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A DEGREE SEQUENCE KOMLÓS THEOREM∗

JOSEPH HYDE† , HONG LIU‡ , AND ANDREW TREGLOWN†

Abstract. An important result of Komlós [Tiling Turán theorems, Combinatorica, 2000] yields
the asymptotically exact minimum degree threshold that ensures a graph G contains an H-tiling
covering an xth proportion of the vertices of G (for any fixed x ∈ (0, 1) and graph H). We give a
degree sequence strengthening of this result which allows for a large proportion of the vertices in the
host graph G to have degree substantially smaller than that required by Komlós’s theorem. We also
demonstrate that for certain graphs H, the degree sequence condition is essentially best possible in
more than one sense.

Key words. graph tilings, regularity method, degree sequence
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DOI. 10.1137/18M1197102

1. Introduction. A central branch of extremal combinatorics concerns the study
of conditions that force a graph G to contain some given substructure. For example,
Turán’s famous theorem determines the number of edges required to force a graph G
to contain a copy of a fixed clique Kr on r vertices. Tutte’s theorem characterizes all
those graphs G that contain a perfect matching.

The study of graph tilings has proven to be a rich topic within this area: Given
two graphs H and G, an H-tiling in G is a collection of vertex-disjoint copies of H
in G. An H-tiling is called perfect if it covers all the vertices of G. Perfect H-tilings
are also often referred to as H-factors, perfect H-packings, or perfect H-matchings.
H-tilings can be viewed as generalizations of both the notion of a matching (which
corresponds to the case when H is a single edge) and the Turán problem (i.e., a copy
of H in G is simply an H-tiling of size one).

A cornerstone result in the area is the Hajnal–Szemerédi theorem [6] from 1970,
which characterizes the minimum degree that ensures a graph contains a perfect Kr-
tiling.

Theorem 1.1 (Hajnal and Szemerédi [6]). Every graph G whose order n is
divisible by r and whose minimum degree satisfies δ(G) ≥ (1 − 1/r)n contains a
perfect Kr-tiling. Moreover, there are n-vertex graphs G with δ(G) = (1− 1/r)n− 1
that do not contain a perfect Kr-tiling.

Although the minimum degree condition in the Hajnal–Szemerédi theorem is
tight, this does not mean one cannot strengthen this result. Indeed, Kierstead and
Kostochka [7] proved an Ore-type generalization of Theorem 1.1 where now one re-
places the minimum degree condition with the condition that the sum of the degrees
of every pair of nonadjacent vertices in G is at least 2(1 − 1/r)n − 1. A conjecture
of Balogh, Kostochka, and Treglown [3, Conjecture 7] would, if true, give a degree
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2042 JOSEPH HYDE, HONG LIU, AND ANDREW TREGLOWN

sequence strengthening of the Hajnal–Szemerédi theorem; in this conjecture one al-
lows for G to have almost n/r vertices of degree less than (1− 1/r)n. An asymptotic
version of this conjecture was proven in [16].

There has also been significant interest in the minimum degree threshold that
ensures a perfect H-tiling for an arbitrary graph H. After earlier work on this topic
(see, e.g., [2, 9]), Kühn and Osthus [11, 12] determined, up to an additive constant,
the minimum degree that forces a perfect H-tiling for any fixed graph H.

The focus of this paper is not on perfect H-tilings but rather on H-tilings covering
an xth proportion of a graph G (for some fixed x ∈ (0, 1)). The focal result on this
topic is a theorem of Komlós [8] which determines asymptotically the minimum degree
that ensures a graph G contains an H-tiling covering an xth proportion of its vertices.
Before we can state this result, we require two definitions. The critical chromatic
number χcr(H) of a graph H is defined as

χcr(H) := (χ(H)− 1)
|H|

|H| − σ(H)
,

where σ(H) denotes the size of the smallest possible color class in any χ(H)-coloring
of H. For all x ∈ (0, 1), define

gH(x) := x

(
1− 1

χcr(H)

)
+ (1− x)

(
1− 1

r − 1

)
.

Theorem 1.2 (Komlós [8]). Suppose H is a graph of chromatic number r. Given
any η > 0, there exists an n0 = n0(η, x,H) ∈ N such that if G is a graph on n ≥ n0

vertices and
δ(G) ≥ gH(x)n,

then G contains an H-tiling covering at least (x− η)n vertices.

Note that the minimum degree condition in Theorem 1.2 is best possible in the
sense that given any fixed H and x ∈ (0, 1), one cannot replace gH(x) with any fixed
g′H(x) < gH(x) (see [8, Theorem 7] for a proof of this). A consequence of the Erdős–
Stone theorem is that every n-vertex graph G with δ(G) ≥ (1−1/(χ(H)−1)+o(1))n
contains a copy of H. So a way to interpret Theorem 1.2 is that, for very small
x > 0, the minimum degree threshold is governed essentially by the value of χ(H)−1;
however, as one increases x, the value of χcr(H) plays an increasing role in the value
of the threshold.

