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BOUNDARY ELEMENT METHODS WITH WEAKLY IMPOSED

BOUNDARY CONDITIONS. ∗

TIMO BETCKE† , ERIK BURMAN†‡, AND MATTHEW W. SCROGGS§

Abstract. We consider boundary element methods where the Calderón projector is used for the
system matrix and boundary conditions are weakly imposed using a particular variational boundary
operator designed using techniques from augmented Lagrangian methods. Regardless of the bound-
ary conditions, both the primal trace variable and the flux are approximated. We focus on the
imposition of Dirichlet, mixed Dirichlet–Neumann, and Robin conditions. A salient feature of the
Robin condition is that the conditioning of the system is robust also for stiff boundary conditions.
The theory is illustrated by a series of numerical examples.

Key words. boundary element methods, Nitsche’s method, Robin boundary conditions, mixed
boundary conditions

AMS subject classifications. 65N38, 65R20

1. Introduction. Weak imposition of boundary conditions has been very suc-
cessful in the context of finite element methods. In particular, Nitsche’s method [19]
has recently received increased interest in the scientific computation community. Our
aim in this paper is to discuss how the idea behind this type of method can be applied
in the context of boundary element methods to impose different types of boundary
condition in a unified framework.

Weak imposition of boundary conditions here means that neither the Dirichlet
trace nor the Neumann trace is imposed exactly, instead an h-dependent boundary
condition is imposed that is weighted in such a way that optimal error estimates may
be derived and the exact boundary condition is recovered in the asymptotic limit.
Methods based on Nitsche’s method have been succesfully utilised for boundary ele-
ment method domain decomposition problems, where they have been used to impose
interface conditions at 1D interfaces between segments of 2D screens embedded in 3D
space [13, 10]. Our approach instead focusses on imposing boundary conditions on
the 2D boundary of a single domain problem through the addition of penalty terms
to a general formulation written in terms of the multitrace operator, in a similar vein
to the method discussed in [1] for the finite element method.

The use of systems of boundary integral equations for problems with mixed bound-
ary conditions is quite classical [11, 25, 26, 27]. While these papers require the as-
sembly of boundary operators on subsets of the boundary mesh, the penalty method
proposed in this paper requires only the addition of sparse mass matrices to the mul-
titrace operator assembled on the entire mesh. In addition to the greater simplicity
of the resulting formulation, this method has the advantage that the sparse penalty
terms only affect the entries in the matrix for near interactions: this gives the resulting
system a structure that can be utilised when designing effective preconditioners.

This approach may not be competitive in the simple case of pure Dirichlet or
Neumann conditions due to the increase in the number of unknowns. Therefore the
main focus of this work is on more complex situations. We will discuss the following
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four model cases:
1. non-homogeneous Dirichlet conditions,
2. non-homogeneous Neumann conditions,
3. mixed Dirichlet–Neumann boundary conditions,
4. generalised Robin conditions.

We consider the Laplace equation: Find u such that

−∆u = 0 in Ω,(1.1a)

u = gD on ΓD,(1.1b)

∂u

∂ν
= gN on ΓN,(1.1c)

∂u

∂ν
=

1

ε
(gD − u) + gN on ΓR.(1.1d)

Here Ω ⊂ R
3 denotes a polyhedral domain with outward pointing normal ν and

boundary Γ := ΓD ∪ ΓN ∪ ΓR. We assume for simplicity that the boundaries between
ΓD, ΓN and ΓR coincide with edges between the faces of Γ. Whenever it is ambiguous,
we will write νx for the outward pointing normal at the point x. We assume that
gD ∈ H1/2(ΓD ∪ ΓR) and gN ∈ L2(ΓN ∪ ΓR). Observe that, by the Lax–Milgram
lemma, there exists a unique solution to (1.1). We assume that u ∈ H3/2+ǫ(Ω) for
some ǫ > 0.

For the Robin boundary condition, we will use the ideas of Juntunen and Stenberg
[16]. A salient feature of this type of imposition of the Robin condition is that it is
robust under singular perturbations. Indeed regardless of the Robin coefficient, the
conditioning of the resulting system matrix is no worse than for the Neumann or the
Dirichlet problem.

The proposed framework is flexible and allows for the design of a range of different
methods depending on the choice of weights and residuals. We will present a sample
of possible methods with the ambition of showing the versatility of the framework
rather than claiming that for each case the choices are optimal.

An outline of the paper is as follows. First, we review some of the basic elements
of the theory of boundary operators in section 2. Then, in section 3 we discuss the
design of formulations for the linear model problems in a formal setting. We pro-
pose the corresponding boundary element methods in section 4 and give an abstract
analysis. The boundary elements obtained using the formulations from section 3 are
then shown to satisfy the assumptions of the abstract theory. Finally, we show some
computational examples in section 5.

While the present paper focuses on weak imposition of boundary conditions
through Nitsche type coupling for BEM, ultimately the goal is to develop a framework
for complex BEM/BEM and FEM/BEM multiphysics coupling situations. Existing
approaches here are often built upon FETI and BETI type methods [17, 18]. While
BETI is usually formulated in terms of Steklov–Poincaré operators, the framework
proposed in this paper builds directly upon Calderón projectors of the subdomains.

For the method proposed in the present work the multi-domain coupling will take
a form similar to that using Nitsche’s method in the FEM/FEM coupling setting of
[5]; see also the FEM/BEM coupling of [9] where a Nitsche’s method for the coupling
was proposed, using the Steklov-Poincaré operator for the BEM system.

An important application area for the presented weak imposition of boundary con-
ditions are inverse problems with unknown boundary conditions. Since the boundary
condition only enters through a sparse operator this can be easily updated in each step
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of a solver iteration, while the boundary integral operators only need to be computed
once. In particular, for reconstruction of the coefficient in a Robin condition (see eg
[15] for a finite element approach and [3] for a detailed analysis of the stability of this
problem), the robustness with respect to the coefficient of the present method is an
advantage.

2. Boundary operators. We define the Green’s function for the Laplace oper-
ator in R

3 by

(2.1) G(x,y) =
1

4π|x− y| .

In this paper, we focus on the problem in R
3. Similar analysis can be used for problems

in R
2, in which case this definition should be replaced by G(x,y) = − log |x−y|/2π.
In the standard fashion (see eg [23, chapter 6]), we define the single layer potential

operator, V : H−1/2(Γ) → H1(Ω), and the double layer potential operator, K :
H1/2(Γ) → H1(Ω), for v ∈ H1/2(Γ), µ ∈ H−1/2(Γ), and x ∈ Ω \ Γ by

(Vµ)(x) :=
∫

Γ

G(x,y)µ(y) dy,(2.2)

(Kv)(x) :=

∫

Γ

∂G(x,y)

∂νy

v(y) dy.(2.3)

We define the space H1(∆,Ω) := {v ∈ H1(Ω) : ∆v ∈ L2(Ω)}, and then we define
the Dirichlet and Neumann traces, γD : H1(Ω) → H1/2(Γ) and γN : H1(∆,Ω) →
H−1/2(Γ), by

γDf(x) := lim
Ω∋y→x∈Γ

f(y),(2.4)

γNf(x) := lim
Ω∋y→x∈Γ

νx · ∇f(y).(2.5)

We recall that if the Dirichlet and Neumann traces of a harmonic function are
known, then the potentials (2.2) and (2.3) may be used to reconstruct the function in
Ω using the following relation.

(2.6) u = −K(γDu) + V(γNu).

It is also known [23, lemma 6.6] that for all µ ∈ H−1/2(Γ), the function

(2.7) uV
µ := Vµ

satisfies −∆uV
µ = 0 and

(2.8) ‖uV
µ‖H1(Ω) 6 c‖µ‖H−1/2(Γ).

Similarly, for the double layer potential there holds [23, lemma 6.10] that for all
v ∈ H1/2(Γ), the function

(2.9) uK
v := Kv

satisfies −∆uK
v = 0 and

(2.10) ‖uK
v ‖H1(Ω) 6 c‖v‖H1/2(Γ).
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We define {γDf}Γ and {γNf}Γ to be the averages of the interior and exterior
Dirichlet and Neumann traces of f . We define the single layer, double layer, ad-
joint double layer, and hypersingular boundary integral operators, V : H−1/2(Γ) →
H1/2(Γ), K : H1/2(Γ) → H1/2(Γ), K′ : H−1/2(Γ) → H−1/2(Γ), and W : H1/2(Γ) →
H−1/2(Γ), by

(Kv)(x) := {γDKv}Γ (x), (Vµ)(x) := {γDVµ}Γ (x),(2.11a)

(Wv)(x) := −{γNKv}Γ (x), (K′µ)(x) := {γNVµ}Γ (x),(2.11b)

where x ∈ Γ, v ∈ H1/2(Γ) and µ ∈ H−1/2(Γ) [23, chapter 6].
The following coercivity results are known for the single layer and hypersingular

operators in R
3, where 〈·, ·〉Γ denotes the H1/2(Γ)–H−1/2(Γ) duality pairing.

