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Abstract

We introduce high order Bellman equations, extending classical Bellman equations
to the tensor setting. We introduce weakly chained diagonally dominant (w.c.d.d.)
tensors and show that a sufficient condition for the existence and uniqueness of a
positive solution to a high order Bellman equation is that the tensors appearing in the
equation are w.c.d.d. M-tensors. In this case, we give a policy iteration algorithm to
compute this solution. We also prove that a weakly diagonally dominant Z-tensor with
nonnegative diagonals is a strong M-tensor if and only if it is w.c.d.d. This last point is
analogous to a corresponding result in the matrix setting and tightens a result from
[L. Zhang, L. Qi, and G. Zhou. “M-tensors and some applications.” SIAM Journal on
Matrix Analysis and Applications (2014)]. We apply our results to obtain a provably
convergent numerical scheme for an optimal control problem using an “optimize then
discretize” approach which outperforms (in both computation time and accuracy) a
classical “discretize then optimize” approach. To the best of our knowledge, a link
between M-tensors and optimal control has not been previously established.

1 Introduction
In this work, we introduce and study the nonlinear problem

find u ∈ Rn such that min
P∈P

{
A(P )um−1 − b(P )

}
= 0 (1)

where A(P ) is anm-order and n-dimensional real tensor, b(P ) is a real vector, P is a nonempty
compact set, and the minimum is taken with respect to the coordinatewise order on Rn (see
(iii) in Section 5).

If m = 2, then A(P ) is a square matrix and A(P )um−1 ≡ A(P )u is the ordinary matrix-
vector product. In this case, (1) is the celebrated Bellman equation for optimal decision
making on a Markov chain. Aside from Markov chains, (1) also arises from discretizations of
differential equations from optimal control [14].
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If m > 2, then A(P )um−1 defines a vector whose i-th component is a multivariate
polynomial in the entries of u:

(A(P )um−1)i =
∑

i2,...,im

(A(P ))ii2···imui2 · · ·uim

(see also (2)). As such, we refer to (1) as a Bellman equation of order m. We are motivated
to study this equation since, as we will see in the sequel, it arises from a so-called “optimize
then discretize” [4] scheme for a differential equation.

Our main goal is to characterize the existence and uniqueness of a solution u to (1) and
to obtain a fast and provably convergent algorithm for computing it. If m = 2, existence
and uniqueness is guaranteed when A(P ) is a nonsingular M-matrix for each P [5, Theorem
2.1] (along with some other mild conditions on the functions A and b). We obtain an
analogous result for the m > 2 case when A(P ) is a strictly diagonally dominant (and hence
nonsingular1) M-tensor for each P (Lemma 23 and Lemma 24). M-tensors, a generalization of
M-matrices, were introduced in [20, 9] in order to test the positive definiteness of multivariate
polynomials.

However, strict diagonal dominance is a rather strong condition. In order to generalize our
results, we extend the notion of weakly chained diagonal dominance from matrices to tensors
(Definition 15). By restricting our attention to the case in which P is finite, we establish
existence and uniqueness of a solution u to (1) under the weaker requirement that A(P )
is a weakly chained diagonally dominant M-tensor (Lemma 26) and give a policy iteration
algorithm to compute the solution (Algorithm 1). Analogously to the m = 2 case, the
assumed finitude of P is sufficient for practical applications, though whether this assumption
can be dropped remains an interesting open theoretical question (Remark 27).

We also establish the following result, which should be of broader interest to the M-tensor
community:

Theorem 1. Let A be a weakly diagonally dominant Z-tensor with nonnegative diagonals.
Then, the following are equivalent:

( i) A is a strong M-tensor.

( ii) Zero is not an eigenvalue of A.

( iii) A is weakly chained diagonally dominant (Definition 15).

An analogous equivalence result for matrices was recently proved in [1]. Since a weakly
irreducibly diagonally dominant tensor is a weakly chained diagonally dominant tensor
(Lemma 17), the following is an immediate consequence:

Corollary 2. Let A be a Z-tensor with nonnegative diagonals. If A is weakly irreducibly
diagonally dominant, then A is a strong M-tensor.

Since an irreducible tensor is weakly irreducible (Corollary 10), Theorem 1 and Corollary
2 can be thought of as tightening the following result:

1The terms “nonsingular M-tensor” and “strong M-tensor” are synonymous in the literature.
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Proposition 3 ([20, Theorem 3.15]). Let A be a Z-tensor with nonnegative diagonals. If A
is strictly or irreducibly diagonally dominant, then A is a strong M-tensor.

Moreover, Theorem 1 yields a graph-theoretic characterization of weakly diagonally
dominant strong M-tensors and a fast algorithm to determine if an arbitrary weakly diagonally
dominant tensor is a strong M-tensor (Remark 16).

This work is organized as follows. In Section 2, we recall some standard definitions and
results for tensors. In Section 3, we introduce the notion of a weakly chained diagonally
dominant tensor. A proof of Theorem 1 is given in Section 4. In Section 5, we study high
order (m > 2) Bellman equations. In Section 6, we use our results to study numerically some
problems from optimal stochastic control.

2 Preliminaries
For the convenience of the reader, we gather in this section some definitions and well-known
results (cf. [17]) concerning tensors of the form

A = (ai1···im), ai1···im ∈ R, 1 6 i1, . . . , im 6 n.

Such tensors are called m-order and n-dimensional real tensors, though we will simply refer
to them as “tensors” in this work. We call a1···1, a2···2, etc. the diagonal entries of A. All
other entries are referred to as off-diagonal.

Definition 4 ([16]). Let x = (x1, . . . , xn) be a vector in Cn and A = (ai1···im) be a tensor.
We denote by x[α] = (xα1 , . . . , xαn) the coordinatewise power of x and by Axm−1 the vector in
Cn whose i-th entry is ∑

i2,...,im

aii2···imxi2 · · ·xim . (2)

We call λ in C an eigenvalue of A if we can find a vector x in Cn \ {0} such that

Axm−1 = λx[m−1].

The vector x is called an eigenvector associated with λ. The spectrum σ(A) of A is the set of
all eigenvalues of A. The spectral radius of A is ρ(A) = maxλ∈σ(A) |λ|.

Z and M-tensors, defined below, are natural extensions of Z and M-matrices.

Definition 5 ([20, Pg. 440]). A Z-tensor is a real tensor whose off-diagonal entries are
nonpositive.

Definition 6 ([20, Definition 3.1]). A tensor A is an M-tensor if there exists a nonnegative
tensor B (i.e., a tensor with nonnegative entries) and a real number s > ρ(B) such that

A = sI −B

where I is the identity tensor (i.e., the tensor with ones on its diagonal and zeros elsewhere).
If s > ρ(B), then A is called a strong M-tensor.
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Unlike the matrix setting, there are two distinct notions of irreducibility for tensors,
introduced in [12]. Both are given below.

Definition 7 ([12, Pg. 739]). A tensor A = (ai1···im) is reducible if there exists a nonempty
proper index subset Λ ( {1, . . . , n} such that

aii2···im = 0 if i ∈ Λ and i2, . . . , im /∈ Λ.

Otherwise, we say A is irreducible.

