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Abstract

This paper studies Markov Decision Processes (MDPs) with atomless initial state distribu-
tions and atomless transition probabilities. Such MDPs are called atomless. The initial state
distribution is considered to be fixed. We show that for discounted MDPs with bounded one-step
reward vector-functions, for each policy there exists a deterministic (that is, nonrandomized and
stationary) policy with the same performance vector. This fact is proved in the paper for a more
general class of uniformly absorbing MDPs with expected total costs, and then it is extended
under certain assumptions to MDPs with unbounded rewards. For problems with multiple crite-
ria and constraints, the results of this paper imply that for atomless MDPs studied in this paper
it is sufficient to consider only deterministic policies, while without the atomless assumption
it is well-known that randomized policies can outperform deterministic ones. We also provide
an example of an MDP demonstrating that, if a vector measure is defined on a standard Borel
space, then Lyapunov’s convexity theorem is a special case of the described results.

1 Introduction

This paper studies Markov Decision Processes (MDPs) with multiple criteria when each criterion is
evaluated by the expected total discounted rewards or costs. The paper also studies more general
uniformly absorbing MDPs. The number of criteria is finite, and the initial state distribution is
fixed. For each criterion there is a function of one-step rewards, and the performance of each policy
is evaluated by the finite-dimensional vector, whose coordinates are expected total rewards for the
corresponding reward functions. For each policy this vector is called a performance vector. An
MDP is called atomless, if the initial state distribution and transition probabilities are atomless. In
general, constrained optimization requires the use of randomized decisions. However, for atomless
problems nonrandomized policies are optimal under broad conditions.

The first results of this kind were established by Dvoretzky et al. [8, 9], who proved that
for a one-step problem with multiple atomless initial distributions, multiple reward functions and
finite action sets, the expected reward-vector achieved by an arbitrary policy can be achieved by a
nonrandomized policy. The case of multiple initial distributions can be reduced to a single initial
distribution by using the Radon-Nikodym theorem; see [20] or Example 11.2. So, the mentioned
result from Dvoretzky et al. [8, 9] can be interpreted as a fact for one-step atomless MDPs. As was
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observed by Feinberg and Piunovskiy [20], this result holds for infinite action sets; see also Jaśkiewicz
and Nowak [25] for the generalization to conditional expectations. The proof in Dvoretzky et
al. [8, 9] is based on Lyapunov’s convexity theorem, that states that the range of a finite atomless
vector-measure is a convex compact subset of the Euclidean space.

Feinberg and Piunovskiy [18, 19] proved that for atomless MDPs with a given initial state
distribution and with multiple expected total rewards, for every policy there is a nonrandomized
Markov policy with the same performance vector. In [18] this fact was proved for MDPs with weakly
continuous transition probabilities and with weakly continuous reward functions. The proof in [18]
is based on geometric arguments. In [19] this fact is proved for arbitrary atomless MDPs with
expected total rewards, and the proof is based on Lyapunov’s convexity theorem.

In this paper we prove that for an atomless discounted MDP with multiple criteria and bounded
reward functions, for each policy there exists a deterministic (that is, nonrandomized and station-
ary) policy with the same performance vector. In fact, we prove this result for uniformly absorbing
MDPs with the expected total rewards. This is a more general class of MDPs than discounted
ones. The proof for deterministic policies is much more difficult than the proofs for nonrandomized
Markov ones provided in [18] and [19]. In addition, the proofs in this paper use and extend geomet-
ric methods introduced in [18] instead of applying Lyapunov’s convexity theorem. Example 11.2
demonstrates that Lyapunov’s convexity theorem can be interpreted as a one-step version of the
main result of this paper.

For discounted MDPs with multiple criteria and constraints, under certain conditions there exist
(randomized) stationary optimal policies; see Altman [1], Feinberg and Shwartz [22], Hernández-
Lerma, and González-Hernández [24], Piunovskiy [29]. The results of this paper imply the existence
of optimal deterministic policies for constrained atomless discounted MDPs and for constrained
atomless uniformly absorbing MDPs if optimal policies exist.

The main result of this paper, Theorem 3.8, states that the sets of performance vectors for
all policies and for deterministic policies coincide. In order to prove the main result, we deal
with three types of subsets of linear spaces: the set of strategic measures, the set of occupancy
measures, and the set of performance vectors. For a given policy, the strategic measure is the
probability distribution of all state-action trajectories, and the occupancy measure is the measure
on the product of the state and action spaces, and the value of this measure on each measurable
set is the expected total number of times when the corresponding actions are selected at the
corresponding states. The set of performance vectors (strategic measures, occupancy measures)
consists of performance vectors (strategic measures, occupancy measures) for all policies. The set
of performance vectors is a projection of the set of occupancy measures, and the set of occupancy
measures is a projection of the set of strategic measures. Projections inherit certain properties of
the sets from which they are projected. These properties include convexity and compactness.

The set of all strategic measures is convex; Dynkin and Yushkevich [10, Section]. Therefore,
the set of all occupancy vectors and the set of all performance vectors are convex. Under certain
conditions the sets of strategic measures is compact. Schäl [32] introduced two such conditions:
(S) and (W). Condition (S) assumes setwise continuity of transition probabilities, and Condition
(W) assumes weak continuity of transition probabilities. In the both cases, appropriate continuity
properties are assumed for reward functions. In particular, condition (S) holds for MDPs with
finite action sets. Under the mentioned conditions, compactness properties also hold for the sets of
all occupancy measures and all performance vectors.

For discounted and absorbing MDPs, if the initial distribution is fixed, then for each policy there
exists a stationary policy with the same occupancy measure; see [1, 6, 21, 23, 29, 30]. Therefore,
the sets of all occupancy measures and all performance vectors coincide with the corresponding
sets for all stationary policies. The nontrivial step in proving Theorem 3.8 is to show that the sets
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of performance vectors for all stationary and for all deterministic policies coincide.
The important and nontrivial step is to prove that for an atomless MDP the set of performance

vectors for all deterministic policies is convex. This fact is nontrivial even for the case of one
criterion. Example 11.2 demonstrates that for multiple criteria this fact is a nontrivial extension of
Lyapunov’s convexity theorem for a standard Borel space. In order to prove this fact, we show that
the set of occupancy measures endowed with the topology of setwise convergence is path-connected.
Therefore, being its projection, the set of performance vectors is a connected subset of the Euclidean
space. Thus, for the single-criterion case, this set is a connected subset of a line. Therefore, it is
convex. The case of multiple criteria is studied by induction using the dimensionality reduction
technique introduced in this paper.

Section 2 of this paper introduces the basic definitions for the discounted case and formulates
the main result for discounted MDPs. Section 3 describes absorbing and uniformly absorbing
MDPs, formulates the main result for uniformly absorbing MDPs, and shows that a discounted
MDP is a particular case of a unformly absorbing MDP. Section 4 studies the properties of occu-
pancy measures. Section 5 describes Condition (S), which is sufficient for compactness of the sets
of all strategic measures, all occupancy measures, and all performance vectors. In particular, this
condition holds for an MDP with finite action sets. Section 6 describes submodels and dimension-
ality reduction. Section 7 introduces an MDP generated by two deterministic policies and describes
continuity properties for such MDPs. Section 8 establishes path-connectedness of the sets of occu-
pancy measures for all deterministic policies for atomless MDPs. This property implies that the set
of all performance vectors for deterministic policies is path-connected. Thus, for a single-criterion
problem, this set is convex. The proof of the main theorem is provided in Section 9. Section 10
provides the results for unbounded reward vector-functions by using the standard weighted norm
approach. These results are used in Section 11 to show that for standard Borel spaces Lyapunov’s
convexity theorem is a special case of the results of this paper.

2 Main result for Discounted MDPs

We start with some definitions. Recall that two measurable spaces (E, E) and (D,D) are called
isomorphic, if there exists a one-to-one measurable correspondence f between them such that the
correspondence f−1 is measurable. A Polish space is a complete separable metrizable space. A
standard Borel space is a measurable space isomorphic to a Borel subset of a Polish space. Proper-
ties of standard Borel spaces can be found in Bertsekas and Shreve [3], Dynkin and Yushkevich [10],
Kechris [26], and Srivastava [33]. In particular, a standard Borel space is either finite or countable,
or it has the cardinality of the continuum. Two standard Borel spaces with the same cardinality
are isomorphic. We always consider Borel σ-fields on topological and metric spaces. In particular,
a standard Borel space with the cardinality of continuum is isomorphic to the interval [0, 1]. For
two measurable spaces (E, E) and (D,D), a transition probability q defines a probability measure
q(·|d) on (E, E) for each d ∈ D such that q(C|·) is a measurable function on (D,D) for each C ∈ E .
We recall that a measure ν on a standard Borel (D,D) space is called atomless if ν(d) = 0 for all
d ∈ D; here and below we omit curly brackets in the expressions like ν({x}) and p({y}|x, a).

A discounted MDP is defined by the following objects:

(i) a standard Borel state space (X,X ),

(ii) a standard Borel action space (A,A),

(iii) nonempty sets of actions A(x) ∈ A available at states x ∈ X, such that GrX(A) := {(x, a) ∈
X× A : x ∈ X, a ∈ A(x)} is a measurable subset of (X× A,X ⊗A),
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(iv) a transition probability p from X× A to X,

(v) an initial state distribution µ, which is a probability measure on (X,X ),

(vi) a bounded measurable reward vector-function r : X×A 7→ RN , where N is a natural number,

(vii) a discount factor β ∈ [0, 1).

Definition 2.1. An MDP is called atomless if µ(x) = 0 and p(y|x, a) = 0 for all x, y ∈ X and
a ∈ A(x).

If an action a ∈ A(x) is chosen at a state x ∈ X, then the process moves to the next state according to
the probability distribution p(·|x, a) and the vector reward r(x, a) = (r(1)(x, a), r(2)(x, a), . . . , r(N)(x, a))
is collected according to criteria 1, 2, . . . , N. To avoid a trivial situation, when a policy cannot be
defined, we always assume that there exists a measurable mapping φ : X 7→ A such that φ(x) ∈ A(x)
for all x ∈ X. Such mapping is called a selector.

Consider the sets of possible finite histories Ht := X×(A×X)t up to time t = 0, 1, . . . . A policy
π is a sequence of transition probabilities πt, t = 0, 1, . . . , from Ht to A such that π(A(xt)|ht) = 1 for
each ht = (x0, a0, x1, . . . , xt) ∈ Ht. A policy is called nonrandomized if each transition probability
πt(·|ht), t = 0, 1, . . . , is concentrated at one point. A policy π is called Markov, if for each t = 1, 2, . . .
the values of probabilities πt(·|x0, a0, . . . , xt) are the functions of xt. A Markov policy is called
stationary if πt(·|x) = πs(·|x) for all x ∈ X and for all s, t = 0, 1, . . . . A transition probability
πt for a stationary policy π is also denoted as π. A nonrandomized Markov policy is defined by a
sequence of selectors {φt}t=0,1,.... These selectors are equal for a nonrandomized stationary policy.
A nonrandomized stationary policy φ is called deterministic, and we identify it with the selector φ.
We denote by Π, M, S, and F the sets of all, nonrandomized Markov, stationary, and deterministic
policies respectively. Observe that F ⊂M ⊂ Π and F ⊂ S ⊂ Π.

The existence of the selector means that F 6= ∅. This assumption does not limit the generality
of the results of this paper. If F = ∅, then Π = ∅; see Dynkin and Yushkevich [10, Sections 3.1
and 3.2]. Therefore, if F = ∅, then the main result of the paper, Theorem 3.8, is equivalent to the
trivial identity ∅ = ∅.

