts the

firm with positive mark-to-market capital, but a deficit in the first asset. Thus, as depicted in Figure 1c,

they would have to transfer some units of the second asset so as to cover this liability. As Figure 1c

considers the frictionless market, the realized capital for the firm before and after the transaction will remain

constant, and as such this system is functionally equivalent to (a generalization of) the payment model from

Eisenberg and Noe [2001]. However, if price impacts were introduced (see Section 3.2) then more complicated

firm behavior needs to be considered and a reduction to mark-to-market values is insufficient to describe the

entire system. The details of the firm behavior through a utility maximization problem is provided in the

next section.
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3 The model

In this section we will first introduce the clearing framework for multi-currency obligations without price

impacts. In this setting we provide results on existence and uniqueness, which generalizes those results

from Eisenberg and Noe [2001], Elsinger [2009]. In this case we are able to consider a fictitious default

algorithm as was first considered in Eisenberg and Noe [2001]. The framework without price impacts is of

interest because it is mathematically tractable. Additionally, from a financial perspective it is of interest

due to the generality of the payment schemes provided herein as well as allowing for clear heterogeneous

shocks to the various institutions. Under such a setting the use of multi-layered networks is unnecessary as

an approach with appropriate prioritization of payments as in Elsinger [2009] can be taken instead on the

marked-to-market wealth. However, with these results, we introduce price impacts due to the transfer of

assets undertaken by the firms. These market impacts cannot be wholly described with only the marked-

to-market wealths and thus require the use of vector-valued, i.e. multi-layered, networks. We conclude this

section by considering the resultant equilibrium exchange rates achieved after an initial shock to the asset

values. This allows us to classify when the system of banks exacerbates, and when it mitigates, the effects

of a financial crisis.

We wish to compare this model with prior notions of fire sales in the Eisenberg and Noe [2001] framework,

e.g. Weber and Weske [2017]. In such works, all obligations are denominated in the same (cash) asset and

illiquid assets are sold at a discount in order to cover these cash shortfalls. By taking such an approach,

the monotonicity of the clearing mechanism is immediate and Tarski’s fixed point provides existence of

clearing payments and prices. However, in this work, banks are given freedom to both buy and sell assets

so as to cover their obligations (in multiple assets) and to, for instance, purchase assets at a discount so

as to increase their utility. The existence of clearing prices and portfolio holdings requires more thorough

comparative static results (that are provided in the appendix), and ultimately does not result in a lattice of

equilibrium solutions.

3.1 Financial contagion without market impacts

Fix the behavior of all firms but firm i, i.e., the amount of each asset that all firms but i hold is y−i ∈ R
(n−1)×m
+

(with firm j holding yj ∈ R
m
+ ), and the relative prices is given by the vector q ∈ R

m
++. The amount of each

asset that firm i has immediately available due to the payments from the other firms is given by



xk
i +

n
∑

j=1

akji
[

p̄kj ∧ ykj
]





k=1,2,...,m

.
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As described in Eisenberg and Noe [2001], and depicted in Figure 1b, firms have available the sum of the

endowment xk
i and the realized interbank assets

∑n

j=1 a
k
ji[p̄

k
j ∧ykj ]. Following the concept of limited liabilities

(i.e., no firm pays more than it owes) and absolute priority (i.e., no firm accumulates positive equity until

all debts are paid in full), the holdings of firm i are such that

(

∃k∗ ∈ {1, 2, ...,m} : yk
∗

i > p̄k
∗

i

)

⇒ yi ≥ p̄i.

We assume that additional regulatory rules apply to the multi-asset payments. That is, regulators may en-

force, e.g., a prioritized payment (as in, e.g., Elsinger [2009]) or pro-rata payment (as in, e.g., Eisenberg and Noe

[2001]) between different assets or currencies. These rules are encoded in some monotonic, strictly concave,

and supermodular payment utility function hi. The payments made by firm i are given by

Pi(y, q) = argmax
pi∈[0,p̄i]







hi(pi; y−i, q)

∣

∣

∣

∣

∣

∣

m
∑

k=1

qkp
k
i ≤

m
∑

k=1

qk



xk
i +

n
∑

j=1

akji
[

p̄kj ∧ ykj
]











. (1)

The payment function Pi is defined, given the portfolio holdings of all other firms and the prevailing market

price, so that the mark-to-market value of the payments does not exceed the available marked-to-market

realized assets. Additionally, by constraining the payments between 0 and p̄i, we enforce the limited liabilities

assumption. The inclusion of the payment utility function hi is to guarantee that the resultant payments will

satisfy the desired regulatory environment (e.g., prioritization or proportionality). We refer to Section 4.1 for

constructions of the payment utility function under financially interesting regulations. This payment scheme

is general enough to cover regulatory environments beyond the standard frameworks in the literature, i.e.

proportional and prioritized payments, to include, e.g., a surplus repayment scheme described in Example 4.1.

However, firm i may choose to trade more assets than required to make its payments; this additional

trading will be done in order to optimize some utility function ui. To guarantee absolute priority, the final

number of assets that firm i holds must exceed, in each asset, the payment Pi(y, q). In this way the utility

function is redundant, and unnecessary, for firms that are insolvent as they must cover exactly their payments

Pi(y, q). Further, we constrain the actions of each bank so that it can obtain its desired portfolio without

loss of mark-to-market valuation from its marked-to-market assets. Thus the vector of asset holdings for

firm i is given by the bilevel program

yi ∈ Yi(y, q) = argmax
ei∈R

m
+











ui(ei; y−i, q)

∣

∣

∣

∣

∣

∣

∣

ei ≥ Pi(y, q),

∑m
k=1 qke

k
i ≤ ∑m

k=1 qk

(

xk
i +

∑n
j=1 a

k
ji

[

p̄kj ∧ y∗kj
]

)











. (2)

By enforcing the non-negativity constraint, we encode a no-short selling assumption. Note that we allow firms
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to throw away wealth in determining their final portfolio holdings. While mathematically this is possible,

all examples considered herein will guarantee that any value in Yi(y, q) will have terminal (mark-to-market)

wealth equal to the value of the firm’s assets.

With the given rules for repayment and firm behaviors, we are able to fully describe the clearing mecha-

nism for asset holdings. Given an asset holding matrix y ∈ R
n×m
+ and pricing vector q ∈ R

m
++ the updated

asset holdings are given by the clearing mechanism Y where (Yi)i=1,2,...,n is given in (2). Implicitly within

this clearing mechanism, the regulatory agency has a role to play by specifying the payment utility function

which determines the payment function Pi (defined in (1)) for each firm i.

We use the clearing mechanism to compute the realized holdings y(q) ∈ R
n×m
+ under the pricing vector

q ∈ R
m
++. This is provided by a fixed point of the clearing mechanism, i.e.,

y(q) ∈ Y (y(q), q).

We now consider conditions for the existence of maximal and minimal clearing solutions y(q), which is the

general property satisfied in the Eisenberg-Noe model, under a crisis price of q. These results are then used

to prove a sufficient condition for the uniqueness of the clearing solution by guaranteeing that the maximal

and minimal solutions must coincide. Note that, due to the generality of the payment scheme, encoded by

the payment utility functions, it is not possible to directly apply the results of Eisenberg and Noe [2001] on

the marked-to-market assets and liabilities for each firm; however, in the special case discussed in Remark 3.3

below this approach could be taken. Additionally, due to the utility maximizing behavior of the regulators

(through the payment utility function) and solvent banks (through the utility functions), we must consider

comparative statics of the bilevel optimization problems for each firm to prove the result as provided in the

appendix.

Lemma 3.1. Fix a price q ∈ R
m
++. Let the payment utility functions hi : [0, p̄i] × R

(n−1)×m
+ × R

m
++ → R

be strictly increasing, strictly concave, and supermodular in its first argument. Let the utility functions

ui : R
m
+ × R

(n−1)×m
+ × R

m
++ → R be concave and supermodular in its first argument. Additionally assume

that Yi(y, q) (defined in (2)) is singleton-valued for any y ∈ R
n×m and for all agents i.

