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Abstract

This paper provides a framework for modeling financial contagion in a network subject to fire sales
and price impacts, but allowing for firms to borrow to cover their shortfall as well. We consider both
uncollateralized and collateralized loans. The main results of this work are providing sufficient conditions
for existence and uniqueness of the clearing solutions (i.e., payments, liquidations, and borrowing); in
such a setting any clearing solution is the Nash equilibrium of an aggregation game.

AMS subject classification 91G99, 90B10, 91A06.
JEL subject classification G32.
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1 Introduction

Traditional financial risk considers each financial firm as separate and individual entities that do not interact
or exacerbate each others downside events. Systemic risk, in contrast, considers the risk of the distress of
a single bank or multiple banks spreading throughout the financial system, up to and including threatening
the health of the entire system, due to characteristics of the interactions between firms. This spread of
defaults is also called financial contagion. These contagious events can occur through local connections (e.g.,
contractual obligations) or global connections (e.g., impacts to asset prices). Such a systemic event occurred
during the 2007-2009 financial crisis in which the entire financial system was threatened with failure. Due to
the threat, this event led to government intervention requiring a significant bailout and directly precipitating
a global recession. It is for these reasons that the modeling of systemic events is of paramount importance.
This study will advance the modeling of such events by incorporating notions of borrowing and fire sales.

This paper will extend the Eisenberg-Noe network model approach of [15]. That paper considers the
network of interbank obligations and finds the equilibrium payments. Central banks and regulators have
applied the Eisenberg-Noe model to study cascading failures in the banking systems within their jurisdictions,
see, e.g., [5, 25, 10, 16, 32, 20, 7].

The Eisenberg-Noe model has been extended previously to include more realistic structures for contagion;
this includes bankruptcy costs, cross-holdings, and fire sales. We refer to [34, 31, 26] for surveys of these
extensions. In our work we will consider specifically an extension related to fire sales. Fire sales for a single
(representative) illiquid asset have been studied in, e.g., [14, 27, 21, 3, 12, 34, 4], and for multiple illiquid
assets in, e.g., [17, 19, 18].

The goal of this paper is to investigate the effects of confidence and liquidity on systemic risk and financial
contagion. To do so, a modified Eisenberg-Noe network model is considered under which there is a network of
banks with connections between them representing interbank liabilities; additionally, the banks hold illiquid
assets that may need to be liquidated in order to raise funds. During the crisis events that are being studied,
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the asset selling is subject to price impacts from fire sales. Moreover, firms are allowed to raise funds through
short-term borrowing, in addition to liquidating assets. The short-term interest rate is postulated to be a
function of the confidence in the financial system and of the specific bank; as such the firms may have
heterogeneous interest rates. The focus of this paper is on the Nash equilibria of bank decisions over the two
methods of raising cash.

The novelty of this project is in the consideration of other avenues of increasing reserve levels and raising
cash. Specifically, one area that will be considered is borrowing. Most banks rely on short-term borrowing
in order to fund their daily operations. The current project advances the field as it adds another dimension
to systemic risk – confidence, and specifically confidence as expressed through borrowing rates. While it is
universally agreed that confidence is one of the most important pillars in finance, it is notoriously hard to
quantify and predict. The problem consists of two main issues: How to quantify confidence in a measurable
way; how to convert this quantity into cash flows, i.e. how to tie this quantity to a bank’s cash flow. We
use the price-to-book ratio (P/B) as a proxy for market confidence; see also [30] which was one of the
first papers to include confidence when studying systemic risk. We refer also to [33] and [8] for a reduced
form and structural model, respectively, that introduce notions of mark-to-market write-downs on interbank
lending prior to actualized defaults; in doing so, these works incorporate the idea that confidence, or the lack
thereof, can be an additional avenue for contagion. As for the second issue the connection to the cash flow of
a bank will be done by assuming that P/B is one of the variables that influences the short-term borrowing
interest rate the bank has to pay to finance its daily operations. This has also been suggested in [23], which
cite liquidity and confidence as examples of additional channels that can generate substantial losses from
contagion. This is done in [9] which proposed a model to quantify and capture this effect in calculations of
perceived riskiness of an individual bank. Endogenous interest rates in a financial network are computed
in [6]. This ties neatly to the other possibilities to raise cash to pay off debt. The ability to borrow, and
liquidity in general, proved to be one of the major reasons of the financial crisis of 2007-2009, and one of the
solutions employed by the regulators was to increase the liquidity of the overnight lending market.

This paper combines the above features in assessing the systemic risk in the financial system. In particular,
the proposed framework is general enough to incorporate all of the aforementioned concepts. This model
is an extension of the framework of [15] incorporating borrowing, confidence, liquidity, and fire sales. The
organization of this paper is as follows. Section 2 contains the details of the initial modification to the
Eisenberg-Noe model that includes fire sales which we will be extending. Section 3 contains the analysis
of optimal liquidation through fire sales and borrowing, together with some simple examples. Section 4
incorporates the additional constraint that all borrowing must be collateralized. Numerical case studies on
both a symmetric system and one calibrated to European banking data are performed in Section 5. The
proofs for all results are provided in the Appendix.

2 Original Eisenberg-Noe Fire Sales Model

We wish to begin with some simple notation that will be utilized throughout this manuscript. We will use the
the notation that [·]i=1,...,n,j=1,...,m and [·]i=1,...,n to specify a n×m dimensional matrix and n-dimensional
vector respectively, where diag ([·]i=1,...,n) is a n×n matrix, with diagonal element (i, i) is the i-th coordinate
of the vector. Additionally, 1n×m is a n×m matrix (and 1n is a n× 1 vector) with all elements one.

Given n interlinked banks, denote Lij ≥ 0 to be the liability of bank i towards j, for i, j = 1, ..., n, and
denote p̄i =

∑n
j=0 Lij to be the total liability of bank i. The liability Li0, i = 1, ..., n is assumed to be

external liability of bank i to an entity outside of the banking network. It will be assumed that Li0 ≥ 0.
Under a pro-rata payment scheme, [Π]ij = πij will denote the relative liability, which is given by πij =

Lij

p̄i

if p̄i > 0 and πij = 0 otherwise, for i = 1, ..., n, j = 0, ..., n. These define the n× (n+1) matrix Π. Moreover,
it will be assumed that bank i has liquid endowment ci ≥ 0 and illiquid endowment ai ≥ 0. While the liquid
endowment can be assumed to be cash, the illiquid endowment is in physical units of assets as the liquidation
price of these assets remains to be determined and will be assumed to depend on the size of the sale. For
now, this price will be denoted by q.