The two special features of the introduced model are: (i) the rewards are vector-valued, and
(ii) the initial distribution µ is fixed. However, we consider additional initial distributions and
initial states in auxiliary results in a few places in this paper. Whenever we consider other initial
distributions rather than µ, we specify them in notations.

According to the Ionescu Tulcea theorem, an initial probability distribution µ on the state space
X and transition probabilities πt and p define a unique probability measure P π on the countable
product H∞ := X× (A×X)∞ endowed with the σ-field X ⊗ (A⊗X )∞. Expectations with respect
to this probability is denoted by Eπ.

Remark 2.2. The corresponding probabilities and expectations are defined for each initial prob-
ability distribution ν on (X,X ). In this case, they are denoted as P πν and Eπν . That is, P π := P πµ
and Eπ := Eπµ . If a probability measure ν is concentrated at a point x ∈ X, that is, ν(x) = 1, we
shall write P πx and Eπx instead of P πν and Eπν respectively.

For an initial state distribution µ and a policy π, the vector of expected total discounted rewards
is

vπβ := Eπ
∞∑
t=0

βtr(xt, at).

For a set of policies ∆ ⊂ Π, the set of all performance vectors is V∆
β := {vπβ : π ∈ ∆}.
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Denote Vβ := VΠ
β . It is obvious that VFβ ⊂ Vβ ⊂ RN and, in general, it is possible that VFβ 6= Vβ.

For example, if X and A are finite sets, then the set VFβ is finite while the set Vβ may have the
cardinality of the continuum. In fact, for problems with finite state and action sets, Vβ is a convex
hull of VFβ ; see e.g. Feinberg and Rothblum [21, Theorem 6.1]. According to the following theorem,
which is the main result of this paper for discounted MDPs, the situation is different for atomless
MDPs.

Theorem 2.3. For an atomless MDP VFβ = Vβ.

In Section 3 we formulate a more general result, which is proved later in this paper.

3 Absorbing MDPs and the Main Result

We start this section with the definition of the expected total reward under fairly general condition
and for the case of a single criterion, that is, N = 1. In this case, r is a bounded real-valued function,
but in formula (1) and in Definition 3.1 we do not assume that r is bounded. Then we define
absorbing and uniformly absorbing MDPs, formulate the main result of this paper, Theorem 3.8,
and show that it is more general than Theorem 2.3, which states the sufficiency of deterministic
policies for atomless discounted MDPs.

We recall that the initial state distribution µ is fixed. For an arbitrary nonnegative measurable
function r, the expected total reward for a policy π is

vπ := Eπ
∞∑
t=0

r(xt, at) = lim
n→∞

Eπ
n−1∑
t=0

r(xt, at), (1)

where the second equality follows from the monotone convergence theorem.
For a number c, let us denote c+ := max{c, 0} and c− := −min{c, 0}. For a policy π ∈ Π, we

consider positive values vπ+ and vπ− defined by (1) with the rewards r(x, a) substituted with the
rewards r+(x, a) and r−(x, a) respectively.

Definition 3.1. If min{vπ+, vπ−} < +∞, then the expected total reward vπ is well-defined and
vπ := vπ+ − vπ−.

If vπ is well-defined, then the equalities in (1) hold because they hold for rewards r+ and r−

and at least one of the numbers vπ+ and vπ− is finite.
Now let N > 1. Then vπ+ and vπ− are defined as N -dimensional vectors of the expected total

rewards whose coordinates are the expected total rewards for positive and negative parts of the
corresponding coordinates of the vector-function r. The vector vπ is well-defined if so is each of its
N coordinates. In this case, as explained above, vπ := vπ+ − vπ−, and the second equality in (1)
holds.

Remark 3.2. For an initial probability distribution ν on (X,X ), that can be different from µ, we
shall use the notations v(ν), v+(ν), and v−(ν) respectively. With a small abuse of notations, we
shall write v(x), v+(x), and v−(x) respectively, if the probability measure ν is concentrated at the
point x ∈ X.

Now we introduce an absorbing MDP. Let the standard Borel state space of this MDP be
denoted by X̄. We use the same notations and assumptions for the standard Borel action space
A, sets of available actions A(·), transition probability p, initial state distribution µ, and reward
vector r as in the previous section.

Let T x denote the first time a stochastic sequence h = x0, x1, . . . with values in X̄ reaches the
state x ∈ X̄; T x(h) := inf{t = 0, 1, . . . : xt = x}.
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Definition 3.3. For the initial probability distribution µ, an MDP is called absorbing, if there
exists a state x̄ ∈ X̄ with the following properties:

(i) µ(x̄) = 0;
(ii) A(x̄) = {ā} for some ā ∈ A, p(x̄|x̄, ā) = 1, and r(i)(x̄, ā) = 0 for all i = 1, . . . , N ;
(iii) there exists a finite constant L such that, for all policies π ∈ Π,

EπT x̄ ≤ L. (2)

Remark 3.4. The state x̄ is fictitious in the sense that under every policy this state is absorbing,
there is no choice of decisions at x̄, and all the rewards are equal to 0 at this state. After the
system hits state x̄, it is impossible to control it. Therefore, the set X̄ \ {x̄} plays the same role for
absorbing MDPs as the state space X for discounted MDPs; see the notation in formula (3).

Remark 3.5. We make assumption (i) in Definition 3.3 for convenience only. All the results
in this paper hold without this assumption. In principle, it is possible to consider other initial
distributions than µ. If an MDP is absorbing for an initial distribution ν, which may differ from µ,
then this is stated explicitly in this paper. Of course, the value of the upper bound L may depend
on the initial distribution. In some publications, including [1, 21], absorbing measurable sets are
considered instead of absorbing states. These formulations are equivalent because the states in an
absorbing set can be merged into a single state.

Observe that T x̄ =
∑∞

t=0 I{t < T x̄}, where I is the indicator function. We recall that assump-
tion (iii) in Definition 3.3 is equivalent to the validity of (2) for all deterministic policies φ ∈ F
instead of arbitrary policies π ∈ Π; see Feinberg and Rothblum [21, p. 132]. If we interpret T x̄

as the time, when the process stops, then (2) means that the average life-time of the process is
uniformly bounded for all policies given the initial state distribution µ. For an absorbing MDP, we
fix an arbitrary state x̄ described in Definition 3.3 and set

X := X̄ \ {x̄}. (3)

Let us consider an absorbing MDP. Recall that the reward vector-function r is bounded and
r(x̄, ā) = 0. In view of Definition 3.3(ii, iii), the expected total rewards vπ are well-defined for all
policies π and

vπ = lim
n→∞

Eπ
n−1∑
t=0

r(xt, at) = Eπ
∞∑
t=0

r(xt, at) = Eπ
∞∑
t=0

r(xt, at)I{xt ∈ X} = Eπ
T x̄−1∑
t=0

r(xt, at), (4)

where the first two equalities follow from (1) and the last two ones follow from Definition 3.3(ii).
For ∆ ⊂ Π, the sets of performance vectors generated by policies from ∆ is V∆ := {vπ : π ∈ ∆}.
We also use the notation

V := VΠ.

For an absorbing MDP, the monotone convergence theorem implies that for every policy π

lim
n→∞

Eπ
∞∑
t=n

I{t < T x̄} = 0.

Definition 3.6 states the stronger equality. Recall that M is the set of all nonrandomized Markov
policies and the initial measure µ is fixed.
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Definition 3.6. An absorbing MDP is called uniformly absorbing if

lim
n→∞

sup
π∈M

Eπ
∞∑
t=n

I{t < T x̄} = 0. (5)

Example 3.13 describes an absorbing MDP, which is not uniformly absorbing. We remark that
the supremum in (5) is equal to the same supremum over the set of all policies π ∈ Π; Feinberg [12,
Theorem 3]. Recall that EπI{t < T x̄} = P π{T x̄ > t} and EπT x̄ =

∑∞
t=0 P

π{T x̄ > t}. Since
Eπ
∑∞

t=n I{t < T x̄} = EπT x̄ − Eπ
∑n−1

t=0 I{t < T x̄}, assumption (5) means that the MDP is
absorbing and the convergence Eπ

∑n−1
t=0 I{t < T x̄} ↑ EπT x̄ as n → ∞ takes place uniformly in

π ∈ Π. Since the vector-function r is bounded, the convergence in (1) is uniform in π ∈ Π for a
uniformly absorbing MDP.

Definition 3.7. An absorbing MDP is called atomless if µ(x) = 0 and p(y|x, a) = 0 for all x, y ∈ X
and a ∈ A(x).

In some sense, Definition 3.7 means that the state x̄ is considered to be outside of the state
space. Of course, a uniformly absorbing MDPs is absorbing, and Definition 3.7 applies to uniformly
absorbing MDPs too.

As explained later in this section, the following theorem, which is the main result of this paper,
generalizes Theorem 2.3 that states the similar statement for discounted MDPs.

Theorem 3.8. For a uniformly absorbing atomless MDP, VF = V.

The following corollary is an equivalent formulation of Theorem 3.8.

Corollary 3.9. For a uniformly absorbing atomless MDP, for every policy π ∈ Π there exists a
deterministic policy φ such that vφ = vπ.

For total-reward MDPs, the performance set V is convex. This simple fact follows from the
convexity of the set of strategic measures; see Dynkin and Yushkevich [10, Section 5.5] or, for
absorbing MDPs, see Lemma 4.1 below. This fact and Theorem 3.8 imply the following corollary.

Corollary 3.10. For a uniformly absorbing atomless MDP, the set VF is convex.

Let us show that Theorem 3.8 is more general than Theorem 2.3. Recall that, if an initial
probability distribution ν is concentrated at one state x ∈ X, then, according to Remark 2.2, we
usually write Eπx instead of Eπν . The following lemma provides a natural sufficient condition under
which an absorbing MDP is uniformly absorbing.

Lemma 3.11. Consider an MDP with a standard Borel state space X̄ and with a state x̄ ∈ X̄
such that A(x̄) is a singleton and p(x̄|x̄, ā) = 1, r(x̄, ā) = 0, where A(x̄) = {ā}. If there is a finite

constant L such that EφxT x̄ < L for all x ∈ X = X̄ \ {x̄} and for all φ ∈ F, then this MDP is
uniformly absorbing for all initial state distributions µ on X.

Proof. Let us fix an arbitrary initial probability distribution µ on X. As is mentioned after Defini-
tion 3.3, supπ∈ΠE

π
xT

x̄ = supφ∈FE
φ
xT x̄ for all x ∈ X. Therefore, EπxT

x̄ ≤ L for all x ∈ X and for all
π ∈ Π. This implies that EπT x̄ ≤ L for all π ∈ Π. In view of Markov’s inequality, for an arbitrary
policy π ∈ Π and for n = 0, 1, . . . ,

P π{T x̄ > n} ≤ (n+ 1)−1EπT x̄ ≤ (n+ 1)−1L. (6)
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For an arbitrary nonrandomized Markov policy φ = (φ0, φ1, . . .) and for n = 0, 1, . . . , let us define
by φ+n the shifted nonrandomized Markov policy φ+n = (φn, φn+1, . . .). Then

Eφ
∞∑
t=n

I{t < T x̄} = EφEφ
+n

xn

∞∑
t=0

I{t < T x̄} = EφEφ
+n

xn T x̄ ≤ EφI{n < T x̄}L = LP φ{T x̄ > n} ≤ (n+1)−1L2,

which implies (5), where the first inequality follows from {xn ∈ X} = {n < T x̄} P π-a.s. and
EπxT

x̄ ≤ L for all π ∈ Π and all x ∈ X, and the last inequality follows from (6).