Lemma 2.1 (Coercivity of V). There exists αV > 0 such that

αV‖µ‖2H−1/2(Γ) 6 〈Vµ, µ〉Γ , ∀µ ∈ H−1/2(Γ).

Proof. [23, theorem 6.22].

Lemma 2.2 (Coercivity of W). There exists αW > 0 such that

αW‖v‖2H1/2(Γ) 6 〈Wv, v〉Γ , ∀v ∈ H
1/2
∗ (Γ),

where H
1/2
∗ (Γ) denotes the set of functions v ∈ H1/2(Γ) such that v = 0, where

v :=
〈v, 1〉Γ
〈1, 1〉Γ

is the average value of v. From this it follows that

αW|v|2
H

1/2
∗ (Γ)

6 〈Wv, v〉Γ , ∀v ∈ H1/2(Γ),

where | · |
H

1/2
∗ (Γ)

is defined, for v ∈ H1/2(Γ), by |v|
H

1/2
∗ (Γ)

:= ‖v − v‖H1/2(Γ).

Proof. [23, theorem 6.24].

The following boundedness results are also known.

Lemma 2.3 (Boundedness). There exist CV, CK, CK′ , CW > 0 such that

i) ‖Vµ‖H1/2(Γ) 6 CV‖µ‖H−1/2(Γ) ∀µ ∈ H−1/2(Γ),

ii) ‖Kv‖H1/2(Γ) 6 CK‖v‖H1/2(Γ) ∀v ∈ H1/2(Γ),

iii) ‖K′µ‖H−1/2(Γ) 6 CK′‖µ‖H−1/2(Γ) ∀µ ∈ H−1/2(Γ),

iv) ‖Wv‖H−1/2(Γ) 6 CW‖v‖H1/2(Γ) ∀v ∈ H1/2(Γ).

Proof. [23, sections 6.2–6.5].

We define the Calderón projector by

(2.12) C :=

(

(1− σ)Id− K V

W σId+ K
′

)

,

where σ is defined as in [23, equation 6.11], and recall that if u is a solution of (1.1)
then it satisfies

(2.13) C

(

γDu
γNu

)

=

(

γDu
γNu

)

.
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Taking the product of (2.13) with two test functions, and using the fact that
σ = 1

2 almost everywhere, we arrive at the following equations.

〈γDu, µ〉Γ =
〈

(12 Id− K)γDu, µ
〉

Γ
+ 〈VγNu, µ〉Γ ∀µ ∈ H−1/2(Γ),(2.14)

〈γNu, v〉Γ =
〈

(12 Id+ K
′)γNu, v

〉

Γ
+ 〈WγDu, v〉Γ ∀v ∈ H1/2(Γ).(2.15)

For a more compact notation, we introduce λ = γNu and u = γDu and the
Calderón form

(2.16) C[(u, λ), (v, µ)] :=
〈

(12 Id− K)u, µ
〉

Γ
+ 〈Vλ, µ〉Γ

+
〈

(12 Id+ K
′)λ, v

〉

Γ
+ 〈Wu, v〉Γ .

We may then rewrite (2.14) and (2.15) as

(2.17) C[(u, λ), (v, µ)] = 〈u, µ〉Γ + 〈λ, v〉Γ .

We will also frequently use the multitrace form, defined by

(2.18) A[(u, λ), (v, µ)] := −〈Ku, µ〉Γ + 〈Vλ, µ〉Γ + 〈K′λ, v〉Γ + 〈Wu, v〉Γ .

Using this, we may rewrite (2.17) as

(2.19) A[(u, λ), (v, µ)] = 1
2 〈u, µ〉Γ + 1

2 〈λ, v〉Γ .

To quantify the two traces we introduce the product space

V :=

{

H1/2(Γ)×H−1/2(Γ) if ΓN ∪ ΓR = ∅,

H1/2(Γ)× L2(Γ) otherwise.

The additional regularity on the flux variable is required later when imposing Neu-
mann and Robin conditions. We also introduce the associated norm

‖(v, µ)‖V := ‖v‖H1/2(Γ) + ‖µ‖H−1/2(Γ).

Using the results in Lemmas 2.1 to 2.3, we obtain the continuity and coercivity
of A.

Lemma 2.4 (Continuity). There exists C > 0 such that

|A[(w, η), (v, µ)]| 6 C‖(w, η)‖V‖(v, µ)‖V ∀(w, η), (v, µ) ∈ V.

Proof. Use the stability results from Lemma 2.3.

Lemma 2.5 (Coercivity). There exists α > 0 such that

α
(

|v|2
H

1/2
∗ (Γ)

+ ‖µ‖2H−1/2(Γ)

)

6 A[(v, µ), (v, µ)] ∀(v, µ) ∈ V.

Proof. Use the coercivity of V and W from Lemmas 2.1 and 2.2 and let α =
min(αW, αV).
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3. Weak Imposition of boundary conditions. In this section, we will derive
boundary integral formulations of the problem (1.1), that we will then use for our
boundary element formulations. We assume that the boundary condition may be
written as

(3.1) RΓ(u, λ) = 0.

The idea that we will exploit in the following is simply to add a suitable weighted
weak form of this constraint to the Calderón form (2.17). Formally, this leads to an
expression of the form

(3.2) C[(u, λ), (v, µ)] = 〈u, µ〉Γ + 〈λ, v〉Γ + 〈RΓ(u, λ), β1v + β2µ〉Γ ,

or equivalently

(3.3) A[(u, λ), (v, µ)] = 1
2 〈u, µ〉Γ + 1

2 〈λ, v〉Γ + 〈RΓ(u, λ), β1v + β2µ〉Γ ,

where β1 and β2 are problem dependent scaling operators that will be chosen as a
function of the physical parameters in order to obtain robustness of the method.

3.1. Dirichlet boundary condition. In this section, we assume that ΓD ≡ Γ

and consider the resulting Dirichlet problem. We choose β1 = β
1/2
D , β2 = β

−1/2
D ,

where βD will be identified with a mesh-dependent penalty parameter, and

(3.4) RΓD
(u, λ) := β

1/2
D (gD − u)

where gD ∈ H1/2(Γ) is the Dirichlet data.
Inserting this into (3.3), we obtain the formulation

(3.5) A[(u, λ), (v, µ)] − 1
2 〈λ, v〉ΓD

+ 1
2 〈u, µ〉ΓD

+ 〈βDu, v〉ΓD
= 〈gD, βDv + µ〉ΓD

.

One can compare the method with the classical (non-symmetric) Nitsche’s method
by formally identifying λ with ∂νu and µ with ∂νv (up to the multiplicative factor
1
2 ).

For a more compact notation, we introduce the boundary operator associated
with the non-homogeneous Dirichlet condition

(3.6) BD[(u, λ), (v, µ)] := − 1
2 〈λ, v〉ΓD

+ 1
2 〈u, µ〉ΓD

+ 〈βDu, v〉ΓD
,

and the operator associated with the right hand side

(3.7) LD(v, µ) := 〈gD, βDv + µ〉ΓD
.

Using these and (3.5), we arrive at the following problem: Find (u, λ) ∈ V such
that

A[(u, λ), (v, µ)] + BD[(u, λ), (v, µ)] = LD(v, µ) ∀(v, µ) ∈ V.(3.8)

If we set βD = 0 in (3.6) and (3.7), we obtain a penalty-free formulation for the
Dirichlet problem.
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3.2. Neumann boundary condition. In this section, we assume that ΓN ≡ Γ

and consider the resulting Neumann problem. We choose β1 = β
−1/2
N , β2 = β

1/2
N , and

define

(3.9) RΓN
(u, λ) := β

1/2
N (gN − λ),

where gN ∈ L2(ΓN), with
∫

Γ gN = 0, is the Neumann data.
Proceeding as in the Dirichlet case, we obtain the formulation

(3.10) A[(u, λ), (v, µ)] − 1
2 〈u, µ〉ΓN

+ 1
2 〈λ, v〉ΓN

+ 〈βNλ, µ〉ΓN
= 〈gN, βNµ+ v〉ΓN

.

Defining

BN[(u, λ), (v, µ)] := − 1
2 〈u, µ〉ΓN

+ 1
2 〈λ, v〉ΓN

+ 〈βNλ, µ〉ΓN
,(3.11)

LN(v, µ) := 〈gN, βNµ+ v〉ΓN
,(3.12)

we may write this as the variational problem: Find (u, λ) ∈
∗

V such that

A[(u, λ), (v, µ)] + BN[(u, λ), (v, µ)] = LN(v, µ) ∀(v, µ) ∈
∗

V.(3.13)

Here, we use the space
∗

V := H
1/2
∗ (ΓN) × L2(ΓN), as the solution to the Neumann

problem can only be determined up to a constant, so we include the extra condition
that u = 0.