Following the network models of [15, 14, 4, 17], the notional payments are given by p = p̄∧
(

c+ sq +Π⊤p
)

,
where si ∈ [0, ai] is the quantity of illiquid assets being sold by firm i evaluated by mark-to-market valuation
with price q, and ci is its cash reserve. Throughout this work we will denote x∧y = (min(x1, y1), ...,min(xn, yn))

⊤
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Initial Balance Sheet

Assets Liabilities

Liquid
ci

Interbank
∑n

j=1 Lji

Illiquid
ai

Interbank
∑n

j=1 Lij

External
Li0

Total
p̄i

Capital
Assets - Liabilities

Updated Balance Sheet

Assets Liabilities

Liquid
ci

s∗i f(s
∗
i + s−i) + ℓ∗i

Shortfall
hi

Interbank
∑n

j=1 πjipj

Illiquid
(ai − s∗i )f(s

∗
i + s−i)

Interbank
∑n

j=1 Lij

External
Li0

Total
p̄i

Capital
Assets - Liabilities

Figure 1: Stylized balance sheet for firm i in Case III before and after payment and price updates.

for x, y ∈ R
n. There is an implicit no short selling constraint in this model. It is assumed that the inverse

demand curve f for the illiquid asset provides the equilibrium price via

q = f

(

n
∑

i=1

si

)

.

The following are assumed about the inverse demand function f :

Assumption 2.1. The inverse demand function f : R+ → [0, 1] is strictly decreasing and twice continuously
differentiable with f(0) = 1. Let M ≥ ∑n

i=1 aif(0) =
∑n

i=1 ai be the total initial market capitalization of
the illiquid asset and f(M) > 0. Additionally it will be assumed that the first derivative f ′ : R+ → −R+ is
nondecreasing. Further assume that the mapping s ∈ [0,M ] 7→ sf(s) is strictly increasing and s ∈ [0,M ] 7→
d2

ds2 (sf(s)) = 2f ′(s) + sf ′′(s) < 0 is strictly negative.

Remark 1. Here and elsewhere throughout this manuscript to simplify notation the one sided derivatives of
f , such as the one calculated at the ends of the interval [0,M ], will be referred to as the derivative.

The intuition being that during normal times, the price of the asset is one. However, during a fire sale
the price of the illiquid asset is artificially depressed due to the lack of liquidity. Hence the book price of
the asset is one, assuming the bank does not need to liquidate it, otherwise, the liquidation price will be set
to be q ∈ (0, 1]. Further, we incorporate the notion that the price drops slower at lower prices. Finally, if a
bank were to sell an extra unit, it would obtain positive, but decreasing marginal, cash. This is consistent
with the construction of an order book.

In this project the liquidation rule of [4] will be used. That is, a firm must liquidate illiquid assets in

order to have enough reserves to satisfy its liabilities, i.e., s = a ∧ p̄−c−Π⊤p
q . We note that, under a regular

network [15, Definition 5] and Assumption 2.1, the joint equilibrium between payments p and prices q is
unique with this liquidation rule.
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3 Optimal Tradeoff between Fire Sales and Borrowing

We now formulate an optimization problem from each bank’s perspective. The bank may face a cash shortfall
and has two avenues to raise funds: partially liquidate their holding in the illiquid asset, or borrow additional
funds (ℓi) in addition to Li0 and temporarily delay the sale of the asset. The price-to-book (P/B) ratio is
used as a proxy for the confidence in the bank. It should be noted that both the sale of the asset and
borrowing of funds affect the price-to-book ratio.

Assume that bank i’s interest rate is ri, which may be a function of parameters such as the LIBOR rate.
For example, these parameters include quantifiable proxies of confidence as suggested in [9]. However, since
the model is static, these parameters will be assumed to be fixed, and a static interest rate will be assumed.
Additionally, it is convenient to define s−i =

∑n
j=1,j 6=i sj . Thus there are three cases to consider for each

bank i:

Case I: Bank i is fundamentally insolvent. In this case, the book value of the bank is below its obligations,
that is, even if the bank were to sell its illiquid asset ai at the hypothetical price f(0) = 1 that prevails
during normal, non-fire sale times it will still default on its debt. That is

p̄i > ci + ai +
n
∑

j=1

Lji. (3.1)

There is no borrowing in this case, as it will be assumed that it is imprudent to lend money to a
fundamentally insolvent bank. Including a notion of bankruptcy costs as in, e.g., [28, 13], it is assumed
that for the duration of the crisis being studied, no obligations will be paid by any fundamentally
insolvent banks, i.e. pi = 0 for any bank in Case I. Such banks will not participate in fire sales as their
assets will be distributed or liquidated in bankruptcy court at a later time. As we allow all other banks
to borrow to cover their liabilities, we will assume pi = p̄i for all banks that are not in Case I.

Case II: Bank i is solvent with no borrowing nor asset liquidation is required. This is the case if

p̄i ≤ ci +

n
∑

j=1

πjipj . (3.2)

Case III: Bank i is fundamentally solvent with borrowing and asset liquidations required. This is the case
if

ci +
n
∑

j=1

πjipj < p̄i ≤ ci + ai +
n
∑

j=1

Lji.

In this case, the bank can decide how much to borrow and liquidate in order to optimize its cash flow,
i.e. minimize expenses due to the interest payment and the loss due to fire sale. In this case, it will be
assumed that the bank can borrow funds as needed. The set of all such banks will be denoted C3.

Borrowing can, and will, only happen in the last case, when the bank is fundamentally solvent and at the
asset’s nominal price of 1. As such, the remainder of this section, and much of this paper will focus on banks
in Case III. Namely, bank i in Case III seeks to optimally liquidate

s∗i (s−i) = argmin
s∈[0,ai]

s(1− f(s−i + s)) + ri (hi − sf(s−i + s))
+

(3.3)

units of the illiquid asset where hi = p̄i −
(

ci +
∑

j πjipj

)

is the liquid shortfall for bank i. Note that the

total required borrowing ℓi given sales of si is ℓi = (hi − sif(s−i + si))
+. We are now ready to show the

existence of Nash equilibrium. The proof of the theorem is given in Appendix A.

Theorem 3.1 (Existence of Nash Equilibrium). Under Assumption 2.1 there exists Nash equilibrium liqui-

dating strategy s∗∗ =
(

s∗1(s
∗∗
−1), ..., s

∗
n(s

∗∗
−n)
)⊤ ∈ ∏n

i=1[0, ai] with resulting equilibrium price q∗∗ = f (
∑n

i=1 s
∗∗
i ) .
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We now turn our attention to uniqueness of the Nash equilibrium strategy. In fact, we can reformulate
the optimal liquidation problem by the equivalent minimization problem

s∗i (s−i) = argmin
s∈[0,ai]

{s(1− f(s−i + s)) + ri (hi − sf(s−i + s)) | sf(s−i + s) ≤ hi} , i ∈ C3. (3.4)

Now let’s consider a modified equilibrium problem between liquidations and the resultant prices, where the
price in the constraint is replaced with the variable q ∈ (0, 1].

s†i (s
‡, q) = argmin

s∈[0,min{ai,
hi
q
}]
s



1− f





∑

j 6=i

s‡j + s







+ ri



hi − sf





∑

j 6=i

s‡j + s







 , i ∈ C3. (3.5)

The following theorem now asserts the uniqueness of the Nash Equilibrium. The proof is given in Appendix
B.