An attractive consequence of Theorem 1.2 is the following result concerning almost
perfect H-tilings.

Theorem 1.3 (Komlós [8]). Let η > 0, and let H be a graph. Then there exists
an n0 = n0(η,H) ∈ N such that every graph G on n ≥ n0 vertices with

δ(G) ≥
(

1− 1

χcr(H)

)
n

contains an H-tiling covering all but at most ηn vertices.

As with Theorem 1.2, the minimum degree condition in Theorem 1.3 is best
possible in the sense that one cannot replace the (1− 1/χcr(H)) term here with any
smaller fixed constant. Despite this, Shoukoufandeh and Zhao [14] proved that one
can strengthen the conclusion of the theorem to ensure the H-tiling covers all but a
constant number of vertices (this constant depends only on H).

The main result of this paper is to prove the following degree sequence strength-
ening of Theorem 1.3.
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d1d2 dωn
h

(
1− ω+σ

h

)
n

(
1− ω

h

)
n

Degree

Fig. 1. The degree sequence in Theorem 1.4.

Graph Bound on d1 Bound on dωn
h

Angle of slope

C5 2n/5 3n/5 1/2
K1,t 1 n/(t+ 1) 1/t
Kt (t− 2)n/t (t− 1)n/t 1

K2,4,6 5n/12 7n/12 2/5

Fig. 2. Values of the start points, endpoints, and angles of the slope in Theorem 1.4 for certain
graphs.

Theorem 1.4. Let η > 0 and H be a graph with χ(H) = r. Let σ := σ(H),
h := |H|, and ω := (h− σ) /(r − 1). Then there exists an n0 = n0(η,H) ∈ N such
that the following holds: Suppose G is a graph on n ≥ n0 vertices with degree sequence
d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i for all 1 ≤ i ≤ ωn

h .

Then G contains an H-tiling covering all but at most ηn vertices.

Note that if one considers an r-partition of H with smallest vertex class of size
σ = σ(H) and set i = ωn/h, then we obtain that (1− (ω + σ)/h)n + σi/ω = 1 −
1/χcr(H). Thus, Theorem 1.4 is a significant strengthening of Theorem 1.3. Indeed,
Theorem 1.4 allows for up to ωn/h vertices to have degree below that in Theorem 1.3.
In particular, when H is bipartite, the degree sequence condition in Theorem 1.4 starts
at d1 ≥ 1 and allows for at least half of the vertices of H to have degree less than that
required by Komlós’s theorem. Figure 1 gives a visualization of the degree sequence
in Theorem 1.4. Figure 2 presents some key properties of the degree sequence in
Theorem 1.4 for several graphs. Here, “Angle of slope” refers to the value σ/ω.

The degree sequence in Theorem 1.4 is best possible in more than one sense for
many graphs H. For all graphs H, one cannot allow significantly more than ωn/h
vertices to have degree below the “Komlós threshold,” so in this sense the bound on the
number of “small degree” vertices in Theorem 1.4 is tight. Further, for many graphs
H, we show that the degree sequence cannot start at a lower value and the angle of
the “slope” in Figure 1 is best possible. This is discussed in more depth in section 3.

Theorem 1.4 deals with almost perfect tilings. A natural question now is whether
such a degree sequence strengthening also exists for tilings covering an xth propor-
tion of vertices, as in Theorem 1.2. Indeed, the following result is a straightforward
consequence of Theorem 1.4.
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d1 d2

(
1− ω+σ

h

)
n

(
1− ω

h

)
n

Degree

(gH(2/3)− 2σ/3h)n
(gH(1/3)− σ/3h)n

(1− 1/(r − 1))n
gH(1/3)n
gH(2/3)n

d
ω
n
h

d (
3h
−
2σ

3(
r−

1)
h
)n

d (
3h
−
σ

3(
r−

1)
h
)n

Fig. 3. The degree sequence in Theorem 1.5 for x = 2/3 (long dashed), x = 1/3 (medium dashed).

Theorem 1.5. Let x ∈ (0, 1) and H be a graph with χ(H) = r. Set η > 0.
Let σ := σ(H), h := |H|, and ω := (h− σ) /(r − 1). Then there exists an n0 =
n0(η, x,H) ∈ N such that the following holds: Suppose G is a graph on n ≥ n0

vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i for all 1 ≤ i ≤

(
h−xσ

(r−1)h

)
n.

Then G contains an H-tiling covering at least (x− η)n vertices.