Definition 8 ([13, Definition 2.2]). Let A = (ai1···im) be a tensor and R(|A|), the representa-
tion of A, denote the n× n matrix whose (i, j)-th entry is given by∑

i2,...,im

|aii2···im|1{i2,...,im}(j)

where 1U is the indicator function of the set U . We say A is weakly reducible if R(|A|) is a
reducible matrix. Otherwise, we say A is weakly irreducible.

In [12, Lemma 3.1], the authors show that irreducibility is a stronger requirement than
weak irreducibility. We summarize this below, including what we believe to be a simpler
proof for the reader’s convenience.

Proposition 9. A tensor that is weakly reducible is reducible.

Proof. Let A = (ai1···im) be a weakly reducible tensor so that the n× n matrix R(|A|) = (rij)
is reducible. Then, there exists a nonempty proper index subset Λ ( {1, . . . , n} such that

rij =
∑

i2,...,im

|aii2···im|1{i2,...,im}(j) = 0 if i ∈ Λ and j /∈ Λ.

Therefore,
aii2···im = 0 if i ∈ Λ and ik /∈ Λ for some 2 6 k 6 m

and hence A is reducible.

Corollary 10. An irreducible tensor is weakly irreducible.

We close this section with the notion of diagonal dominance.

Definition 11 ([20, Definition 3.14]). Let A = (ai1···im) be a tensor. We say that the i-th row
of A is strictly diagonally dominant (s.d.d.) if

|ai···i| >
∑

(i2,...im)6=(i,...,i)
|aii2···im| . (3)

We say A is s.d.d. if all of its rows are s.d.d. Weakly diagonally dominant (w.d.d.) is defined
with weak inequality (>) instead. We use

J(A) = {1 6 i 6 n : i satisfies (3)}

to denote the set of s.d.d. rows of A.

Definition 12 ([20, Definition 3.14]). We say a tensor A is (weakly) irreducibly diagonally
dominant if it is (weakly) irreducible, w.d.d., and J(A) is nonempty.

4



3 Weakly chained diagonally dominant tensors
Before we introduce the notion of weakly chained diagonally dominant (w.c.d.d.) tensors, we
define the directed graph associated with a tensor.

Definition 13. Let A = (ai1···im) be a tensor.

( i) The directed graph of A, denoted graphA, is a tuple (V,E) consisting of the vertex set
V = {1, . . . , n} and edge set E ⊂ V × V satisfying (i, j) ∈ E if and only if aii2···im 6= 0
for some (i2, . . . , im) such that j ∈ {i2, . . . , im}.

( ii) A walk in graphA is a nonempty finite sequence (i1, i2), (i2, i3), . . . , (ik−1, ik) of “adja-
cent” edges in E.

The proof of the next result, being a trivial consequence of the above definition, is omitted.

Lemma 14. graphA = graphR(|A|) for any tensor A.

Since each vertex in the directed graph of a tensor corresponds to a row i, we use the
terms row and vertex interchangeably. To simplify matters, we hereafter denote edges by
i→ j instead of (i, j) and walks by i1 → i2 → · · · → ik instead of (i1, i2), . . . , (ik−1, ik). We
are now ready to define w.c.d.d.

Definition 15. A tensor A is w.c.d.d. if all of the following are satisfied:

( i) A is w.d.d.

( ii) J(A) is nonempty.

( iii) For each i1 /∈ J(A), there exists a walk i1 → i2 → · · · → ik in graphA such that
ik ∈ J(A).

If the tensor is of order m = 2 (i.e., the tensor is a matrix), then the above becomes the
usual definition of w.c.d.d. for matrices [1, Definition 2.20].

Remark 16. A trivial extension of the algorithm in [1] allows us to test if a weakly diagonally
dominant tensor is weakly chained diagonally dominant with O(nm) effort if the tensor is
dense. Less computational effort is required if the tensor is sparse (we refer to [1] for details).

Lemma 17. A weakly irreducibly diagonally dominant tensor is a w.c.d.d. tensor.

Proof. IfA is weakly irreducibly diagonally dominant, then J(A) is nonempty and graphR(|A|)
is strongly connected (i.e., for any pair of vertices (i, j), there is a walk starting at i and
ending at j). The result then follows by Lemma 14.
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4 Proof of Theorem 1
In the following, we denote by Re z the real part of a complex number z. We say a vector is
positive if it lies in the positive orthant Rn

++ = (0,∞)n. Similarly, any element of Rn
+ = [0,∞)n

is called a nonnegative vector. Our proof relies on the following results:

Proposition 18 ([20, Theorem 3.3]). minλ∈σ(A) Reλ is nonnegative (resp. positive) whenever
A is an M-tensor (resp. strong M-tensor).

Proposition 19 ([20, Theorem 3.15]). If A is a w.d.d. Z-tensor with nonnegative diagonals,
then A is an M-tensor.

Our proof also relies on a corollary to the following result:

Proposition 20 ([10, Pg. 697]). Let A be a strong M-tensor. For each positive vector b
(of compatible size), there exists a unique positive vector x which solves the tensor equation
Axm−1 = b. Denoting by A−1

++ : Rn
++ → Rn

++ the mapping from positive right hand sides b to
positive solutions x, A−1

++ is nondecreasing with respect to the coordinatewise order.

The corollary, which is of independent interest, establishes existence (but not uniqueness)
of nonnegative solution x to the tensor equation Axm−1 = b when b is a nonnegative vector
and A is a strong M-tensor.

Corollary 21. Let A be a strong M-tensor. Then, there exists a nondecreasing map A−1
+ :

Rn
+ → Rn

+ which associates to each nonnegative right hand side b a nonnegative solution x of
the tensor equation Axm−1 = b.

Proof. For k > 1, define
x(k) = A−1

++(b+ 1/k)
where b + 1/k is the vector obtained by adding 1/k to each entry of b. Since A−1

++ is
nondecreasing, the sequence (x(k))k is nonincreasing with respect to the coordinatewise order.
Moreover, since each x(k) is a nonnegative vector, this sequence is bounded below by the zero
vector and hence has a limit x. Taking k →∞ in

Axm−1
(k) = b+ 1/k

and employing the continuity of the map y 7→ Aym−1, we obtain Axm−1 = b.
The above implies that the map A−1

+ : Rn
+ → Rn

+

A−1
+ (b) = lim

k→∞
A−1

++(b+ 1/k)

is well-defined and associates to each nonnegative vector b a nonnegative solution x of the
tensor equation Axm−1 = b. That A−1

+ is nondecreasing is an immediate consequence of A−1
++

being nondecreasing.

We require one last intermediate result, which captures the invariance of spectra under
permutation. It can be thought of as a generalization of the fact that for any square matrix
A and permutation matrix P of compatible size, σ(A) = σ(PAP ᵀ).
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Lemma 22. Let A = (ai1···im) be a tensor, π be a permutation of {1, . . . , n}, and A′ = (a′i1···im)
be the tensor with entries

a′i1···im = aπ(i1)···π(im).

Then, σ(A) = σ(A′).

Proof. Let λ be an eigenvalue of A with corresponding eigenvector x. Let y denote the vector
whose entries are yi = xπ(i). Then, for each i,

λ(yi)m−1 = λ(xπ(i))m−1 =
∑

i2,...,im

aπ(i)i2···imxi2 · · ·xim

=
∑

i2,...,im

aπ(i)π(i2)···π(im)xπ(i2) · · ·xπ(im)

=
∑

i2,...,im

a′ii2···imyi2 · · · yim .