Theorem 3.2 (Uniqueness of Nash Equilibrium). Under Assumption 2.1 and for a fixed price q ∈ [f(M), 1]
there exists a unique equilibrium liquidation strategy s̄(q) = s†(s̄(q), q). Additionally, if

f ′(s) + sf ′′(s) ≤ 0 and −Mf ′(0) < f(M) (3.6)

then there exists a unique joint liquidation-price equilibrium s‡ = s†(s‡, q‡) and q‡ = f(
∑n

j=1 s
‡
j).

In the following examples, we show that the conditions (3.6) of Theorem 3.2 are true for a broad range
of inverse demand functions f .

Example 3.3. Linear price impact: f(s) = 1 − αs for 0 < α < 1
2M satisfies all conditions for an inverse

demand function in Assumption 2.1. The first condition of (3.6) is true for α > 0. While the second
condition of (3.6) is true when α < 1

2M . That is, existence and uniqueness are guaranteed if 0 < α < 1
2M .

Example 3.4. Exponential price impact: f(s) = exp(−αs) for 0 < α < 1
M satisfies all conditions for an

inverse demand function in Assumption 2.1. The first condition of (3.6) is true when 0 < α ≤ 1
M . While

the second condition of (3.6) is true when α < W (1)
M ≈ 0.567

M where W is the Lambert W function. That is,

existence and uniqueness are guaranteed if 0 < α < W (1)
M .

Example 3.5. Hyperbolic price impact: f(s) = ǫ
ǫ+s for ǫ > 0 satisfies all conditions for an inverse demand

function in Assumption 2.1. The first condition of (3.6) is true when ǫ ≥ M. While the second condition of

(3.6) is true when ǫ > 1+
√
5

2 M . That is, existence and uniqueness are guaranteed if ǫ > 1+
√
5

2 M .

We conclude this section by considering an algorithm to construct the clearing liquidations and prices
under the conditions of Theorem 3.2. Briefly, the approach is to consider nested loops: a primary loop for the
fixed point iterations in the price q and a secondary loop to construct the equilibrium liquidation strategy
s̄(q) using the approach taken in [29]. Additional details are given in Appendix C.

Algorithm 2. Consider the setting of Theorem 3.2. The unique equilibrium liquidations s‡ and price q‡

can be found by the following algorithm.

1. Partition the firms into Cases I, II, and III.

2. Define the mapping g and its Jacobian G by

g(s) = diag
(

[

I{i∈C3}
]

i=1,...,n

)

(

ĝ(s)−
(

diag(I{s≤0})ĝ(s)
+ − diag(I{s≥min(a,h/q)})ĝ(s)

−)) ,

ĝ(s) = diag(1 + r)−1

(

1− diag(1 + r)[f(
n
∑

i=1

si) + sf ′(
n
∑

i=1

si)]

)

,

G(s) = − diag
(

[

I{i∈C3}
]

i=1,...,n

)

(

(I + 1n×n)f
′(

n
∑

i=1

si) + diag(s)1n×nf
′′(

n
∑

i=1

si)

)

.
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Figure 2: A plot of speed and direction of the converging iterations of liquidations of two banks, based on
the algorithm of [29]. The red ‘x’ indicates the true equilibrium.

3. Initialize iteration k = 0, ski = 0 for all firms i = 1, ..., n, and qk = f(
∑n

i=1 s
k
i ) = 1.

4. Repeat until convergence of qk:

(a) Iterate k = k + 1.

(b) Initialize sk = sk−1 and v = g(sk).

(c) Repeat until v converges to 0:

i. Set t = − v⊤G(sk)v

‖G(sk)v‖2
2

.

ii. Update ski = min
(

ski + tvi , ai , hi/q
k
)+

for all firms i = 1, ..., n.

iii. Update v = g(sk).

(d) Set qk = f
(
∑n

i=1 s
k
i

)

.

5. Define the equilibrium liquidations s‡ = sk and price q‡ = qk.

Figure 2 graphically shows the convergence of the numerical iterations to find the Nash equilibrium in
a two bank system with different initial points s0. For illustrative purposes we consider the network so
that h1 = 4, h2 = 2, and a1 = a2 = 5, thus both firms are Case III institutions. Further, we consider
heterogeneous interest rates r1 = 12% and r2 = 8%. The market impacts are modeled by the linear inverse
demand function f(s) = 1 − αs with α = 1

21 , which satisfies all assumptions of Theorem 3.2. Given the
initial liquidations (s01, s

0
2) ∈ [0, 5]2, the initial price q0 = f(s01 + s02) is found and the updated liquidations

s̄(q0) are computed. We note that, all updated liquidations are in the direction of the clearing solution. The
unique Nash equilibrium is shown as the red ‘x’.

4 Optimal Fire Sales with Collateralized Borrowing

One of the key assumptions of the previous section was that banks can borrow funds without the need for
collateral. In other words, once the determination is made that the bank is fundamentally solvent, there is
no restriction on the size of the loan. The original interpretation can be that the loan is made by the lender

6



of last resort, who initially determines if the bank is solvent or not. Once it is determined that the bank is
solvent, the bank is allowed to borrow as needed.

A more realistic and better alternative to consider is that the short-term loan needs to be collateralized,
and that this collateral is in the form of the illiquid asset. The collateralized value of the illiquid asset will
be assumed to be one. This is done in order to guarantee that a firm doing collateralized borrowing will have
positive equity using the book value price for the illiquid asset. More precisely, in Section 3, it is possible
that a firm that is required to both liquidate a portion of its holdings and borrow will fundamentally have
negative equity after it liquidates assets and then borrows additional cash, which would be in contrast to
the notion of “solvency” as it is generally considered. Thus the current setup demonstrates more completely
that firms required to liquidate and borrow remain fundamentally solvent, and bounds their actions so as to
keep such a firm in this solvency region. More specifically, this splits the original third case to be as follows:

Case I: Bank i is fundamentally insolvent. Remains the same as (3.1). Similar to the original Case I, pi = 0
in this case, and otherwise banks will pay in full.

Case II: Bank i is solvent with no borrowing nor asset liquidation is required. Also remains the same as
(3.2).

Case III: Bank i is fundamentally solvent, with borrowing and asset liquidations, but unable to pass a stress
test. This is the case if

ci +

n
∑

j=1

πjipj < p̄i ≤ ci + ai +

n
∑

j=1

Lji, and ai(1 − ν) < hi.