Theorem 1.5 is an improvement on Theorem 1.2. Indeed, Theorem 1.5 allows
for almost (h − xσ)n/(r − 1)h vertices to have degree below gH(x)n. Observe that
as x approaches 0, the degree sequence condition in Theorem 1.5 tends toward the
condition δ(G) ≥ (1 − 1/(r − 1))n and thus accords with the Erdős–Stone theorem
(see Figure 3).

Piguet and Saumell [13, Theorem 1.3] recently proved another generalization of
Theorem 1.2. In their result they only require a certain fraction of the vertices to
satisfy the degree condition of Theorem 1.2, and all other vertices have no restriction
on their degree (so some could even be isolated vertices). Note, though, that our
result allows for more vertices to have small degree (i.e., smaller than the bound in
Theorem 1.2) at the price of having some restriction of the degrees of these vertices.
In the case of almost perfect H-tilings, Theorem 1.4 allows a large proportion of
the vertices to have small degree, while in this case [13, Theorem 1.3] corresponds
precisely to Komlós’s theorem (Theorem 1.3 above).

As well as considering minimum degree and degree sequence conditions, it is also
natural to seek conditions on the density of a graph G that forces an H-tiling covering
a given fraction of the vertices of G. We remark, though, that only limited progress
has been made on this question (though Allen et al. [1] did resolve this problem in
the case of K3-tilings).

Organization of the paper. The paper is organized as follows. In the next
section we provide some essential notation and definitions. Then in section 3 we
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A DEGREE SEQUENCE KOMLÓS THEOREM 2045

give extremal examples for both Theorems 1.4 and 1.5. We introduce an “error
term” version (Theorem 4.1) of Theorem 1.4 in section 4 and show that it implies
Theorem 1.4. Szemerédi’s regularity lemma and several auxiliary results are presented
in section 5. Then in section 6 we provide the tools that we will need to prove
Theorem 4.1. We prove a result that iteratively constructs an almost perfect H-tiling
and then use this result to prove Theorem 4.1 in section 7. To conclude section 7 we
show that Theorem 1.4 implies Theorem 1.5.

2. Notation and definitions. Let G be a graph. We define V (G) to be the
vertex set of G and E(G) to be the edge set of G. Let X ⊆ V (G). Then G[X] is
the graph induced by X on G and has vertex set X and edge set E(G[X]) := {xy ∈
E(G) : x, y ∈ X}. We also define G \ X to be the graph with vertex set V (G) \ X
and edge set E(G \ X) := {xy ∈ E(G) : x, y ∈ V (G) \ X}. For each x ∈ V (G), we
define the neighborhood of x in G to be NG(x) := {y ∈ V (G) : xy ∈ E(G)} and define
dG(x) := |NG(x)|. We drop the subscript G if it is clear from context which graph
we are considering. We write dG(x,X) for the number of edges in G that x sends to
vertices in X. Given a subgraph G′ ⊆ G, we will write dG(x,G′) := dG(x, V (G′)). Let
A,B ⊆ V (G) be disjoint. Then we define eG(A,B) := |{xy ∈ E(G) : x ∈ A, y ∈ B}|.

Let t ∈ N. We define the blow-up G(t) to be the graph constructed by first
replacing each vertex x ∈ V (G) by a set Vx of t vertices and then replacing each edge
xy ∈ E(G) with the edges of the complete bipartite graph with vertex sets Vx and Vy.

Let v ∈ N. We will refer to a vertex class of size v of G as a v-class of G. Set
r, σ, ω ∈ N, and σ < ω. We define the r-partite bottle graph B with neck σ and width
ω to be the complete r-partite graph with one σ-class and (r − 1) ω-classes.

Let i ∈ N and H1, H2, . . . ,Hi be a collection of graphs. We define an
(H1, H2, . . . ,Hi)-tiling in G to be a collection of vertex-disjoint copies of graphs from
the set {H1, H2, . . . ,Hi} in G. An (H1, H2, . . . ,Hi)-tiling is called perfect if it covers
all vertices in G.

We write 0 < a� b� c < 1 to mean that we can choose the constants a, b, c from
right to left. More precisely, there exist nondecreasing functions f : (0, 1] → (0, 1]
and g : (0, 1] → (0, 1] such that for all a ≤ f(b) and b ≤ g(c), our calculations and
arguments in our proofs are correct. Larger hierarchies are defined similarly. Note
that a� b implies that we may assume, e.g., a < b or a < b2.

3. Extremal examples. In this section we present three extremal examples.
The first demonstrates that the “slope” of the degree sequence in Theorem 1.4 is best
possible for bottle graphs. The second shows that for many graphs H, the degree
sequence in Theorem 1.4 “starts” at the correct place. The third shows that, for any
graph H, to ensure an H-tiling covering at least (x − η)n vertices we cannot have
significantly more than (h − xσ)n/(r − 1)h vertices with degree below the “Komlós
threshold” of gH(x)n.