Lemma 3.12. Theorem 3.8 implies Theorem 2.3.

Proof. Consider a discounted MDP. The following transformation into an absorbing MDP is well-
known; see e.g., Altman [1, p. 137]. Let us add an additional point x̄ to the state space X and
consider the new transition probability p̄ defined by

p̄(Y |x, a) :=


βp(Y |x, a), if x ∈ X, Y ∈ X ,
1− β, if x ∈ X, Y = {x̄},
1, if x = x̄ ∈ Y.

Then VF = VFβ and V = Vβ. The new MDPs is absorbing. It is atomless if and only if the original

discounted MDP is atomless. Since EπxT
x̄ = (1− β)−1, Lemma 3.11 implies that the new model is

uniformly absorbing.

Of course, the transformation of a discounted MDP into an absorbing one is trivial. However,
under certain conditions it is also possible to transform an absorbing MDP into a discounted one;
see Feinberg and Huang [14, 15].

The following example describes an absorbing MDP, which is not uniformly absorbing.

Example 3.13. Let X := {(i, j) : i = 0, 1, . . . , j = 0, 1, . . . , 2i − 1}, x̄ := 0, A={c,s}, where c
stands for “continue” and s stands for “stop”, and

A(x) :=

{
{c, s}, if x = (i, 0), i = 0, 1, . . . ,

{s} otherwise,

and for i = 0, 1, . . .

p(y|x, a) =


0.5, if a = c, x = (i, 0), y = 0 or y = (i+ 1, 0),

1, if a = s and either x = (i, j), j = 0, . . . , 2i − 2, y = (i, j + 1) or x = (i, 2i − 1),

y = 0.

In addition µ(0, 0) = 1. In this example, the process starts at the state (0, 0). At each state (i, 0),
i = 0, 1 . . . , the decision maker can either continue or stop the process. If the process is continued at
state (i, 0), then it moves with probabilities 0.5 either to state (i+1, 0) or to state x̄. If the process is
stopped at state (i, 0), then it makes 2i additional deterministic moves until it hits the absorbing state
x̄ = 0 and stops. Let φ∞ be the deterministic policy that always chooses an action c at the states
(i, 0), i = 0, 1, . . . . Under this policy, T x̄ has the geometric distribution with the success probability
0.5 at each step. Therefore, Eφ

∞
T x̄ = 2. Now let φn be a deterministic policy choosing the action

s at the state (n, 0) and the action c at the states (i, 0) with i = 0, 1, . . . , n− 1, where n = 0, 1, . . . .
Then Eφ

n
T x̄ = Eφ

n
[
∑n−1

t=0 I{t < T x̄} + 2nI{t < T x̄}] =
∑n−1

t=0 2−t + 2n2−n = 3 − 2−n+1. Thus,
EφT x̄ ≤ 3 for all φ ∈ F. So, this MDP is absorbing. However, limn→∞ supπ∈ME

π
∑∞

t=n I{t <
T x̄} ≥ limn→∞E

φn
∑∞

t=n I{t < T x̄} = limn→∞ 2−n2n = 1. Thus, this MDP is not uniformly
absorbing.
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4 Occupancy Measures and their Properties

For an absorbing MDP, a policy π, and an initial state distribution µ on X, the finite occupancy
measure Qπ(·) on X× A is defined by

Qπ(Y ×B) := Eπ
T x̄−1∑
t=0

I{xt ∈ Y, at ∈ B} =
∞∑
t=0

P π{xt ∈ Y, at ∈ B}, Y ∈ X , B ∈ A.

Let qπ(Y ) := Qπ(Y × A), where Y ∈ X . Observe that qπ(X) = EπT x̄ ≤ L. In addition,

vπ =

∫
X

∫
A
r(x, a)Qπ(dxda). (7)

The set of occupancy measures for the initial distribution µ and for all policies from ∆ ⊂ Π is

M∆ := {Qπ(·) : π ∈ ∆}.

We set M :=MΠ. For an arbitrary policy π there exists a stationary policy σ ∈ S such that

Qπ(Y ×B) =

∫
Y
σ(B|x)qπ(dx), Y ∈ X , B ∈ A, (8)

and (8) implies that
Qσ(·) = Qπ(·); (9)

see [21, Lemmas 4.1, 4.2]. Therefore,
MS =M, (10)

and this set is convex; [21, Cor. 4.3]. These properties imply the corresponding properties of
performance sets stated in the following lemma. Recall that the initial distribution µ is fixed.

Lemma 4.1. For an absorbing MDP the equality VS = V holds, and this set is convex.

Proof. The lemma follows from (7), (10), and the convexity of M.

For an absorbing MDP with the initial state distribution µ, for π ∈ Π, and for Y ∈ X , define

qπn(Y ) := P π{xn ∈ Y }, n = 0, 1, . . . .

Then

qπ(Y ) :=
∞∑
n=0

EπI{xn ∈ Y } =

∞∑
n=0

P π(xn ∈ Y ) =
∞∑
n=0

qπn(Y ). (11)

We observe that qπ0 (Y ) = µ(Y ) and

qπn(Y ) =

∫
X
P πx {xn ∈ Y }µ(dx), Y ∈ X , π ∈ Π, n = 0, 1, . . . .

In particular, qπ(Y ) = 0 if and only if qπn(Y ) = 0 for all n = 0, 1, . . . , Y ∈ X . This implies that
qσ � qπ for policies π and σ, if qσn � qπn for all n = 0, 1, . . . , where the symbol � means absolute
continuity.

Observe that, for a stationary policy π ∈ S, n = 0, 1, . . . , and Y ∈ X ,

qπn+1(Y ) =

∫
X

∫
A
p(Y |x, a)π(da|x)qπn(dx). (12)

Formulae (11) and (12) imply that for π ∈ S

qπ(Y ) = µ(Y ) +

∫
X

∫
A
p(Y |x, a)π(da|x)qπ(dx). (13)
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Lemma 4.2. For two stationary policies π and σ, if σ(·|x) � π(·|x) for all x ∈ X, then qσn � qπn,
for all n = 0, 1, . . . , and therefore qσ � qπ.

Proof. For n = 0 the statement is obvious since qπ0 = qσ0 = µ. Assume that qσn � qπn for some
n = 0, 1, . . . . Consider a measurable subset Y of X such that qπn+1(Y ) = 0. In view of equation
(12), this means that ∫

A
p(Y |x, a)π(da|x) = 0 qπn − a.e.

Since σ(·|x)� π(·|x) for all x ∈ X, as follows from the last equality,∫
A
p(Y |x, a)σ(da|x) = 0 qπn − a.e.

Since the integral in the left-hand part of the last equation is nonnegative and qσn � qπn,∫
A
p(Y |x, a)σ(da|x) = 0 qσn − a.e.,

which yields

qσn+1(Y ) =

∫
X

∫
A
p(Y |x, a)σ(da|x)qσn(dx) = 0.

Thus qσn � qπn for all n = 0, 1, . . . , which implies qσ � qπ, as explained before (12).

Lemma 4.3. For an atomless absorbing MDP, every occupancy measure qπ(dx), where π ∈ Π, is
atomless.

Proof. In view of (10), it is sufficient to prove the lemma for stationary policies π. Let π ∈ S.
Then qπ0 = µ is an atomless measure. If qπn is atomless for some n = 0, 1, . . . , then formula (12)
implies that the measure qπn+1 is atomless. Thus, all the measures qπn, n = 0, 1, . . . , are atomless.
Formula (11) implies that qπ is atomless.

The following theorem implies thatMS =M and VS = V for an absorbing MDP. For discounted
MDPs this result was discovered by Borkar [6]; see Borkar [7] and Piunovskiy [30] for additional
references.

Theorem 4.4. (Feinberg and Rothblum [21, Lemma 4.2]) Let π be an arbitrary policy for an

absorbing MDP. Consider a stationary policy σ such that σ(B|x) = Qπ(dx,B)
Qπ(dx,A) for each B ∈ A. Then

the measures Qσ and Qπ coincide and therefore vσ = vπ.

5 Sufficient Conditions for Compactness of Performance Sets

We start this section with formulating sufficient conditions for compactness of the set of strategic
measures S := {P π : π ∈ Π} defined on the set of all trajectories H∞ for the given initial distribution
µ. Since H∞ is a countable product of standard Borel spaces, it is a standard Borel space. Let
P(H∞) be the set of all probability measures on H∞. If A is a Borel subset of a Polish space, let
us consider the ws∞-topology on P(H∞), which is the coarsest topology in which all the mappings
P 7→

∫
f(x0, a0, x1 . . . , xt)P (dx0da0dx1 . . . dxt) are continuous for all bounded Borel functions f :

Ht 7→ R, which are continuous in (a0, a1, . . . , at), t = 0, 1, . . . . Let us consider the following version
of a condition introduced by Schäl [32].

Condition (S).
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(S1) The set A is a Borel subset of a Polish space, and the sets A(x) are compact for all x ∈ X,

(S2) The transition probability p(·|x, a) is setwise continuous in a ∈ A(x); that is, for each bounded
Borel function f : X 7→ R and for each x ∈ X, the function a 7→

∫
X f(y)p(dy|x, a) is continuous

on A(x),

(S3) For each x ∈ X and i = 1, . . . , N, the reward function r(i)(x, a) is continuous in a ∈ A(x).

Theorem 5.1. (Balder [2], Nowak [28], Schäl [32]). If assumptions (S1) and (S2) hold, then the
set of strategic measures S = {P π : π ∈ Π} is a compact subset of P(H∞) endowed with the
ws∞-topology.

Corollary 5.2. Consider a uniformly absorbing MDP. If Condition (S) holds, then the performance
set V is compact.

Proof. Let the ws∞-topology be fixed on P(H∞). Since V = V (S), where V : S 7→ RN with
V (P π) := vπ for all π ∈ Π, the corollary follows from the continuity of V, which is established in
the rest of this proof.

Let us set r(i)(x̄, ā) = 0 for all i = 1, . . . , N. This change affects neither the values of vπ nor the
validity of (S3). Let v(i),π be the ith coordinate of the performance vector vπ, i = 1, 2, . . . , N,

v(i),π = Eπ
T x̄−1∑
t=0

r(i)(xt, at) = Eπ
∞∑
t=0

r(i)(xt, at),

where the second equality holds because the state x̄ is absorbing and r(i)(x̄, ā) = 0. Define

v(i),π
n := Eπ

n−1∑
t=0

r(i)(xt, at), n = 1, 2, . . . .

Since the MDP is uniformly absorbing, v
(i),π
n → v(i),π uniformly in π as n→∞.

According to Yushkevich [34, Theorem 2], each function r(i), i = 1, . . . , N, can be extended from
GrX(A) to X×A in a way that the extension is a bounded measurable function which is continuous

in a ∈ A. By the definition of the ws∞-topology, the functions V
(i)
n (P π) := v

(i),π
n are continuous on

S. Let V (i)(P π) denote the ith coordinate of the vector V (P π). Since V
(i)
n (P )→ V (i)(P ) uniformly

for all P ∈ S and for all i = 1, . . . , N, the mapping V is continuous.

Corollary 5.3. Consider a uniformly absorbing MDP. If each set A(x), is finite, x ∈ X, then the
performance set V is compact.