We are now ready to prove Theorem 1. We split the proof into parts. In each part, we
use A = (ai1···im) to denote a w.d.d. Z-tensor with nonnegative diagonals.

Proof of ( i) implies ( ii). This follows directly from Proposition 18.

Proof of ( iii) implies ( i). Suppose A is w.c.d.d. Therefore, A is w.d.d. by definition, and
hence A is an M-tensor by Proposition 19. Let λ and x be an eigenvalue-eigenvector pair
of A. We may, without loss of generality, assume ‖x‖∞ = 1 (otherwise, define a new
vector y = x/‖x‖∞ and note that Aym−1 = λy[m−1]). Since A is an M-tensor, Reλ > 0 by
Proposition 18. In order to arrive at a contradiction, suppose Reλ = 0.

Now, fix i such that |xi| = ‖x‖∞ = maxj |xj|. It follows that

|λ− ai···i| 6
∑

(i2,...,im)6=(i,...,i)
|aii2···im| |xi2| · · · |xim | 6

∑
(i2,...,im)6=(i,...,i)

|aii2···im| .

Since Reλ = 0 and ai···i is real,

|ai···i| = |Reλ− ai···i| 6 |λ− ai···i| .

Combining the above inequalities,

|ai···i| 6
∑

(i2,...,im)6=(i,...,i)
|aii2···im| |xi2 | · · · |xim | 6

∑
(i2,...,im)6=(i,...,i)

|aii2···im| .

Since A is w.d.d., the above chain of inequalities holds with equality so that i /∈ J(A) and
|xi2| = · · · = |xim| = 1 whenever |aii2···im | 6= 0 for some (i2, . . . , im).

Since A is w.c.d.d., we may pick a walk i1 → i2 → · · · → ik starting at some row i1 for
which |xi1| = 1 and ending at some row ik ∈ J(A). Setting i = i1 in the previous paragraph,
we get |xi2 | = 1 and therefore also i2 /∈ J(A). Applying this reasoning inductively, we
conclude that ik /∈ J(A), a contradiction.

7



Proof of ( ii) implies ( iii). Suppose A is not w.c.d.d. Proceeding by contrapositive, it is
sufficient to show that λ = 0 is an eigenvalue of A. Let

W (A) =
{
i1 /∈ J(A) : there exists a walk i1 → i2 → · · · → ik such that ik ∈ J(A)

}
.

Let R(A) = {1, . . . , n} \ (J(A) ∪W (A)). Since A is not w.c.d.d., R(A) is nonempty. By
Lemma 22, we may assume that R(A) = {1, . . . , r} for some 1 6 r 6 n (otherwise, permute
the indices appropriately). For the remainder of the proof, let e = (1, . . . , 1)ᵀ be the vector of
ones in Rr.

If r = n, it follows that J(A) is empty and hence every row of A is not s.d.d. Since A is a
w.d.d. Z-tensor, we have, for each row i,

ai···i = −
∑

(i2,...,im)6=(i,...,i)
aii2···im . (4)

In other words, Aem−1 = 0, and hence λ = 0 is an eigenvalue of A.
If r < n, the adjacency graph has the structure shown in Figure 1. In particular, there

are no edges from vertices i ∈ R(A) to vertices j /∈ R(A) since if there were, i would not be a
member of R(A) by definition. This implies that

aii2···im = 0 if i ∈ R(A) and ik /∈ R(A) for some 2 6 k 6 m.

Equivalently,
aii2···im = 0 if i 6 r and max{i2, . . . , im} > r. (5)

Define the m-order and n-dimensional tensor B = (bi1···im) by

bi1···im =

ai1···im if 1 6 i1, . . . , im 6 r

0 otherwise.

By (5), it follows that B is a w.d.d. Z-tensor with no s.d.d. rows and hence similarly to (4),
we can establish that for any vector w in Rn−r,

Bxm−1 = 0 where x =
(
e
w

)
. (6)

Define the m-order and n-dimensional tensors C = (ci1···im) and D = (di1···im) by

ci1···im =

1 if 1 6 i1 6 r and (i2, . . . , im) = (i1, . . . , i1)
0 otherwise.

and

di1···im =

0 if 1 6 i1 6 r

ai1···im otherwise.
By construction, C + D is a w.c.d.d. Z-tensor with nonnegative diagonals. Since we have
already proven (iii) implies (i) in Theorem 1, we conclude that C +D is a strong M-tensor.
By Corollary 21, we can find a nonzero vector y such that

(C +D)ym−1 =
(
e
0

)
. (7)
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Note that if 1 6 i 6 r, the above implies∑
i2···im

(cii2···im + dii2···im)yi2 · · · yim = ym−1
i = 1.

Therefore,

y =
(
e
w

)
for some vector w in Rn−r. Since A = B + (C +D)− C, (6) and (7) imply

Aym−1 = Bym−1 + (C +D)ym−1 − Cym−1 = 0 +
(
e
0

)
−
(
e
0

)
= 0,

so that λ = 0 is an eigenvalue of A.

1

...

r

r + 1

...

n

R(A) (R(A))c = J(A) ∪W (A)

Figure 1: Adjacency graph in the proof of Theorem 1

5 High order Bellman equations
We now return to the high order Bellman equation (1), repeated below for the reader’s
convenience:

min
P∈P

{
A(P )um−1 − b(P )

}
= 0.

In the above, A(P ) = (ai1···im(P )) is an m-order and n-dimensional real tensor and b(P ) =
(b1(P ), . . . , bn(P )) is a vector in Rn. It is understood that (cf. [2])

(i) P = P1 × · · · × Pn is a finite product of nonempty sets. That is, each P = (P1, . . . , Pn)
in P is an n-tuple with Pi in Pi.

(ii) Policies are “row-decoupled”. That is, for any two policies P and P ′ in P , aii2···im(P ) =
aii2···im(P ′) and bi(P ) = bi(P ′) whenever Pi = P ′i . In other words, the i-th row of A(P )
and b(P ) are determined solely by Pi.

(iii) Infimums (and other extrema) are taken with respect to the coordinatewise order. That
is, for {y(α)}α ⊂ Rn, infα y(α) is a vector whose i-th entry is infα y(α)

i . For example,
min{( 1

0 ), ( 0
1 )} = ( 0

0 ).
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We require the following assumptions to study the problem:
(H1) b(P ) is a positive vector for each P in P .

(H2) P is a compact topological space and A : P → Rnm and b : P → Rn are continuous
functions.

In practice, P is usually finite (Remark 27) in which case (H2) is trivially satisfied.

5.1 Existence and uniqueness
We now establish existence and uniqueness of positive solutions to (1).
Lemma 23 (Uniqueness). Suppose (H1), (H2), and A(P ) is a strong M-tensor for each P
in P. Then, there is at most one positive solution u of (1).
Proof. Let u and w be two positive solutions of (1). By the compactness of P and continuity
of A and b, we can find P ∗ such that

A(P ∗)um−1 − b(P ∗) = 0 = min
P∈P

{
A(P )wm−1 − b(P )

}
6 A(P ∗)wm−1 − b(P ∗).