The first condition is the same as in the original case III, but an additional condition is now added, that
under a stress test scenario, when the illiquid asset loses a proportion ν ∈ (0, 1) of its value because
of a shock, the bank becomes insolvent. It will be assumed that in this scenario this bank will be
taken over by the regulator, who will also honor the bank’s obligations and will ultimately be sold to
a solvent bank. In this scenario the illiquid asset will not be liquidated.

Case IV: Bank i is fundamentally solvent with borrowing and asset liquidations, and able to pass a stress
test. This is the case if

ci +

n
∑

j=1

πjipj < p̄i ≤ ci + ai +

n
∑

j=1

Lji, and ai(1 − ν) ≥ hi.

In this case, the bank can decide how much to borrow in order to optimize its cash flow, and minimize
expenses due to the interest payment and the loss due to fire sale. The maximum borrowing amount
is constrained by the collateral requirement. The set of all such banks will be denoted C4.

As in the prior section, the last case of banks (Case IV firms) are those of primary interest for us. In this
case, the value of the collateral will be assumed to be the asset’s book price, i.e., one. Thus, for bank i ∈ C4,
the maximum amount that can be borrowed is the solution to

sbi(s−i)(1− f(s−i + sbi(s−i))) = ai − hi. (4.1)

The solution sbi(s−i) to (4.1) is unique if it exists, otherwise set sbi(s−i) = ∞.
As such, the new problem that replaces (3.4) for bank i in Case IV is to optimize the tradeoff in the

number of sold shares and borrowing:

s∗i (s−i) = argmin
s∈[0,ai]

{

s(1 − f(s−i + s)) + ri (hi − sf(s−i + s)) | sf(s−i + s) ≤ hi, s ≤ sbi(s−i)
}

. (4.2)

The additional constraint in (4.2) as compared with (3.4) necessitates only trivial modifications to the
proof of existence as done in Theorem 3.1. The following theorem is the analogue of Theorem 3.2, the proof
of which is presented in Appendix D.
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Theorem 4.1 (Uniqueness of Nash Equilibrium). Under Assumption 2.1 and for a fixed price q ∈ [f(M), 1]

there exists a unique equilibrium liquidation strategy s̄(q) = s†(s̄(q), q) where s†i (s
‡, q) = 0 for i 6∈ C4 and

s†i (s
‡, q) = argmin

s∈[0,min{ai,
hi
q
,
ai−hi
1−q

}]
s



1− f





∑

j 6=i

s‡j + s







+ ri



hi − sf





∑

j 6=i

s‡j + s







 for i ∈ C4.

Additionally, if f ′(s)+sf ′′(s) ≤ 0 and −Mf ′(0) < ν∧f(M) then there exists a unique joint liquidation-price

equilibrium s‡ = s†(s‡, q‡) and q‡ = f(
∑n

j=1 s
‡
j).

Remark 3. Due to the constraints on liquidations and the possibility of borrowing we can immediately
conclude that the (unique) equilibrium price provided by collateralized borrowing is greater than that in the
uncollateralized case, which in turn is above the pure fire sale setting of [4]. Economically, this recovers the
observations of [24, 11] that the freezing of the repo market can generate excess systemic risk since we would,
in some sense, move from the equilibrium under collateralized borrowing to the pure fire sale setting of [4].

5 Case Studies

5.1 Symmetric Case

5.1.1 Uncollateralized Borrowing:

The simplest standard example is to consider the case when all banks are symmetric, i.e. their positions and
shortfall are the same (see, e.g., [2, 1]). It is then possible to calculate the Nash equilibrium in Example 3.3
explicitly. There are again three cases to consider: If each bank is in either Case I (fundamentally insolvent)
or Case II (solvent with no borrowing or asset liquidations required), then the equilibrium is straight forward,
and no computation is required.

The interesting case is if every bank is in Case III (solvent with borrowing and/or asset liquidation is
required). This implies that h > 0. In this case, there are two scenarios to consider: The scenario when
all banks only liquidate and do not borrow, and the scenario when they both liquidate and borrow. For
convenience, since all the banks are symmetric, the index i can be dropped. Consider the linear price impact
f(s) = 1 − αs from Example 3.3 with α ∈ (0, 1

2M ). Then, in the first scenario, from (A.1) assuming that
there are n banks, we have that sL

(

1− nαsL
)

= h. Hence,

sL± =
1±

√
1− 4αnh

2αn
. (5.1)

If sL− is real, then sL− > 0. In this case, the root sL− is chosen as it is the minimal solution and all banks will
liquidate the least amount of assets they need to. For convenience this solution will simply be denoted as
sL. If sL− is not real, then neither is sL+ and, as described in the proof of Theorem 3.1, we set sL = +∞.

The second scenario is when the banks both liquidate and borrow. In this scenario, from (A.2) it follows
that

1− (1 + r)
(

1− α(n+ 1)s0
)

= 0.

Hence,

s0 =
r

α(n+ 1)(1 + r)
. (5.2)

These scenario are determined by the size of the liquid shortfall h. Specifically sL < s0 if and only if

h <
1−(1−2n r

(1+r)(n+1) )
2

4αn . Note that in this scenario f(ns0) =
(

1− αns0
)

> 1
1+r , and hence the banks will

never undertake a pure borrowing strategy.
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5.1.2 Collateralized Borrowing:

We will assume ν > 0 is set so that all banks are in Case IV as this is the interesting scenario. In the setting
that the borrowing needs to be collateralized, the above calculations largely hold. Namely, (5.1) and (5.2)
still hold. We need to add the constraint (4.1) that sL, s0 ≤ sb, where

sb =

√

a− h

αn
.

We then have:

• sL ≤ s0 ∧ sb if and only if h ≤ 1−(1−2n r
(1+r)(n+1) )

2

4αn ∧ a(1 − αna),

• s0 ≤ sL ∧ sb if and only if
1−(1−2n r

(1+r)(n+1) )
2

4αn ≤ h ≤ a− nr2

α(n+1)2(1+r)2 , and

• sb ≤ sL ∧ s0 if and only if h ≥ 1−(1−2n r
(1+r)(n+1) )

2

4αn ∨ a(1 − αna).

5.1.3 Numerics:

In the following two case studies, we consider an asset with market capitalization M = 100 and linear inverse
demand function f(s) = 1− s

210 . In the collateralized framework of Section 4 we need to introduce the stress
test parameter ν, which we choose so that all banks are in Case IV. Though we take parameter values that
violate the sufficient conditions of Theorem 4.1, we find the clearing liquidations and price anyway as we
have explicitly computed the symmetric Nash equilibrium above.