Extremal Example 1. Set η ∈ R. Let B be an r-partite bottle graph with
neck σ and width ω, where b := |B|. The following extremal example G on n vertices
demonstrates that Theorem 1.4 is best possible for such graphs B in the sense that G
satisfies the degree sequence of Theorem 1.4 except for a small linear part that only
just fails the degree sequence but does not contain a B-tiling covering all but at most
ηn vertices.

Proposition 3.1. Set η ∈ R and n ∈ N such that 0 < 1/n � η � 1. Let B be
a bottle graph with neck σ and width ω, where b := |B|. Additionally assume that b
divides n. Then for any 1 ≤ k < ωn/b − 2ηn, there exists a graph G on n vertices
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whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥
(

1− ω + σ

b

)
n+

σ

ω
i for all i ∈ {1, . . . , k − 1, k + 2ηn+ 1, . . . , ωn/b},

di =

(
1− ω + σ

b

)
n+

⌈σ
ω
k
⌉

for all k ≤ i ≤ k + 2ηn,

but such that G does not contain a B-tiling covering all but at most ηn vertices.

Proof. Let G be the graph on n vertices with r vertex classes V1, . . . , Vr, where
|V1| = σn/b and |V2| = |V3| = · · · = |Vr| = ωn/b. Label the vertices of V1 as
a1, a2, . . . , aσn/b. Similarly, label the vertices of V2 as c1, c2, . . . , cωn/b. The edge set
of G is constructed as follows.

First, let G have the following edges:
• All edges with an endpoint in V1 and the other endpoint in V (G) \ V2, in

particular G[V1], is complete.
• All edges with an endpoint in Vi and the other endpoint in V (G) \ (V1 ∪ Vi)

for 2 ≤ i ≤ r.
• Given any 1 ≤ i ≤ ωn/b and j ≤ dσi/ωe include all edges ciaj .

So at the moment G does satisfy the degree sequence in Theorem 1.4; we therefore
modify G slightly. For all k + 1 ≤ i ≤ k + 2ηn and dσk/ωe+1 ≤ j ≤ dσ(k+2ηn)/ωe
delete each edge between ci and aj (see Figure 4). One can easily check that G satisfies
the degree sequence in the statement of the proposition. In particular, the vertices of
degree (1− ω+σ

b )n+ d σωke are ck, . . . , ck+2ηn.
Define A := {a1, . . . , adσk/ωe} and C := {c1, . . . , ck+2ηn}. Note that there are no

edges between C and V1 \A in G.

Claim 3.2. Let T be a B-tiling of G. Then T does not cover at least 3ηn/2
vertices in C.

Consider any copy B′ of B in G that contains an element of C. As C is an
independent set in G, B′ contains at most ω elements from C. Since there are no
edges between C and V1 \ A in G, B′ contains at least σ vertices in A. This implies
that at most dσk/ωe(ω/σ) < k + ηn/2 vertices in C can be covered by T . Since
|C| = k+ 2ηn, we have that T does not cover at least 3ηn/2 vertices in C. Therefore,
Claim 3.2 holds. Hence, G does not have a B-tiling covering all but at most ηn
vertices.

Proposition 3.1 implies that for bottle graphs B, the degree sequence in Theo-
rem 1.4 cannot be lowered significantly in a small part of the degree sequence and
still ensure an almost perfect B-tiling, so the “slope” of the degree sequence in Theo-
rem 1.4 cannot be improved on. It would be interesting to find other classes of graphs
H for which the slope in Theorem 1.4 is also best possible; we suspect, though, that
there are graphs H where the slope is not best possible.

Extremal Example 2. The next example shows that for many graphs H, The-
orem 1.4 is best possible in the sense that we cannot start the degree sequence at a
significantly lower value.

Proposition 3.3. Let H be an r-partite graph so that, for every x ∈ V (H),
H[N(x)] is (r − 1)-partite. Let h := |H|, σ := σ(H), and set ω := (h − σ)/(r − 1).
Additionally, suppose σ < ω. Let 0 < 1/n� η � (ω−σ)/h, where h divides n. Then
there is an n-vertex graph G with
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σn
b

ωn
b

ωn
b

ωn
b

V1

V2 V3 Vr

Fig. 4. An example of a graph G in Proposition 3.1, where σ = 1, ω = 2.

(i) bηnc+ 1 vertices of degree (1− ω+σ
h )n;

(ii) all other vertices have degree at least (1− 1/χcr(H))n = (1− ω/h)n,
and G does not have an H-tiling covering all but at most ηn vertices.