Proof. If A is a Borel subset of a Polish space, then the conclusion of the corollary follows from
Corollary 5.2 since Condition (S) holds. The corollary follows from this fact since a standard Borel
space is isomorphic to a Borel subset of a Polish space. Indeed, let Ã be a Borel subset of a Polish
space isomorphic to A, and let g : Ã 7→ A be the corresponding isomorphism. Let us consider the
MDP with the state space X, the action space A replaced with the isomorphic set Ã, the sets of
available actions Ã(x) := g−1(A(x)), one-step rewards vectors r̃(x, a) := r(x, g(a)), and transition
probabilities p̃(·|x, a) = p(·|x, g(a)), where x ∈ X and a ∈ Ã. The performance sets V for the new
and original models coincide. The set V is compact since Ã is a Borel subset of a Polish space.
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6 Submodels and Dimensionality Reduction

Definition 6.1. An MDP {X̃, Ã, Ã(·), p̃, r̃} is called a submodel of the MDP {X,A, A(·), p, r}, if
X̃ = X, Ã = A, p̃ = p, r̃ = r, and Ã(x) ⊂ A(x) for all x ∈ X.

We say that a submodel is well-defined, if the set GrX̃(Ã) is a Borel subset of X̃× Ã and there
exists at least one deterministic policy (selector) in the submodel. The existence of a selector
usually follows from measurable selection theorems. According to the Arsenin-Kunugui selection
theorem (Kechris [26, Th. 18.18]), a measurable selector φ : X̃ 7→ Ã, such that φ(s) ∈ Ã(x) for all
x ∈ X̃, exists, if Ã is a Borel subset of a Polish space, the set GrX̃(Ã) is a Borel subset of X̃ × Ã,
and each set Ã(x) is a union of a countable number of nonempty compact subsets of Ã. In addition,
this theorem claims that under these assumptions the projection of any Borel subset of GrX̃(Ã)

onto X̃ is a Borel subset of X̃. If GrX̃(Ã) is a Borel subset of X̃ × Ã and each set Ã(x), x ∈ X̃, is
nonempty and finite or countable, then the Arsenin-Kunugui theorem implies that the submodel is
well-defined and the projection of any Borel subset of GrX̃(Ã) onto X̃ is a Borel subset of X̃.

It is obvious that a submodel inherits many properties of the MDP including atomless, absorb-
ing, and uniformly absorbing properties. In addition, Ṽ ⊂ V, where Ṽ is the performance set for
the submodel.

Lemma 6.2. Consider an absorbing atomless MDP. Then for every v ∈ V there exists a submodel
with finite or countable action sets Ã(x), x ∈ X, such that, for some stationary policy π for this
submodel, vπ = v and π(a|x) > 0 for all x ∈ X and all a ∈ Ã(x).

Proof. According to Feinberg and Piunovskiy [19, Theorem 2.1], there exists a nonrandomized
Markov policy φ = (φ0, φ1, . . .) such that vφ = v. Let us define the nonempty sets Aφ(x) :=
∪∞n=0{φn(x)}, which are either countable or finite. Observe that the set GrX(Aφ) = ∪∞n=0GrX(φn)
is Borel because the graph of a Borel function φn is a Borel set; see e.g., Bertsekas and Shreve [3,
Cor. 7.14.1].

In view of Theorem 4.4, there is a stationary policy π such that π(·|x) is concentrated on Aφ(x)
and vπ = vφ = v. Let Ã(x) = {a ∈ Aφ(x) : π(a|x) > 0}, x ∈ X. Since π(Aφ(x)|x) = 1, then Ã(x) 6=
∅ for all x ∈ X. The set GrX(Ã) is Borel because GrX(Ã) = {(x, a) ∈ X × A : G(x, a) > 0}, where
G(x, a) =

∑∞
n=0 π(φn(x)|x)I{(x, a) ∈ GrX(φn)}, and because the functions I{(x, a) ∈ GrX(φn)}

and π(φn(x)|x) are Borel-measurable, where the measurability of the function I{(x, a) ∈ GrX(φn)}
follows from the measurability of the sets GrX(φn) ⊂ X× A and the measurability of the function
π(φn(x)|x) follows from Bertsekas and Shreve [3, Cor. 7.26.1].

Theorem 6.3. Consider a uniformly absorbing atomless MDP. Suppose that N = 1 and there
exists a stationary policy σ∗ such that vσ

∗
= supσ∈S v

σ. For v := vσ
∗ ∈ V consider a stationary

policy π and a submodel with action sets Ã(·), whose existence is stated in Lemma 6.2. Then
vπ
∗

= vσ
∗

for each policy π∗ in this submodel.

Proof. Let N = 1. In view of Theorem 4.4, for an absorbing MDP supπ̃∈S v
π̃ = supπ̃∈Π v

π̃ and
vσ = supπ̃∈Π v

π̃ for some policy σ if and only vσ
∗

= supπ̃∈S v
π̃ for some stationary policy σ∗. Recall

that supπ̃∈S v
π̃ = supφ∈F v

φ; see Feinberg [13].
For an arbitrary policy σ ∈ Π, let Xσ be the set of initial states x ∈ X, for which the expected

initial rewards vσ(x) are well-defined, that is,

Xσ = {x ∈ X : vσ+(x) < +∞} ∪ {x ∈ X : vσ−(x) < +∞}. (14)

In view of the Ionescu Tulcea theorem [27, Sect. V.1], the functions vσ+(x) and vσ−(x) are Borel
measurable. Therefore, the set Xσ is Borel as the union of two Borel sets.
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For x ∈ X, a ∈ Ã(x), and for a Borel function f : X 7→ R1, let us denote

Taf(x) := r(x, a) +

∫
X
f(y)p(dy|x, a), x ∈ X, a ∈ Ã(x).

This value is well-defined if either
∫
X f

+(y)p(dy|x, a) < +∞ or
∫
X f
−(y)p(dy|x, a) < +∞.

Let σ be a stationary policy in the submodel with action sets Ã(·). Then Tavσ(x) is well-defined
for x ∈ Xσ and a ∈ Ã(x), where the Borel set Xσ is defined in (14). Indeed,

vσ+(x) =
∑

a∈Ã(x)

σ(a|x){ r+(x, a) +

∫
X
vσ+(y)p(dy|x, a)} < +∞, x ∈ Xσ,

and

vσ−(x) =
∑

a∈Ã(x)

σ(a|x){ r−(x, a) +

∫
X
vσ−(y)p(dy|x, a)} < +∞, x ∈ Xσ.

Therefore,

vσ(x) = vσ+(x)− vσ−(x) =
∑

a∈Ã(x)

σ(a|x)Tavσ(x), x ∈ Xσ, (15)

and Tavσ(x) is well-defined for x ∈ Xσ and a ∈ Ã(x) if σ(a|x) > 0.
Observe that for an absorbing MDP qσ(X \Xσ) = 0, which is equivalent to qσ(X) = qσ(Xσ).

Indeed, if qσ(X \Xσ) > 0, then, in view of (11), P σ{xn ∈ X \Xσ} > 0 for some n = 0, 1, . . . . This
implies that either vσ+ = +∞ or vσ− = +∞. This conclusion contradicts to the assumptions that
the MDP is absorbing and the reward function r is bounded.

In particular, for σ = π, where the policy π is defined in Lemma 6.2,

qπ(X \Xπ) = 0. (16)

By Lemma 6.2, vπ = v = vσ
∗
. Consider the sets

X> := {x ∈ Xπ : Tavπ(x) > vπ(x) for some a ∈ Ã(x)},

X< := {x ∈ Xπ : Tavπ(x) < vπ(x) for some a ∈ Ã(x)},

X= := {x ∈ Xπ : Tavπ(x) = vπ(x) for all a ∈ Ã(x)}.

The sets X>, X<, and X= are Borel. Indeed, the set X> is a projection of the Borel set
Y (π) := {(x, a) ∈ GrXπ(Ã) : Tavπ(x) > vπ(x)} onto Xπ. In addition, each action set Ã(x), x ∈ X,
is finite or countable. Therefore, in view of the Arsenin-Kunugui theorem, the set X> is Borel and
there exists a Borel mapping ϕ∗ : X> 7→ A such that ϕ∗(x) ∈ Ã(x) and Tϕ∗(x)vπ(x) > vπ(x) for
all x ∈ X>. The set X< is Borel because it is a projection of the Borel set {(x, a) ∈ GrXπ(Ã) :
Tavπ(x) < vπ(x)} onto X. Thus, X= = Xπ \ (X> ∪X<) is a Borel set too.

Observe that
qπ(X<) = qπ(X>) = 0. (17)

To prove the second equality in (17), suppose that qπ(X>) > 0. Therefore, qπn(X>) = P π{xn ∈
X>} > 0 for some n = 0, 1, . . . . For the Borel mapping ϕ∗ described in the previous paragraph,
consider a randomized Markov policy π′

π′t(B|x) =

{
I{ϕ∗(x) ∈ B}, if t = n and x ∈ X>,

π(B|x), otherwise,
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where B ∈ A and t = 0, 1, . . . . Straightforward calculations imply that

vπ
′ − vπ =

∫
X>

[Tϕ∗(x)vπ(x)− vπ(x)]qπn(dx) > 0,

which contradicts vπ = vσ
∗

= supσ∈S v
σ = supσ∈Π v

σ ≥ vπ
′
, where the last equality follows from

Theorem 4.4. Thus, the second equality in (17) is proved.
The equality qπ(X<) = 0 holds because the inequality qπ(X<) > 0 is impossible. Indeed, if

qπ(X<) > 0, then qπ(X< \X>) = qπ(X<) > 0 because qπ(X>) = 0. Therefore,

0 =

∫
X<\X>

(vπ(x)− vπ(x))qπ(dx) =

∫
X<\X>

∑
a∈Ã(x)

π(a|x)(Tavπ(x)− vπ(x))qπ(dx) < 0,

where the second equality follows from (15) and the inequality holds because an integral of a
negative function on a set with a positive measure is negative. The function is negative because
π(a|x) > 0 for all a ∈ Ã(x), the difference in the second integral is nonpositive for all a ∈ Ã(x),
and this difference is negative for some a ∈ Ã(x), where x ∈ X< \X>. Equalities (17) are proved.

The equality vπ
∗

= vσ
∗

holds for every policy π∗ in the submodel with action sets Ã(·) if and
only if vσ = vπ for every stationary policy σ in this submodel. This is true in view of Theorem 4.4
and because vπ = vσ

∗
= v. Let σ be a stationary policy for the submodel with action sets Ã(·). To

complete the proof, we show in the rest of the proof that vσ = vπ.
Since σ(·|x)� π(·|x) for all x ∈ X, Lemma 4.2 and formulae (16), (17) imply that qσ(X\X=) =

0. Let σn,π be the policy that follows σ at times t = 0, 1, . . . , n−1 and follows π at t = n, n+ 1, . . . .
In particular, σ0,π = π. Induction arguments imply that

vσ
n,π

= vπ, n = 0, 1, . . . . (18)

Indeed, for n = 0 formula (18) holds because σ0,π = π. If (18) holds for some n = 0, 1, . . . then

vσ
n+1,π

(x) =
∑

a∈Ã(x)

σ(a|x)T avπ(x) = vπ(x), x ∈ X=,

and

vσ
n+1,π

=

∫
X
vσ

n+1,π
(x)µ(dx) =

∫
X=

vπ(x)µ(dx) =

∫
X
vπ(x)µ(dx) = vπ,

where the last equalities hold because µ(X \X=) = 0 since µ� qπ and qπ(X \X=) = 0 in view of
(16) and (17). Formula (18) is proved.

Since the MDP is uniformly absorbing,

lim
n→∞

Eσ
n,π

∞∑
t=n

I{t < T x̄} = lim
n→∞

sup
π̃∈M

Eπ̃
∞∑
t=n

I{t < T x̄} = 0.