The left plot of Figure 3 illustrates the effect of interest rate r on the Nash equilibrium clearing price q‡.
The case considered here is a symmetric system with n = 90 banks, each with shortfall h = 1, and with the
market capitalization of the asset be M = 100. It is assumed that the assets are evenly distributed among all
the banks, i.e., a = M/n. In both the uncollateralized and collateralized settings, the price drops at the rate
1

1+r +
r

(n+1)(1+r) . In the uncollateralized setting, the curve reaches the kink and flattens only when the firm

would want to sell more assets than they have, i.e., s0 ≥ a. In the collateralized setting, the clearing price
reaches the kink and flattens at a lower interest rate (and higher clearing price) as the firms are constrained
in their liquidations by the collateralization constraint, i.e., the firms wish to liquidate more than allowable
for the repo market s0 ≥ sb. This is consistent with intuition, as in a low interest rate environment the banks
choose to borrow more, and liquidate less, than in a higher interest rate environment. The collateralization
requirement has the effect that banks cannot dispose of too much of the illiquid asset, as its price would then
drop too much otherwise, and they would not be able to use sufficiently collateralize their loans. Hence, the
price flattens sooner than in the no collateralization case where the price continues to drop further.

The right plot of Figure 3 illustrates the effect of the liquid shortfall h on the Nash equilibrium clearing
price q‡. In this case, the system consists of n = 50 symmetric banks, each with interest rate of r = 20%,
and with the market capitalization of the illiquid asset be M = 100. It is assumed that the assets are
evenly distributed among all the banks, i.e., a = M/n. We note that we constrain the liquid shortfall
by the individual firm’s assets a so that the firm is fundamentally solvent. Both the collateralized and
uncollateralized settings are equivalent up until the firms are nearly at the boundary of fundamental solvency,
i.e., h ≈ a. It is when h ≈ a that the collateralization constraint s‡ ≤ sb is relevant. In particular, this
demonstrates that only firms that are at risk of failing a stress test would be impacted by a repo market,
and as such firms would be undeterred by the need to post collateral. This is consistent with the goal of the
collateralization to secure the deal. As shortfall increases, banks become more and more risky. The banks
would become fundamentally insolvent if their shortfall exceeded h = 2. Hence, as the shortfall approaches
h = 2, the banks cannot sell as many assets as they would have done in the uncollateralized case, and need
instead to borrow more. This supports the price of the asset and limits the effects of the fire sale, while
keeping the loans collateralized and secure.

5.2 EBA Case Study

Let us now consider an example calibrated from 2011 European banking data that has been used in prior
studies (e.g., [22, 12]) under the financial contagion framework of [15]. We utilize the same network calibration
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Figure 3: Left: The effect of the interest rate r on the clearing price in a symmetric financial system under
both uncollateralized and collateralized borrowing. Right: The effect of the liquid shortfall h on the clearing
price in a symmetric financial system under both uncollateralized and collateralized borrowing.

as taken in [18]. As in that work, we note that though we utilize this EBA dataset to have a more realistic
network, the network calibration still requires heuristics and thus this example is still for demonstrative
purposes only.1

As a stylized bank balance sheet, we will consider three categories of assets: interbank assets
∑n

j=1 Lji,
liquid assets ci, and illiquid assets ai. We will additionally consider three categories of liabilities: interbank
liabilities

∑n
j=1 Lij , external liabilities Li0, and capital Ci. We refer back to Figure 1 for demonstration of

these terms.
The dataset on European banks provides the total assets Ti, capital Ci, and interbank liabilities

∑n
j=1 Lij

for each bank i. In order to use this dataset for our purposes we need to consider a few assumption. First,
as in [12, 23], we assume that the interbank liabilities equal interbank assets

∑n
j=1 Lij =

∑n
j=1 Lji (with a

small perturbation as required by the methodology of [22]). Additionally, as done in [18], all assets not a part
of the interbank assets are external assets (liquid and illiquid) and all liabilities not interbank nor capital
are owed to the societal node 0, i.e., external. Finally, the external assets are split into the component liquid
and illiquid parts in proportion to the tier 1 capital ratio Ri. Under these assumptions, given the provided
values, we determine the remainder of the stylized balance sheet via

ci = Ri



Ti −
n
∑

j=1

Lij



 , ai = (1−Ri)



Ti −
n
∑

j=1

Lij



 , Li0 = Ti −
n
∑

j=1

Lij − Ci, p̄i = Li0 +

n
∑

j=1

Lij .

Under this calibration, the net worth of firm i is equal to its capital, i.e., Ci = Ti − p̄i. Finally, we construct
the full nominal liabilities matrix L using the methodology of [22].

In order to complete our model, we need to consider the remaining parameters of the system. We set
the market capitalization M =

∑n
i=1 ai to be the total number of shares of the illiquid assets held by the

banks. Additionally we assume that all banks are subject to a r = 5% interest rate. In this example we will
focus solely on the linear inverse demand function f(s) = 1 − αs where we will vary α ∈ (0, 1

2M ). Finally,
the stress test parameter is set to ν = 1%. As in the symmetric setting, though many of price impact levels
α tested violate the conditions of Theorem 4.1 (i.e., α > ν), we find convergence of the numerical algorithms
still hold and present the results herein.

We illustrate the two proposed enhancements to the simple liquidation strategy in a numerical study.
The results are given in Figure 4. The left figure illustrates both the equilibrium prices and the losses as a
function of the price impacts. For this study these losses are defined as the losses of the illiquid asset due to
fire sale, at a price below the original market price f(0) = 1. The figure on the right on Figure 4 illustrates
the number of insolvencies as a function of the price impacts. Both these figures were obtained in the linear

1Due to complications with the calibration methodology, we only consider 87 of the 90 institutions. DE029, LU45, and SI058

were not included in this analysis.
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Figure 4: Left: Graph of equilibrium price (left axes) and losses (right axes) as a function of price impact.
Right: Number of defaults as a function of price impact

inverse demand case, as given in Example 3.3. These figures are used to illustrate the amount of financial
contagion in the three cases – the pure fire sale model of [4], the uncollateralized borrowing case proposed
in Section 3, and the collateralized borrowing case considered in Section 4.

As expected, in all three cases, the equilibrium prices decline, as the price impact increases. This decline
is most prominent in the basic case with no borrowing and only fire sales, and is very slight in either case
when borrowing is allowed. This is also expected, as in both cases, when borrowing is allowed the banks
will rely on borrowing more and more as the fire sale asset price declines. This is consistent with the graphs
of the losses on the right axes. In both cases with borrowing, the losses become almost flat, as the price
impact increases, also signifying that the banks rely more and more on borrowing, and are limiting the
amount of capital lost due to the fire sale. This is of course not possible in a pure fire sale setting, in which
case the losses increase steeply as the equilibrium price declines. Additionally, we observe that the losses in
the collateralized borrowing case are lower than the losses in the uncollateralized borrowing setting. This is
contrary to intuition, as one expects that the losses would be larger in the collateralized borrowing setting, as
the optimization performed by the banks in this case is more constrained than in the original uncollateralized
setting. It turns out that in this case, because more constraints are introduced, the price remains higher
than in the uncollateralized setting. As a consequence, the losses are smaller when collateralized borrowing
is enforced.