Therefore,
0 < A(P ∗)um−1 6 A(P ∗)wm−1.

Using the fact that (A(P ∗))−1
++ is nondecreasing, applying the function (A(P ∗))−1

++ to the above
inequality yields u 6 w. Reversing the roles of u and w, we obtain the reverse inequality.
Lemma 24 (Existence I). Suppose (H1), (H2), and A(P ) is an s.d.d. M-tensor for each P
in P. Then, there exists a positive solution u of (1).

A close examination of the proof below reveals that we can relax the requirement that
“b(P ) is positive” in (H1) to “b(P ) is nonnegative”. In this case, the arguments establish the
existence of a nonnegative solution u.

Proof. We claim that it is sufficient to consider the case in which 1− ai···i(P ) = 0 for all i
(we will come back to this claim later). Note that u is a solution of (1) if and only if it is a
fixed point of the map F defined by

F (u) = max
P∈P

{
(I − A(P ))um−1 + b(P )

}[1/(m−1)]
.

Since the diagonals of I −A(P ) are zero, the off-diagonals of A(P ) are nonpositive, and b(P )
is positive, it follows that F maps nonnegative vectors to positive vectors (i.e., F (Rn

+) ⊂ Rn
++).

Next, we prove that F is continuous on Rn
+. In order to do so, it is sufficient to show that the

function G defined by G(u) = (F (u))[m−1] is locally Lipschitz on Rn
+. Indeed, for nonnegative

vectors u and w,

‖G(u)−G(w)‖∞ 6 max
P∈P

∥∥∥(I − A(P ))um−1 − (I − A(P ))wm−1
∥∥∥
∞

6 max
P∈P

max
i

∑
(i2,...,im)6=(i,...,i)

|aii2···im(P )|max
{
‖u‖m−2

∞ , ‖w‖m−2
∞

} m∑
j=2

∣∣∣uij − wij ∣∣∣
6 const.max

{
‖u‖m−2

∞ , ‖w‖m−2
∞

}
‖u− w‖∞

10



where const. is a positive constant which does not depend on u or w. Note that in the m = 2
case, ‖u‖m−2

∞ = ‖w‖m−2
∞ = 1, and hence this argument establishes global Lipschitzness. Next,

we derive some bounds on F . The triangle inequality yields

‖F (u)‖∞ 6 max
P∈P

‖u‖m−1
∞ max

i

∑
(i2,...,im)6=(i,...,i)

|aii2···im(P )|+ ‖b(P )‖∞


1/(m−1)

.

Therefore, there exist i∗ and P ∗ such that

‖F (u)‖∞ 6 ‖u‖∞

 ∑
(i2,...,im)6=(i∗,...,i∗)

|ai∗i2···im(P ∗)|
1/(m−1)

+ ‖b(P ∗)‖1/(m−1)
∞ .

Since A(P ∗) is s.d.d., ∑
(i2,...,im)6=(i∗,...,i∗)

|ai∗i2···im(P ∗)| < ai∗···i∗(P ∗) = 1.

In other words, there exist positive constants C1 < 1 and C2 such that for any u,

‖F (u)‖∞ 6 C1 ‖u‖∞ + C2.

Now, let M = C2/(1 − C1) and K = {u ∈ Rn
+ : ‖u‖∞ 6 M}. By the above, F (K) ⊂ K.

By the Schauder fixed point theorem, F admits a fixed point in K. Moreover, since
F (K) ⊂ F (Rn

+) ⊂ Rn
++, this fixed point must be positive.

Now, let us return to the unproven claim in the previous paragraph. Let

D(P ) = diag(a1···1(P ), . . . , am···m(P ))

be the diagonal matrix obtained from the diagonal entries of A(P ). Note, in particular, that
the i-th entry of the vector D(P )−1(A(P )um−1) is

∑
i2,...,im

aii2···im(P )
ai···i(P ) ui2 · · ·uim .

Therefore, to establish the claim, it is sufficient to show that if u satisfies

min
P∈P

{
D(P )−1

(
A(P )um−1 − b(P )

)}
= 0, (8)

then u is a solution of (1) (while the converse is also true, we do not require it). Indeed, if u
satisfies (8), then D(P ∗)−1(A(P ∗)um−1 − b(P ∗)) = 0 for some P ∗. Multiplying both sides of
this equation by D(P ∗), we get A(P ∗)um−1 − b(P ∗) = 0 and hence

min
P∈P

{
A(P )um−1 − b(P )

}
6 0.

To establish the reverse inequality, we proceed by contradiction, assuming that we can
find P∗ such that the vector A(P∗)um−1 − b(P∗) has a strictly negative entry. In this case,
D(P∗)−1(A(P∗)um−1 − b(P∗)) also has a strictly negative entry, contradicting (8). Therefore,
u is a solution of (1), as desired.
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We would like to extend the above existence result to w.c.d.d. M-tensors. In order to do
so, we require the following intermediate result, which is of independent interest.
Lemma 25. Let A be a strong M-tensor and b be a positive vector (of compatible size). Then,
the set {

(A+ εI)−1
++(b) : ε > 0

}
is bounded.

Proof. Since A is a strong M-tensor there exists a positive vector z such that Azm−1 is
positive [9, Theorem 3]. This in turn implies that

(A+ εI)zm−1 = Azm−1 + εz[m−1] > Azm−1 > 0.

Now, defining
γ = max

i

bi
((A+ εI) zm−1)i

6 max
i

bi
(Azm−1)i

,

the arguments in the proof of [10, Theorem 3.2] imply that the unique positive solution x of
(A+ εI)xm−1 = b satisfies

x 6 γ1/(m−1)z,

giving us an upper bound that is independent of ε.
Lemma 26 (Existence II). Suppose (H1), P is finite, and A(P ) is a w.c.d.d. M-tensor for
each P in P. Then, there exists a positive solution u of (1).
Proof. As in the proof of Lemma 24, it is sufficient to consider the case in which ai···i(P ) = 1.
Now, let k be a positive integer. Since A(P ) is w.d.d., it follows that A(P ) + k−1I is s.d.d.
Therefore, by Lemma 24, we can find a positive vector u(k) and a policy P k such that

min
P∈P

{(
A(P ) + k−1I

)
um−1

(k) − b(P )
}

=
(
A(P k) + k−1I

)
um−1

(k) − b(P
k) = 0.

Since the sequence (P k)k has finite range (due to the finitude of P), the pigeonhole
principle affords us the existence of an increasing sequence (k`)` of positive integers and a
policy P ∗ such that for all `,

min
P∈P

{(
A(P ) + k−1

` I
)
um−1

(k`) − b(P )
}

=
(
A(P ∗) + k−1

` I
)
um−1

(k`) − b(P
∗) = 0. (9)

For brevity, let A = A(P ∗) and b = b(P ∗). Since

u(k`) = (A+ k−1
` I)−1

++(b),

Lemma 25 implies that the sequence (u(k`))` is contained in a compact set and thereby admits
a convergent subsequence with limit u(∞).