If we set βN = 0 in (3.11) and (3.12), we obtain a penalty-free formulation for

the Neumann problem. In this case, we may take
∗

V = H
1/2
∗ (ΓN) × H−1/2(ΓN) and

gN ∈ H−1/2(ΓN).
When βN > 0, observe that for the terms imposing the Neumann condition to

be well defined, we need λ ∈ L2(ΓN). This can be avoided by replacing βN with
a regularising operator R : H−1/2(ΓN) → H1/2(ΓN). For example, we could take
R = βVV, where βV ∈ R and V is the single layer boundary operator on ΓN. This
formulation with the operator R is given in [24, (3.10) and (3.11)], where it was derived
using a domain decomposition approach where a Robin condition was used to weakly
impose a Neumann condition.

The resulting formulations using βN are in general easier to analyse, since they
give control of λ on the Neumann boundary in the natural norm ‖λ‖H−1/2(ΓN).

3.3. Mixed Dirichlet–Neumann boundary condition. We now consider the
case of mixed Dirichlet–Neumann boundary conditions, when Γ = ΓD ∪ ΓN. We note
that in this case, and in the Robin case, we take V = H1/2(Γ)× L2(Γ).

Let RΓD
and RΓN

be defined by (3.4) and (3.9). Using the abstract form (3.3),
we obtain

(3.14) A[(u, λ), (v, µ)] = 1
2 〈u, µ〉Γ + 1

2 〈λ, v〉Γ
+
〈

RΓD
(u, λ), β

1/2
D v + β

−1/2
D µ

〉

ΓD

+
〈

RΓN
(u, λ), β

−1/2
N v + β

1/2
N µ

〉

ΓN

.

Developing (3.14), and defining

(3.15) BND[(u, λ), (v, µ)] :=
1
2 〈u, µ〉ΓD

− 1
2 〈λ, v〉ΓD

+ 〈βDu, v〉ΓD

+ 1
2 〈λ, v〉ΓN

− 1
2 〈u, µ〉ΓN

+ 〈βNλ, µ〉ΓN
,
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(3.16) LND(v, µ) := 〈gD, βDv + µ〉ΓD
+ 〈gN, βNµ+ v〉ΓN

,

we arrive the variational formulation: Find (u, λ) ∈ V such that

A[(u, λ), (v, µ)] + BND[(u, λ), (v, µ)] = LND(v, µ) ∀(v, µ) ∈ V.(3.17)

If we set βD = 0 and βN = 0 in (3.15) and (3.16), we obtain a penalty-free
formulation for the mixed Dirichlet–Neumann problem. By taking ΓN = ∅ or ΓD = ∅,
formulations for both Dirichlet and Neumann problems can be obtained from (3.17).

3.4. Robin conditions. For simplicity, we consider the case where Γ = ΓR.
Considering the Robin condition (1.1d), we may write, for some ε > 0,

(3.18) RΓR
(u, λ) := β

1/2
R

(

ε1/2(gN − λ) + ε−1/2(gD − u)
)

.

This function is a linear combination of the Dirichlet and the Neumann conditions.

(3.19) RΓR
(u, λ) = αDRΓD

(u, λ) + αNRΓN
(u, λ),

where αN = β
1/2
R β

−1/2
N ε1/2 and αD = β

1/2
R β

−1/2
D ε−1/2.

We take β1 = β
1/2
R and β2 = β

−1/2
R , and look for a term of the form

(3.20)
〈

φRΓR
(u, λ), β

1/2
R v + β

−1/2
R µ

〉

ΓR

,

where the φ and βR must have the following properties to ensure that the formulation
degenerates into the formulation for the Dirichlet and Neumann problems as ε → 0
and ε → ∞.

βR → βD, αDφ → 1, and αNφ → 0 as ε → 0,

βR → β−1
N , αNφ → 1, and αDφ → 0 as ε → ∞.

It is straightforward to verify that these conditions are satisfied for the choices

φ :=
ε1/2

εβR + 1
,(3.21)

βR :=
εβ−1

N + βD

ε+ 1
.(3.22)

Later, we will use βD = βh−1 and βN = βh, where β is a constant, as in the mixed
Dirichlet–Neumann case.

Collecting the above considerations, we arrive at the formulation

(3.23) A[(u, λ), (v, µ)] = 1
2 〈u, µ〉Γ + 1

2 〈λ, v〉Γ

+

〈

ε(gN − λ) + (gD − u),
βR

εβR + 1
v +

1

εβR + 1
µ

〉

ΓR

.

Taking ε → 0, we recover the Dirichlet formulation (3.5); and taking ε → ∞ results
in the Neumann formulation (3.10).

By introducing

BR[(u, λ), (v, µ)] :=
1

2

〈

εβR − 1

εβR + 1
λ, v

〉

ΓR

− 1

2

〈

εβR − 1

εβR + 1
u, µ

〉

ΓR

+

〈

ε

εβR + 1
λ, µ

〉

ΓR

+

〈

βR

εβR + 1
u, v

〉

ΓR



BEM WITH WEAKLY IMPOSED BOUNDARY CONDITIONS 9

and

LR(v, µ) :=

〈

gD + εgN,
βR

εβR + 1
v +

1

εβR + 1
µ

〉

ΓR

,

we may write this as the variational problem: Find (u, λ) ∈ V such that

A[(u, λ), (v, µ)] + BR[(u, λ), (v, µ)] = LR(v, µ) ∀(v, µ) ∈ V.(3.24)

4. Boundary element method for the single domain problem. All the
methods introduced above are written as the sum of the multitrace operator A and
a boundary condition operator B. We write this generally as: Find (u, λ) ∈ V such
that

A[(u, λ), (v, µ)] + B[(u, λ), (v, µ)] = L(v, µ) ∀(v, µ) ∈ V.(4.1)

In this section, we analyse this general problem, then show that the analysis is appli-
cable to the boundary conditions discussed in section 3.

For the sake of example and to fix the ideas, we introduce a family of conforming,
shape regular triangulations of Γ, {Th}h>0, indexed by the largest element diameter
of the mesh, h. We assume that the triangulations are fitted to the different boundary
sets ΓD, ΓR and ΓN. We then consider the following finite element spaces.

Vk
h := {vh ∈ C0(Γ) : vh|T ∈ Pk(T ), for every T ∈ Th},

Λl
h := {vh ∈ L2(Γ) : vh|T ∈ Pl(T ), for every T ∈ Th},

Λ̃l
h := {vh ∈ Λl

h : vh|Γi ∈ C0(Γi), for i = 1, . . . ,M},

where Pk(T ) denotes the space of polynomials of order less than or equal to k, and
{Γi}Mi=1 are the polygonal faces of Γ.

We observe that Vk
h ⊂ H1/2(Γ), Λl

h ⊂ L2(Γ) and Λ̃l
h ⊂ L2(Γ). We now introduce

the discrete product space Vh := Vk
h ×Λl

h. The space Λ̃l
h may be used in the place of

Λl
h without any modifications of the arguments below.

The boundary element formulation of the generic problem (4.1) then takes the
form: Find (uh, λh) ∈ Vh such that

A[(uh, λh), (vh, µh)] + B[(uh, λh), (vh, µh)] = L(vh, µh) ∀(vh, µh) ∈ Vh.(4.2)

If we assume that (u, λ) ∈ V and (uh, λh) ∈ Vh satisfy (4.1) and (4.2), it imme-
diately follows that the following Galerkin orthogonality relation holds.

(4.3) A[(u− uh, λ− λh), (vh, µh)] + B[(u− uh, λ− λh), (vh, µh)] = 0

∀(vh, µh) ∈ Vh.

We also get the following representation formula for the approximation in the bulk
using (2.6).

(4.4) ũh = −Kuh + Vλh.

We will now proceed to derive some estimates for the solution of (4.2) and the recon-
struction (4.4).

Let W be a product Hilbert space for the primal and flux variables, such that
W ⊂ V. Let ‖ · ‖B be a norm defined on W, such that for all (v, µ) ∈ W, ‖(v, µ)‖B >
‖(v, µ)‖V.

To reduce the number of constants that appear, especially when proving that
assumption 4.4 holds, we introduce the following notation.
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• If ∃C > 0, independent of h, such that a 6 Cb, then we write a . b.
• If a . b and b . a, then we write a h b.

For the abstract analysis, we will make use of the following standard assumptions.

Assumption 4.1 (Weak coercivity). There exists α > 0 such that ∀(v, µ) ∈ W

α‖(v, µ)‖B 6 sup
(w,η)∈W\{0}

A[(v, µ), (w, η)] + B[(v, µ), (w, η)]
‖(w, η)‖B

,

and ∀(w, η) ∈ W \ {0}
sup

(v,µ)∈W

|A[(v, µ), (w, η)] + B[(v, µ), (w, η)]| > 0.

Assumption 4.2 (Discrete coercivity). There exists α > 0 such that ∀(vh, µh) ∈
Vh

α‖(vh, µh)‖B 6 sup
(wh,ηh)∈Vh\{0}

A[(vh, µh), (wh, ηh)] + B[(vh, µh), (wh, ηh)]

‖(wh, ηh)‖B
,

and ∀(wh, ηh) ∈ Vh \ {0}
sup

(vh,µh)∈Vh

|A[(vh, µh), (wh, ηh)] + B[(vh, µh), (wh, ηh)]| > 0.