The graph on the right of Figure 4 shows that once borrowing is introduced, neither uncollateralized nor
collateralized borrowing experience any defaults or insolvencies. In contrast, in the pure fire sale model of [4],
the number of defaults steadily rises as the price impact increases. This occurs up to the point that all banks
in the dataset are insolvent. This illustrates that our model of fire sales with borrowing more accurately
encapsulates the health of the system than a pure fire sale model. In particular, so long as borrowing markets
remain liquid, we found that the European banking system would not be subjected to a systemic event in
2011 and all banks would survive (as evidenced in practice).

A Proof of Theorem 3.1

Proof of Theorem 3.1. Clearly, for i 6∈ C3, s
∗∗
i = 0. For i ∈ C3, two distinct scenarios will be considered: The

first scenario we consider is when the bank does not borrow and only liquidates. In this case hi = sf(s−i+s).
The solution sLi (s−i), if it exists, is unique and satisfies

sLi (s−i)f(s−i + sLi (s−i)) = hi. (A.1)

If no solution to (A.1) exists then sLi (s−i) = +∞. Under the condition that the bank holds enough assets to
possibly cover their entire shortfall, the existence and the uniqueness sLi (s−i) follows from Assumption 2.1.

The second scenario considered here is when the bank does a mix of borrowing and liquidations. From
Assumption 2.1, this value can be found by equating the derivative of (3.3) to zero and solving for s0i (s−i)
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which satisfies

1− (1 + ri)(f(s−i + s0i (s−i)) + s0i f
′(s−i + s0i (s−i))) = 0, (A.2)

where s0i (s−i) = +∞ if no such solution exists. Note that a priori this might not be a solution to the
optimization problem (3.3), as it additionally needs to be compared with sLi (s−i) from (A.1) as well as the
bounds 0 and ai.

• If f(s−i) ≥ (1+ ri)
−1 then the solution (A.2), if it exists, is unique since, by Assumption 2.1, card{s ≥

0 | f(s−i + s) + sf ′(s−i + s) = (1 + ri)
−1} ≤ 1 in this case. Moreover, the solution to the original

optimization problem (3.3) is given by s∗i (s−i) = min(sLi (s−i), s
0
i (s−i), ai). If s

0
i (s−i) ∈ [0, sLi (s−i)∧ai]

then it is optimal and the bank should liquidate s0i (s−i) shares of the illiquid asset and borrow the
remainder of the liquid shortfall. If s0i (s−i) > sLi (s−i) ∧ ai then it follows that

f(s−i + s) + sf ′(s−i + s) > (1 + ri)
−1 for every s ∈ [0, sLi (s−i) ∧ ai]. (A.3)

Thus if sLi (s−i) ≤ ai, the bank only needs to liquidate sLi (s−i) number of illiquid assets, and no
borrowing is needed. Whereas if sLi (s−i) > ai the bank will liquidate all of its illiquid asset holdings ai
and borrow the rest. This is the optimal behavior by (A.3). From a financial perspective, it is optimal
to liquidate as little as possible, so it is sufficient to liquidate sLi (s−i) ∧ ai if s

0
i (s−i) > sLi (s−i) ∧ ai.

• If f(s−i) < (1 + ri)
−1 then s∗i (s−i) = 0, i.e. the optimal solution s∗i of (3.3) is pure borrowing, and

liquidating nothing. This easily follows as for s ∈ [0, ai] the objective value is nondecreasing in s:

1− (1 + ri)(f(s+ s−i) + sf ′(s+ s−i)) > 1− (1 + ri)(1 + ri)
−1 = 0.

To summarize, each bank i will choose to liquidate s∗i (s−i) shares of the illiquid asset provided that in
aggregate all other firms are liquidating s−i, where s∗i (s−i) is given by:

s∗i (s−i) =

{

min(sLi (s−i), s
0
i (s−i), ai) if f(s−i) ≥ (1 + ri)

−1 and i ∈ C3

0 otherwise
. (A.4)

In fact, we can see that s∗i : [0,M − ai] → [0, ai] is continuous due to continuity of each of its components.
Indeed, s∗i is continuous as a function of s−i in the (possibly empty) regions where f(s−i) < (1 + ri)

−1 and
f(s−i) > (1 + ri)

−1. It also can be seen that s∗i (s−i) ց 0 as f(s−i) ց (1 + ri)
−1, which establishes the

continuity at the point where f(s−i) = (1 + ri)
−1. Therefore, by Brouwer’s fixed point theorem there exists

an equilibrium liquidation strategy s∗∗ =
(

s∗1(s
∗∗
−1), ..., s

∗
n(s

∗∗
−n)
)⊤ ∈∏n

i=1[0, ai].

B Proof of Theorem 3.2

Before we can prove this theorem we require the following auxiliary lemma.

Lemma B.1. The function H(s; ρ) =
∑n

i=1 Hi(s; ρi), ρ ∈ R
n
+, is diagonally strictly convex where Hi(s; ρi) =

ρi

(

si

(

1− f
(

∑n
j=1 sj

))

+ ri

(

hi − sif
(

∑n
j=1 sj

)))

.

Proof. Recall from [29] that for s ∈ R
n, the function s 7→ H(s; ρ) is diagonally strictly convex, if for some

(fixed) ρ ∈ R
n
+ and for every s0, s1 ∈ R

n, s0 6= s1, we have (s1 − s0)⊤g(s0; ρ)− (s1 − s0)⊤g(s1; ρ) < 0, where

g(s; ρ) =







∂s1H1(s; ρ1)
...

∂snHn(s; ρn)






=











ρ1∂s1

(

s1

(

1− f
(

∑n
j=1 sj

))

+ r1

(

h1 − s1f
(

∑n
j=1 sj

)))

...

ρn∂sn

(

sn

(

1− f
(

∑n
j=1 sj

))

+ rn

(

hn − snf
(

∑n
j=1 sj

)))











.

Additionally, [29, Theorem 6] shows that a sufficient condition for H to be strictly convex is if G(s; ρ) +
G(s; ρ)⊤ is a symmetric positive definite matrix for every s ∈ R

n and some ρ ∈ R
n
+, where G is the Jacobian

matrix of g with respect to s.
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Set ρi =
1

1+ri
then

[

G(s; ρ) + (G(s; ρ))⊤
]

ij
= −ρi(1 + ri)∂

2
sisj

(

sif

(

n
∑

k=1

sk

))

− ρj(1 + rj)∂
2
sjsi

(

sjf

(

n
∑

k=1

sk

))

= −(2 + 2I{i=j})f
′
(

n
∑

k=1

sk

)

− (si + sj)f
′′
(

n
∑

k=1

sk

)

.