Since the reward function r is bounded,

lim
n→∞

Eσ
n,π

∞∑
t=n

r(xt, at) = 0.

Therefore,

vσ = lim
n→∞

Eσ
n−1∑
t=0

r(xt, at) = lim
n→∞

Eσ
n−1∑
t=0

r(xt, at) + lim
n→∞

Eσ
n,π

∞∑
t=n

r(xt, at) = lim
n→∞

vσ
n,π

= vπ,

where the last equality follows from (18).
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The following lemma is correct without the assumption that the MDP is atomless. However,
we need it only for an atomless MDP in this paper, and for an atomless MDP the proof follows
directly from Theorem 6.3.

Corollary 6.4. Consider a uniformly absorbing atomless MDP with N = 1. For every extreme
point v ∈ V of the set V there exists a deterministic policy φ such that vφ = v.

Proof. Since N = 1, the closure of the convex set V is a bounded interval on the line. Therefore,
there could be at most two extreme points v∗ := infπ∈Π v

π and v∗ := supπ∈Π v
π. Let us consider

v = v∗. Theorem 4.4 implies that v = supπ∈S v
π. According to Theorem 6.3, vφ = v for every

deterministic policy φ in the submodel, whose existence is stated in Lemma 6.2. The change
r := −r reduces the case v = v∗ to the case v = v∗.

For i = 1, . . . , N, let us denote by b−i the projection of b ∈ RN to RN−1 obtained by removing
the i-th coordinate of the vector b. Also, 〈·, ·〉 denotes the scalar product of two vectors.

Definition 6.5. We say that a point v ∈ V allows the dimensionality reduction, if there is a
coordinate i = 1, 2, . . . , N, a vector b ∈ RN−1, a constant d, and a submodel {X,A, Ã(·), p, r} of the
original MDP such that v ∈ Ṽ, where Ṽ is the performance set for all policies in the submodel, and

ṽ(i) = d+ 〈b, ṽ−i〉 for all v̂ ∈ Ṽ. (19)

The following theorem plays an important role in the proof of Theorem 3.8. Recall that ∂(C)
is the boundary of a bounded convex set C ∈ Rn, n = 1, 2, . . . .

Theorem 6.6. (Dimensionality reduction). For a uniformly absorbing atomless MDP, each point
on the boundary of V allows the dimensionality reduction.

Proof. Let v∗ ∈ ∂(V). Let 〈b̃, v〉 = d̃ be a supporting hyperplane at the point v∗ to the convex set
V such that 〈b̃, v〉 ≤ d̃ for all v ∈ V and 〈b̃, v∗〉 = d̃, where b̃(i) 6= 0 for at least one i = 1, . . . , N. Let
us define the one-step reward function

r̃(x, a) := 〈b̃, r(x, a)〉, x ∈ X, a ∈ A(x).

Let ṽσ be the expected total rewards for this reward function, initial distribution µ, and a policy
σ. Then ṽσ = 〈b̃, vσ〉.

Since v∗ ∈ V, then v∗ = vσ
∗

for a stationary policy σ∗ ∈ S. Using Lemma 6.2, consider the
corresponding submodel with finite or countable action sets Ã(·) and a stationary policy π for this
submodel, where Ṽ is the performance set for the submodel. In particular, vπ = v∗ ∈ Ṽ. Note that
ṽπ = d̃ = supv∈V v = supσ∈S ṽ

σ. In view of Theorem 6.3,

ṽπ = 〈b̃, v̂〉 for all v̂ ∈ Ṽ. (20)

Formula (20) implies (19) with d := 〈b̃, v∗〉/b̃(i) and b := −b̃−i/b̃(i), where i = 1, . . . , N with b̃(i) 6= 0
and b̃(i) is the ith coordinate of the vector b̃.

7 An MDP Defined by Two Deterministic Policies

Let φ0 and φ1 be two deterministic policies. These two policies are considered to be fixed within
this section. Let us define action sets A∗(x) := {φ0(x), φ1(x)} and consider an MDP, which is the
submodel obtained from the original MDP by narrowing the action sets A(x) to A∗(x) for all x ∈ X.
We say that this MDP is defined by the deterministic policies φ0 and φ1.
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Consider the stationary policy π∗ :

π∗(B|x) :=
1

2
[I{φ0(x) ∈ B}+ I{φ1(x) ∈ B}], B ∈ A, x ∈ X, (21)

which averages the deterministic policies φ0 and φ1. We denote by q the occupancy measure qπ
∗

on X,
q(Y ) := qπ

∗
(Y ), Y ∈ X . (22)

Lemma 7.1. qγ � q for every stationary policy γ for the MDP defined by two deterministic policies
φ0 and φ1.

Proof. This lemma follows from Lemma 4.2 since γ(·|x)� π∗(·|x), x ∈ X, for each stationary policy
γ for the MDP defined by two deterministic policies φ0 and φ1.

The following lemma provides a useful inequality.

Lemma 7.2. For every stationary policy γ for the MDP defined by two deterministic policies φ0

and φ1, the inequality Eγf(xt) ≤ 2tEπ
∗
f(xt) holds for an arbitrary nonnegative measurable function

f and for each t = 0, 1, . . . .

Proof. The proof is based on the induction in t. Since Eγf(x0) =
∫
X f(x)µ(dx) for every stationary

policy γ, the inequality holds for t = 0 in the form of the equality. Let this inequality hold for some
t = 0, 1, . . . . Then

Eγ [f(xt+1)|xt] =

∫
X
f(x)

1∑
i=0

γ(φi(xt)|xt)p(dx|xt, φi(xt)) ≤
∫
X
f(x)

1∑
i=0

p(dx|xt, φi(xt))

= 2

∫
X
f(x)

1∑
i=0

1

2
p(dx|xt, φi(xt)) = 2Eπ

∗
[f(xt+1)|xt],

(23)

where the first and the last equalities follow from the definitions of strategic measures, and the
inequality and the second equality are obvious. Therefore, Eγf(xt+1) = EγEγ [f(xt+1)|xt] ≤
2EγEπ

∗
[f(xt+1)|xt] ≤ 2t+1Eπ

∗
Eπ
∗
[f(xt+1)|xt] = 2t+1Eπ

∗
f(xt+1), where the first and the last equal-

ities follow from the definition of a conditional expectation, the first inequality follows from (23),
and the second inequality follows from the induction assumption.

Corollary 7.3. For t = 0, 1, . . . and for every Y ∈ X , the inequality qγt (Y ) ≤ 2tqt(Y ) holds for
every stationary policy for the MDP defined by two deterministic policies φ0 and φ1.

Proof. The corollary follows from Lemma 7.2 applied to the function f(x) = I{x ∈ Y }, x ∈ X.

For two stationary policies π and σ for the MDP defined by two deterministic policies φ0 and
φ1, let

X(π, σ) := {x ∈ X : π(·|x) = σ(·|x)} = {x ∈ X : π(φ0(x)|x) = σ(φ0(x)|x)} (24)

be the set of states on which π and σ choose the same decisions. In view of the last equality, this
set is measurable.

Lemma 7.4. Consider a uniformly absorbing MDP. If q(X \X(π, σ)) = 0, then qπ = qσ, where π
and σ are arbitrary stationary policies in the MDP defined by two deterministic policies φ0 and φ1.
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Proof. As follows from (21), π(·|x) � π∗(·|x) and σ(·|x) � π∗(·|x) for all x ∈ X. Lemma 4.2
implies that qπ � q and qσ � q. Therefore, qπ(X \ X(π, σ)) = 0 and qσ(X \ X(π, σ)) = 0 if
q(X \X(π, σ)) = 0. Thus, the set of states, on which the stationary policies π and σ make different
decisions, will be visited with zero probability when each of these policies is used.

Let dTV (η1, η2) denote the distance in total variation between two finite measures defined on
the same measurable space; see e.g., [16, Section 2] or [17] for details on definitions and properties
of distances in total variation for finite measures. Since qπ(dx) = Qπ(dx,A) for an arbitrary
policy π, then dTV (qπ, qσ) ≤ dTV (Qπ, Qσ) for two policies π and σ. As follows from Lemma 7.4,
q(X \ X(π, σ)) = 0 implies that qπ = qσ. The following theorem, which is the main result of this
section, demonstrates that the value of q(X\X(π, σ)) characterizes how close the measures Qπ and
Qσ are.

Theorem 7.5. Consider a uniformly absorbing MDP. Let π and σ be two stationary policies for
the MDP defined by two deterministic policies φ0 and φ1. Then for every ε > 0 there exists δ > 0
such that, if q(X \X(π, σ)) ≤ δ, then dTV (Qπ, Qσ) ≤ ε.

Proof. Let us fix an arbitrary ε > 0. In this proof γ is always a policy that is equal either to π or
to σ. In other words, γ ∈ {π, σ}.

We prove first the existence of δ > 0 such that, if q(X\X(π, σ)) ≤ δ, then dTV (qπ, qσ) ≤ ε. This
claim follows from the following fact. There exist a constant δ > 0 and measures q̄γ and q̂γ on (X,X )
such that the inequality q(X \X(π, σ)) ≤ δ implies the correctness of the following statements: (i)
qγ = q̄γ + q̂γ , (ii) q̂γ(X) ≤ ε/2, and (iii) q̄π = q̄σ. If this is true, then dTV (qπ, qσ) = dTV (q̂π, q̂σ) ≤ ε.

Let us construct a positive constant δ and measures q̄γ and q̂γ on (X,X ) satisfying properties
(i)–(iii). We denote by T̄ Y := min{t = 0, 1, . . . : xt /∈ Y } the first time the process leaves the set
Y ∈ X and define the measure

q̄γ(C) = Eγ
∞∑
t=0

I{xt ∈ C}I{T̄X(π,σ) > t}, C ∈ X .

Since the stationary policies π and γ coincide on the set X(π, σ),

q̄π = q̄σ.

Thus, (iii) holds. Since the MDP is uniformly absorbing, there exist ` = 1, 2, . . . such that for every
stationary policy π′

Dπ′
1 := Eπ

′
∞∑
t=`

I{xt ∈ X} ≤ ε/4. (25)

In particular, (25) holds for π′ = γ.
Our next step is to show that there exists δ > 0 such that, if q(X \X(π, σ)) ≤ δ, then

Dγ
2 := Eγ

`−1∑
t=0

I{xt ∈ X}I{T̄X(π,σ) ≤ t} ≤ ε/4. (26)

Indeed, by exchanging the summation and expectation in (26), we have

Dγ
2 =

`−1∑
t=0

P γ{xt ∈ X, T̄X(π,σ) ≤ t}. (27)
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Observe that for t = 0, 1, . . .

P γ{xt ∈ X, T̄X(π,σ) ≤ t} ≤
t∑

s=0

P γ{xt ∈ X, xs ∈ X \X(π, σ)} ≤
t∑

s=0

qγs (X \X(π, σ)). (28)

In view of Corollary 7.3,

t∑
s=0

qγs (X \X(π, σ)) ≤
t∑

s=0

2sqs(X \X(π, σ)) ≤ 2t
t∑

s=0

qs(X \X(π, σ)) ≤ 2tq(X \X(π, σ)). (29)

Formulae (27–29) imply that Dγ
2 ≤ 2`q(X \X(π, σ)). Thus, (26) holds with δ = 2−(`+2)ε.

Let us define the measures

q̂γ(C) = Eγ
∞∑
t=0

I{xt ∈ C}I{T̄X(π,σ) ≤ t}, C ∈ X .