(i) There exists a greatest and least clearing holdings y↑(q) ≥ y↓(q) satisfying y = Y (y, q).

(ii) The positive equity of all firms is equal for every fixed point, i.e., (y↑i (q) − p̄i)
+ = (y↓i (q) − p̄i)

+ for

every firm i.

These results on a greatest and least clearing portfolio holdings generalize Theorem 1 of Eisenberg and Noe

[2001]. In fact in the m = 1 asset case, all payment utility functions and utility functions satisfying the con-
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ditions of Lemma 3.1 (for example setting hi(pi; y−i, q) := p2i and ui(ei; y−i, q) := ei) recover exactly the

Eisenberg-Noe payments and assets as given by Theorem 1 of Eisenberg and Noe [2001].

In the following corollary, we introduce an additional node to the financial system. Denoted as node

0, this “firm” represents all institutions and persons not included in the system of n banks. This notion is

developed in more detail in, e.g., Glasserman and Young [2015], Feinstein et al. [2017]. In particular, we will

assume that this “societal node” acts as a sink to the system, i.e., it has no obligations into the network.

This is incorporated in the assumption that the societal node will never default on its obligations as the

initial endowments come from outside the original system. If a default of node 0 were desired, this could be

included by stressing the initial endowments of the n firms.

Corollary 3.2. Consider the setting of Lemma 3.1. If Lk
i0 > 0 and Lk

0i = 0 for every firm i and asset k

then the equilibrium holdings under price q ∈ R
m
++ is unique, i.e., y∗(q) := y↑(q) = y↓(q).

Remark 3.3. Under specific choices of payment utility and utility functions hi and ui satisfying the condi-

tions of Lemma 3.1, we can give weaker conditions for uniqueness. For instance, under proportional transfers

(see Example 4.2 with µ = 0) with minimal trading (see Example 4.3) if (q∗Tx,
∑m

k=1 q
∗
kL

k) is a regular net-

work in the setting of Eisenberg and Noe [2001] (i.e., all firms have a directed path, possibly of length 0, to

a firm with positive endowment, see Definition 5 of Eisenberg and Noe [2001]) then the clearing holdings are

unique.

We will introduce a modified version of the fictitious default algorithm from Eisenberg and Noe [2001],

Rogers and Veraart [2013], Weber and Weske [2017], Amini et al. [2016], Feinstein [2017] for the construction

of the greatest portfolio holdings y↑(q) under price q ∈ R
m
++. In particular, as with the prior fictitious

default algorithms, this algorithm will converge after at most n iterations since the set of defaulting banks is

monotonic. Though this algorithm converges within the finite number of iterations, it includes a fixed point

problem in each iteration as is also the case in, e.g., Weber and Weske [2017], Amini et al. [2016].

Algorithm 3.4. Consider the setting of Lemma 3.1 such that, additionally,

hi(pi; y−i, q) = hi(pi; p̄−i ∧ y−i, q)

ui(ei; y−i, q) = ui(ei; p̄−i ∧ y−i, q)

for every firm i and every pi ∈ [0, p̄i], ei ∈ R
m
+ , y−i ∈ R

(n−1)×m
+ , and q ∈ [q, q]. The greatest portfolio

holdings y↑(q) under price q ∈ R
m
++ can be found by the following algorithm in at most n iterations of the

following. Initialize α = 0, pα = p̄, and Dα = ∅. Repeat until convergence:

(i) Increment α = α+ 1;
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(ii) For any firm i = 1, 2, ..., n and asset k = 1, 2, ...,m, define the portfolio holdings by yαik = xik +

∑n

j=1 a
k
jip

α−1
jk ;

(iii) Denote the set of insolvent banks by Dα :=
{

i ∈ {1, 2, ..., n} | qT(yαi − p̄) < 0
}

;

(iv) If Dα = Dα−1 then exit loop;

(v) Define the matrix Λα ∈ {0, 1}n×n so that Λα
ij =















1 if i = j ∈ Dα

0 else

. pα = p̂ is the maximal solution to

the following fixed point problem

p̂ = (I − Λα) p̄+ ΛαP ((I − Λα)p̄+ Λαp̂, q) . (3)

After terminating the loop the clearing holdings can be computed by y = Y (pα, q).

The additional condition required for Algorithm 3.4 for the payment utility and utility functions states

firm i determines how much it pays or holds based only on the payments of the other firms p̄−i ∧ y−i and

not on the actualized holdings of the other firms y−i.

We will finish our discussion of the equilibrium portfolio holdings without price impacts by considering

a simple two bank example for which the clearing solution can be computed analytically. We will refer back

to this example at the end of the section on price impacts and attained equilibria as well.

x1 = (0, 2)T x2 = (2, 0)T

L12 = (1, 0)T

L21 = (0, 1)T

Figure 2: Example 3.5: A graphical representation of the network model with 2 banks and 2 assets which
accepts more than one clearing solution.

Example 3.5. Consider the network with n = 2 banks and m = 2 assets depicted in Figure 2. That is,

the first institution holds 2 units of the second asset and owes 1 in the first asset to the second institution;

vice versa the second institution holds 2 units of the first assets and owes 1 in the second asset to the

first institution. Note that any choice of (hi)i=1,2 satisfying the conditions of Lemma 3.1 is equivalent in

equilibrium since, for both banks, all obligations are only in single assets. Consider a utility function ui that

minimizes the total amount of trading in the market (see Example 4.3 below for more details). Without

loss of generality we will let asset 1 denote the numéraire asset (i.e., q1 = 1 throughout this example). As

12



discussed in Remark 3.3, for any price q2 > 0, this system will have a unique clearing solution given by:

y∗1(q) =







min (1, 3q2)

(2 + min (1, 3/q2)− 1/q2)
+






and y∗2(q) =







(2 + min (1, 3q2)− q2)
+

min (1, 3/q2)






.

3.2 Financial contagion with market impacts

The results on the clearing portfolio holdings without market impacts generalize the results of Eisenberg and Noe

[2001]. In fact in the m = 1 asset case, all payment utility functions and utility functions satisfying the con-

ditions of Lemma 3.1 (for example setting hi(pi; y−i, q) := p2i and ui(ei; y−i, q) := ei) recover exactly the

Eisenberg-Noe payments and assets as given by Theorem 1 of Eisenberg and Noe [2001] if there are no mar-

ket impacts. However, market impacts (due to asset transfers undertaken by the firms) introduce further

feedback effects on the firms and cannot be considered in the m = 1 scheme from Eisenberg and Noe [2001].

In this section, we will first introduce the inverse demand functions, which we use to model the market

impacts of firm behavior. We will then use this model of market impacts to consider the existence of clearing

prices and portfolio holdings, thus generalizing the prior section.

The price of the assets is given by a vector valued inverse demand function F : Rm → [q, q] ⊆ R
m
+ for

minimum and maximum prices q = (1, q
2
, . . . , q

m
)T and q = (1, q2, . . . , qm)T where the first asset is the

numéraire. The inverse demand function maps the quantity of each asset to be sold into a price per unit in

the numéraire. The liquidation value, in the numéraire, of the portfolio z ∈ R
m is thus given by zTF (z). We

will impose the following assumption for the remainder of this paper.

Assumption 3.6. The inverse demand function F : Rm → [q, q] ⊆ R
m
++ is continuous and nonincreasing.

For simplicity, the inverse demand function has the form F (z) := (1, f2(z2), . . . , fm(zm))T for every z ∈ R
m.

Remark 3.7. In the construction of the inverse demand function, we choose to take the first asset to be

the numéraire asset. However, this assumption need not be made for the results of this work. In fact,

a fictitious numéraire asset can be chosen instead and thus we would choose q
1
< q1 and some function

f1(z1) would be necessary as well. Further, the assumption that no cross impacts exist in the pricing can

be eliminated without affecting the results of this work so long as the inverse demand function is continuous

and nonincreasing.