Proof. Let G be the complete r-partite graph on n vertices with vertex classes
V1, . . . , Vr, where |V1| = σn/h + bηnc + 1, |V2| = ωn/h − bηnc − 1 and |V3| = · · · =
|Vr| = ωn/h. Let V ′ ⊆ V1 be of size bηnc + 1. Delete from G all edges with one
endpoint in V ′ and the other in V2. By construction G satisfies (i) and (ii). Note that
since the neighborhood of any x ∈ V ′ induces an (r − 2)-partite subgraph of G, no
vertex in V ′ lies in a copy of H in G. So G does not have an H-tiling covering all but
at most ηn vertices.

Extremal Example 3. Set η ∈ R and x ∈ (0, 1]. Let H be a graph with
χ(H) =: r. Let h := |H|, σ := σ(H), and set ω := (h − σ)/(r − 1). Define gH(1) :=
1 − ω/h. We give an extremal example G on n vertices which satisfies the degree
sequence of Theorem 1.5 except that (h− xσ)n/(r− 1)h+ ηn vertices have degree at
most (gH(x)−η)n but does not contain an H-tiling covering at least (x−η)n vertices.

Proposition 3.4. Set η ∈ R and x ∈ (0, 1]. Let H be a graph with χ(H) =: r.
Let h := |H|, σ := σ(H), and set ω := (h− σ)/(r − 1). Then there exists a graph G
on n vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di = (gH(x)− η)n for all i ≤ h− xσ
(r − 1)h

n+ ηn,

di ≥ gH(x)n for all i >
h− xσ

(r − 1)h
n+ ηn,

but such that G does not contain an H-tiling covering at least (x− η)n vertices.

Proof. Let G be the complete r-partite graph on n vertices with vertex classes
V1, . . . , Vr such that

• |V1| = xσn
h − ηn;

• |V2| = (h−xσ)n
(r−1)h + ηn;

• |V3| = · · · = |Vr| = (h−xσ)n
(r−1)h .
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Consider any H-tiling T of G. Observe that T can contain at most xn/h− ηn/σ
copies of H. Indeed, to attain this bound one requires that all color classes of size σ
in copies of H are placed into V1. Hence, at most x(r − 1)ωn/h − (r − 1)ωηn/σ
vertices are covered by T in V2 ∪ · · · ∪ Vr. Thus, at most (x − η)n − (r − 1)ωηn/σ
vertices are covered by T . Hence, G does not contain an H-tiling covering at least
(x− η)n vertices.

4. Deriving Theorem 1.4 from a weaker result. To prove Theorem 1.4 we
will first prove the following “error term” version.

Theorem 4.1. Let η > 0 and H be a graph with χ(H) = r. Let h := |H|,
σ := σ(H), and set ω := (h − σ)/(r − 1). Then there exists an n0 = n0(η,H) ∈ N
such that the following holds: Suppose G is a graph on n ≥ n0 vertices with degree
sequence d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h .

Then G has an H-tiling covering all but at most ηn vertices.

Theorem 4.1 implies Theorem 1.4. Indeed, a simple argument (as in [8]) allows
us to remove the error terms.

Proof of Theorem 1.4. Set 0 < τ � η, 1/h, and let n ∈ N be sufficiently large.
Suppose G is an n-vertex graph as in the statement of Theorem 1.4. Let A be a set
of τn vertices, and define G∗ to be the graph with vertex set V (G) ∪ A and edge set
E(G∗) := E(G) ∪ {xy : x ∈ V (G) ∪ A, y ∈ A, x 6= y}. Then G∗ has degree sequence
dG∗,1 ≤ dG∗,2 ≤ · · · ≤ dG∗,(1+τ)n, where

dG∗,i ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ τn ≥

(
1− ω + σ

h

)
(1 + τ)n+

(σ
ω
i+

στ

h
n
)

+
ωτ

h
n

for all 1 ≤ i ≤ ωn
h and

dG∗,i ≥
(

1− ω + σ

h

)
(1 + τ)n+

σ

ω
i+

ωτ

2h
(1 + τ)n

for all ωnh ≤ i ≤
ω(1+τ)n

h . By Theorem 4.1 we have that G∗ has an H-tiling T covering
all but at most ωτ

2h (1 + τ)n vertices.
Now, remove every copy of H from T that contains a vertex in A. Then we have

removed at most (h− 1)τn vertices from V (G) ⊂ V (G∗). Moreover, this implies that
there exists an H-tiling in G covering all but at most (h− 1)τn+ ωτ

2h (1 + τ)n vertices.
Since (h− 1)τn+ ωτ

2h (1 + τ)n < ηn, Theorem 1.4 holds.

Outline of the proof of Theorem 4.1. The aim of the rest of the paper is
to prove Theorem 4.1; we now outline the proof of this result. We first show that it
suffices to prove Theorem 4.1 in the case when H = B, a bottle graph with neck σ
and width ω (where σ < ω). In particular, Theorem 4.1 is already known in the case
when H is a balanced r-partite graph [16].