Now, we show that u(∞) is a solution of (1). First, note that k−1
` Ium−1

(k`) → 0 as `→∞.
Therefore, it is sufficient to establish that the function H defined by

H(u) = min
P∈P

{
A(P )um−1 − b(P )

}
is continuous on Rn

+ and take limits in (9) to arrive at the desired result. This follows
immediately from the fact that H(u) = u[m−1] −G(u) where G is the locally Lipschitz (and
hence continuous) function defined in the proof of Lemma 24.
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Remark 27. The proof of Lemma 26 uses a pigeonhole principle which relies on the assumed
finitude of the policy set P. Whether this assumption can be dropped remains an interesting
open question.

From a practical perspective, it is important to note that classical m = 2 Bellman equations
appear almost exclusively with finite policy sets P in applications. For example, in the context
of discretizations of differential equations from optimal control, the policy set is always chosen
to be a discretization of the corresponding control set so that the problem can be made amenable
to numerical computation (see, e.g., [5, Section 5.2]). Analogously, we do not expect the
finiteness assumption to be particularly obstructive in the m > 2 case. Indeed, the applications
studied in Section 6 involve finite policy sets.

5.2 Policy iteration
In the classical m = 2 setting, a popular computational procedure to solve (1) is policy
iteration. We give a brief sketch of the algorithm and refer to [5] for details. At the k-th
iteration, the algorithm picks a policy P k in P and solves the system A(P k)u(k) = b(P k).
The policy P k is picked to ensure u(k−1) 6 u(k) so that u = limk u(k) exists. Using continuity
arguments, it can be shown that this limit is a solution of (1).

When P is finite, policy iteration takes at most |P| iterations before achieving the limit
(i.e., u(|P|) = u(|P|+1) = · · · = u). Analogously to the simplex algorithm, whose worst case
complexity is determined by the number of vertices in the feasible polytope, policy iteration
generally terminates in far fewer iterations. Continuing our analogy, we call the map which
associates to each iteration k a policy P k a pivot rule.

Below, we present an obvious extension of policy iteration to the case of m > 2. In the
statement of the algorithm, we allow for some freedom in the choice of pivot rule. Unlike
the m = 2 case, it is not clear if there exists a pivot rule which ensures u(k−1) 6 u(k). The
resulting algorithm is below.

Algorithm 1 A policy iteration algorithm for (1)

1: procedure Policy-Iteration(A, b)
2: for k ← 1, . . . , |P| do
3: Pick P k in P \ {P 1, . . . , P k−1} according to some pivot rule
4: Solve the tensor equation A(P k)um−1

(k) = b(P k) for u(k) in Rn
++

5: if minP∈P{A(P )um−1
(k) − b(P )} = 0 then

6: return u(k)
7: end if
8: end for
9: error no solution found
10: end procedure

Remark 28. The terminating condition on line 5, while convenient for a theoretical dis-
cussion, is unsuitable for a practical implementation. Such an implementation should use
instead a condition on the relative error between iterates u(k−1) and u(k) (see, e.g., (22)) or a
condition on the norm of minP∈P{A(P )um−1

(k) − b(P )}.
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Theorem 29. Suppose (H1), P is finite, and A(P ) is a w.c.d.d. M-tensor for each P in P.
Then, Policy-Iteration returns the unique positive solution of (1).

As usual, we can relax the requirement that “b(P ) is positive” in (H1) to “b(P ) is
nonnegative” by replacing Rn

++ with Rn
+ on line 4 of the algorithm. In this case, the algorithm

returns a (possibly nonunique) nonnegative solution u.

Proof. This is a direct consequence of Lemma 23 and Lemma 26 along with the fact that the
algorithm iterates over all policies.

Taking w = u(k) and P ′ = P k in the result below establishes that the solution u described
in Theorem 29 dominates the iterates u(k) generated by the algorithm.

Lemma 30. Suppose (H1), (H2), and A(P ) is a strong M-tensor for each P in P. If u is a
positive solution of (1) and w is a positive vector satisfying A(P ′)wm−1 = b(P ′) for some P ′
in P, then u > w.

Proof. Since

A(P ′)um−1 − b(P ′) > min
P∈P

{
A(P )um−1 − b(P )

}
= 0 = A(P ′)wm−1 − b(P ′),

it follows that A(P ′)um−1 > A(P ′)wm−1 > 0. The desired result follows by applying the
function (A(P ′))−1

++ to this inequality.

5.3 Locally optimal policy
The pivot rule which we employ in the numerical tests appearing in the sequel is inspired by
the classical (m = 2) policy iteration algorithm. The idea behind the pivot rule is simple: at
the k-th iteration, let

O = arg min
P∈P

{
A(P )um−1

(k−1) − b(P )
}

be the set of policies that are “locally optimal” for u(k−1) where, for convenience, we define
u(0) = 0. Let

H = P \ {P 1, . . . , P k−1}

be the set of policies the algorithm has not yet considered. If O ∩ H 6= ∅, we pick P k in
O ∩ H. Otherwise, we pick P k in H. It is readily verified that if m = 2, we retrieve the
classical policy iteration algorithm [5, Algorithm Ho-1].

5.4 Incorporating lower order tensors
The results of the previous sections can also be applied to the following more general higher
order Bellman equation

min
P∈P

{
A(P )um−1 −Bm−1(P )um−2 −Bm−2(P )um−3 − · · · −B2(P )u− b(P )

}
= 0 (10)

where each Bp(P ) is a row-decoupled (see (ii) at the beginning of Section 5) p-order n-
dimensional nonnegative tensor. This is possible since if A(P ) is an m-order n-dimensional
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strong M-tensor for each P , then u is a solution of (10) if and only if w =
(
u 1

)ᵀ
is a

solution of
min
P∈P

{
A′(P )wm−1 −

(
b(P )

1

)}
= 0

where for each P , A′(P ) is an appropriately chosen m-order (n + 1)-dimensional strong
M-tensor whose construction is detailed in the proof of the next lemma.

Lemma 31. Let A = (ai1···im) be an m-order n-dimensional strong M-tensor and Bp = (bi1···ip)
be a p-order n-dimensional nonnegative tensor for 2 6 p < m. Then, there exists an m-order
(n+ 1)-dimensional strong M-tensor A′ such that(

Axm−1 −Bm−1x
m−2 −Bm−2x

m−3 − · · · −B2x
1

)
= A′

(
x
1

)m−1

for all x ∈ Rn. (11)

Proof. We claim that we can construct an m-order (n+ 1)-dimensional Z-tensor A′ = (a′i1···im)
satisfying (11). Indeed, if this is the case, since A is a strong M-tensor, we can find a positive
vector v such that

Avm−1 −Bm−1v
m−2 −Bm−2v

m−3 − · · · −B2v > 0

(see the proof of [10, Theorem 3.6] for details) and hence

A′
(
v
1

)m−1

> 0.

Therefore, A′ is semi-positive and hence a strong M-tensor [9, Theorem 3].
Returning to the claim above, we give the construction in the case of m = 3, from which

the general m > 3 case should be evident. Indeed, in the case of m = 3, we can take the
nonzero entries of A′ to be

a′i,j,k = ai,j,k, if 1 6 i, j, k 6 n

a′i,j,n+1 = a′i,n+1,j = −bi,j/2, if 1 6 i, j 6 n

a′n+1,n+1,n+1 = 1.