Remark 3.8. Rather than introduce a numéraire, we can substitute the bid-ask matrix (see, e.g., Schachermayer

[2004]) with components πk1k2
(z) :=

Fk2
(z)

Fk1
(z) for the inverse demand function. Equivalently, from the bid-ask

matrix Π : Rm → R
m×m
++ , we can construct a set of inverse demand functions such that the first asset is the

numéraire asset by defining Fk(z) := π1k(z). Similarly, rather than introduce the inverse demand function,
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we could consider the demand curve for the nonbanking sector (as done in, e.g., Capponi and Larsson [2015]).

We consider the inverse demand function since it simplifies the formulations of this paper, though it can be

constructed from the demand curve of the nonbanking sector.

Additionally, though not needed for the results of this paper, we will generally assume that the inverse

demand function satisfies the condition that z ∈ R
m 7→ zTF (z) is a strictly increasing mapping. That is, the

liquidation value of a portfolio is strictly increasing as portfolio holdings get larger. Note that we consider

this for portfolios with short positions, i.e., zk < 0, as well.

Remark 3.9. In the case when there are m = 2 assets, following Assumption 3.6, we will assume throughout

that F1 ≡ 1 and F2(z) := f2(z2) for every z ∈ R
2 for some continuous and nonincreasing inverse demand

function f2 : R → [q
2
, q2]. That is, the first asset will act as the numéraire asset and the price of the

second asset will depend only on the number of units being bought or sold in that asset. In prior works,

e.g. Cifuentes et al. [2005], Amini et al. [2016], Feinstein [2017], the inverse demand function is only defined

as being a function of non-negative units being sold; using a symmetric argument, we can define an inverse

demand function on the entire real line from this half-line inverse demand function. Consider f̂ : R+ → [q
2
, 1]

to be a continuous and nonincreasing inverse demand function such that α(z2) := z2f̂(z2) is strictly increasing

in z2 ∈ R+. Then we can define the full inverse demand function in a symmetric way as

F2(z) :=















f̂(z2) if z2 ≥ 0

1

f̂(α−1(−z2))
if z2 < 0

. (4)

The notion of symmetry is due to the fact that selling z2 units of the second asset is equivalent to purchasing

α(z2) units of the first asset (i.e., selling −α(z2) units). Thus, when purchasing |z2| units of asset 2, for

z2 < 0, we can consider selling α−1(−z2) units of the first asset. With the added assumption that the first

asset has the same inverse demand function f̂ (when selling units of asset 1 denominated in the second asset),

and changing numéraire back to asset 1, results in the inverse demand function as presented in (4).

With the model of price impacts, given by the inverse demand function F , we want to return again to

the clearing model for firm portfolio holdings. Given an initial price q0 ∈ [q, q], Section 3.1 provides the firm

behavior y∗(q0). However, if these sales are actualized, this leads to an updated price q due to the market

impact of the transfers undertaken by each firm. In particular, the updated prices are a function of the net

difference between what is initially available to each firm and the final holdings. The initial shock q0 ∈ [q, q]

would be generated by actions from agents outside our system. That is, initially some quantity γ0 ∈ R
m is
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transacted so that q0 = F (γ0). The clearing prices, subject to the initial shock q0, are thus given by

q = F



γ0 +

n
∑

i=1



xk
i +

n
∑

j=1

akji
[

p̄kj ∧ y∗kj (q)
]

− y∗ki (q)





k=1,2,...,m





= F



γ0 +

n
∑

i=1

xi +

n
∑

j=1

([

n
∑

i=1

akji

]

[

p̄kj ∧ y∗kj (q)
]

)

k=1,2,...,m

−
n
∑

i=1

y∗i (q)





= F

(

γ0 +
n
∑

i=1

(xi + [p̄i ∧ y∗i (q)]− y∗i (q))

)

. (5)

With the feedback effects from the inverse demand function, there is the potential for increased contagion

than the initial shock propagating through the no market impact case of Section 3.1 or the single asset setting

of Eisenberg and Noe [2001]. However, if firms choose to purchase a distressed asset due to the decrease in

price, it is possible that a mitigating feedback loop is instituted that will ultimately cause fewer defaults and

improved exchange rates compared to the initial shock q0.

For the ease of utilizing these results, we will now provide a summary of all assumptions for Corollary 3.11.

These are exactly those from Corollary 3.2, Assumption 3.6, and assuming both types of utility functions

are jointly continuous.

Assumption 3.10. Let the network be such that all firms have obligations to a societal node and no obli-

gations from such a node in each asset, i.e., Lk
i0 > 0 and Lk

0i = 0 for every firm i and asset k. Let the

inverse demand function F : Rm → [q, q] satisfy Assumption 3.6, i.e., be continuous and nonincreasing.

Let the payment utility functions hi : [0, p̄i] × R
(n−1)×m
+ × R

m
++ → R be strictly increasing, strictly concave,

and supermodular in its first argument and jointly continuous for every bank i. Let the utility functions

ui : R
m
+ × R

(n−1)×m
+ × R

m
++ → R be concave and supermodular in its first argument and jointly continuous

for every bank i. Additionally assume that Yi(y, q) (defined in (2)) is singleton-valued for any y ∈ R
n×m and

for all agents i.

Corollary 3.11. Let Assumption 3.10 hold. Let γ0 ∈ R
m be an initial set of transactions that result in a

price shock q0 = F (γ0) ∈ [q, q]. There exists a fixed point price

q∗ = F

(

γ0 +

n
∑

i=1

(xi + [p̄i ∧ y∗i (q
∗)]− y∗i (q

∗))

)

and resultant portfolio holdings y∗(q∗).

In comparison to prior works in the Eisenberg-Noe framework, the existence of the clearing prices does

not follow from a monotonicity argument with Tarski’s fixed point, but rather from Brouwer’s fixed point
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theorem (as detailed in the appendix).

Remark 3.12. Assumption 3.10 can be weakened and still guarantee existence of joint clearing portfolio

holdings and prices. In fact, there exists joint clearing holdings and prices so long as:

• the payment utility functions hi are jointly continuous and both strictly increasing and strictly quasi-

concave in their first argument,

• the utility functions ui are jointly continuous and quasi-concave in their first argument, and

• the inverse demand function F satisfies Assumption 3.6.

This can be proven using an iterated application of the Berge Maximum Theorem (see, e.g., Theorem

17.31 in Aliprantis and Border [2007]) for Pi and Yi followed by an application of the Kakutani Fixed Point

Theorem (see, e.g., Theorem 3.2.3 in Aubin and Frankowska [1990]) to attain the existence of a fixed point

(y∗, q∗).1 In fact, using the logic of that proof, we can allow for continuous admissible valuation functions

(as defined in Veraart [2018]) V
k
i (y

k
i /p̄

k
i ) ∈ [0, 1] with payments Lk

ijV
k
i (y

k
i /p̄

k
i ) from firm i to j in asset k.

In this paper, we exclusively consider the continuous admissible valuation function V
EN (z) = 1 ∧ z+ for all

firms and all assets. We refer to Veraart [2018] for further discussions on admissible valuation functions and

the relation to bank distress and bankruptcy costs. For simplicity, we focus on the stronger assumptions

introduced in Assumption 3.10 for the remainder of this paper.

Remark 3.13. Note that we allow (and likely enforce) firms to both buy and sell assets during a fire

sale, this is in contrast to earlier works such as Cifuentes et al. [2005], Amini et al. [2016], Feinstein [2017],

Feinstein and El-Masri [2017]. Such an approach is necessary to consider the cross-currency obligations

exhibited in many systemic crises (e.g., Dell’Ariccia et al. [2011]). In such a setting, firms will transfer

between the currencies or, more generally, assets in order to satisfy the different obligations. That is, for

instance, a firm in the United States may need to sell US dollars for euros in order to fulfill European

liabilities, while a European firm may enact the reverse transaction within the same international financial

system. Further, we allow for solvent firms to use their excess wealth in order to maximize their utility. By

allowing this, the contagion effects of a fire sale could be partially mitigated if firms purchase an asset in

a fire sale (or sell an asset being bought in excess). The extreme mitigation in which the system has no

net changes in currency holdings (i.e., all sales by one firm are purchased by a separate firm in the system)

follows the model of Eisenberg and Noe [2001] with no illiquidity; this extreme mitigation occurs when there

is a symmetry in endowments and obligations between the assets or currencies. In contrast, the fire sales

1This statement is formalized and proven in Theorem 3.2 of an older preprint version of this text available at

https://arxiv.org/pdf/1702.07936v2.pdf .
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can have a large impact on the health of the various firms when there is an asymmetry in the system (e.g.,

between US dollars and Thai baht during the 1997 Asian financial crisis as discussed in Allayannis et al.