Thus, write G(s; ρ) +G(s; ρ)⊤ = G1(s) +G2(s) + f ′′ (
∑n

k=1 sk)G3(s), where

G1(s) = −
(

2f ′
(

n
∑

k=1

sk

)

+

(

n
∑

k=1

sk

)

f ′′
(

n
∑

k=1

sk

))

1n×n,

G2(s) = − diag

(

2f ′
(

n
∑

k=1

sk

)

1n + sf ′′
(

n
∑

k=1

sk

))

,

[G3(s)]ij =
∑

k 6=i,j

sk.

For any liquidations s, by construction, the matrix G1(s) is positive semidefinite and G2(s) is positive
definite. Next, we show that G3(s) is positive semidefinite for any set of liquidations s, which would then

give the desired result, as f ′′ ≥ 0 by Assumption 2.1. In order to do that, note that G3(s) =
∑n

i=1 si1
(i)
n×n,

where the matrices 1
(i)
n×n, i = 1, ..., n are given by

[

1
(i)
n×n

]

jk
= I{j 6=i,k 6=i} . It is readily seen that 1

(i)
n×n are

positive semidefinite. It then follows that so is G3(s).

Proof of Theorem 3.2. We first fix q ∈ [f(M), 1], and look for an equilibrium s̄i(q) = s†i (
∑

j 6=i s̄j(q), q).
That is, we look for the modified Nash equilibrium given by (3.5). For a fixed q, the existence of such an
equilibrium follows from the logic of Theorem 3.1 and uniqueness of s̄(q) is a result of Lemma B.1 as shown
in [29, Theorem 2].

The next goal is to show q 7→ Φ(q) = f(
∑n

j=1 s̄j(q)) is a contraction mapping. Indeed, for q1 6= q2:

|Φ(q1)− Φ(q2)|
|q1 − q2|

=
1

|q1 − q2|

∣

∣

∣

∣

∣

∣

f(

n
∑

j=1

s̄j(q1))− f(

n
∑

j=1

s̄j(q2))

∣

∣

∣

∣

∣

∣

≤ −f ′(0) max
q∈[f(M),1]

∣

∣

∣

∣

∣

∣

n
∑

j=1

s̄′j(q)

∣

∣

∣

∣

∣

∣

. (B.1)

Thus to be a contraction mapping, it is sufficient to show that

−f ′(0) max
q∈[f(M),1]

∣

∣

∣

∣

∣

∣

n
∑

j=1

s̄′j(q)

∣

∣

∣

∣

∣

∣

< 1.

In order to show this, consider the sensitivity of s̄(q) with respect to q. Recall the construction of s∗

given by (A.4); here we will replace sLi (s−i) with hi/q. Assume that ai,
hi

q , s
0
i (
∑

j 6=i s̄j(q)) are all different

for all i = 1, ..., n, so that together with the continuity of s0 it follows that s̄ is differentiable with respect to
q and its derivative for a given bank i is given by

s̄′i(q) = I{i∈C3}



−I{hi
q
<ai∧s0

i
(
∑

j 6=i
s̄j(q))}

hi

q2
+ (s0i )

′(
∑

j 6=i

s̄j(q))(
∑

j 6=i

s̄′j(q))I{0≤s0
i
(
∑

j 6=i
s̄j(q))<

hi
q
∧ai}



 . (B.2)

Here, the derivative of the optimal liquidation s0i (s−i), i = 1, ..., n can be found via implicit differentiation
by solving:

0 = (1 + (s0i )
′(s−i))f

′(s−i + s0i (s−i)) + (s0i )
′(s−i)f

′(s−i + s0i (s−i)) + s0i (s−i)(1 + (s0i )
′(s−i))f

′′(s−i + s0i (s−i))

= (s0i )
′(s−i)

(

2f ′(s−i + s0i (s−i)) + s0i (s−i)f
′′(s−i + s0i (s−i))

)

+
(

f ′(s−i + s0i (s−i)) + s0i (s−i)f
′′(s−i + s0i (s−i))

)

.
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Thus by rearranging terms,

(s0i )
′(s−i) = − f ′(s−i + s0i (s−i)) + s0i (s−i)f

′′(s−i + s0i (s−i))

2f ′(s−i + s0i (s−i)) + s0i (s−i)f ′′(s−i + s0i (s−i))

=
f ′(s−i + s0i (s−i))

2f ′(s−i + s0i (s−i)) + s0i (s−i)f ′′(s−i + s0i (s−i))
− 1.

Therefore (s0i )
′(s−i) ∈ (−1, 0] for all i ∈ C3, if f

′(x+ s) ≥ (2f ′(x+ s) + sf ′′(x+ s)) for every s ∈ [0,M − x]
and any x ∈ [0,M ]. It is sufficient to consider x = 0, in other words, it is sufficient that the condition
f ′(s) + sf ′′(s) < 0 holds.

Noting that s̄ is zero for Case I and II institutions, solving the system (B.2), it follows that

s̄′(q) = −



I − diag







(s0i )
′(
∑

j 6=i

s̄j(q))I{0≤s0
i
(
∑

j 6=i
s̄j(q))<

hi
q
∧ai}I{i∈C3}





i=1,...,n



 (1n×n − I)





−1

× diag

(

[

I{hi
q
<ai∧s0i (

∑
j 6=i s̄j(q))}

I{i∈C3}
]

i=1,...,n

)

h

q2
. (B.3)

Using the fact that (s0i )
′(s−i) ∈ (−1, 0] for i = 1, ..., n, it thus follows that

∣

∣1⊤
n s̄

′(q)
∣

∣ ≤ max
d∈[0,1)n

∣

∣

∣

∣

1⊤
n (I + diag(d)(1n×n − I))−1 diag

(

[

I{di=0,
hi
q
<ai}

]

i=1,...,n

)

h

q2

∣

∣

∣

∣

. (B.4)

To compute this maximum, let B(d) := I + diag(d)(1n×n − I) = diag (1n − d) + d1⊤
n . By the Sherman-

Morrison formula

B(d)−1 = diag (1n − d)
−1 − 1

1 + 1⊤
n diag (1n − d)

−1
d
diag (1n − d)

−1
d1⊤

n diag (1n − d)
−1

=











1
1−d1

0 · · · 0

0 1
1−d2

· · · 0
...

...
...

...
0 0 · · · 1

1−dn











− 1

1 +
∑n

k=1
dk

1−dk













d1

(1−d1)2
d1

(1−d1)(1−d2)
· · · d1

(1−d1)(1−dn)
d2

(1−d2)(1−d1)
d2

(1−d2)2
· · · d2

(1−d2)(1−dn)

...
...

...
...

dn

(1−dn)(1−d1)
dn

(1−dn)(1−d2)
· · · dn

(1−dn)2













.