We then employ a variant of an idea of Komlós [8]. Roughly speaking, the idea is
as follows: Let B∗ be a suitably large blown-up copy of B. We apply the regularity
lemma (Lemma 5.2) to obtain a reduced graph R of G. If R contains an almost
perfect B∗-tiling, then one can rather straightforwardly conclude that G contains
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an almost perfect B-tiling, as required (for this we apply Lemma 6.1). Otherwise,
suppose that the largest B∗-tiling in R covers precisely d ≤ (1−o(1))|R| vertices. We
then show that, for some t ∈ N, there is a B∗-tiling in the blow-up R(t) of R covering
substantially more than dt vertices. Thus, crucially, the largest B∗-tiling in R(t)
covers a higher proportion of vertices than the largest B∗-tiling in R. By repeating
this argument, we obtain a blow-up R′ of R that contains an almost perfect B∗-tiling.
We then show that this implies G contains an almost perfect B-tiling, as desired.

Other applications of this general method have been used in the past [4, 5, 16].
Note, however, our approach has different challenges. Indeed, the process of moving
from a B∗-tiling B in R to a proportionally larger B∗-tiling in R(t) is rather subtle.
In particular, what we would like to do is conclude that one can find a tiling B0 (not
necessarily of copies of B∗) in R that covers a larger proportion of the vertices in R and
that when one takes a suitable blow-up R(t) of R, then B0 corresponds to a B∗-tiling in
R(t). However, the vertices in R that are uncovered by B could perhaps all be “small
degree” vertices (i.e., they do not have degree as large as that in Theorem 1.3). This
is a barrier to finding such a special tiling B0. (Intuitively, one can imagine that if one
has large degree vertices outside of B, then one can glue such vertices onto B in such a
way as to obtain our desired tiling B0.) In this case, one has to (through perhaps many
steps) modify B and then blow-up R to obtain an intermediate blow-up R(t′) of R
such that (i) there is a B∗-tiling B′ in R(t′) that covers the same proportion of vertices
compared to the tiling B in R and (ii) many of the vertices in R(t′) uncovered by B′
are now such that they can be “glued” onto B′ to obtain our desired larger tiling B0.

Despite these technicalities the proof of Theorem 4.1 is perhaps surprisingly short.
The main work of the proof is encoded in Lemma 7.1, which ensures one can modify
the tiling B as above.

5. Szemerédi’s regularity lemma and auxiliary results. A key tool in the
proof of Theorem 4.1 is Szemerédi’s regularity lemma [15]. To state this lemma we
will need the following notion of ε-regularity.

Definition 5.1. Let G = (A,B) be a bipartite graph with vertex classes A and
B. We define the density of G to be

dG(A,B) :=
eG(A,B)

|A||B|
.

Set ε > 0. We say that G is ε-regular if for all X ⊆ A and Y ⊆ B with |X| > ε|A|
and |Y | > ε|B| we have that |dG(X,Y )− dG(A,B)| < ε.

Lemma 5.2. (degree form of Szemerédi’s regularity lemma). Let ε ∈ (0, 1) and
M ′ ∈ N. Then there exist natural numbers M and n0 such that for any graph G on
n ≥ n0 vertices and any d ∈ (0, 1), there is a partition of the vertices of G into subsets
V0, V1, . . . , Vk and a spanning subgraph G′ of G such that the following hold:

• M ′ ≤ k ≤M ;
• |V0| ≤ εn;
• |V1| = · · · = |Vk| =: q;
• dG′(x) > dG(x)− (d+ ε)n for all x ∈ V (G);
• e(G′[Vi]) = 0 for all i ≥ 1;
• for all 1 ≤ i, j ≤ k with i 6= j, the pair (Vi, Vj)G′ is ε-regular and has density

either 0 or at least d.

We call V1, . . . , Vk the clusters of our partition, V0 the exceptional set, and G′

the pure graph. We define the reduced graph R of G with parameters ε, d, and M ′ to
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be the graph whose vertex set is V1, . . . , Vk and in which ViVj is an edge if and only
if (Vi, Vj)G′ is ε-regular with density at least d. Note also that |R| = k.

The proof of the next result is analogous to that of [16, Lemma 5.2]. It states
that the degree sequence of G in Theorem 4.1 is “inherited” by its reduced graph R.

Lemma 5.3. Set M ′, n0 ∈ N, and ε, d, η, b, ω, σ to be positive constants such that
1/n0 � 1/M ′ � ε � d � η � 1/b and where ω + σ ≤ b. Suppose G is a graph on
n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn such that

(5.1) di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .

Let R be the reduced graph of G with parameters ε, d, and M ′, and set k := |R|. Then
R has degree sequence dR,1 ≤ dR,2 ≤ · · · ≤ dR,k such that

(5.2) dR,i ≥
b− ω − σ

b
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

b .