[2003]).

3.3 Attained equilibrium in m = 2 asset case

In general, uniqueness of the clearing holdings and prices is not guaranteed. We refer to Example 3.15 below,

which provides an illustration of multiple clearing solutions under the setting of Example 3.5, i.e., a simple

two asset network. However, though there may exist more than one clearing solution, the system can only

attain a single equilibrium. This section will focus on the tâtonnement process by which an equilibrium is

attained after the initial shock occurs in the m = 2 asset scenario.

Consider an initial price shock q0 ∈ [q, q] generated by asset transfers γ0 ∈ R
m. Initially the firms would

want to reach y∗(q0), but as they implement these transactions they will impact the prices in a continuous

way. In particular, the prices will update along the direction of difference between the “desired” price and

the current price, i.e., beginning from q0

dqt =

[

F

(

γ0 +

n
∑

i=1

(xi + [p̄i ∧ y∗i (qt)]− y∗i (qt))

)

− qt

]

dt. (6)

The attained clearing solution is exactly the asymptotic solution of this process, if it exists. This procedure

is often called the tâtonnement process in the economics literature (see, e.g., Bluhm et al. [2014]).

We wish to emphasize that although the set of clearing solutions given a shock q0 may not be a singleton,

(assuming convergence) the tâtonnement process can only reach a single clearing solution. Importantly,

because the set of clearing solutions is not unique, it will frequently be the case that the attained clearing

solutions (as a function of the initial shock q0) will be discontinuous. These points of discontinuity match

exactly those stresses in which a financial crisis becomes a systemic crises. That is, if a marginal change

in initial shock can cause a radically different clearing solution to be attained. We refer the reader to

Example 3.15, and in particular to Figure 3, for a demonstration of such an event. This discontinuity is

fundamentally a result of the nonuniqueness of equilibria. As an initial stress grows too large, the system may

not be able to sustain a financially stabilizing equilibrium anymore as firms enter insolvency and, therefore,

a jump in equilibria occurs to a more extreme outcome. Such events are systemic as they are purely a result

of firm insolvency that cannot be captured by looking solely at the aggregate of the financial system.

Proposition 3.14. Consider the setting of Assumption 3.10 with only m = 2 assets. The tâtonnement

process (6) will converge to a clearing solution.
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This tâtonnement process, ultimately, provides the attained clearing solution which includes market

impacts from the individual firm behaviors. As mentioned previously, these market impacts can have either

mitigating or exacerbating effects which cannot be captured by the Eisenberg-Noe framework with exogenous

shocks only. As we will investigate in numerical case studies in Section 5, the choice of regulatory framework

and utility functions will affect the clearing solutions. As a rule of thumb, and as expected, small shocks

may be “absorbed” by the system, while large shocks are likely to be exacerbated and may potentially drive

the price to the upper or lower bound.

Example 3.15. Consider the network with n = 2 banks and m = 2 assets depicted in Figure 2 with

parameters considered in Example 3.5. Consider linear price impacts on the second asset, i.e., F2(z) =

q
2
∨ (1 − bz2) ∧ q2 for some lower bound q

2
< 1

3 , upper bound q2 > 3 on the prices, and price impact

b ∈ (0, 1). The set of clearing prices, as a function of the initial shock size q0 ∈ [q, q], are given by

Q∗(q0) =















































{q0(q0)} if q
2
≤ q0,2 < −b+ 2

√
b

{q0(q0), q↓(q0), q↑(q0)} if − b+ 2
√
b ≤ q0,2 ≤ 2b+ 1

3

{q↑(q0)} if 2b+ 1
3 < q0,2 < 3− 2

3b

{q1(q0)} if 3− 2
3b ≤ q0,2 ≤ q2

where the candidate clearing prices are provided by

q↑(q0) =

(

1,
1

2

[

q0,2 + b +
√

q20,2 + 2b(q0,2 − 2) + b2
]

)T

q↓(q0) =

(

1,
1

2

[

q0,2 + b −
√

q20,2 + 2b(q0,2 − 2) + b2
]

)T

q0(q0) =
(

1, [q0,2 − 2b] ∨ q
2

)T

q1(q0) =

(

1,
1

2

[

q0,2 +
√

q20,2 + 8b
]

∧ q2

)T

.

We wish to note that q↑((1, 3− 2
3b)

T) = q1((1, 3− 2
3b)

T), so only one clearing solution exists at q0,2 = 3− 2
3b.

Though multiple clearing prices exist for q0,2 ∈ [−b + 2
√
b, 2b + 1

3 ], a unique price is attained using the

tâtonnement process. This selector from the set of all clearing prices can be determined as a function of the

18



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Stressed Price q
0,2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
E

qu
ili

br
iu

m
 P

ric
e 

q
2*

Comparison of initial price q
0,2

 to resultant price q
2
*

Equilibrium without Price Impacts
Attained Equilibrium with Price Impacts
Unattained Equilibrium with Price Impacts

(a) The graph of all equilibrium prices subject to any
initial shock q0,2 ∈ [0.05, 5].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Stressed Price q
0,2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
qu

ili
br

iu
m

 P
ric

e 
q

2*

Comparison of initial price q
0,2

 to resultant price q
2
*

Equilibrium without Price Impacts
Attained Equilibrium with Price Impacts
Unattained Equilibrium with Price Impacts

(b) The graph of all equilibrium prices subject to any
downward shock to the second asset q0,2 ∈ [0.05, 1].

Figure 3: Example 3.15: A comparison of the set of equilibrium prices Q∗ to initial shocks q0 with the
attained equilibrium q∗ highlighted.

initial shock q0 ∈ [q, q] to be given by

q∗(q0) =































q0(q0) if q
2
≤ q0,2 < −b+ 2

√
b

q↑(q0) if − b+ 2
√
b ≤ q0,2 < 3− 2

3b

q1(q0) if 3− 2
3b ≤ q0,2 ≤ q2

.

Of particular note, q∗ is discontinuous at q0,2 = −b + 2
√
b in general. This provides the important notion

that the system can, roughly, absorb a shock of size −b+2
√
b (with some exacerbating tendencies), but any

shock larger than that will cause a near complete collapse of the system. We refer the reader to Figure 3

which displays the set of clearing prices Q∗ and the attained clearing price q∗ as functions of the initial

shock q0 where q
2
= 0.05, q2 = 5, and b = 3

8 . Both the full region of responses and a consideration of only

downward shocks in the second asset price are presented. Notably, at q0,2 = −b + 2
√
b ≈ 0.85 the attained

equilibrium price drops from roughly 0.6125 to 0.10. As such, this simple system can be viewed as being

able to withstand a 15% drop in asset prices, but no more.

4 Example payment utility and utility functions

In this section we present two possible choices for the payment utility function hi and three choices for the

utility functions ui which satisfy Assumption 3.10 and the additional conditions of Algorithm 3.4. For the
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payment utility function hi we present quadratic formulations that correspond to:

• Surplus transfers: a firm only transfers from one asset to another if there is a surplus to exchange.

• Prioritization with proportional payments: a firm transfers all wealth to asset 1 first until that obligation

is paid off in full, then attempting to fulfill obligations in the second asset, and so on through the µth

asset, then attempting to fulfill all other obligations paying out in proportion to the total liabilities.