It now follows that

B(d)−1 diag
(

[

I{d=0}
]

i=1,..,n

)

(B.5)

=
1

1 +
∑n

k=1
dk

1−dk













I{d1=0}(1 +
∑n

k=1
dk

1−dk
) − d1I{d2=0}

1−d1
· · · − d1I{dn=0}

1−d1

− d2I{d1=0}

1−d2
I{d2=0}(1 +

∑n
k=1

dk

1−dk
) · · · − d2I{dn=0}

1−d2

...
...

...
...

− dnI{d1=0}

1−dn
− dnI{d2=0}

1−dn
· · · I{dn=0}(1 +

∑n
k=1

dk

1−dk
)













.

And thus for any j = 1, ..., n

n
∑

i=1

[

B(d)−1
]

ij
I{dj=0} =

1

1 +
∑n

k=1
dk

1−dk



1 +

n
∑

k=1

dk
1− dk

−
∑

k 6=j

dk
1− dk



 I{dj=0} =
I{dj=0}

1 +
∑n

k=1
dk

1−dk

.

We conclude that

max
q∈[f(M),1]

∣

∣1⊤
n s̄

′(q)
∣

∣ ≤ max
q∈[f(M),1],d∈[0,1)n

∣

∣

∣

∣

1⊤
nB(d)−1 diag

(

[

I{di=0,
hi
q
<ai}

]

i=1,...,n

)

h

q2

∣

∣

∣

∣

(B.6)

≤ max
q∈[f(M),1]

∣

∣

∣

∣

∣

1⊤
n

h
q ∧ a

q

∣

∣

∣

∣

∣

≤ max
q∈[f(M),1]

∑n
i=1 ai
q

≤ M

f(M)
.
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Recalling (B.1), we conclude that Φ is a contraction mapping if −Mf ′(0) < f(M).
Recall that it was assumed that ai,

hi

q , s
0
i (
∑

j 6=i s̄j(q)) are all different. If this assumption is violated,

say s0i (
∑

j 6=i s̄j(q)) > ai =
hi

q , then we need to consider one-sided derivatives. In that case, the derivative

from the left ∂−s̄i(q) = 0, while the derivative from the right ∂+s̄i(q) = − h
q2 . In this case, both one-sided

derivatives would satisfy (B.6). The other cases can be treated similarly.

C Proof of Algorithm 2

Proof of Algorithm 2. The convergence of (4) follows from an outer convergence for the equilibrium price
q = f(

∑n
i=1 s̄i(q)) and an inner convergence to compute sk = s̄(qk−1) for all iterations k ≥ 1. The outer

convergence follows directly from the proof of Theorem 3.2 which shows that f(
∑n

i=1 s̄i(q)) is a contraction
mapping. Theorem 10 of [29] provides the convergence of the inner loop to find sk as the equilibrium s̄(qk−1)
for the fixed price level qk−1. In particular, this inner loop is a gradient descent algorithm for the coupled
optimization problems (3.5) through consideration of the KKT conditions. The gradient and step-size, as
constructed for Theorem 10 of [29], are provided by the mapping g and the value t respectively.

D Proof of Theorem 4.1

Proof of Theorem 4.1. This proof remains largely unchanged from those of Theorems 3.1 and 3.2. The
mapping q 7→ Φ(q) = f(

∑n
j=1 s̄j(q)) is a contraction mapping if (B.1) is dominated by 1. We need to change

s̄′(q) in (B.2) in the following manner. Similar to the original proof of Theorem 3.2 we assume that the
quantities ai,

ai−hi

1−q , hi

q , s
0
i (s−i) i = 1, ..., n are all different. The modification to the proof if that is not the

case, is the same as in the original proof. Under this assumption

s̄′i(q) = I{i∈C4}
(

− I{hi
q
∧ ai−hi

1−q
<ai∧s0

i
(
∑

j 6=i
s̄j(q))}

(

hi

q2
I{ hi

q
<

ai−hi
1−q

} −
ai − hi

(1− q)2
I{ hi

q
≥ ai−hi

1−q
}

)

+ (s0i )
′(
∑

j 6=i

s̄j(q))(
∑

j 6=i

s̄′j(q))I{0≤s0
i
(
∑

j 6=i s̄j(q))<
hi∧(ai−hi)

q
∧ai}

)

, for i = 1, ..., n.

Then, similar to (B.3)

s̄′(q)

= −



I − diag







(s0i )
′(
∑

j 6=i

s̄j(q))I{0≤s0
i
(
∑

j 6=i
s̄j(q))<

hi
q
∧ ai−hi

1−q
∧ai}I{i∈C4}





i=1,...,n



 (1n×n − I)





−1

× diag

(

[

I{hi
q
∧ai−hi

1−q
<ai∧s0

i
(
∑

j 6=i
s̄j(q))}I{i∈C4}

]

i=1,...,n

)[

hi

q2
I{hi

q
<

ai−hi
1−q

} −
ai − hi

(1 − q)2
I{hi

q
≥ ai−hi

1−q
}

]

i=1,...,n

.

And similar to (B.4) we recover

∣

∣1⊤
n s̄

′(q)
∣

∣

≤ max
d∈[0,1)n

∣

∣

∣

∣

∣

1⊤
nB(d)−1 diag

(

[

I{di=0,
hi
q
∧ ai−hi

1−q
<ai}

]

i=1,...,n

)[

hi

q2
I{hi

q
<

ai−hi
1−q

} −
ai − hi

(1 − q)2
I{hi

q
≥ ai−hi

1−q
}

]

i=1,...,n

∣

∣

∣

∣

∣
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again letting B(d) = I + diag(d)(1n×n − I). We obtain the same bound (B.5) on B(d)−1 diag
(

I{d=0}
)

. We
finally conclude

max
q∈[f(M),1]

∣

∣1⊤
n s̄

′(q)
∣

∣

≤ max
q∈[f(M),1]
d∈[0,1)n

∣

∣

∣

∣

∣

1⊤
nB(d)−1 diag

(

I{d=0, h
q
∧ a−h

1−q
<a}

)

[

hi

q2
I{ hi

q
<

ai−hi
1−q

} −
ai − hi

(1− q)2
I{hi

q
≥ai−hi

1−q
}

]

i=1,...,n

∣

∣

∣

∣

∣

≤ max
q∈[f(M), max

i=1,...,n

hi
ai

]

∣

∣

∣

∣

∣

1⊤
n

a−h
1−q ∧ a

1− q

∣

∣

∣

∣

∣

∨ max
q∈[f(M),1]

∣

∣

∣

∣

∣

1⊤
n

h
q ∧ a

q

∣

∣

∣

∣

∣

≤
∑n

i=1 ai
ν

∨
∑n

i=1 ai
f(M)

≤ M

ν ∧ f(M)
.
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