Assumption 4.3 (Continuity). There exists an auxiliary norm ‖(v, µ)‖∗ defined
on W, and there exists M > 0 such that ∀(w, η), (v, µ) ∈ W

|A[(w, η), (v, µ)] + B[(w, η), (v, µ)]| 6 M‖(w, η)‖∗‖(v, µ)‖B
Assumption 4.4 (Approximation). ∀(v, µ) ∈ Hs(Γ)×Hr(Γ),

inf
(wh,ηh)∈Vh

‖(v − wh, µ− ηh)‖∗ . hζ−1/2|v|Hζ(Γ) + hξ+1/2|µ|Hξ(Γ),

where ζ = min(k + 1, s), ξ = min(l + 1, r), s > 1
2 and r > − 1

2 .

Typically, we use approximation spaces with k = l + 1, where the polynomial
spaces used for λ are one order lower than those for u, or spaces with k = l, where
equal order spaces are used for both variables.

We note that if the form A + B is coercive, that is there exists α > 0 such that
∀(v, µ) ∈ W

α‖(v, µ)‖2B 6 A[(v, µ), (v, µ)] + B[(v, µ), (v, µ)],
then assumptions 4.1 and 4.2 hold.

We now proceed to prove some results about the abstract problem.

Proposition 4.5. Assume that assumption 4.1 holds, then the linear system de-
fined by (4.2) is invertible. If, in addition, we assume that

• assumption 4.3 holds,
• there exists L > 0 such that L(w, η) 6 L‖(w, η)‖B ∀(w, η) ∈ W,
• and ‖ · ‖∗ is equivalent to ‖ · ‖B,

then the formulation (4.1) admits a unique solution in W.

Proof. Note that assumption 4.1 implies the inf-sup condition,

inf
(v,µ)∈W\{0}

sup
(w,η)∈W\{0}

A[(v, µ), (w, η)] + B[(v, µ), (w, η)]
‖(v, µ)‖B‖(w, η)‖B

> 0.(4.5)

Therefore we may apply the Babuška–Lax–Milgram theorem [2, theorem 5.2.1].
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Proposition 4.6. Assume that (u, λ) ∈ V is the solution to a boundary value
problem of the form (1.1) satisfying the abstract form (4.1). Let (uh, λh) ∈ Vh be the
solution of (4.2). If assumptions 4.2 and 4.3 are satisfied then

(4.6) ‖(u− uh, λ− λh)‖B 6
M

α
inf

(vh,µh)∈Vh

‖(u− vh, λ− µh)‖∗.

Proof. See [28, theorem 2].

Corollary 4.7. Let (u, λ) ∈ Hs(Γ)×Hr(Γ), for some s > 1
2 and r > − 1

2 , satisfy
the abstract form (4.1). Under the assumptions of Proposition 4.6 and assumption 4.4,

‖(u− uh, λ− λh)‖B . hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ),

where ζ = min(k + 1, s) and ξ = min(l + 1, r).

Proof. Apply assumption 4.4 to the right hand side of (4.6).

Proposition 4.8. Assume that (u, λ) ∈ V is the solution to a boundary value
problem of the form (1.1) satisfying the abstract form (4.1) and that the assumptions
of Proposition 4.6 are satisfied. Let (uh, λh) ∈ Vh. Let ũ : Ω → R be the reconstruction
obtained using (2.6), with γNu = λ and γDu = u; and ũh : Ω → R be the reconstruction
obtained using (4.4). Then there holds

‖ũ− ũh‖H1(Ω) .
M

α
inf

vh,µh∈Vh

‖(u− vh, λ− µh)‖∗.

Proof. Using (2.7) and (2.9), we may write

ũ− ũh = (uV
λ − uV

λh
) + (uK

u − uK
uh
).

Using the triangle inequality, we have

(4.7) ‖ũ− ũh‖H1(Ω) 6 ‖uV
λ − uV

λh
‖H1(Ω) + ‖uK

u − uK
uh
‖H1(Ω).

By (2.8) and (2.10), there exist c1, c2 > 0 such that

‖uV
λ − uV

λh
‖H1(Ω) 6 c1‖λ− λh‖H−1/2(Γ),(4.8)

‖uK
u − uK

uh
‖H1(Ω) 6 c2‖u− uh‖H1/2(Γ).(4.9)

Collecting (4.7)–(4.9), we see that there exists C > 0 such that

(4.10) ‖ũ− ũh‖H1(Ω) 6 C‖λ− λh, u− uh‖V 6 C‖λ− λh, u− uh‖B.

The statement now follows from Proposition 4.6.

Corollary 4.9. Under the same assumptions of Proposition 4.8 and assump-
tion 4.4,

‖ũ− ũh‖H1(Ω) . hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ),

where ζ = min(k + 1, s) and ξ = min(l + 1, r).

Proof. Apply assumption 4.4 to (4.10) in the proof of Proposition 4.8.
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4.1. Application of the theory to the Dirichlet problem. For the finite
element spaces defined above, the Dirichlet problem takes the form: Find (uh, λh) ∈
Vh such that

A[(uh, λh), (vh, µh)] + BD[(uh, λh), (vh, µh)] = LD(vh, µh) ∀(vh, µh) ∈ Vh.(4.11)

We introduce the following BD-norm.

‖(v, µ)‖BD
:= ‖(v, µ)‖V + β

1/2
D ‖v‖L2(ΓD),

and we let ‖ · ‖∗ = ‖ · ‖BD
. We now proceed to verify that assumptions 4.1 to 4.4 hold.

Proposition 4.10 (Coercivity). Assumptions 4.1 and 4.2 are satisfied for the
Dirichlet problem if ∃βmin > 0, independent of h, such that βD > βmin.

Proof. Using the fact that |v|2
H

1/2
∗ (ΓD)

+ ‖v‖2L2(ΓD) & ‖v‖2
H1/2(ΓD)

, we deduce from

Lemma 2.5 that for every positive α′ 6 α,

α′‖(v, µ)‖2V − α′‖v‖2L2(ΓD) 6 A[(v, µ), (v, µ)] ∀(v, µ) ∈ W.

Using the definition of BD, we see that

BD[(v, µ), (v, µ)] = βD〈v, v〉ΓD
= βD‖v‖2L2(ΓD)

Taking α′ = min(α, βmin/2), we see that

A[(v, µ), (v, µ)] + BD[(v, µ), (v, µ)] > α′‖(v, µ)‖2
V
+

(

1− α′

βmin

)

βD‖v‖2L2(ΓD)

> α′′‖(v, µ)‖2BD
,

for some α′′ > 0. Therefore, in this case the form A+BD is coercive, and so assump-
tions 4.1 and 4.2 hold.

Proposition 4.11 (Weak coercivity). Assumptions 4.1 and 4.2 are satisfied for
the Dirichlet problem with βD = 0.

Proof. Taking w = v and η = µ+ cv, for some c ∈ R to be fixed, we obtain

L := A[(v, µ), (w, η)] + BD[(v, µ), (w, η)]

= 〈Vµ, µ〉Γ + c 〈Vµ, v〉Γ − c 〈Kv, v〉Γ + 〈Wv, v〉Γ +
c

2
〈v, v〉Γ(4.12)

By Lemmas 2.1 and 2.2, we know that

〈Vµ, µ〉Γ + 〈Wv, v〉Γ > αV‖µ‖2H−1/2(Γ) + αW|v|2
H

1/2
∗ (Γ)

(4.13)

By Lemma 2.3, we see that

c |〈Vµ, v〉Γ| 6 c‖Vµ‖H1/2(Γ)‖v‖H−1/2(Γ)

6 cCV‖µ‖H−1/2(Γ)‖v‖H−1/2(Γ)

= cCV‖µ‖H−1/2(Γ)‖v‖L2(Γ)

Using the fact that for a, b > 0, ab 6 (a2 + b2)/2, we obtain

c |〈Vµ, v〉Γ| 6
c2C2

V

2αV

‖v‖2L2(Γ) +
αV

2
‖µ‖2H−1/2(Γ).(4.14)
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We note that u = v is a solution to (1.1), γDv = v and γNv = 0. Using this and
applying (2.14), we see that ∀µ ∈ H−1/2(Γ), 〈Kv, µ〉Γ = − 1

2 〈v, µ〉Γ. Therefore, using
µ = v,

c 〈Kv, v〉Γ = c 〈K(v − v), v〉Γ + c 〈Kv, v〉Γ
= c 〈K(v − v), v〉Γ − c

2
〈v, v〉Γ .

Using the fact that ‖v − v‖H1/2(Γ) = |v|
H

1/2
∗ (Γ)

, and proceeding in the same way as

we did for the single layer term above, we obtain

c 〈Kv, v〉Γ 6
αW

2
|v|2

H
1/2
∗ (Γ)

+
C2

K
c2

2αW

‖v‖2L2(Γ) −
c

2
‖v‖2L2(Γ).(4.15)

We also have that
c

2
〈v, v〉 = c

2
‖v‖2L2(Γ)(4.16)

Taking α = min(αV, αK) and C = max(CV, CK), and putting (4.13)–(4.16) to-
gether, we obtain

L >
α

2
‖µ‖2H−1/2(Γ) +

α

2
|v|2

H
1/2
∗ (Γ)

+

(

c− c2C2

α

)

‖v‖2L2(Γ).