As special cases, this setting includes both asset prioritization (i.e., all assets are ordered and given

a strict seniority structure for repayment) and proportional payments (i.e., the amount of obligations

filled follows the same proportion as the total liabilities).

For the utility function ui we present three options with clear meaning:

• Minimal trading: a utility function such that firms choose to see how markets respond in the immediate

aftermath of the crisis in order to determine their investment response, i.e., firms seek to minimize the

total amount of trading between assets (once the rules to find the payments Pi are taken into account).

• Asset maximizing: a utility function encoding a flight-to-quality which seeks to maximize the total

number of units of a specific asset, at the expense of all other assets.

• Value maximizing: a utility function which is given by the value of the final portfolio holdings of the

firm since firms typically trade assets in order to maximize return on equity. In particular, this utility

function attempts to maximize the total pre-crisis wealth for a firm.

4.1 Sample payment utility functions

Here we will consider the details of two possible, meaningful, options for the choice of payment utility

functions hi in (1). These are a surplus transfer rule and a prioritization of the first µ assets and proportional

payments for the remainder rule. Both of these sample payment utility functions satisfy Assumption 3.10

and the conditions of Algorithm 3.4.

Example 4.1. Consider a regulatory framework in which a firm is only forced to transfer assets if there is

a surplus that is not being used to cover obligations already. In an international financial system, such a

regulatory framework would naturally exist if each (independent) regulatory body places priority on its own

currency. Any institution operating in multiple nations would be forced to follow the local regulations with

their locally held endowments. However, once a firm has satisfied all obligations in a currency, the regulatory

requirements therein have been satisfied and they may exchange the surplus to any other currency still in
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deficit. One possibility to describe this framework is represented mathematically by the quadratic payment

utility function hi : [0, p̄i]× R
(n−1)×m
+ × [q, q] → R defined by:

hi(pi; y−i, q) := −1

2
(ci − pi)

T
diag

(

[

q1
c1i − e1i

,
q2

c2i − e2i
, . . . ,

qm
cmi − emi

]T
)

(ci − pi)

ci = p̄i ∨ ei + δ

eki = xk
i +

n
∑

j=1

akji
[

p̄kj ∧ ykj
]

(k = 1, 2, ...,m).

The δ ∈ R
m
++ term that appears is to shift the center of the ellipsoidal level sets of hi rightward and upward

from the maximum between the amount owed p̄i and the amount held (pre-transfers) through market clearing

ei. The δ is introduced solely to avoid a division by 0 in this representation of the surplus payment utility

function. In fact, this payment utility function is chosen such that the level sets are ellipsoids with center

above both p̄i and ei, and such that the gradient of hi is q at ei.

Example 4.2. Consider a regulatory framework in which a prioritization scheme is applied to the first

µ ∈ {0, 1, ...,m} assets, and all other assets are treated in equal proportion after those first µ assets are

paid in full. In the special cases that µ = 0 this is a purely proportional payments regulation scheme, i.e.,

pro-rata. In the case that µ = m this is a purely prioritized payments regulation scheme, i.e., a seniority

structure as in Elsinger [2009]. This may arise if asset 1 is the local currency due to regulations favoring

those payments. Financial institutions will pay off their balance in asset 1 (including by transferring funds

from all other assets), and only after that obligation is fulfilled will they begin filling asset 2 and so on down

the line until they pay off asset µ. Only after asset µ is paid off in full will the other obligations be paid,

which will be done in proportion to the obligations for assets µ+1 through m. Mathematically we will define

the payment utility function hµ
i : [0, p̄i]× R

(n−1)×m
+ × [q, q] → R by

hµ
i (pi; y−i, q) := −1

2
(ci − pi)

T diag





[

q1
c1i − s1i

, . . . ,
qµ

cµi − sµi
,

qµ+1

cµ+1
i − πp̄µ+1

i

, . . . ,
qm

cmi − πp̄mi

]T


 (ci − pi)

ci = p̄i + δ

ski = p̄ki ∧

(

∑m
j=1 qje

j
i −

∑k−1
j=1 qjs

j
i

)+

qk
(k = 1, 2, ..., µ)

π =

[(
∑m

k=1 qkp̄
k
i

)

∧
(
∑m

k=1 qke
k
i

)]

−∑µ

k=1 qks
k
i

∑m

k=1 qkp̄
k
i −

∑µ

k=1 qks
k
i

eki = xk
i +

n
∑

j=1

akji
[

p̄kj ∧ ykj
]

(k = 1, 2, ...,m).
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As with the surplus payment utility function, we choose the quadratic form to create ellipsoidal level sets

with center ci (above p̄i), and such that the gradient of hi is q at the point on the feasible line where all

wealth is in asset 1 if less than p̄1i , or p̄1i wealth is in asset 1, and so on until asset µ, and the remaining

assets are along the proportionality line.

4.2 Sample utility functions

Here we will consider the details of three possible, meaningful, options for the choice of utility functions

ui in (2). These are the utility function that leads to minimizing the total size of transfers, the utility

function that prioritizes holding a specific asset, and the utility function given by the pre-fire sale priced

final wealth of the firm. All three of these sample utility functions satisfy Assumption 3.10 and the conditions

of Algorithm 3.4.

Example 4.3. Consider the case where firms wish to make the smallest possible trades in order to meet

their obligations, and trade no more once that occurs. Such a setting may be appropriate when a firm is

concerned about uncertainty in the rightful exchange rates. With such uncertainty a firm may choose to

minimize their own impact and wait for the market response to take shape before responding. Essentially,

this is a “wait and see” approach to investing during a crisis. Firms would then choose to rebalance over

time as prices fluctuate after the crisis studied in this work. Due to the static nature of the model studied

in this work, this allows us to capture the immediate aftermath of a crisis but not the long term effects that

may be felt. We can define the utility function for (2) by

ui(ei; y−i, q) := −

∥

∥

∥

∥

∥

∥

(xk
i +

n
∑

j=1

akji[p̄
k
j ∧ ykj ])k − ei

∥

∥

∥

∥

∥

∥

2

2

.

That is, the holdings for firm i after trading would be the closest feasible point (based on the Euclidean

norm) to the initial network model before trading occurs. In particular, by definition of the norm, ui is

jointly continuous, strictly concave, and supermodular in its first component.

Example 4.4. Consider the case where a firm may wish to maximize their holdings in a specific asset

k∗ ∈ {1, 2, ...,m} at the expense of all other assets. In a systemic crises, firms may choose to sell higher risk

assets or currencies in order to purchase safer ones in a flight-to-quality. This has occurred in practice during

currency crises such as the 1997 Asian financial crisis when firms bought US dollars due to the collapse of

local currencies despite the market moving against them in such transactions. This can be modeled by a

firm wishing to maximize the holdings in the safe asset at the expense of all others. We can define the utility

22



function for (2) by

ui(ei; y−i, q) := ek
∗

i − p̄k
∗

i .

That is, firm i will solely seek to maximize their holdings in asset k∗, without consideration of any other

assets. In particular, this is trivially jointly continuous, concave, and supermodular in its first component.

Example 4.5. Consider the case where firms wish to maximize their own net worth (in the numéraire)

given the pre-fire sale prices. Such a setting is appropriate when a firm has the belief that the pre-fire sale

prices are the “true” value of the assets. In such a view, any change from this price is due to the current

crisis, but will rebound to the pre-fire sale prices after the crisis is over. Thus a firm would wish to purchase

assets at a discount (or sell at a premium) in order to obtain a good deal. In this case we seek to maximize

ui(ei; y−i, q) := (ei − p̄i)
T
F (0),

which is jointly continuous, concave, and supermodular on the domain of interest. Additionally, under the

condition that Pi is a singleton (as in the assumptions of Lemma 3.1), we can recover the resultant utility

maximizer Yi(y, q) is unique so long as q 6= λF (0) for every λ ∈ R++.