Then qγ = q̄γ + q̂γ . Thus, (i) holds. Let δ = 2−(`+2)ε. For γ ∈ {π, σ}

q̂γ(X) = Eγ
∞∑
t=0

I{xt ∈ X}I{T̄X(π,σ) ≤ t} ≤ Eγ
`−1∑
t=0

I{xt ∈ X}I{T̄X(π,σ) ≤ t}+ Eγ
∞∑
t=`

I{xt ∈ X} ≤ ε/2,

where the last inequality follows from (26) and (25). Thus, (ii) holds. In view of (i)–(iii),
dTV (qπ, qσ) ≤ ε.

Let us prove the inequality dTV (Qπ, Qσ) ≤ ε. To do this, we consider the measures Q̄γ and Q̂γ

on (X× A,X ×A) defined by

Q̄γ(C ×B) = Eγ
∞∑
t=0

I{xt ∈ C, at ∈ B}I{T̄X(π,σ) > t}, C ∈ X , B ∈ A,

Q̂γ(C ×B) = Eγ
∞∑
t=0

I{xt ∈ C, at ∈ B}I{T̄X(π,σ) ≤ t}, C ∈ X , B ∈ A.

These two measures obviously satisfy the following properties: (i∗) Qγ = Q̄γ+Q̂γ , (ii∗) Q̂γ(X×A) =
q̂γ(X) ≤ ε/2, (iii∗) Q̄π = Q̄σ. Properties (i∗)–(iii∗) imply dTV (Qπ, Qσ) ≤ ε.

Let ‖ · ‖ be the Euclidean norm in RN . The following corollary follows from Theorem 7.5.

Corollary 7.6. Let π and σ be two stationary policies in the MDP defined by two deterministic
policies φ0 and φ1. Then for every ε > 0 there exists δ > 0 such that the inequality q(X\X(π, σ)) ≤ δ
implies that ‖vπ − vσ‖ ≤ ε.

Proof. Let K be a finite positive constant satisfying K ≥ |r(n)(x, a)| for all n = 1, . . . , N, x ∈ X,
and a ∈ A(x). Then the corollary follows from Theorem 7.5 applied to the constant ε1 := ε/(KN

1
2 )

instead of ε.
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8 Path Connectedness of the Set of Occupancy Measures Gener-
ated by Deterministic Policies

We recall that a subset E of a topological space is called path-connected, if for every two points
e0, e1 ∈ E there exists a continuous function g : [0, 1] 7→ E such that g(0) = e0 and g(1) = e1. A set
is called connected, if it cannot be partitioned into two nonempty subsets which are open in the
relative topology induced on the set. Of course, the validity of these properties may depend on the
topology chosen on the space. A subset of the Euclidean space RN is connected if and only if it is
path-connected.

Definition 8.1. A subset E of the set of finite measures on a measurable space is called path-
connected in total variation, if this set is path-connected, when the set of finite measures is endowed
with the metric equal to the distance in total variation.

A sequence {νn}n=1,2,... of finite measures on a measurable space (Ω,F) converges setwise to
a measure ν on (Ω,F) if for every bounded measurable function f : Ω 7→ R

∫
Ω f(ω)νn(dω) 7→∫

Ω f(ω)ν(dω). Setwise convergence defines the topology of setwise convergence of measures; see
e.g., Bogachev [5, p. 291].

Definition 8.2. A subset E of the space of finite measures on a measurable space is called setwise
path-connected, if this set is path-connected, when the space of finite measures is endowed with the
topology of setwise convergence of measures.

In particular, a sequence of occupancy measures {Qn}n=1,2,... converges setwise to an occupancy
measure Q if for every bounded measurable function f : X× A 7→ R∫

X

∫
A
f(x, a)Qn(dx, da)→

∫
X

∫
A
f(x, a)Q(dx, da). (30)

In view of (30), the set MF is setwise path-connected if and only if for every two deterministic
policies φ0 and φ1 there exists a map g : [0, 1] 7→ MF such that g(0) = Qφ

0
, g(1) = Qφ

1
, and the

function

ζ(α) :=

∫
X

∫
A
f(x, a)g(α)(dx, da) (31)

is continuous for every bounded measurable function f : X× A 7→ R.

Theorem 8.3. For a uniformly absorbing atomless MDP, the set MF is path-connected in total
variation and therefore it is setwise path-connected.

Proof. Let φ0 and φ1 be two deterministic policies. Consider the stationary policy π∗ defined in
(21) and the measure q on X defined in (22). The measure q is atomless in view of Lemma 4.3. So,
q(x) = 0 for all x ∈ X.

Let ψ be an isomorphic map of X onto the closed interval [0, 1]; that is, ψ is a one-to-one
measurable mapping of (X,X ) onto ([0, 1],B([0, 1])). Observe that the function ψ can be viewed as
a nonnegative random variable on the measurable space (X,X ) with the distribution function

Fψ(b) :=
q({x ∈ X : ψ(x) ≤ b})

q(X)
.

In particular, Fψ(0) = q({ψ−1(0)}) = 0, and the second equality holds because {ψ−1(0)} is a
singleton and the measure q is atomless. In addition, Fψ(1) = 1 because {x ∈ X : ψ(x) ≤ 1} = X.
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The distribution function Fψ is continuous. Indeed, first observe that Fψ(b) = 0 for b ≤ 0 and
Fψ(b) = 1 for b ≥ 1. Second, consider b ∈ [0, 1] and observe that Fψ(b−) = q({x ∈ X : ψ(x) <
b}/q(X), b ∈ R. Then Fψ(b)− Fψ(b−) = q({ψ−1(b)}) = 0, where the last inequality holds because
the set {ψ−1(b)} is a singleton and the measure q is atomless.

The continuity of the function Fψ implies that for α ∈ [0, 1]

F−1
ψ (α) = [bmin(α), bmax(α)],

where bmin(α) := inf{b ≥ 0 : Fψ(b) = α}; bmax(α) := sup{b ≤ 1 : Fψ(b) = α}, and

q(ψ−1(F−1
ψ (α))) = 0. (32)

We observe that bmin(α) = inf{b : Fψ(b) ≥ α}, and this function is well-studied in the literature
under the names of the value-at-risk and quantile function. The function bmin(α) is nondecreasing
and left-continuous on [0, 1]; see e.g., Embrechts and Hofert [11, Prop. 1(2)]. Therefore, it is lower
semicontinuous. Since Fψ is a continuous function, the function bmin(α) is strictly increasing; see
e.g., [11, Prop. 1(7)].

Let us consider the collection of increasing subsets Xα ⊂ X and X̄α ⊂ X :

Xα : = {x ∈ X : ψ(x) < bmin(α)}, α ∈ [0, 1],

X̄α : = {x ∈ X : ψ(x) ≤ bmax(α)} = Xα ∪ F−1
ψ (α), α ∈ [0, 1],

(33)

and define the deterministic policies ϕα and ϕ̄α :

ϕα(x) :=

{
φ1(x), if x ∈ Xα,
φ0(x), if x ∈ X \ Xα,

ϕ̄α(x) :=

{
φ1(x), if x ∈ X̄α,
φ0(x), if x ∈ X \ X̄α.

(34)

Observe that q(X̄α) = q(X)Fψ(bmax(α)) = q(X)α, as follows from the definition of X̄α. According
to (32),

q(Xα) = q(X̄α) = q(X)α. (35)

Recall that X(ϕα, ϕ̄α) is the set of states on which ϕα and ϕ̄α make the same decisions; see
(24). Since X \ X(ϕα, ϕ̄α) ⊂ F−1

ψ (α), equality (32) and Lemma 7.4 imply that qϕα = qϕ̄α for all

α ∈ [0, 1]. By definition, φ0 = ϕ0 and φ1 = ϕ̄1. Thus, qφ
0

= qϕ0 and qφ
1

= qϕ1 .
Observe that

q(X \X(ϕα, ϕα+∆)) = q(X \X(ϕ̄α, ϕ̄α+∆)) = q(X)|∆|, α, α+ ∆ ∈ [0, 1], (36)

where the last equation holds because

q(X \X(ϕ̄α, ϕ̄α+∆)) = q(X̄α 4 X̄α+∆) = q(X)|Fψ(bmin(α+ ∆))− Fψ(bmin(α))|,

where X̄α 4 X̄α+∆ := (X̄α ∪ X̄α+∆) \ (X̄α ∩ X̄α+∆) is the symmetric difference. Let us define the
mapping g,

g(α) := Qϕα , α ∈ [0, 1].

As shown above, g(0) = Qφ
0

and g(1) = Qφ
1
. Formula (36) and Therem 7.5 imply that this mapping

is continuous in total variation.

Corollary 8.4. For a uniformly absorbing atomless MDP the performance set VF is connected.
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Proof. Let φ0 and φ1 be deterministic policies. Let us consider the function g : [0, 1] 7→ MF

satisfying (31) for all bounded measurable functions f. The existence of such a function follows from
Theorem 8.3. Then the vector-function ζ̃(α) :=

∫
X
∫
A f(x, a)g(α)(dx, da) defines a path connecting

vφ
0

and vφ
1

in RN .

Corollary 8.5. If N = 1, then the set VF is convex for a uniformly absorbing atomless MDP.

Proof. Corollary 8.4 and the mean value theorem imply that the bounded one-dimensional set VF
is convex.

Corollary 8.6. If N = 1, then VF = V for a uniformly absorbing atomless MDP.

Proof. Let v∗ := infπ∈S v
π and v∗ := supπ∈S v

π. Then −∞ < v∗ < v∗ < +∞, where the first and the
last inequality hold since the MDP is absorbing and the reward function r is bounded. According
to Feinberg [13], infφ∈F v

φ = v∗ and supφ∈F v
φ = v∗. These equalities imply that the closures of

the one-dimensional convex sets VF and V are both equal to the closed bounded interval [v∗, v
∗].

In addition, according to Corollary 6.4, if v ∈ {v∗, v∗} ∩ V, then v ∈ VF. Therefore, VF ⊃ V and,
by definition, VF ⊂ V.

9 Proof of Theorem 3.8

For the performance set of deterministic policies VF, consider its closure V̄F. Since the set VF is
bounded, V̄F is compact.

Lemma 9.1. Under the assumptions of Theorem 3.8, if the set VF is convex, then V ⊂ V̄F.

Proof. Suppose that V 6⊂ V̄F. Then there exists a stationary policy π such that vπ /∈ V̄F. Therefore,
there exists a hyperplane in RN separating the point vπ and the convex compact set V̄F. Let
〈b, v〉+ d = 0 be such a hyperplane, and let 〈b, vπ〉+ d > 0 and 〈b, v〉+ d ≤ 0 for all v ∈ VF, where
b ∈ RN and d ∈ R. Thus

sup
φ∈F
〈b, vφ〉 = sup

v∈VF
〈b, v〉 < 〈b, vπ〉. (37)

Let us consider the reward function r̃(x, a) := 〈b, r(x, a)〉, where x ∈ X, and a ∈ A(x). The
expected total rewards for this reward function, a policy σ, and the initial state distribution µ is
denoted by ṽσ, and ṽσ = 〈b, vσ〉 for all σ ∈ S.

Supremums of the expected total rewards are equal for deterministic and stationary policies;
see Feinberg [13]. Therefore, supv∈VF〈b, v〉 = supφ∈F ṽ

φ ≥ ṽπ = 〈b, vπ〉. This contradicts (37).

Lemma 9.2. Let the statement of Theorem 3.8 be correct for N = 1, 2, . . . criteria. Then, under
the assumptions of Theorem 3.8, the set VF is convex for the case of (N + 1) criteria.