Letting c =
α

2C2
gives

L >
α

2
‖µ‖2H−1/2(Γ) +

α

2
|v|2

H
1/2
∗ (Γ)

+
α

4C2
‖v‖2L2(Γ)

& ‖µ‖2H−1/2(Γ) + |v|2
H

1/2
∗ (Γ)

+ ‖v‖2L2(Γ).

Finally, we show that

‖(v, µ)‖V = ‖v‖H1/2(Γ) + ‖µ‖H−1/2(Γ)

6 ‖v − v‖H1/2(Γ) + ‖v‖H1/2(Γ) + ‖µ‖H−1/2(Γ)

= |v|
H

1/2
∗ (Γ)

+ ‖v‖L2(Γ) + ‖µ‖H−1/2(Γ),

‖(w, η)‖V 6 |v|
H

1/2
∗ (Γ)

+ ‖v‖L2(Γ) + ‖µ+ cv‖H−1/2(Γ)

6 |v|
H

1/2
∗ (Γ)

+ ‖v‖L2(Γ) + ‖µ‖H−1/2(Γ) + c‖v‖H−1/2(Γ)

. |v|
H

1/2
∗ (Γ)

+ ‖v‖L2(Γ) + ‖µ‖H−1/2(Γ).

Therefore

‖(v, µ)‖V‖(w, η)‖V . ‖µ‖2H−1/2(Γ) + |v|2
H

1/2
∗ (Γ)

+ ‖v‖2L2(Γ)

. L.

We obtain the first part of assumption 4.1 by dividing through by ‖(w, η)‖V and
taking the supremum.

To show the second part of assumption 4.1, we let (w, η) ∈ W \ {0} and proceed
as follows.

L := sup
(v,µ)∈W

|A[(v, µ), (w, η)] + BD[(v, µ), (w, η)]|

> A[(w, η − w), (w, η)] + BD[(w, η − w), (w, η)]

= −〈K′w,w〉Γ + 〈Vη, η〉Γ − 〈Vw, η〉Γ + 〈Ww,w〉Γ + 1
2 〈w,w〉Γ.
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This is of the same form as (4.12), so we proceed as above to obtain

L & ‖(v, µ)‖V‖(w, η)‖V.

This is greater than zero for all (w, η) 6= 0, and so we have proven the second part of
assumption 4.1.

Assumption 4.2 can be proven in the same way as above using the discrete space
Vh in the place of W.

Proposition 4.12 (Continuity). Assumption 4.3 is satisfied for the Dirichlet
problem.

Proof. Applying Lemma 2.4, the relation

〈η, v〉Γ 6 ‖η‖H−1/2(Γ)‖v‖H1/2(Γ),

and the Cauchy–Schwarz inequality,

βD 〈w, v〉Γ 6 β
1/2
D ‖w‖L2(Γ)β

1/2
D ‖v‖L2(Γ),

to the form A+ BD yields the desired continuity result.

Proposition 4.13 (Approximation). Assumption 4.4 is satisfied for the Dirichlet
problem if 0 6 βD . h−1.

Proof. Using standard approximation results (see eg [23, theorems 10.4 and 10.9]),
we see that

inf
(wh,ηh)∈Vh

‖(v − wh, µ− ηh)‖V = inf
wh∈Vk

h

‖v − wh‖H1/2(Γ) + inf
ηh∈Λl

h

‖µ− ηh‖H−1/2(Γ)

. hζ−1/2|v|Hζ(Γ) + hξ+1/2|µ|Hξ(Γ),

inf
wh∈Vk

h

‖v − wh‖L2(ΓD) . hζ |v|Hζ(Γ).

Applying these to the definition of ‖ · ‖∗ gives

inf
(wh,ηh)∈Vh

‖(v − wh, µ− ηh)‖∗ . hζ−1/2|v|Hζ (Γ) + hξ+1/2|µ|Hξ(Γ) + β
1/2
D hζ |v|Hζ (Γ).

If βD = 0, assumption 4.4 holds. If 0 < βD . h−1, then β
1/2
D hζ . hζ−1/2, and so

assumption 4.4 holds.

We have shown that assumptions 4.1 to 4.4 are satisfied. Additionally the extra
assumptions in Proposition 4.5 are satisfied, so we conclude that the results of Propo-
sitions 4.5, 4.6, and 4.8 and Corollaries 4.7 and 4.9 apply to the Dirichlet problem.
This is summarised in the following result.

Theorem 4.14. The Dirichlet problem (3.8) has a unique solution (u, λ) ∈ Hs(Γ)×
Hr(Γ), for some s > 1

2 and r > − 1
2 . The discrete Dirichlet problem (4.11) is

invertible. If ∃βmin > 0 such that βmin < βD . h−1 or βD = 0, its solution
(uh, λh) ∈ Vk

h × Λl
h satisfies

‖(u− uh, λ− λh)‖BD
. hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ),

where ζ = min(k + 1, s) and ξ = min(l + 1, r). Additionally,

‖ũ− ũh‖H1(Ω) . hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ),

where ũ and ũh are the solutions in Ω computed using (2.6).
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4.2. Application of the theory to the Neumann problem. The Neumann

problem takes the form: Find (uh, λh) ∈
∗

Vh such that

A[(uh, λh), (vh, µh)] + BN[(uh, λh), (vh, µh)] = LN(vh, µh) ∀(vh, µh) ∈
∗

Vh.(4.17)

Here
∗

Vh :=
∗

Vk
h(Γ)× Λl

h(Γ) and
∗

Vk
h(Γ) := {v ∈ Vk

h : v = 0}.
We introduce the following BN-norm.

‖(v, µ)‖BN
:= ‖(v, µ)‖V + β

1/2
N ‖µ‖L2(ΓN),

and we let ‖ · ‖∗ = ‖ · ‖BN
.

We now proceed to verify that assumptions 4.1 to 4.4 hold.

Proposition 4.15 (Coercivity). Assumptions 4.1 and 4.2 are satisfied for the
Neumann problem with βN > 0.

Proof. As v ∈ H
1/2
∗ (ΓN), we may immediately apply Lemmas 2.1 and 2.2 to show

that the form is coercive.

Proposition 4.16 (Continuity). Assumption 4.3 is satisfied for the Neumann
problem.

Proof. The proof is the same as in the Dirichlet case.

Proposition 4.17 (Approximation). Assumption 4.4 is satisfied for the Neu-
mann problem if 0 6 βN . h.

Proof. The proof is the same as in the Dirichlet case.

As in the Dirichlet case, the extra assumptions in Proposition 4.5 are satisfied.
We therefore conclude with the following result.

Theorem 4.18. The Neumann problem (3.13) has a unique solution (u, λ) ∈
Hs

∗(Γ) × Hr(Γ), for some s > 1
2 and r > 0 if βN > 0. If βN = 0, this holds for

some r > − 1
2 . The discrete Neumann problem (4.17) is invertible. If 0 6 βN . h, its

solution (uh, λh) ∈
∗

Vk
h × Λl

h satisfies

‖(u− uh, λ− λh)‖BN
. hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ),

where ζ = min(k + 1, s) and ξ = min(l + 1, r). Additionally,

‖ũ− ũh‖H1(Ω) . hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ),

where ũ and ũh are the solutions in Ω computed using (2.6).

4.3. Application of the theory to the mixed Dirichlet–Neumann prob-

lem. For the mixed problem, the boundary element method takes the form: Find
(uh, λh) ∈ Vh such that

(4.18) A[(uh, λh), (vh, µh)] + BND[(uh, λh), (vh, µh)] = LND(vh, µh)

∀(vh, µh) ∈ Vh.

We now show that the assumptions for the abstract error estimate are satisfied
for the formulation (4.18). First, we introduce the following norms.

‖(v, µ)‖BND
:= ‖(v, µ)‖V + β

1/2
D ‖v‖L2(ΓD) + β

1/2
N ‖µ‖L2(ΓN)

‖(v, µ)‖∗ := ‖(v, µ)‖V + β
1/2
D ‖v‖L2(Γ) + β

1/2
N ‖µ‖L2(Γ).
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Observe that in this case the two norms are not the same, nor are they equivalent,
so the below results cannot be used to prove existence of a unique solution to (3.17).
Nevertheless, it is easy to verify that if the exact solution to the mixed Dirichlet–
Neumann problem is in V then it satisfies (3.17).

Proposition 4.19 (Coercivity). Assumptions 4.1 and 4.2 are satisfied for the
mixed Dirichlet–Neumann problem if ∃βmin > 0, independent of h, such that βD >
βmin.

Proof. We obtain using Lemma 2.5 that for (v, µ) ∈ W,

L := A[(v, µ), (v, µ)] + BND[(v, µ), (v, µ)]

> α‖µ‖2H−1/2(Γ) + α|v|2
H

1/2
∗ (Γ)

+ βD‖v‖2L2(ΓD) + βN‖µ‖2L2(ΓN).