Compare this utility function to the welfare maximizing utility, i.e., when a regulator wishes to maximize

the welfare of the aggregate system of financial institutions as measured by
∑n

i=1 ui(ei; y−i, q) over all firm

holdings ei simultaneously. With this utility function, since firms are purchasing asset k if qk < Fk(0)

and selling if qk > Fk(0), the Nash equilibrium clearing prices will correspond with the welfare maximizing

clearing prices since firm behavior will be identical under both considerations.

5 Numerical case studies

In this section we will consider two numerical implementations of the financial contagion framework con-

sidered in the prior sections. The first study is a toy implementation of the example payment utility and

utility functions presented in Section 4 to demonstrate how they affect the attained equilibrium prices. We

will then implement a brief study of the European financial system, calibrated with data from the European

Banking Authority, to compare the equilibrium solution under a single currency (as in Eisenberg and Noe

[2001]) to the counterfactual under which the Greek drachma were reinstated during an actualized Grexit

event.

Example 5.1. For a first illustrative example, consider a network with two currencies. As assumed through-

out this work, let the first currency act as the numéraire asset, i.e., F1 ≡ 1. To model the market impacts,
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let the inverse demand function for the second currency be given by

F2(z) =















f̂(z2) if z2 ≥ 0

1

f̂(α−1(−z2))
if z2 < 0

for f̂(z) =
3 tan−1 (−z) + 2π

2π

where α(z2) := z2f̂(z2) is the number of units of the first currency being purchased when z2 ∈ R units of

the second currency are being sold. See Remark 3.9 for a discussion of the symmetry argument inherent in

this choice of inverse demand function.

We will consider a system with 20 firms and a societal node, as introduced in Corollary 3.2. As this

is an illustrative example only, we will consider a single realization of a random financial network. In

both currencies, independently, each pair of firms has a 25% probability of having a connection of size

1. Additionally, every firm owes 1 of both currencies to the external node, which owes nothing back into

the system. All firms begin with i.i.d. random endowments uniformly chosen between 0 and 20, which

is then split evenly between the two currencies. For demonstration purposes to show how the different

regulation schemes and utility functions alter the equilibrium of the system as the initial shock q0 varies, we

consider the surplus, priority, and proportional regulation schemes (Examples 4.1 and 4.2 with µ = 2 and

µ = 0 respectively) under the minimum trading utility function (Example 4.3) and value maximizing utility

function (Example 4.5). In each scenario the societal node will follow the minimum trading utility function.

Additionally, for illustration of the set of clearing solutions, we will also show all equilibrium prices without

any initial shock, i.e. q0 = F (0) = (1, 1)T, for the different regulation schemes and utility functions.

Figure 4 displays the prices attained from the tâtonnement process q∗2(q0) given an initial price of q0 =

(1, q0,2)
T both with and without market impacts. We note that the attained process need not be continuous

in the initial price q0. Note that only a single curve for the value maximizing utility is shown as all three

payment utility schemes produce virtually indistinguishable curves under that utility. Further note that under

the value maximizing utility the unique equilibrium price is given by the unshocked price F (0) = (1, 1)T for

nearly any initial price q0 and mitigates the shock for any initial price. Additionally, the value maximizing

utility produces a continuous equilibrium response as a function of the shocked price q0. We would also like

to point out that the attained clearing prices need not be continuous (as also demonstrated in Example 3.15).

It appears that all three regulatory environments jump equilibria at low values of q0,2. Specifically, under the

minimal trading utility function, the surplus payment utility function jumps equilibria at qs0,2 ≈ 0.605 from

q∗2(q
s
0 + ǫ) ≈ 2.695 to q∗2(q

s
0 − ǫ) ≈ 0.364. Similarly, the priority payment utility function jumps equilibria at

qµ=2
0,2 ≈ 1.413 from q∗2(q

µ=2
0 + ǫ) ≈ 2.956 to q∗2(q

µ=2
0 − ǫ) ≈ 0.285. Finally, the proportional payment utility

function jumps equilibria at qµ=0
0,2 ≈ 0.875 from q∗2(q

µ=0
0 + ǫ) ≈ 3.001 to q∗2(q

µ=0
0 − ǫ) ≈ 0.331.
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Figure 4: Example 5.1: A comparison of the attained clearing prices both without market impacts and with
market impacts under surplus, priority, and proportional regulation schemes in a 2 currency system under
minimum trading and value maximizing utility.

For demonstrative purposes, we display the set of all clearing prices and defaulting banks under the four

scenarios in Table 1 under no initial shock, i.e., q0 = F (0). We would like to point out that the priority

regulatory scheme, under the minimum trading utility function, results in a unique equilibrium in this

setting, with the equilibrium price being near the lower bound q
2
= 1

4 . This is due to the forced liquidation

of currency 2 for currency 1, which creates a significant asymmetry in the trading not present in, e.g., the

proportional regulation scheme. We further note that the surplus regulation scheme, though symmetric in

construction, is asymmetric in equilibrium. This demonstrates the concept that the particular realization

of the network plays a significant role in directing symmetry (i.e., higher liabilities or lower assets in one

currency will skew the equilibrium results). Finally, the proportional regulation scheme results in multiple

clearing solutions thus providing a counterexample to uniqueness of the joint clearing holdings and prices.

Notably, choosing different regulatory and utility functions causes different firms to default in equilibrium.

Example 5.2. Let us now consider an example calibrated from data. We will calibrate a network model to

the 2011 European banking dataset from EBA that has been used in prior studies (e.g., Gandy and Veraart

[2017], Chen et al. [2016]) under the financial contagion framework of Eisenberg and Noe [2001]. Though we
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Utility Regulation Price q∗2 7 8 9 10 13 16 17 19

Minimum trading

Surplus 3.2324 X X X X X
Priority 0.2812 X X X X X X

Proportional
0.3340 X X X X X X
0.7625 X X X X X
3.1252 X X X X X

Value maximizing Proportional 1.0000 X X X X X

Table 1: Example 5.1: A comparison of clearing price and defaulting firms without initial shock, i.e.,
q0 = F (0), under the surplus, priority, and proportional regulation schemes in a 2 currency system under
minimum trading and value maximizing utility.

utilize this dataset to have a more realistic network, the approach for calibration still requires heuristics, as

such this example is still for demonstrative purposes only.2

As a stylized bank balance sheet, we will consider two categories of assets: interbank assets
∑n

j=1 Lji and

endowments xi. We will additionally consider three categories of liabilities: interbank liabilities
∑n

j=1 Lij ,

external liabilities Li0, and capital ci. First, we will briefly discuss how to calibrate the Eisenberg and Noe

[2001] model, i.e., when all values are denominated in the numéraire asset only. The EBA dataset pro-

vides information on the total assets Ti, capital ci, and interbank liabilities
∑n

j=1 Lij . To determine

the variables necessary for the Eisenberg and Noe [2001] model we will assume, as in Chen et al. [2016],

Glasserman and Young [2015], that the interbank liabilities equal interbank assets
∑n

j=1 Lij =
∑n

j=1 Lji.

We will, however, modify this condition slightly as discussed in Gandy and Veraart [2017]; we will perturb

the interbank assets a small amount to satisfy a technical condition of Gandy and Veraart [2017]. Addi-

tionally, we assume that all assets not a part of the interbank assets are endowments and all liabilities not

capital or owed to other banks are owed to the societal node 0. Under these assumptions, given the provided

values, we determine the remainder of the stylized balance sheet via

xi := Ti −
n
∑

j=1

Lij , Li0 := Ti −
n
∑

j=1

Lij − ci, and p̄i := Li0 +

n
∑

j=1

Lij .

Under this calibration, the net worth of firm i is equal to its capital, i.e., ci = Ti − p̄i.

In order to complete the Eisenberg and Noe [2001] system, we need the full nominal liabilities ma-

trix L. This, however, is not provided in the EBA dataset. Thus we will utilize the methodology of

Gandy and Veraart [2017] in order to estimate one such matrix consistent with the asset and liability

data discussed above. We consider a single realization of the nominal liabilities matrix L given the al-

gorithm of Gandy and Veraart [2017] with parameters p = 0.5, thinning = 104, nburn-in = 109, and

λ = pn(n−1)∑
n
i=1

∑
n
j=1

Lij
≈ 0.00122.