Proof. Let the lemma be correct for N -dimensional vector-functions r, where N = 1, 2, . . .. We
shall prove that the set VF is convex for (N + 1)-dimensional vector-functions r. Let φ0 and φ1

be two deterministic policies and λ ∈ (0, 1). Our goal is to show that there exists a deterministic
policy φλ such that vφλ := λvφ

0
+ (1 − λ)vφ

1
. Let us consider the stationary policy π∗ defined in

(21), the measure q on X defined in (22), and the family of expanding sets Xα ⊂ X defined in (33).
For each α ∈ [0, 1] we consider the submodel with the action sets reduced to the sets

Aα(x) =

{
{φ1(x)}, if x ∈ Xα,
{φ0(x), φ1(x)}, if x ∈ X \ Xα.
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Let V(α) be the set of all performance vectors for the submodel with the action sets Aα(·). According
to Lemmas 4.1 and 5.3, each set V(α) is convex and compact. In addition,

V(α) ⊂ V(β) if 0 ≤ β ≤ α ≤ 1. (38)

In view of the definition in (33), X0 = ∅, which implies

A0(x) = {φ0(x), φ1(x)}, x ∈ X.

Therefore V(0) is the performance set for the MDP defined by the deterministic policies φ0 and φ1.
Thus, vφ

0
, vφ

1 ∈ V(0).
Observe that V(1) = {vφ1}. Indeed, let ϕ be a deterministic policy for the MDP with the action

sets A1(·). Then ϕ(x) = φ1 when x ∈ X1 ⊂ X. In view of (35), q(X \X1) = 0. Since X \X(ϕ, φ1) ⊂
X \ X1, we have that q(X \ X(ϕ, φ1)) = 0. Lemma 7.4 implies that qϕ = qφ

1
. Therefore, vϕ =∫

X r(x, ϕ(x))qϕ(dx) =
∫
X r(x, φ

1(x))qφ
1
(dx) = vφ

1
, where the first and the last equalities follow

from the definitions of expected total rewards, occupancy measures, and deterministic policies; the
equality in the middle follows from qϕ = qφ

1
and ϕ(x) = φ1(x) for qφ

1
-almost all x ∈ X.

Since the set V(0) is convex and vφ
0
, vφ

1 ∈ V(0), we have that λvφ
0
+(1−λ)vφ

1 ∈ V(0). Consider
an arbitrary point v̂ ∈ V(0). We shall prove that vφ = v̂ for some deterministic policy φ for the
submodel with action sets A0(x), x ∈ X.

To do this, we’ll show that v̂ ∈ ∂(V(α̂)) for some α̂ ∈ [0, 1], where ∂(G) is the boundary of the
convex compact subset G of RN+1. For a point e ∈ RN+1 and a closed set E ⊂ RN+1, we denote
by d(e, E) := min{‖e− z‖ : z ∈ E} the distance between e and E. Since E is closed, d(e, E) = 0 if
and only if e ∈ E. If E1 ⊂ E2 for two closed subsets of RN+1, then d(e, E2) ≤ d(e, E1).

As follows from (38), the function

G(α) := d(v̂,V(α)), α ∈ [0, 1],

is nondecreasing in α ∈ [0, 1] and G(0) = d(v̂,V(0)) = 0. Let us prove that this function is
continuous. To do this, we choose an arbitrary α ∈ [0, 1) and ∆ > 0 such that α+ ∆ ≤ 1. We also
choose an arbitrary point v ∈ V(α). Let π be a stationary policy in the submodel with the action
sets Aα(x), x ∈ X, such that vπ = v. Let σ be the stationary policy in the model with the action
sets Aα+∆(x), x ∈ X, defined by

σ(φ1(x)|x) :=

{
1, if x ∈ Xα+∆ \ Xα,
π((φ1(x)|x), if x ∈ X \ (Xα+∆ \ Xα).

Then X \ (Xα+∆ \ Xα) ⊂ X(π, σ), which implies X \X(π, σ) ⊂ Xα+∆ \ Xα. As follows from (35),
q(X \X(π, σ)) ≤ q(X)∆. According to Theorem 7.5, for every ε1 > 0 there exists δ > 0 such that

dTV (Qπ, Qσ) ≤ ε1 if ∆ ≤ δ. This implies that ‖vπ−vσ‖ ≤ K(N+1)
1
2 ε1, where the positive constant

K is an upper bound of |r(n)(x, a)| for x ∈ X, a ∈ A, and n = 1, 2, . . . , N + 1. So, if we choose an

arbitrary ε > 0, set ε1 = ε/(K(N + 1)
1
2 ), and choose ∆ ≤ δ, then ‖vπ − vσ‖ ≤ ε. This implies that,

if ∆ ≤ δ, α ∈ [0, 1), and α+ δ ≤ 1, then

d(v,V(α+ ∆)) ≤ ε for all v ∈ V(α). (39)

Let us consider two cases: (i) G(α) > 0 and (ii) G(α) = 0.
(i) In this case, v̂ /∈ V(α). We denote by v̂α the projection of the point v̂ onto the convex

compact set V(α), that is, v̂α is the unique point in V(α) satisfying ‖v̂ − v̂α‖ = d(v̂,V(α)). Let
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v̂α+∆ ∈ V(α + ∆) be the projection of v̂α onto the compact set V(α + ∆). Then, according to the
triangle inequality

d(v̂,V(α)) + d(v̂α, V (α+ ∆)) = ‖v̂ − v̂α‖+ ‖v̂α − v̂α+∆‖ ≥ ‖v̂ − v̂α+∆‖ ≥ d(v̂,V(α+ ∆)).

Since 0 < d(v̂α, V (α+∆)) < ε and the nonnegative function G(α) is nondecreasing, the last formula
implies

0 ≤ G(α+ ∆)−G(α) ≤ ε. (40)

(ii) The equality G(α) = 0 means that v̂ ∈ V(α). Therefore, (39) for v = v̂ implies 0 ≤
G(α+ ∆)−G(α) = G(α+ ∆) ≤ ε. So, (40) holds.

Since (40) holds for the both cases, this implies continuity of the function G(α) on [0, 1]. Let us
define

α̂ := max{α ∈ [0, 1] : d(v̂,V(α)) = 0}.

This point exists because d(v̂,V(0)) = 0 and the continuous function G(α) = d(v̂,V(α)) is nonde-
creasing in α. Since d(v̂,V(α̂)) = 0, we have that v̂ ∈ V(α̂). If α̂ = 1, then v̂ = vφ

1 ∈ V(1) = ∂V(1)
since V(1) = {vφ1}.

So, we need to consider the case α̂ ∈ [0, 1). In this case we shall prove that v̂ ∈ ∂(V(α̂)).
Since v̂ ∈ V(α̂), in order to prove that v̂ ∈ ∂(V(α̂)), it is sufficient to show that v̂ cannot be

an interior point of V(α̂). Indeed, let v̂ be an interior point of V(α̂). Then there exists ε > 0 such
that d(v̂, ∂(V(α̂))) ≥ ε. In view of (39) for α = α̂, there exists ∆ > 0 such that α̂ + ∆ ≤ 1 and
d(v,V(α̂ + ∆)) ≤ ε/2 for all v ∈ V(α̂). Thus, d(v̂,V(α̂ + ∆)) ≤ ε/2. The definition of α̂ implies
that d(v̂,V(α̂ + ∆)) > 0. Let v̂p be the projection of the point v̂ onto the convex set V(α̂ + ∆).
Observe that v̂p is an interior point of V(α̂) because ‖v̂ − v̂p‖ = d(v̂,V(α̂ + ∆)) ≤ ε/2. Since v̂
and v̂p are interior points of V(α̂), there is a point v ∈ ∂(V(α̂)) such that v belongs to the line
projecting v̂ to V(α̂+∆), and v̂ is located between v̂p and v. This is illustrated on Fig. 1. Therefore
d(v,V(α̂+ ∆)) = ‖v− v̂p‖ ≥ ‖v− v̂‖ ≥ d(v̂, ∂(V(α̂))) ≥ ε, where the first inequality holds because v̂
is between v and v̂p, the second inequality follows from v ∈ ∂(V(α̂)), and the last one follows from
the choice of ε. This conclusion contradicts to d(v,V(α̂+ ∆)) ≤ ε/2. Therefore, v ∈ ∂(V(α̂)).

Figure 1: v̂ cannot be an interior point of V(α̂): otherwise, d(v,V(α̂+ ∆)) = ‖v− v̂p‖ ≥ ‖v− v̂‖ ≥
d(v̂, ∂(V(α̂))) ≥ ε, and d(v,V(α̂+ ∆)) ≤ ε/2 (contradiction).

Since v̂ ∈ ∂(V(α̂)), by Theorem 6.6 there is a coordinate i = 1, . . . , N + 1 such that v̂−i is
a performance vector in a submodel of the MDP with action sets Aα̂(·) and the value of v(i) is
completely defined by the vector v̂−i according to formula (19). The vector v̂−i has N coordinates.
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By the induction assumption, there is a deterministic policy φ such that vφ−i = v̂−i. Thus, vφ =
v̂.

Proof of Theorem 3.8. According to Corollary 8.6, the statement of the theorem is correct for
N = 1. Suppose the statement of Theorem 3.8 is correct for N criteria, where N = 1, 2, . . . . Let
us prove that it is correct for the case of (N + 1) criteria.

Consider the case on (N+1) criteria. By Lemma 9.2, the set VF is convex. Therefore, Lemma 9.1
and VF ⊂ V imply that, if v ∈ V \ ∂(V), then v ∈ VF. Let v ∈ ∂(V). Theorem 6.6 implies
that there exists a coordinate i = 1, . . . , N + 1, a vector b ∈ RN , a constant d, and a submodel
with the performance set Ṽ such that v ∈ Ṽ and ṽ(i) = d + 〈b, ṽ−i〉 for all ṽ ∈ Ṽ, where for
w ∈ RN the following notations are used: w(i) is the ith coordinate of the vector w and w−i is
the projection of w onto RN obtained by removing the ith coordinate from w. As follows from the
induction assumption, there is a deterministic policy φ in the submodel such that vφ−i = v−i and

v(i),φ = d+ 〈b, vφ−i〉 = d+ 〈b, v−i〉 = v(i). Thus, vφ = v.

10 Unbounded Rewards

This section describes extensions to unbounded reward vector-functions r. These extensions are
based on the standard weighted norm transformation of an MDP with unbounded rewards to an
MDP with bounded rewards.

Let us consider an MDP with the expected total rewards and with a standard Borel state space
X̄ := X ∪ {x̄}, where x̄ /∈ X, standard Borel action space A, sets of available actions A(x), where
A(x̄) = {ā}, with ā being an arbitrary point in A, transition probabilities p such that p(x̄|x̄, ā) = 1,
a reward vector-functions r with values in RN such that r(n)(x̄, ā) = 0, n = 1, 2, . . . , N, and an
initial probability distribution µ such that µ(X) = 1. Let there exist a positive measurable function
w : X 7→ (0,+∞), for which the following conditions hold:

(a) supx∈X supa∈A(x)
1

w(x)

∫
Xw(y)p(dy|x, a) ≤ 1,

(b)
∫
Xw(x)µ(dx) < +∞,

(c) supx∈X supa∈A(x)
|r(n)(x,a)|
w(x) < +∞, n = 1, 2, . . . , N.