Taking α′ = min(α, βmin/2), we get

L > α′‖µ‖2H−1/2(Γ) + α′
(

|v|2
H

1/2
∗ (Γ)

+ ‖v‖2L2(ΓD)

)

+ (βD − α′)‖v‖2L2(ΓD) + βN‖µ‖2L2(ΓN).

By [23, theorem 2.6],
(

| · |2
H

1/2
∗ (Γ)

+ ‖ · ‖2L2(ΓD)

)1/2

is an equivalent norm to ‖·‖H1/2(Γ).

Therefore

L > α′‖µ‖2H−1/2(Γ) + α′‖v‖2H1/2(Γ) + βD

(

1− α′

βmin

)

‖v‖2L2(ΓD) + βN‖µ‖2L2(ΓN)

& ‖µ‖2H−1/2(Γ) + ‖v‖2H1/2(Γ) + βD‖v‖2L2(ΓD) + βN‖µ‖2L2(ΓN)

Coercivity follows using the definition of ‖ · ‖BND
.

Proposition 4.20 (Continuity). Assumption 4.3 is satisfied for the mixed Dirichlet–

Neumann problem if ∃βmin > 0, independent of h, such that β
1/2
D β

1/2
N > βmin.

Proof. Using the fact that 〈v, µ〉Γ = 〈v, µ〉ΓD
+ 〈v, µ〉ΓN

, we see that

BND[(w, η), (v, µ)] =
1
2 〈w, µ〉ΓD

− 1
2 〈η, v〉ΓD

+ βD 〈w, v〉ΓD

+ 1
2 〈η, v〉ΓN

− 1
2 〈w, µ〉ΓN

+ βN 〈η, µ〉ΓN

= 1
2 〈w, µ〉Γ − 〈η, v〉ΓD

+ βD 〈w, v〉ΓD

+ 1
2 〈η, v〉Γ − 〈w, µ〉ΓN

+ βN 〈η, µ〉ΓN

. 1
2 〈w, µ〉Γ − β

1/2
D β

1/2
N 〈η, v〉ΓD

+ βD 〈w, v〉ΓD

+ 1
2 〈η, v〉Γ − β

1/2
D β

1/2
N 〈w, µ〉ΓN

+ βN 〈η, µ〉ΓN
.

Proceeding as in Proposition 4.12 leads to the desired result.

Proposition 4.21 (Approximation). Assumption 4.4 is satisfied for the mixed
Dirichlet–Neumann problem if 0 < βD . h−1 and 0 < βN . h.

Proof. Proceeding as in the Dirichlet case, we see that

inf
(wh,ηh)∈Vh

‖(v − wh, µ− ηh)‖∗ . hζ−1/2|v|Hζ(Γ) + hξ+1/2|µ|Hξ(Γ)

+ β
1/2
D hζ |v|Hζ(Γ) + β

1/2
N hξ|µ|Hξ(Γ)
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If 0 < βD . h−1 and 0 < βN . h, then

β
1/2
D hζ |v|Hζ (Γ) + β

1/2
N hξ|µ|Hξ(Γ) . hζ−1/2|v|Hζ (Γ) + hξ+1/2|µ|Hξ(Γ),

and so assumption 4.4 holds.

Motivated by the bounds on βD and βN in this proposition, we will later take
βD = βh−1 and βN = βh, where β is a constant.

If k = l, βN . h−1, and the solution is smooth enough, then

β
1/2
N hξ = β

1/2
N hζ . hζ−1/2.

Therefore the same order of convergence will be observed when the bounds on βN here
and in the theorem below may be replaced by βN . h−1 without loss of convergence.
In this case, both βN and βD may be taken to be constants independent of h.

We conclude that the best approximation result of Proposition 4.6 and the error
estimate of Corollary 4.7 hold for the discrete solutions of (4.18), as given in the
following theorem.

Theorem 4.22. Let (u, λ) ∈ Hs(Γ) × Hr(Γ), for some s > 1
2 and r > 0, be

the unique solution to the mixed Dirichlet–Neumann problem. This solution satisfies
(3.17). Let (uh, λh) ∈ Vk

h×Λl
h be the solution of (4.18). If 0 < βD . h−1, 0 < βN . h

and ∃βmin > 0 such that β
1/2
D β

1/2
N > βmin and βD > βmin, then

‖(u− uh, λ− λh)‖BND
. hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ),

where ζ = min(k + 1, s) and ξ = min(l + 1, r).

If we set βD = 0 and βN = 0, we arrive at a penalty-free formulation for the
mixed Dirichlet–Neumann problem. We conjecture based on numerical experiments
that this result also holds for the penalty-free formulation. The analysis for this case
would take a similar form as in the Dirichlet and Neumann penalty-free cases.

4.4. Application of the theory to the Robin problem. The formulation
for Robin conditions was proposed in (3.24). To simplify the notation we introduce a
function ω : Γ → R+ defined by

ω(x) :=
1

ε(x)βR(x) + 1
,

and we assume that ε and βR are sufficiently regular so that

(4.19) ω ∈ W 1,2(Γ) ∩ L∞(Γ).

This will be true if the mesh has some local quasi-uniformity and ε is smooth enough.
Noting that

ω − 1
2 =

2− (εβR + 1)

2(εβR + 1)
= − 1

2

εβR − 1

εβR + 1
,

we may then write the operators BR and LR as

BR[(u, λ), (v, µ)] =
〈

(ω − 1
2 )u, µ

〉

ΓR

−
〈

(ω − 1
2 )λ, v

〉

ΓR

+ 〈ωβRu, v〉ΓR
+ 〈ωελ, µ〉ΓR

,

(4.20)

LR[(v, µ)] = 〈(gD + εgN)ω, βRv + µ〉ΓR
.(4.21)
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The boundary element method for the Robin problem reads: Find (uh, λh) ∈ Vh such
that

A[(uh, λh), (vh, µh)] + BR[(uh, λh), (vh, µh)] = LR[(vh, µh)] ∀(vh, µh) ∈ Vh.(4.22)

For the analysis the following technical lemmas will be useful.

Lemma 4.23. If ϕ ∈ W 1,2(Γ)∩L∞(Γ) and f ∈ H1/2(Γ), then ϕf ∈ H1/2(Γ) and

‖ϕf‖H1/2(Γ) 6 C
(

‖ϕ‖L∞(Γ) + ‖ϕ‖W 1,2(Γ)

)

‖f‖H1/2(Γ).

Proof. The proof is a consequence of [7, lemma 6] which shows that

(4.23) ‖ϕf‖H1/2(Γ) 6 C
(

‖ϕ‖L∞(Γ)‖f‖H1/2(Γ) + ‖f‖L4(Γ)‖ϕ‖1/2W 1,2(Γ)‖ϕ‖
1/2
L∞(Γ)

)

.

We then recall the Sobolev injection ‖f‖L4(Γ) 6 C‖f‖H1/2(Γ) from [12, theorem 6.7]
and conclude using this result and an arithmetic-geometric inequality of the right
hand side of (4.23).

Lemma 4.24. If ϕ, f ∈ L2(Γ) and ϕ(x) > 0 for all x ∈ Γ, then there exists C > 0
such that

‖ϕf‖2L2(Γ) > C‖f‖2L2(Γ).

Proof. Let a = infx∈Γ ϕ(x). Since Γ is closed, there exists y ∈ Γ such that
ϕ(y) = a. Therefore a > 0. We now see that

‖ϕf‖2L2(Γ) =

∫

Γ

ϕ2f2

> a2
∫

Γ

f2

= C‖f‖2L2(Γ),

where C = a2.

We introduce the norm

‖(v, µ)‖BR
:= ‖(v, µ)‖V + ‖(εω)1/2µ‖L2(Γ) + ‖(ωβR)

1/2v‖L2(Γ)

and set ‖ · ‖∗ = ‖ · ‖BR
. We note that if ε → 0 or ε → ∞, then ‖ · ‖BR

converges to
‖ · ‖BD

or ‖ · ‖BN
respectively. We now proceed to show that assumptions 4.1 to 4.4

hold.

Proposition 4.25 (Coercivity). Assumptions 4.1 and 4.2 are satisfied for the
Robin problem.

Proof. Let (v, µ) ∈ W, and let L := A[(v, µ), (v, µ)] + BR[(v, µ), (v, µ)]. Using
Lemma 2.5, we see that

L > α‖µ‖2H−1/2(Γ) + α‖v‖2H1/2(Γ) − α‖v‖2L2(Γ)

+ ‖(εω)1/2µ‖2L2(Γ) + ‖(ωβR)
1/2v‖2L2(Γ),

for any α 6 min(αV, αW).
By Lemma 4.24, we have

(4.24) − α‖v‖2L2(Γ) > − α

C
‖(ωβR)

1/2v‖2L2(Γ).
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Taking α = min(αV, αW, C/2), we obtain

L > α‖µ‖2H−1/2(Γ) + α‖v‖2H1/2(Γ) + ‖(εω)1/2µ‖2L2(Γ) +
1
2‖(ωβR)

1/2v‖2L2(Γ),

Using the definition of ‖ · ‖BR
, we see that the form is coercive.