2Due to complications with the calibration methodology, we only consider 87 of the 90 institutions. DE029, LU45, and SI058

were not included in this analysis.
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First, as a baseline model, we run the financial contagion model of Eisenberg and Noe [2001] to determine

the “factual” response in the scenario that Greece remains in the Eurozone and thus only a single currency

is utilized. In this scenario, assuming no external stresses, we find that none of the 87 banks would default

on its obligations; this comports with reality since none of the firms failed in late 2011. Additionally, as this

model only considers a single asset, there are no fire sales evidenced either.

Now, we wish to consider the counterfactual scenario in which Greece were not a member of the Eurozone

and had its own currency, the drachma, once more (i.e., the Grexit scenario). In order to update the

calibration to include both the euro and drachma, we need to consider also the total (non-sovereign) exposures

that each bank has to Greece GEi.
3 For notational simplicity let N = {1, 2, ..., 87} be the set of all banks

and G ⊆ N be the set of the six Greek banks in the EBA dataset. Then using the calibrated assets and

liabilities to the Eisenberg and Noe [2001] framework (henceforth denoted xEN and LEN ) we update the

assets and liabilities to be

x1
i := xEN

i −GEi, x2
i := GEi ∀i ∈ N\G

x1
i := 0, x2

i := xEN
i ∀i ∈ G

L1
ij := LEN

ij , L2
ij := 0 ∀i ∈ N\G ∀j ∈ N ∪ {0}

L1
ij := LEN

ij , L2
ij := 0 ∀i ∈ N ∀j ∈ N\G

L1
ij := 0, L2

ij := LEN
ij ∀i ∈ G ∀j ∈ G ∪ {0}.

where the first asset is the euro and the second is the drachma. That is, the assets of the non-Greek banks

are denominated in drachmas for the amount that was exposed to Greece and the rest remains denominated

in euros. In contrast, all endowments held by Greek banks are re-denominated in the drachma. Additionally,

obligations from a Eurozone bank to the societal node is denominated in the euro and all obligations from a

Greek bank to the societal node is denominated in drachmas. Finally, all interbank liabilities between two

Greek banks is re-denominated in drachmas, otherwise all interbank liabilities remain in euros.

In incorporating two assets we need to discuss the inverse demand function. Consider an inverse demand

function of the form of that in Example 5.1. That is, let the first asset (euro) acts as the numéraire asset,

i.e., F1 ≡ 1, and let the inverse demand function for the second asset (drachma) be given by

F2(z) =















f̂(z2) if z2 ≥ 0

1

f̂(α−1(−z2))
if z2 < 0

for f̂(z) =
4 tan−1 (−bz) + 3π

3π

3Sovereign exposures to Greece were orders of magnitude smaller and thus their inclusion would not have significantly

affected the final model.

27



where b ≥ 0 is the market impact parameter and α(z2) := z2f̂(z2) is the number of units of euros being

purchased when z2 ∈ R units of drachmas are being sold. See Remark 3.9 for a discussion of the symmetry

argument inherent in this choice of inverse demand function. We will first consider setting the market impacts

to a fixed level, i.e. b = 10−4, then considering the effects of changing the price impacts.

Finally, we need to consider some payment utility and utility functions for this setting. We will consider

that all firms will follow a priority regulation scheme (Example 4.2 with µ = 2) in which they prioritize

obligations in the local currency due to the preferences of the regulators. That is, Eurozone banks will

prioritize payments in the euro and Greek banks will prioritize payments in the drachma. Additionally, we will

assume that all firms (and the societal node) will follow the minimal trading utility function (Example 4.3).

This follows from the presupposition that the initial exchange rate (without loss of generality set to F (0) =

(1, 1)T) would not be trusted by the various institutions due to fear of fire sales of the new drachma. Therefore,

due to uncertainty in the “true” exchange rate, firms will be conservative and do as little trading as necessary.

If instead we supposed that firms would want to maximize their assets in the euro as a flight-to-stability

(Example 4.4) then we would see a total collapse of the drachma value but similar final results.

Now, with the multiple currency network calibrated to the setting that Greece was forced out of the

Eurozone, we can simulate this systemic event. For this case study we will only consider the setting without

an initial shock, i.e. q0 = F (0) and γ0 = 0, and with price impacts given by b = 10−4. Due to the

choice of priority regulation scheme, the response to external stresses to the value of the drachma (i.e.,

with q0,2 < 1) would only marginally impact the final equilibrium. Figure 5a displays the updated prices

F (
∑n

i=1(xi + [p̄i ∧ y∗i (q)]− y∗i (q))) given an initial price of q = (1, q2)
T after one iteration of the fixed point

problem. We note that the resultant curve is continuous because of the continuity of the both the inverse

demand function and the unique holdings y∗(q) (see the proof of Corollary 3.11). The marked point on the

curve shows the equilibrium price of q∗ = (1, 0.44331), i.e., after clearing the value of the drachma would fall

to 44.331% of its former value compared to the euro. At this equilibrium price, we found that three banks

would fail, though none of these banks were situated in Greece. This is due to a large amount of Greek

bank liabilities (interbank and to society) being drachma denominated and thus insulated from the fall in

drachma value.4 However we found that both banks from Cyprus included in this dataset (Marfin Popular

Bank and the Bank of Cyprus) and the Banco Comercial Portugues would fail due to large exposures to

Greece.5 While the Cypriot banks had, in relative terms, an order of magnitude more exposures to Greece

than any other non-Greek bank, the Banco Comercial Portugues had the third highest relative exposure to

Greece. Thus we are able to see that a crisis focused on Greece, with an endogenous stress to the rest of

4Though the greater Greek economy would likely suffer under such a large currency move.
5We would like to note that all three of these defaulting banks received a bailout or government intervention in either 2012

or 2013.
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the Eurozone, is able to spread to institutions in the rest of the Eurozone. In particular, if our study had

coupled the Grexit event with some exogenous stress to the different banks balance sheets, as would likely

occur in such an event, we would find a larger number of defaults in both the Eurozone and Greece.

We wish to finish this example by considering the effects of changing the price impact parameter b which

previously was fixed at 10−4. All other parameters are kept constant from the previous considerations.

Notably this includes the assumption that there is no initial crisis and all price movements are the result

of the actions of the firms under consideration. Figure 5b displays the attained equilibrium prices under

changes to the price impact parameter b. Notably even a small level of price impacts causes a large drop in

the value of the Greek drachma in relation to the euro. This provides us with a level of confidence in the

determined results we found for the price impact b = 10−4 even though this inverse demand function was

not calibrated to data in the manner that the balance sheets were.
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Figure 5: Example 5.2: Graphical representations for fire sale prices of the Greek drachma denominated in
euros under a priority regulation scheme and minimum trading utility without any initial stress.

6 Conclusion

In this paper we considered an extension of the financial contagion model of Eisenberg and Noe [2001] to allow

for obligations in more than one asset. In doing so, we have written a mathematical model that incorporates

more realistic elements to financial contagion including obligations in multiple currencies and allowing for

solvent firms to purchase or sell assets beyond those required to satisfy obligations (as is generally assumed
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in, e.g., Cifuentes et al. [2005], Amini et al. [2016], Feinstein [2017], Feinstein and El-Masri [2017]). Under

markets without price impacts, we proved the existence and uniqueness of the equilibrium portfolio holdings

in which each firm is a utility maximizer. We then generalized this result to prove existence of clearing

prices in markets with price impacts. Additionally, we consider the tâtonnement process to determine which

equilibria to which the market would converge in the 2 asset setting. Numerical case studies were undertaken

to demonstrate the utility of the proposed model and how the choice of payment regulatory framework may

impact, e.g., the realized exchange rates. In particular, we consider a stylized example of the European,

and specifically Greek, financial system under the counterfactual condition that the Greek drachma were

reinstated.