Proof. Let V1, . . . , Vk be the clusters of G and V0 the exceptional set, and let
G′ be the pure graph of G. Set q := |V1| = · · · = |Vk|. Clearly we may assume
dR(V1) ≤ dR(V2) ≤ · · · ≤ dR(Vk). Now consider any i ≤ ωk

b . Set S := ∪1≤j≤iVj .

Then |S| = qi ≤ ωqk
b ≤ ωn

b . Thus, by (5.1) there exists a vertex x ∈ S such that

dG(x) ≥ dqi ≥ b−ω−σ
b n + ( σω )qi + ηn. Suppose that x ∈ Vj , where 1 ≤ j ≤ i. Since

we have that kq ≤ n, Lemma 5.2 implies that

dR(Vj) ≥
dG′(x)− |V0|

q
≥ 1

q

(
b− ω − σ

b
n+

(σ
ω

)
qi+ ηn− (d+ 2ε)n)

)
≥ b− ω − σ

b
k +

σ

ω
i+

ηk

2
.

Since dR,i = dR(Vi) ≥ dR(Vj), we have that (5.2) holds.

We will also apply the following well-known fact.

Fact 5.4. Let 0 < ε < α and ε′ := max{ε/α, 2ε}. Let (A,B) be an ε-regular pair
of density d. Suppose A′ ⊆ A and B′ ⊆ B, where |A′| ≥ α|A| and |B′| ≥ α|B|. Then
(A′, B′) is an ε′-regular pair with density d′, where |d′ − d| < ε.

Lemma 5.5 (key lemma [10]). Suppose that 0 < ε < d, that q, t ∈ N, and that R
is a graph where V (R) = {v1, . . . , vk}. We construct a graph G as follows: Replace
every vertex vi ∈ V (R) by a set Vi of q vertices, and replace each edge of R by an
ε-regular pair of density at least d. For each vi ∈ V (R), let Ui denote the set of
t vertices in R(t) corresponding to vi. Let H be a subgraph of R(t) with maximum
degree ∆, and set h := |H|. Set δ := d − ε and ε0 := δ∆/(2 + ∆). If ε ≤ ε0 and
t−1 ≤ ε0q, then there are at least (ε0q)

h labeled copies of H in G so that if x ∈ V (H)
lies in Ui, then x is embedded into Vi in G.

6. Tools for proving Theorem 4.1. In this section we provide further tools
that we will need to prove Theorem 4.1. The following lemma is a special case of
Lemma 11 in [8] (which in turn is easily implied by the key lemma above).

Lemma 6.1. Set 0 < β < 1/2, and let B be the bottle graph with neck σ and width
ω. Set d ∈ (0, 1). Then there exists an ε′ > 0 such that for all ε ≤ ε′, the following
holds for all q ∈ N: Let G be a graph constructed from B by replacing every vertex of
B by q vertices and replacing the edges of B with ε-regular pairs of density at least d.
Then G has a B-tiling covering all but at most a β-proportion of the vertices in G.
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Given a bottle graph B, the next lemma ensures that various blown-up copies of
graphs contain perfect B-tilings.

Lemma 6.2. Set m ∈ N. Let B be an r-partite bottle graph with neck σ and width
ω, where b := |B| and σ < ω. Define B′ to be the r-partite bottle graph with neck σ
and width ω − 1, and let B∗ := B(m). Define t := (ω − σ)b. Then B(mt), B∗(mt),
B′(mt), and Kr(mt) all have perfect B∗-tilings.

Proof. Clearly, B(mt) and B∗(mt) both have perfect B∗-tilings. It remains to
show that B′(mt) and Kr(mt) have perfect B∗-tilings.

For Kr(mt), tile (ω − σ)r copies of B∗ into Kr(mt) such that their (σm)-classes
are distributed evenly amongst the r vertex classes of Kr(mt). Indeed, we can view
this as tiling (ω − σ) collections of r copies of B∗ into Kr(mt) such that for each
collection C, each vertex class of Kr(mt) contains the (σm)-class of precisely one
copy of B∗ in C.

For B′(mt), first tile (ω − 1 − σ)b vertex-disjoint copies of B∗ into B′(mt) such
that each (σm)-class is placed into the (σmt)-class in B′(mt). So our current B∗-tiling
covers all but σmt−σm(ω− 1−σ)b = σmb vertices in the (σmt)-class in B′(mt) and
all but (ω − 1)mt − ωm(ω − 1 − σ)b = σmb vertices in each (ωmt)-class in B′(mt).
Then the remaining vertices to be covered in B′(mt) form a Kr(σmb) which can be
tiled with σr copies of B∗.

The next result states that the degree sequence of G in Theorem 4.1 is inherited
by any blown-up copy of G.