Let us consider an MDP with state space X̄, action space A, sets of available action A(x), x ∈ X̄,
transition probability p̃, where p̃(x̄|x̄, ā) := 1,

p̃(Y |x, a) :=
1

w(x)

∫
Y
w(y)p(dy|x, a), Y ∈ X , x ∈ X, a ∈ A(x),

and

p̃(x̄|x, a) := 1− 1

w(x)

∫
X
w(y)p(dy|x, a), x ∈ X, a ∈ A(x),

reward function r̃, where r̃(n)(x̄, ā) = 0 and, for n = 1, 2, . . . , N,

r̃(n)(x, a) =
r(n)(x, a)

w(x)

∫
X
w(y)µ(dy), x ∈ X, a ∈ A(x),

and the initial probability distribution µ̃ with

µ̃(Y ) :=

∫
Y w(x)µ(dx)∫
Xw(y)µ(dy)

, Y ∈ X , (41)
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and µ(x̄) = 0. If µ(x) = 0, then µ̃(x) = 0, x ∈ X. Let ṽπ be the vector of the expected total expected
rewards in the MDP with the transition probabilities p̃ and rewards r̃ controlled by a policy π,
when the initial state distribution is µ̃.

We say that the defined MDP is uniformly absorbing, if equality (5) holds for this MDP with
the initial distribution µ̃ instead of µ and the transition probability p̃ instead of p. This definition
is consistent with Definition 3.6 because the assumptions in Definition 3.3 also hold for this MDP
with the fixed initial state distribution µ̃. In addition, the function r̃ is bounded. The following
statement follows from Theorem 3.8.

Corollary 10.1. Consider an MDP with the state space X̄ satisfying conditions (a–c) and such
that r(x̄, ā) = 0 and p(x̄|x̄, ā) = 1 for the state x̄ and action ā defined above. Then ṽπ = vπ for all
policies π. Furthermore, if the MDP with the transition probabilities p̃ is uniformly absorbing and
atomless, then V = VF for the initial MDP and this set is convex.

Proof. Let Ẽ and P̃ denote the expectations and probabilities for the MDP with the transition
probabilities p̃ and the initial distribution µ̃. P π(dx0da0 . . . dxtdat) and P̃ πµ̃ (dx0da0 . . . dxtdat) are

probability distributions on the standard Borel space (X̄×A)t+1, where t = 0, 1, . . . . The standard
straightforward arguments imply that for (x0, a0, . . . , xt, at) ∈ (X× A)t+1, t = 0, 1, . . . ,

P̃ πµ̃ (dx0da0, . . . , xtat) =
w(xt)P

π(dx0da0, . . . , xtat)∫
Xw(y)µ(dy)

. (42)

Since p(x̄|x̄, ā) = p̃(x̄|x̄, ā) = 1 and r(x̄, ā) = r̃(x̄, ā) = 0, equality (42) and the definition of the
reward function r̃ imply that Eπr(xt, at) = Ẽπµ̃ r̃(xt, at) for all t = 0, 1, . . . . This equality implies

that ṽπ = vπ for an arbitrary policy π. This implies that VG = {ṽπ : π ∈ G} for every set of policies
G ⊂ Π. Since the MDP with the transition probabilities p̃ is uniformly absorbing and the reward
vector-function r̃ is bounded, Theorem 3.8 implies that {ṽφ : φ ∈ F} = {ṽπ : π ∈ Π}. Therefore,
V = VF.

Now let us consider a discounted MDP with the state space X introduced in Section 2 without
assuming that the reward vector-function r is bounded. Let us consider the following assumption:

(d) there exists a positive measurable function w : X 7→ (0,+∞) satisfying assumptions (b,c),
and there exists a constant β̃ ∈ (0, 1) such that β supx∈X supa∈A(x)

1
w(x)

∫
Xw(y)p(dy|x, a) ≤ β̃.

Then the following corollary from Theorem 2.3 holds.

Corollary 10.2. If an atomless discounted MDP with a possibly unbounded reward vector-function
r satisfies assumption (d), then Vβ = VFβ and this set is convex.

Proof. Let us add an isolated point x̄ to the standard Borel space X and set X̄ := X ∪ {x̄}. Let us
consider a discounted MDP with the action set A, sets of available actions A(x), x ∈ X, reward
vector-function r̃, initial state distribution µ̃ and the discount factor β̃ described and defined above.
However, instead of p̃, the transition probability for this MDP is p̂, where p̂(x̄|x̄, ā) := 1,

p̂(Y |x, a) :=
β

β̃w(x)

∫
Y
w(y)p(dy|x, a), Y ∈ X , x ∈ X, a ∈ A(x),

and

p̂(x̄|x, a) := 1− β

β̃w(x)

∫
X
w(y)p(dy|x, a), x ∈ X, a ∈ A(x).

Let Ê and P̂ denote the expectations and probabilities for the defined MDP with the state space
X̄ and transition probabilities p̂. In particular, P̃ πµ̃ (dx0da0 . . . dxtdat) is a probability distribution
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on the standard Borel space (X̄ × A)t+1, where t = 0, 1, . . . . The following formula is similar to
(42): for t = 0, 1, . . . and (x0, a0, . . . , xt, at) ∈ (X× A)t+1,

β̃tP̂ πµ̃ (dx0da0, . . . , dxtdat) =
βtw(xt)P

π(dx0da0, . . . , dxtdat)∫
Xw(y)µ(dy)

. (43)

Since p̂(x̄|x̄, ā) = 1 and r̃(x̄, ā) = 0, equality (43) and the definition of the reward function r̃
imply that βtEπr(xt, at) = β̃tẼπµ̃ r̃(xt, at) for all t = 0, 1, . . . . This equality implies that ṽπ

β̃
= vπβ for

an arbitrary policy π, where ṽπ
β̃

is the vector of the total discounted expected rewards in the MDP

with the transition probabilities p̂ and discount factor β̃, when a policy π is chosen and the initial
state distribution is µ̃. This implies that VGβ = {ṽπ

β̃
: π ∈ G} for every set of policies G ⊂ Π. Since

the reward vector-function r̃ is bounded, Theorem 2.3 implies that {ṽφ
β̃

: φ ∈ F} = {ṽπ
β̃

: π ∈ Π}.
Therefore, Vβ = VFβ .

Corollary 10.2 can be also proved by reducing discounted MDPs with discounted factors β and β̃
to undiscounted MDPs, as this is done in the proof of Lemma 3.12, and by applying Corollary 10.1.

11 Compactness of Performance Sets and Lyapunov’s Convexity
Theorem

In this section we describe sufficient conditions for the compactness of the sets V and VF and discuss
the relation of our results to Lyapunov’s convexity theorem. From an intuitive point of view, it is
clear that the set of the ranges of vector-measures is a particular case of the sets V and VF, when
a one-step problem is considered. We demonstrate this in Example 11.2. The following example
shows that the set V may be noncompact.

Example 11.1. Let X := [0, 1], A(x) := A := (0, 1), r(x, a) = a, µ be a Lebesgue measure on [0, 1],
and under every decision the process moves from every state x ∈ X to an absorbing state. For
every deterministic policy φ, we have that vφ =

∫ 1
0 φ(x)dx, where φ : [0, 1] 7→ (0, 1) is an arbitrary

Borel function. In this example, VF = (0, 1). Since this MDP is uniformly absorbing and atomless,
V = VF = (0, 1). By changing the action sets to (0, 1], [0, 1), and [0, 1], we obtain MDPs with
performance sets (0, 1], [0, 1), and [0, 1] respectively.

As stated in Corollary 5.2, Condition (S) from Section 5 is sufficient for the compactness of
V. For example, in Example 11.1 this condition holds when A(x) = A = [0, 1], x ∈ X. Condition
(S) always holds when all the action sets A(x) are finite. Another sufficient condition (W) for the
compactness of the set of strategic measures was introduced by Schäl [32]. This condition assumes
weak continuity of transition probabilities. Being combined with continuity of the bounded reward
vector-functions r : X × A 7→ RN , this weak continuity condition implies compactness of the
performance set V. This weak continuity condition (W) was used in Feinberg and Piunovskiy [18].
We do not use and do not consider weak continuity condition (W) in this paper. In general, a
measure ν is called atomless if for any measurable set E with ν(E) > 0 there exists a measurable
subset E′ of E such that ν(E) > ν(E′) > 0. A vector-measure is called atomless, if each of its
coordinates is an atomless measure.

Lyapunov’s convexity theorem states that the range of a finite atomless vector-measure is convex
and compact. In other words, if (X,X ) is a measurable space and ν is a finite atomless vector-
measure with values in RN , then the set W := {ν(B) : B ∈ X} is a compact and convex subset of
RN .
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One of the equivalent formulations of this version of Lyapunov’s convexity theorem (see e.g.,
Blackwell [4]) states that, if µ is a finite atomless measure on a measurable space (X,X ) and
r : (X,X ) 7→ (RN ,B(RN )) is a measurable vector-function, whose coordinates are nonnegative
functions satisfying

∫
X r

(n)(x)µ(dx) < +∞, where n = 1, . . . , N, then the setW∗ := {
∫
B r(x)µ(dx) :

B ∈ X} is a compact and convex subset of RN .
To see that the classic Lyapunov convexity theorem is equivalent to this statement, for an

atomless vector-measure ν = (ν(1), . . . , ν(N)), define the atomless measure µ =
∑N

n=1 ν
(n). Since

ν(n) � µ, there are Radon-Nikodym derivatives r(n) := dν(n)/dµ, n = 1, . . . , N. Therefore, ν(B) =∫
B r(x)µ(dx) for all ∈ X , andW =W∗. Conversely, for an atomless finite measure µ and the vector

function r described in the previous paragraph, ν(B) =
∫
B r(x)µ(dx), where B ∈ X , is the atomless

vector-measure, and W∗ =W is its range.
The following example demonstrates that Theorem 3.8 and Corollaries 5.3, 10.1 imply Lya-

punov’s convexity theorem for the case, when an atomless measure is defined on a standard Borel
space.

Example 11.2. Let us consider an MDP with a state space X̄ = X ∪ {x̄}, where X is a standard
Borel space, action sets A(x) := A := {0, 1} and A(x̄) = {0}, rewards r : X × A 7→ RN , and
µ being an atomless initial probability measure on X. We also set p(x̄|x, a) = 1 for all x ∈ X̄
and a ∈ A(x). That is, from each state x the process moves to the absorbing state x̄. We also set
r(x, 0) := 0̄ for all x ∈ X̄, where 0̄ is the zero-vector in RN , and r(x, 1) := r(x), x ∈ X, where
r = (r(1), . . . , r(N)) is a Borel vector-function such that each coordinate function r(n) is nonnegative
and

∫
X r

(n)(x)µ(dx) < +∞ for all n = 1, . . . , N.
Every deterministic policy φ ∈ F is defined by the set Bφ := {x ∈ X : φ(x) = 1}. Observe that

vφ =
∫
Bφ r(x)µ(dx). In addition, {Bφ : φ ∈ F} is the Borel σ-algebra on X. Thus, we are in the

framework of the equivalent formulation of Lyapunov’s convexity theorem, and W∗ = VF. Since the
function r can be unbounded, we define the weight function w(x) := 1 +

∑N
n=1 |r(n)(x)|, x ∈ X.

Then vφ =
∫
Bφ r̃(x)µ̃(dx), where the measure µ̃ is defined in (41) and the vector-function

r̃(x) := r(x)(w(x))−1
∫
Xw(y)µ(dy), x ∈ X, is bounded. Therefore, in view of Corollary 10.1, VF = V

and this set is closed and compact. The compactness of the set V follows from Corollaries 5.3 and
10.1. The set W∗ = VF is convex and compact. Thus, Lyapunov’s convexity theorem for a standard
Borel space X is a particular example of an application of Corollary 10.1, which in its turn follows
from Theorem 3.8.
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