Proposition 4.26 (Continuity). Assumption 4.3 is satisfied for the Robin prob-
lem if ∃βmin > 0, independent of h, such that βR > βmin.

Proof. Using Lemma 4.23, we see that for g ∈ H−1/2(Γ), ϕ ∈ W 1,2(Γ) ∩ L∞(Γ),
and f ∈ H1/2(Γ),

〈ωg, f〉Γ 6 C
(

‖ϕ‖L∞(Γ) + ‖ϕ‖W 1,2(Γ)

)

‖g‖H−1/2(Γ)‖f‖H1/2(Γ).

Let εmin := infx∈Γ ε(x). As in the proof of Lemma 4.24, we see that εmin > 0. Hence,

− 1
2 < ω − 1

2 <
1

βminεmin + 1
,

and so

‖ω − 1
2‖L∞(Γ) + ‖ω − 1

2‖W 1,2(Γ) < max

(

1
2 ,

1

βminεmin + 1

)

(

‖1‖L∞(Γ) + ‖1‖W 1,2(Γ)

)

.

Applying these two results to the first two boundary terms in BR[(w, η), (v, µ)], we
obtain

〈

(ω − 1
2 )w, µ

〉

Γ
−
〈

(ω − 1
2 )v, η

〉

Γ
6 C‖(w, η)‖V‖(v, µ)‖V.

By the Cauchy–Schwarz inequality, we obtain for the remaining terms

〈ωεη, µ〉Γ + 〈ωβRw, v〉Γ
6 ‖(ωε)1/2η‖L2(Γ)‖(ωε)1/2µ‖L2(Γ) + ‖(ωβR)

1/2w‖L2(Γ)‖(ωβR)
1/2v‖L2(Γ).

Collecting the terms, we then have

BR[(w, η), (v, µ)] . ‖(w, η)‖BR
‖(v, µ)‖BR

.

Proposition 4.27 (Approximation). Assumption 4.4 is satisfied for the Robin
problem if βR h h−1.

Proof. First note that ω < 1 and

ωε =
ε

εβR + 1
=

1

βR + 1
ε

<
1

βR
.

Therefore,

‖(ωβR)
1/2v‖L2(Γ) 6 β

1/2
R ‖v‖L2(Γ) and ‖(ωε)1/2µ‖L2(Γ) 6 β

−1/2
R ‖µ‖L2(Γ).(4.25)

If βR h h−1, then assumption 4.4 can be shown to hold.

When using equal order approximation, the same order of convergence will be
observed when the bounds on βR here and in the theorem below may be replaced by
h . βR . h−1 for sufficiently smooth solutions. Note that the condition h−1 . βR

implies the existance of βmin, as required by Proposition 4.26. The condition h . βR

does not imply this, so in this case the additional requirement that ∃βmin > 0 such
that βmin < βR is necessary to ensure continuity.
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Proposition 4.28. The extra assumptions in Proposition 4.5 are satisfied for the
Robin problem.

Proof. As a consequence of the coercivity and continuity above and observing
that by the Cauchy–Schwarz inequality and the definition of ω, there exists C such
that

〈ω(gD + εgN), βRv + µ〉Γ 6 C(‖gD‖L2(Γ) + ‖gN‖L2(Γ))‖(v, µ)‖BR

We conclude that Propositions 4.5 and 4.6 and Corollaries 4.7 and 4.9 hold for
the Robin problem. This is summarised in the following result.

Theorem 4.29. The Robin problem (3.24) has a unique solution (u, λ) ∈ Hs(Γ)×
Hr(Γ), for some s > 1

2 and r > 0. The discrete Robin problem (4.22) is invertible. If
βR h h−1, its solution (uh, λh) ∈ Vk

h × Λl
h satisfies

‖(u− uh, λ− λh)‖BR
6 C

(

hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ)

)

,

for some C > 0, where ζ = min(k + 1, s) and ξ = min(l + 1, r). Additionally,

‖ũ− ũh‖H1(Ω) 6 C
(

hζ−1/2|u|Hζ(Γ) + hξ+1/2|λ|Hξ(Γ)

)

,

where ũ and ũh are the solutions in Ω computed using (2.6).

Again, we could set βR = 0 to arrive at a penalty-free formulation for Robin
problems. In this case, our numerical experiments show large errors for some values
of the parameter ε, which leads us to conclude that this result does not hold for the
penalty-free formulation.

As ε → 0 and ε → ∞, we obtain the Dirichlet and Neumann formulations analysed
in subsections 4.1 and 4.2. We expect the condition number of the discrete system
for the Robin problem to be no worse than in either extreme case, and observe this
in subsection 5.3.

5. Numerical results. Drawing inspiration from [16], we define

u(x, y, z) = sin(πx) sin(πy) sinh(
√
2πz)

gD(x, y, z) = sin(πx) sin(πy) sinh(
√
2πz),

gN(x, y, z) =





π cos(πx) sin(πy) sinh(
√
2πz)

π sin(πx) cos(πy) sinh(
√
2πz)√

2π sin(πx) sin(πy) cosh(
√
2πz)



 · ν.

It is easy to check that for any bounded domain Ω ⊂ R
3 with boundary Γ = ΓD ∪

ΓN ∪ ΓR and any fixed ε ∈ R, u is the solution of

−∆u = 0 in Ω,(5.1a)

u = gD on ΓD,(5.1b)

∂u

∂ν
= gN on ΓN,(5.1c)

∂u

∂ν
=

1

ε
(u− gD) + gN on ΓR.(5.1d)

In the examples presented here, we let Ω be the unit sphere, and Γ its boundary.
In the computations presented, a series of approximations of the sphere by plane
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Fig. 1: The convergence (left) and GMRES iteration counts (right) of the penalty
method with βD = 0.1 (red circles) compared to the standard single layer method
(5.3) (grey triangles), for the Dirichlet problem on the unit sphere, with k = l = 1.
The iteration count plot shows the number of iterations taken to solve the mass
matrix preconditioned system (red circles) and the non-preconditioned system (red
diamonds). The dashed line shows order 2 convergence.

triangles are used. The results in this section were computed using the boundary
element library Bempp [22], an open source boundary element library developed by
the authors of this paper. All examples in this paper were computed with version
3.3.2 of the Bempp library. Jupyter notebooks demonstrating the functionality used
in this paper will be made available at www.bempp.com.

5.1. Dirichlet boundary conditions. First, we look at the case where Γ = ΓD,
in which the problem reduces to the Dirichlet problem:

−∆u = 0 in Ω,(5.2a)

u = gD on Γ.(5.2b)

For this problem, we compare the penalty method proposed in this paper (4.11)
to the standard single layer formulation: Find λ ∈ Λh such that

〈Vλ, µ〉 =
〈

(12 Id+ K)gD, µ
〉

∀µ ∈ Λh.(5.3)

Figure 1 shows the convergence and iteration counts when βD = 0.1 and k = l = 1,
and so we look for (uh, λh) ∈ V1

h × Λ̃1
h. We note that as h decreases, h−1 increases,

so 0.1 . h−1. In this case, Γ is smooth, and so V1
h = Λ̃1

h. The iteration count plot
(right) shows the number of iterations taken to solve the non-preconditioned system
(red diamonds), compared with the system with mass matrix preconditioned applied
blockwise from the left (red circles), as described in [6]. Mass matrix preconditioning
greatly reduces the number of iterations required, so for the remainder of this paper,
we precondition all linear systems using mass matrix preconditioning.

For larger and more complex geometries, however, more specialised precondi-
tioners are required. With systems of boundary element equations, it is common to
use operator preconditioning or Calderón preconditioning [8], where properties of the

www.bempp.com
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Fig. 2: The dependence of the error (left) and iteration count (right) on the value
of βD for h = 2−2 (red triangles), h = 2−3.5 (red diamonds), and h = 2−5 (red
pentagons), for the Dirichlet problem on the unit sphere, with k = l = 1.

boundary operators at the continuous level are used to derive a preconditioned equa-
tion of a form known to be well conditioned. In our case, it is not clear how to apply
this approach, although further investigation of this warrants future work.

An alternative avenue of investigation leads to hierarchical LU based precondi-
tioners, or even direct solvers of this type [4]. The penalty terms in this paper are
all sparse matrices that have non-zero entries only for neighbouring triangles, and so
adding these terms only affects the entries in the matrix arising from near interactions;
the far interactions—which are exactly those that are approximated in a hierarchical
matrix compression—are not affected by these terms. Therefore H-matrix methodst
can be applied to this method with few algorithmic changes required.

Figure 2 shows the dependence of the error and iteration count on the chosen
value of βD, for a range of values of h. It can be seen that the number of iterations
increases when βD is above around 0.1, and the error increases when βD is above 100.
This motivates our earlier choice of 0.1 as the value of βD, although anything smaller
than this appears to be a good choice of βD.