A Proofs for Section 3

Proof of Lemma 3.1. Fix q ∈ R
m
++.

(i) Define Gi : [0, p̄i] → R to be the linear mapping Gi(pi) = qTpi for any pi ∈ [0, p̄i]. Noting that the

(convex) budget constraint of Pi(y, q) is equivalently given by

pi ∈ G−1
i







−∞,
m
∑

k=1

qk



xk
i +

n
∑

j=1

akji
[

p̄kj ∧ ykj
]











 .

Further, the upper bound from the budget constraint is nondecreasing in y. Utilizing the strict con-

cavity of the payment utility function hi to guarantee the uniqueness of the maximizer Pi(y, q) for any

y ∈ R
n×m
+ , it follows that Pi(·, q) is nondecreasing by Corollary 2(ii) of Quah [2007].

Now we wish to show that Yi(·, q) is nondecreasing as well. That is, Yi(y, q) ≤ Yi(y
′, q) for any

y, y′ ∈ R
n×m
+ with y ≤ y′. Take y, y′ ∈ R

n×m
+ with y ≤ y′. If Pi(y, q) 6= p̄i then, by construction and

the monotonicity of the payment function Pi(·, q), we find

Yi(y, q) = Pi(y, q) ≤ Pi(y
′, q) ≤ Yi(y

′, q).

Let Pi(y, q) = p̄i (and thus Pi(y
′, q) = p̄i as well by the monotonicity of Pi(·, q)). Now define Gi :

(

p̄i + R
m
+

)

→ R as the same linear map as above, i.e., Gi(ei) = qTei. As with the payment function,
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the feasible regions for Yi(y, q) and Yi(y
′, q) can, respectively, be provided by

G−1
i







−∞,

m
∑

k=1

qk



xk
i +

n
∑

j=1

akji
[

p̄kj ∧ ykj
]











 ,

G−1
i







−∞,

m
∑

k=1

qk



xk
i +

n
∑

j=1

akji
[

p̄kj ∧ y′kj
]











 .

Again, the upper bound for this interval is nondecreasing in the portfolio holdings parameter. Under

the assumption that Yi(y, q) and Yi(y
′, q) are unique maximizers, we apply Corollary 2(ii) of Quah

[2007] to find Yi(y, q) ≤ Yi(y
′, q).

Finally, we apply the Tarski fixed point theorem (see, e.g., Theorem 11.E of Zeidler [1986]) to the

mapping Y (·, q) : Rn×m
+ → R

n×m
+ to recover the result.

(ii) From (i) we know that (y↑i (q) − p̄i)
+ ≥ (y↓i (q) − p̄i)

+. By way of contradiction, assume there exists

an institution i and asset k such that (y↑ki (q) − p̄ki )
+ > (y↓ki (q) − p̄ki )

+. This immediately implies

∑n
i=1 q

T(y↑i (q)− p̄i)
+ >

∑n
i=1 q

T(y↓i (q) − p̄i)
+ by qk > 0 for every asset k. However,

n
∑

i=1

qT(y↑i (q)− p̄i)
+ =

n
∑

i=1

qT(y↑i (q)− [p̄i ∧ y↑i (q)])

=

n
∑

i=1

(qTxi +

m
∑

k=1

qk

n
∑

j=1

akji[p̄
k
j ∧ y↑kj (q)]− qT[p̄i ∧ y↑i (q)])

=
n
∑

i=1

qTxi +
n
∑

k=1

qk

n
∑

j=1

[p̄kj ∧ y↑kj (q)]
n
∑

i=1

akji −
n
∑

i=1

qT[p̄i ∧ y↑i (q)]

=
n
∑

i=1

qTxi +
n
∑

j=1

qT[p̄j ∧ y↑j (q)]−
n
∑

i=1

qT[p̄i ∧ y↑i (q)]

=

n
∑

i=1

qTxi =

n
∑

i=1

qT(y↓i (q)− p̄i)
+

where the last equality follows by applying the same operations to y↓i in the reverse order. This provides

our contradiction and thus (y↑i (q)− p̄i)
+ = (y↓i (q)− p̄i)

+ for every bank i.

Proof of Corollary 3.2. First, if bank i has positive equity, then by Lemma 3.1(ii) it immediately follows

that y↑i (q) = y↓i (q). In particular this must be true for node 0 as it has positive equity by definition. For

notational purposes, let E+ := {i ∈ {1, 2, ..., n} | y↓i (q) ≥ p̄i} be the set of firms with positive equity. Let

us assume there exists some firm i 6∈ E+ and asset k such that y↑ki (q) > y↓ki (q), then immediately the
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mark-to-market value of the equity of the societal node 0 satisfies

qTy↑0(q) =
m
∑

k=1

qk
∑

j∈E+

akj0p̄
k
j +

m
∑

k=1

qk
∑

j 6∈E+

akj0y
↑k
j (q)

>

m
∑

k=1

qk
∑

j∈E+

akj0p̄
k
j +

m
∑

k=1

qk
∑

j 6∈E+

akj0y
↓k
j (q) = qTy↓0(q).

But this is a contradiction to y↑0(q) = y↓0(q).

Proof of Corollary 3.11. First, we wish to prove that, given uniqueness (guaranteed by Corollary 3.2) of the

portfolio holdings under a fixed price q, the equilibrium holdings y∗ : [q, q] → R
n×m
+ are continuous. Theorem

A.2 of Feinstein et al. [2017] guarantees that the graph of y∗ is closed in the product topology. Now we note

that the range space that the holdings can attain is, in fact, the convex and compact set
∏n

i=1 Ēi where

Ēi =

m
∏

k=1



0,
1

q
k

m
∑

l=1

ql



xl
i +

n
∑

j=1

aljip̄
l
j







 .

Therefore, by the closed graph theorem (see, e.g., [Aliprantis and Border, 2007, Theorem 2.58]) continuity is

proven. This allows us to directly apply the Brouwer fixed point theorem (see, e.g., [Aliprantis and Border,

2007, Corollary 17.56]) to find an equilibrium price

q∗ = F

(

n
∑

i=1

(xi + [p̄i ∧ y∗i (q
∗)]− y∗i (q

∗))

)

.

Proof of Proposition 3.14. Define α : [q, q] → R
m by α(q) :=

∑n
i=1 (xi + [p̄i ∧ yi(q)]− yi(q)). Additionally,

consider V : [q, q] → R to be provided by

V (q) := γT

0 q +A(q)−
m
∑

k=1

∫ qk

1

f−1
k (p)dp

where A : [q, q] → R is defined as the multivariate function with gradient α. For the moment we will assume

that A exists, at the end of this proof we show this is the case under the restricted m = 2 asset setting.

With this construction we find that d
dt
V (qt) is negative semidefinite for any trajectory qt of the tâtonnement

process, i.e.,

d

dt
V (qt) =

(

γ0 + α(qt)− F−1(qt)
)T

(F (γ0 + α(qt))− qt) ≤ 0.
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This is because [γ0 + α(q) − F−1(q)]k ≥ 0 if and only if Fk(γ0 + α(q)) ≤ qk since Fk(γ0 + α(q)) = Fk(γ0 +

α(q) − F−1(q) + F−1(q)) and the monotonicity of the inverse demand function. In fact, d
dt
V (qt) = 0 if and

only if qt is an equilibrium price due to the same preceding argument. By LaSalle’s invariance principle (see,

e.g., [Khalil, 2002, Theorem 4.4]), the set of accumulation points of any trajectory is equivalent to the set

of equilibrium prices. Further, since qt ∈ [q, q] for every time t ≥ 0, the tâtonnement process approaches the

set of clearing prices as t → ∞.

Finally, we wish to guarantee the existence of the function A : [q, q] → R so that its gradient is equal to

α. For this purpose we restrict ourselves to the m = 2 asset setting since, functionally, we can consider our

input q to be its second argument only (due to our choice of numéraire). That is, we can consider instead

V (q2) = γ0,2q2 +
∫ q2

1 α2(p)dp−
∫ q2

1 f−1
2 (p)dp.
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