Clearly, A′ is a Z-tensor. Now, let x in Rn be arbitrary and y =
(
x 1

)ᵀ
. Then, for 1 6 i 6 n,

(Ax2 −Bx)i =
∑

16j,k6n
ai,j,kxjxk −

∑
16j6n

bi,jxj

=
∑

16j,k6n
a′i,j,k (xjxk) +

∑
16j6n

a′i,j,n+1 (xj · 1) +
∑

16j6n
a′i,n+1,j (1 · xj)

=
∑

16j,k6n+1
a′i,j,kyjyk = (A′y2)i

so that (11) is satisfied.
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6 Application to optimal stochastic control
In this section, we apply our results to solve numerically the differential equation

− max
(γ,λ)∈(Γ,Λ)

{
LλU − ηU − 1

2αγ
2U + βγ

}
= 0, on Ω

U = g, on ∂Ω
(12)

where Lλ is the (possibly degenerate) elliptic operator

LλU(x) = 1
2σ(x, λ)2U ′′(x) + µ(x, λ)U ′(x).

and
Ω = (0, 1), Γ = [0,∞), and Λ is a compact metric space.

We require the following assumptions:

(A1) Letting dH denote the Hausdorff metric, to each ∆x > 0, we can associate a finite
subset Λ∆x of Λ such that dH(Λ∆x,Λ)→ 0 as ∆x ↓ 0.

(A2) σ, µ (resp. η, α, β, g) are real (resp. positive) maps with dom(σ) = dom(µ) = Ω × Λ
(resp. dom(η) = dom(α) = dom(β) = dom(g) = Ω).

(A3) supx β(x)2/(α(x)η(x)) <∞.

Note that (A1) simply says that we can approximate Λ by finite subsets.
Now, there are two ways to discretize (12): a “discretize then optimize” (DO) approach

and an “optimize then discretize” (OD) approach. In the DO approach, we first replace the
unbounded control set Γ by a partition of the interval Γ0 = [0, γmax] (for some γmax > 0
chosen large enough). Next, we replace the various quantities Uxx, Ux, and U by their discrete
approximations. The resulting system is a classical m = 2 Bellman equation, which can
be solved by policy iteration. Since the DO approach is well-understood, we present its
derivation in Appendix A.

In the OD approach, we first find the point γ at which the maximum

max
γ∈Γ

{
−1

2αγ
2U + βγ

}
(13)

is attained. Substituting this back into (12), we discretize the resulting differential equation.
The OD approach results in a scheme with lower truncation error.

In general, applying an OD approach to an elliptic differential equation may result in
a scheme which is nonmonotone and/or hard to solve (see the discussion in [11]). This is
problematic, since it is well-known that nonmonotone schemes are not guaranteed to converge
[15]. In our case, the resulting OD system ends up being a higher order Bellman equation
involving a w.c.d.d. M-tensor, making it both monotone and easy to solve by policy iteration
(recall Theorem 29).
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Remark 32 (Connection to optimal stochastic control). Let W = (Wt)t>0 be a standard
Brownian motion on a filtered probability space satisfying the usual conditions. It is well-known
that (under some mild conditions), the value function

v(x) = sup
γ,λ

E
[∫ τ

0
exp

(∫ t

0
−η(Xλ

s )− 1
2α(Xλ

s )γ2
sds

)
β(Xλ

t )γtdt

+ exp
(∫ τ

0
−η(Xλ

s )− 1
2α(Xλ

s )γ2
sds

)
g(Xλ

τ )
]

is a viscosity solution of (12) [19]. In the above, the supremum is over all progressively
measurable processes γ = (γt)t>0 and λ = (λt)t>0 taking values in Γ and Λ, respectively, and

Xλ
t = x+

∫ t

0
µ(Xs, λs)ds+

∫ t

0
σ(Xs, λs)dWs and τ = inf{t > 0: Xλ

t /∈ Ω}.

To ensure that the process Xλ is well-defined, one should impose some additional assumptions
(e.g., σ(·, λ) and µ(·, λ) are Lipschitz uniformly in λ).

6.1 Optimize then discretize scheme
In this subsection, we derive the OD scheme and prove that it converges to the solution of
(12). Let ∆x = 1/M for some positive integer M . We write ui ≈ U(i∆x) for the numerical
solution at i∆x and let u = (u0, . . . , uM). We denote by

(Lλ∆xu)i = 1
2σi(λ)2ui−1 − 2ui + ui+1

(∆x)2 + µi(λ) 1
∆x

ui+1 − ui, if µi(λ) > 0
ui − ui−1, if µi(λ) < 0

a standard upwind discretization of LλU(i∆x) where, for brevity, we have defined σi(λ) =
σ(i∆x, λ) and µi(λ) = µ(i∆x, λ).

First, note that a solution U of (12) must be everywhere positive since otherwise (13) is
unbounded. By virtue of this, the maximum in (13) is

max
γ

{
−1

2αγ
2U + βγ

}
= 1

2
β2

α

1
U
.

This suggests approximating (12) by the M + 1 “discrete” equations
−max
λ∈Λ∆x

{
(Lλ∆xu)i − ηiui + 1

2
β2
i

αi

1
ui

}
= 0, for 0 < i < M

ui = gi, for i = 0,M
(14)

where we have defined αi = α(i∆x), βi = β(i∆x), ηi = η(i∆x), and gi = g(i∆x).
The difficulty in the OD approach is that (14) cannot be written as a classical m = 2

Bellman equation due to the term 1/ui. We resolve this by writing (14) as a Bellman equation
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of order m = 3 instead. In order to do so, we first note that a positive vector u = (u0, . . . , uM )
satisfies (14) if and only if it satisfies

−max
λ∈Λ∆x

{
ui(Lλ∆xu)i − ηiu2

i + 1
2
β2
i

αi

}
= 0, for 0 < i < M

u2
i = g2

i , for i = 0,M.

(15)

To see this, multiply each equation in (14) by ui (conversely, divide each equation in (15) by
ui). Next, define the Cartesian product Λ∆x = (Λ∆x)M+1 and denote by λ = (λ0, . . . , λM)
an element of Λ∆x with λi ∈ Λ∆x. Define A(λ) = (aijk(λ)) as the order m = 3 tensor whose
only nonzero entries are

ai,i−1,i(λ) = ai,i,i−1(λ),

2ai,i,i−1(λ) = −1
2σi(λi)

2 1
(∆x)2 + µi(λi)

1
∆x1(−∞,0)(µi(λi)),

ai,i,i(λ) = +1
2σi(λi)

2 2
(∆x)2 + |µi(λi)|

1
∆x + ηi, if 0 < i < M (16a)

2ai,i,i+1(λ) = −1
2σi(λi)

2 1
(∆x)2 − µi(λi)

1
∆x1(0,+∞)(µi(λi)),

ai,i+1,i(λ) = ai,i,i+1(λ),

and
ai,i,i(λ) = 1, if i = 0,M. (16b)

Lastly, define the vector b = (b0, . . . , bM) by

bi =


1
2
β2
i

αi
, if 0 < i < M

g2
i , if i = 0,M.