In Figure 1, it can be seen that the penalty method proposed here gives compara-
ble convergence to the standard method in a similar number of iterations. However,
the system in the penalty method contains around twice the number of unknowns,
and so each iteration will be more expensive.

Additionally, the discrete systems for the penalty method are non-symmetric, so
are solved using GMRES [21]. The discrete systems for the standard method (5.3) are
symmetric, so CG [14] or MINRES [20] could be used: these methods are typically
less expensive than GMRES, so this is a further disadvantage of the penalty method
for pure Dirichlet and Neumann problems and justifies our focus on more complex
boundary conditions.

5.2. Mixed Dirichlet–Neumann boundary conditions. We now consider
the case where Γ = ΓD ∪ ΓN and the problem reduces to a mixed Dirichlet–Neumann
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problem:

−∆u = 0 in Ω,(5.4a)

u = gD on ΓD,(5.4b)

∂u

∂ν
= gN on ΓN.(5.4c)

Let ΓN := {(x, y, z) ∈ Γ : x > 0} and ΓD := Γ \ ΓN. We use the same gD and gN as
above.

We compare the method proposed in this paper with the standard method for
mixed Dirichlet–Neumann problems [25, equation (3.2)]: Find (u, λ) ∈ H̃1/2(ΓN) ×
H̃−1/2(ΓD) such that

(5.5) 〈WNNu, v〉+ 〈K′
DN, v〉 − 〈KNDu, µ〉+ 〈VDDλ, µ〉

= −〈WDNgD, v〉+
〈(

1
2 Id− K

′
NN

)

gN, v
〉

+
〈(

1
2 Id+ KDD

)

gD, µ
〉

− 〈VND, µ〉
∀(v, µ) ∈ H̃1/2(ΓN)× H̃−1/2(ΓD),

where for a given boundary operator B, Bij is the corresponding boundary operator
with the integral taken over Γi and the point x ∈ Γj . For example, VND is defined by

[VNDf ](x) :=

∫

ΓN

f(y)G(x,y) dy for x ∈ ΓD.(5.6)

We first let k = l+1 = 1, and so look for (uh, λh) ∈ V1
h×Λ0

h. As motivated above
by Proposition 4.21, we set βD = βh−1 and βN = βh, where β is a constant. The
dependence of the error and iteration count on β is shown in Figure 3. We observe
that β = 0.01 is a good choice, as this gives a small error and iteration count.

The convergence of the error as we reduce h is shown in Figure 4. Here we observe
order 1.5 convergence, and the same rate of convergence as the standard method (5.5),
with a marginally lower error in the standard method. The iteration count for the
penalty method increases more gradually than the standard method, although this
issue could be removed through better preconditioning of the standard method.

We next consider the case where k = l = 1. In this case, as remarked in subsec-
tion 4.3, we may replace the bound on βN by βN . h−1, and so we may take both
βD and βN to be constant: we set βD = βN = β. The dependence of the error and
iteration count on β for this choice of parameters is shown in Figure 5.

The convergence to the solution when β = 0.01 is shown in Figure 6. It can be
seen here that order 2 convergence is observed, higher than the expected order 1.5
convergence. In this case, the standard method (5.5) only achieves order 1 conver-
gence, with a much higher iteration count that the penalty method. For this choice of
discrete spaces, we also compared the our method with the formulation given in [11,
equation (1.19)]: this formulation is better conditioned than (5.5) but still achieves
only order 1 convergence.

In Figures 3 and 6, the error and iteration count remain steady as β → 0. In
numerical experiments on a sphere and cube with β = 0, we see similar convergence
to that observed in this section. This leads us to conjecture that Theorem 4.22 will
hold for the penalty-free formulation, when β = 0.
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Fig. 3: The dependence of the error (left) and iteration count (right) on the value
of β for h = 2−2 (blue triangles), h = 2−3.5 (blue diamonds), and h = 2−5 (blue
pentagons), for the mixed Dirichlet–Neumann problem on the unit sphere, with k =
l + 1 = 1. Here we use βD = βh−1 and βN = βh.
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Fig. 4: The convergence (left) and iterations counts (right) of the penalty method
with β = 0.01 (blue squares) compared to the standard method (5.5) (grey triangles),
for the mixed Dirichlet–Neumann problem on the unit sphere, with k = l + 1 = 1.
The dashed line shows order 1.5 convergence. Here we use βD = βh−1 and βN = βh.

5.3. Robin problem. We now consider the case where Γ = ΓR and the problem
reduces to a Robin problem:

−∆u = 0 in Ω,(5.7a)

∂u

∂ν
=

1

ε
(u− gD) + gN on Γ,(5.7b)

for some ε ∈ R.
In this section, we compare the method proposed in this paper with the standard
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Fig. 5: The dependence of the error (left) and iteration count (right) on the value
of β for h = 2−2 (blue triangles), h = 2−3.5 (blue diamonds), and h = 2−5 (blue
pentagons), for the mixed Dirichlet–Neumann problem on the unit sphere, with k =
l = 1. Here we use βD = βN = β.
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Fig. 6: The convergence (left) and iterations counts (right) of the penalty method with
β = 0.01 (blue circles) compared to the standard method (5.5) (grey triangles) and
the method given in [11, equation (1.19)] (grey diamonds), for the mixed Dirichlet–
Neumann problem on the unit sphere, with k = l = 1. The dashed lines show order
2 and order 1 convergence. Here we use βD = βN = β.

method: Find λ ∈ H−1/2(Γ) such that

〈Wu, v〉+
〈

1

ε

(

1
2 Id− K

′
)

u, v

〉

=

〈

(

1
2 Id− K

′
)

(

1

ε
gD + gN

)

, v

〉

∀µ ∈ H−1/2(Γ).

(5.8)

Again, we begin letting k = l+ 1 = 1. Here we use

βR :=
εβN + βD

ε+ 1
,
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Fig. 7: The dependence of the error on ε and β for the Robin problem on the unit
sphere with h = 0.1, with k = l + 1 = 1. Here we use βD = βh−1 and βN = βh.
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Fig. 8: The convergence (left) and iteration counts (right) of the penalty method
for the Robin problem with ε = 300 (green triangles), ε = 1 (green diamonds) and
ε = 1/300 (green pentagons) on the unit sphere, using k = l + 1 = 1 and β = 0.01.
The dashed line shows order 1.5 convergence. Here we use βD = βh−1 and βN = βh.

where βD = βh−1 and βN = βh, for some constant β, as in the mixed Dirichlet–
Neumann case.

The dependence of the error and iteration count on both ε and β, on a grid with
h = 0.1, is shown in Figure 7. The convergence as h is reduced for ε = 1

300 , ε = 1, and
ε = 300, and using β = 0.01, is shown in Figure 8. In this case, order 1.5 convergence
is observed.

As in the mixed Dirichlet–Neumann case, when k = l = 1, we may replace the
bound on βN with βN . h−1. Again, we take βD = βN = β for some constant β. The
dependence of the error and iteration count on both β and ε is shown in Figure 9. As
in the previous case, β = 0.01 looks to be a suitable choice for the parameter.

The convergence as we reduce h for ε = 1
300 , ε = 1, and ε = 300, and using

β = 0.01, is shown in Figure 10. In this case, order 2 convergence is observed. For the
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Fig. 9: The dependence of the error on ε and β for the Robin problem on the unit
sphere with h = 0.1, with k = l = 1. Here we use βD = βN = β.
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Fig. 10: The convergence (left) and iteration counts (right) of the penalty method
(green) compared to the standard method (5.8) (grey dashed), for the Robin problem
with ε = 300 (triangles), ε = 1 (diamonds) and ε = 1/300 (pentagons) on the unit
sphere, using k = l = 1 and β = 0.01. The dashed line shows order 2 convergence.
Here we use βD = βN = β.

standard method (5.8), the same order of convergence and errors of almost identical
size are oberved. For the standard method, the number of iterations required to solve
the system is higher for smaller values of ε; for the penalty method, the number of
iterations is less affected by the value of ε, leading to lower iteration counts than the
standard method for small values of ε.

Again, we could consider the penalty-free formulation for the Robin problem.
However, Figures 7 and 9 suggest that as β → 0, the error increases for some values of
ε. This increased error can also be observed in the numerical experiments we have run
with β = 0. Hence in the Robin case, the penalty term is necessary and Theorem 4.29
does not hold for βR = 0.
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6. Conclusions. We have analysed and demonstrated the effectiveness of Nitsche
type coupling methods for boundary element formulations. In particular, for Robin
and mixed Neumann/Dirichlet boundary conditions these are simpler than the strong
imposition of boundary conditions since the boundary condition only enters the equa-
tions through a sparse operator.

An open problem is preconditioning. While the iteration counts in the presented
examples were already practically useful, for large and complex structures precondi-
tioning is still essential. The hope is to use the properties of the Calderón projector
to build effective operator preconditioning techniques for the presented Nitsche type
frameworks.

An extension of the presented method to FEM/BEM formulations is currently in
preparation. Other directions are the Helmholtz and Maxwell problems. Although
the analysis for these cases is more involved, we expect that their implementation will
be structurally similar to the presented Laplace case.
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