(17)

Then, (15) is equivalent to the order m = 3 Bellman equation

min
λ∈Λ∆x

A(λ)u2 = b. (18)

We would like to apply policy iteration to compute a positive solution of (18). According
to Theorem 29, this requires A(λ) to be an s.d.d. strong M-tensor. We establish this by
showing that A(λ) is an s.d.d. Z-tensor with positive diagonals and applying Proposition
3. Indeed, that A(λ) is a Z-tensor with positive diagonals is clear from its definition. Next,
note that by (16a) and (16b),

ai···i(λ) +
∑

(i2,...,im)6=(i,...,i)
aii2···im(λ) =

ηi, if 0 < i < M

1, if i = 0,M.
(19)

Since ηi > 0 by (A2), the above implies that A(λ) is s.d.d.
While the above establishes that the numerical solution is well-defined for each ∆x > 0,

we have yet to relate its limit as ∆x ↓ 0 back to the differential equation (12). In order to do
so, we use the framework of viscosity solutions [8]:
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Theorem 33. Suppose (A1), (A2), (A3), and that the differential equation (12) satisfies
a strong comparison principle in the sense of Barles and Souganidis [3]. For each ∆x > 0,
define the function u∆x : Ω→ R by

u∆x(x) =
M∑
i=0

ui1[xi−∆x/2,xi+∆x/2)(x)

where u = (u0, . . . , uM) is the unique positive solution of (18). Then,

u∆x 6 sup
x

max

√√√√1

2
β2(x)

α(x)η(x) , g(x)
 <∞ (20)

and, as ∆x ↓ 0, u∆x converges uniformly to the viscosity solution U of (12).

Proof. We first prove the bound (20). Choose j such that uj = maxi ui. If 0 < j < M , it is
straightforward to show that, (Lλ∆xu)j 6 0. In this case,

0 = − max
λ∈Λ∆x

{
(Lλ∆xu)j − ηjuj + 1

2
β2
j

αj

1
uj

}
> ηjuj −

1
2
β2
j

αj

1
uj

and hence by (A2),

uj 6

√√√√1
2
β2
j

αjηj
6 sup

x

√√√√1
2

β2(x)
α(x)η(x) .

If instead j = 0 or j = M , then uj = gj 6 max{g(0), g(1)} by (A2). Therefore,

uj 6 sup
x

max

√√√√1

2
β2(x)

α(x)η(x) , g(x)
 ,

which is finite due to (A3).
The remainder of the proof relies on the standard machinery of Barles and Souganidis [3],

so we simply sketch the ideas. The discrete equations (14) define a scheme that is monotone
and consistent in the sense of [3]. Moreover, u∆x is bounded independently of ∆x by (20).
Therefore, by [3, Theorem 2.1], u∆x converges locally uniformly to U . Since Ω is compact,
this convergence is uniform.

6.2 Numerical results
In this subsection, we apply the OD and DO schemes (described in the previous subsection and
Appendix A, respectively) to compute a numerical solution of (12) under the parameterization

σ(x, λ) = 0.2 α(x) = 2− x η(x) = 0.04
µ(x, λ) = 0.04λ β(x) = 1 + x g(x) = 1 (21)

where λ ∈ Λ = {−1, 1}. Since Λ is finite, we take Λ∆x = Λ. For the DO scheme, we take
γmax = 2 and discretize Γ0 = [0, γmax] by a uniform partition 0 = γ0 < · · · < γK = γmax (see
Appendix A for details).
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M Value Rel. err. Ratio Its. Inner its. Time

32 2.8093 1.3e−2 5 7 4.6e−2
64 2.8278 6.0e−3 5 7 4.8e−2
128 2.8367 2.9e−3 2.07 5 7 6.5e−2
256 2.8411 1.3e−3 2.04 5 7 1.2e−1
512 2.8433 5.7e−4 2.02 5 7 1.8e−1
1024 2.8444 1.9e−4 2.00 5 7 3.5e−1

(a) Optimize then discretize

M K Value Rel. err. Ratio Its. Time

32 1 1.1783 5.9e−1 7 3.3e−2
64 2 1.9179 3.3e−1 7 5.4e−2
128 4 2.7161 4.5e−2 0.93 7 1.4e−1
256 8 2.7825 2.2e−2 12.0 7 4.5e−1
512 16 2.8306 5.0e−3 1.38 7 1.4e+0
1024 32 2.8421 9.8e−4 4.19 7 5.3e+0

(b) Discretize then optimize

Table 1: Convergence results (parameters used: (21))

In our implementation of Policy-Iteration, instead of using the terminating condition
on line 5 of the algorithm, we terminate the algorithm when it meets the relative error
tolerance ∥∥∥u(k) − u(k−1)

∥∥∥
∞

6 10−12 + 10−6
∥∥∥u(k)

∥∥∥
∞
. (22)

In the case of the DO scheme, m = 2 and A(P ) is a tridiagonal matrix (see (25a) and (25b)
of Appendix A). Therefore, we use a tridiagonal solver to solve A(P )x = b(P ). As for the
OD scheme, m = 3 and we use the Newton’s method described in [10, Section 4] to solve
A(P )x2 = b(P ). Denoting by x(k) the iterates produced by Newton’s method, we terminate
the algorithm when it meets the error tolerance∥∥∥x(k) − x(k−1)

∥∥∥
∞

6 10−24 + 10−12
∥∥∥x(k)

∥∥∥
∞
.

Convergence results are given in Table 1, in which we report a representative value of
the numerical solution (Value), the relative error (Rel. err.), ratio of errors (Ratio), number
of policy iterations (Its.), average number of iterations (Inner its.) to solve the system
A(P )xm−1 = b(P ) if applicable, and total time elapsed in seconds (Time). The representative
value of the numerical solution is u∆x(x0) where x0 = 1/2 is the midpoint of Ω. The relative
error is given by ∣∣∣∣∣u∆x(x0)− U(x0)

U(x0)

∣∣∣∣∣
where U is the exact solution. Since the exact solution is generally unavailable, we replace U
by the solution computed by the OD scheme at a level of refinement higher than that which
is shown in the table. The ratio of errors is given by

u∆x/2(x0)− u∆x(x0)
u∆x/4(x0)− u∆x/2(x0)
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M Value Rel. err. Ratio Its. Inner. its. Time

32 3.0703 1.6e−1 3 6.67 4.3e−2
64 3.3567 8.5e−2 3 6.67 3.7e−2
128 3.5114 4.3e−2 1.85 3 6.67 5.4e−2
256 3.5917 2.1e−2 1.92 3 6.67 9.3e−2
512 3.6327 9.9e−3 1.96 3 6.67 1.7e−1
1024 3.6534 4.3e−3 1.98 3 6.67 3.3e−1
2048 3.6638 1.4e−3 1.99 3 7.67 6.5e−1

(a) Optimize then discretize

M K Value Rel. err. Ratio Its. Time

32 1 0.9273 7.5e−1 3 1.7e−2
64 2 1.8839 4.9e−1 5 3.9e−2
128 4 3.2430 1.2e−1 0.70 7 1.4e−1
256 8 3.5376 3.6e−2 4.61 9 6.4e−1
512 16 3.6163 1.4e−2 3.74 14 3.5e+0
1024 32 3.6490 5.5e−3 2.41 15 1.4e+1
2048 64 3.6629 1.7e−3 2.35 7 2.3e+1

(b) Discretize then optimize

Table 2: Convergence results (parameters used: (23))

so that the base-2 logarithm of this quantity gives us an estimate on the order of convergence
(e.g., Ratio ≈ 2 suggests linear convergence, Ratio ≈ 4 suggests quadratic, etc.). Plots of the
solution and optimal controls are given in Figure 2.

The OD scheme is faster and more accurate than the DO scheme. Since both schemes
require roughly the same number of policy iterations, it follows that the DO scheme loses
most of its time on the pivot step on line 3 of Policy-Iteration. As K →∞, this effect
becomes more pronounced. Note also that the OD scheme exhibits a fairly stable linear order
of convergence while that of the DO scheme is erratic.

6.3 A problem which is neither s.d.d. nor weakly irreducibly di-
agonally dominant

We now turn to a parameterization of (12) whose corresponding “discretization tensor” A(λ)
defined by (16a) and (16b) is neither s.d.d. nor weakly irreducibly diagonally dominant.
We are motivated by an analogous phenomenon that occurs for classical discretizations of
degenerate elliptic differential equations first studied in [6] in which the matrix arising from
the discretization is neither s.d.d. nor irreducibly diagonally dominant (cf. [18, 2, 7]).

The parameterization we study is

σ(x, λ) = 0.3(1− λ) α(x) = 1 η(x) = 1{x60.5}(x)
µ(x, λ) = 0.04λ β(x) = 1 g(x) = 1 (23)

where λ ∈ Λ = {0, 1}. Note that this parameterization does not satisfy (A2) or (A3) since
η is allowed to be zero. Therefore, the argument used to establish that A(λ) is a strong
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M-tensor in Section 6.1 fails (see, in particular, (19)).
Letting ω be any function which maps R++ to itself such that limt→0 ω(t) = 0, one way

to get around the above issue is to replace A(λ) by A(λ) + Iω(∆x) in (18), since the latter
is trivially s.d.d. The obvious downside of this approach is that it introduces additional
discretization error.

Fortunately, it turns out that we can directly establish that A(λ) is a strong M-tensor by
relying on the theory of w.c.d.d. tensors. In particular, by (19),

(i) A(λ) is a w.d.d. (not s.d.d.) Z-tensor since ηi > 0 and

(ii) 0,M ∈ J(A(λ)) are s.d.d. rows.

The directed graph of A(λ) is shown in Figure 4 where we have

(i) ignored self-loops of the form i→ i and

(ii) used a dashed line to indicate an edge that is present only when λi = 0.

Note that for any i /∈ J(A(λ)), we can form the walk i→ i + 1→ · · · → M ending at the
s.d.d. vertex M ∈ J(A(λ)). Therefore, A(λ) is w.c.d.d. and hence a strong M-tensor by
Theorem 1. Now, by Theorem 29, we can compute a solution of the OD scheme as applied
to the parameterization (23) by policy iteration. Convergence results and plots are shown
in Table 2 and Figure 3, respectively. The C1 discontinuity in the solution is due to the
discontinuity in η.

7 Summary
In this work, we introduced the high order Bellman equation (1), extending classical Bellman
equations to the tensor setting. We also introduced w.c.d.d. tensors (Definition 15), also
extending the notion of w.c.d.d. matrices to the tensor setting. We established a relationship
between w.c.d.d. tensors and M-tensors (Theorem 1), analogous to the relationship between
w.c.d.d. matrices and M-matrices [1]. We proved that a sufficient condition to ensure the
existence and uniqueness of a positive solution to a high order Bellman equation is that the
tensors appearing in the equation are s.d.d. M-tensors (Lemma 23 and Lemma 24). We also
showed that the s.d.d. requirement can be relaxed to the weaker requirement of w.c.d.d. so
long as we restrict ourselves to a finite set of policies (Lemma 26). In this case, the solution of
(1) can be computed by a policy iteration algorithm (Theorem 29). The question of whether
or not the assumption of finitude can be removed remains open (Remark 27). We applied
our findings to create a so-called “optimize then discretize” scheme for an optimal stochastic
control problem which outperforms (in both computation time and accuracy) a classical
“discretize then optimize” approach (Section 6). ifclassloadedsiamart1116
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(a) M = 128
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(b) M = 512

Figure 2: Solution and controls computed by both schemes (parameters used: (21))
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Figure 3: Solution and controls computed (parameters used: (23); OD scheme only)

0 1 · · · i−1 i i+1 · · · M−1 M

Figure 4: Directed graph of A defined by (16a) and (16b) with σ and µ given by (23)
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A Discretize then optimize scheme
In this appendix, we derive the DO scheme for the differential equation (12). Since the set
Γ = [0,∞) is unbounded, we restrict our attention to controls γ in some bounded interval
Γ0 = [0, γmax]. To ensure the consistency of the resulting scheme, γmax should be chosen
sufficiently large. For each ∆x > 0, we let Γ∆x denote a finite subset of Γ0 such that
dH(Γ∆x,Γ0)→ 0 as ∆x ↓ 0. The DO discretization is given by the M + 1 equations

− max
(γ,λ)∈Γ∆x×Λ∆x

{
(Lλ∆xu)i − ηiui − 1

2αiγ
2ui + βiγ

}
= 0, for 0 < i < M

ui = gi for i = 0,M
(24)

where the various quantities Lλ∆x, ηi, etc. are defined in Section 6.1 (compare (24) with the
OD discretization (14)).

We can transform (24) into a classical m = 2 Bellman equation as follows. Define the
Cartesian product Γ∆x = (Γ∆x)M+1 and denote by γ = (γ0, . . . , γM) an element of Γ∆x with
γi ∈ Γ∆x. Define Λ∆x and λ = (λ0, . . . , λM) similarly. Let A(γ,λ) = (aij(γ,λ)) be the
tridiagonal matrix whose only nonzero entries are

ai,i−1(γ,λ) = −1
2σi(λi)

2 1
(∆x)2 + µi(λi)

1
∆x1(−∞,0)(µi(λi)),

ai,i(γ,λ) = +1
2σi(λi)

2 2
(∆x)2 + |µi(λi)|

1
∆x + ηi + 1

2αiγ
2
i , if 0 < i < M (25a)

ai,i+1(γ,λ) = −1
2σi(λi)

2 1
(∆x)2 − µi(λi)

1
∆x1(0,+∞)(µi(λi)),

and
ai,i(γ,λ) = 1, if i = 0,M. (25b)
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Lastly, define the vector b(γ) = (b0(γ), . . . , bM(γ)) by

bi(γ) =

βiγi, if 0 < i < M

gi, if i = 0,M.

Then, the discrete equations (24) are equivalent to the classical Bellman equation

min
(γ,λ)∈Γ∆x×Λ∆x

{A(γ,λ)u− b(γ)} = 0.

The downside of the above approach is twofold:

(i) The size of the policy set is |P| = |Γ∆x||Λ∆x|. In the OD approach, the size of the
policy set is |P| = |Λ∆x| (recall that the policy iteration algorithm takes, in the worst
case, |P| iterations).

(ii) Assuming γmax is chosen large enough, the approximation of Γ0 by Γ∆x introduces
O(dH(Γ∆x,Γ0)) local truncation error.
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