Proposition 6.3. Let n, s ∈ N and b, ω, σ > 0 such that ωn > b and ω + σ ≤ b.
Set η > 0. Suppose G is a graph on n vertices with degree sequence dG,1 ≤ dG,2 ≤
· · · ≤ dG,n such that

dG,i ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .

Then Ḡ := G(s) has degree sequence dḠ,1 ≤ dḠ,2 ≤ · · · ≤ dḠ,ns such that

dḠ,i ≥
b− ω − σ

b
ns+

σ

ω
i+
(
ηn− σ

ω

)
s for all 1 ≤ i ≤ ωns

b .

Proof. For any 1 ≤ j ≤ ns we see that

dḠ,j = s · dG,dj/se.

Suppose that j ≤ ωns
b − s. Then dj/se ≤ ωn

b , and we have

dḠ,j ≥
b− ω − σ

b
ns+

σ

ω
dj/ses+ ηns ≥ b− ω − σ

b
ns+

σ

ω
j + ηns.

In particular, if we take any i ≤ ωns
b , we have

dḠ,i ≥
b− ω − σ

b
ns+

σ

ω
(i− s) + ηns =

b− ω − σ
b

ns+
σ

ω
i+
(
ηn− σ

ω

)
.

The following result acts as a springboard from which to begin the proof of
Lemma 7.1.

D
ow

nl
oa

de
d 

01
/0

8/
20

 to
 1

47
.1

88
.1

08
.9

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2052 JOSEPH HYDE, HONG LIU, AND ANDREW TREGLOWN

Proposition 6.4. Set η > 0 and m ∈ N, and let B be an r-partite bottle graph
with neck σ and width ω, where b := |B|. Define B∗ := B(m). Then there exists
n0 ∈ N such that the following holds: Suppose G is a graph on n ≥ n0 vertices with
degree sequence d1 ≤ d2 ≤ · · · ≤ dn, where

di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .

Then there exists a copy of B∗ in G.

Proof. Set ∆ := ∆(B∗). Let n be sufficiently large, and define constants ε, d > 0
and M ′ ∈ N such that 0 < 1/n� 1/M ′ � ε� d� 1/b, η, 1/∆. Let G be an n-vertex
graph as in the statement of the proposition. Applying Lemma 5.2 with parameters ε,
d, and M ′ to G, we obtain clusters V1, . . . , Vk, an exceptional set V0, and a pure graph
G′. Set q := |V1| = · · · = |Vk|. Let R be the reduced graph of G with parameters
ε, d, and M ′, where k := |R|. By Lemma 5.3 we have that R has degree sequence
dR,1 ≤ dR,2 ≤ · · · ≤ dR,k, where

(6.1) dR,i ≥
b− ω − σ

b
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

b
.

By doing the following steps, we find a set {x1, . . . , xr} ⊆ V (R) such that {x1, . . . , xr}
induces a copy of Kr in R:

Step 1: Choose a vertex x1 ∈ V (R) such that

dR(x1) ≥ k − ω

b
k +

ηk

3
.

Such a vertex exists by (6.1).
Step i for each i ∈ {2, . . . , r− 1}: We have that {x1, x2, . . . , xi−1} induces a copy

of Ki−1 in R and

dR(x1), dR(x2), . . . , dR(xi−1) ≥ k − ω

b
k +

ηk

3
.

Let NR(x1, x2, . . . , xi−1) := NR(x1) ∩NR(x2) ∩ · · · ∩NR(xi−1). Then

|NR(x1, x2, . . . , xi−1)| ≥ k − (i− 1)ω

b
k +

(i− 1)ηk

3

≥ b− (r − 2)ω

b
k +

(i− 1)ηk

3
=
ω + σ

b
k +

(i− 1)ηk

3
.

Here the last equality follows as b = σ + (r − 1)ω. Hence, by (6.1) there exists
y ∈ NR(x1, x2, . . . , xi−1) such that dR(y) ≥ k − ω

b k + ηk
3 . Let xi := y.

Step r: We have that {x1, x2, . . . , xr−1} induces a copy of Kr−1 in R. Moreover,

|NR(x1, x2, . . . , xr−1)| ≥ σ

b
k +

(r − 1)ηk

3
.

Choose xr to be any vertex in NR(x1, x2, . . . , xr−1).
Therefore, there exists a copy of Kr in R, which implies that there exists a copy

of B∗ in R(ωm). By Lemma 5.5 we have that there exists a copy of B∗ in G.

D
ow

nl
oa

de
d 

01
/0

8/
20

 to
 1

47
.1

88
.1

08
.9

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A DEGREE SEQUENCE KOMLÓS THEOREM 2053

A crucial tool in the proof of Theorem 4.1 is Lemma 7.1 below. Before stating
this lemma, we need two more definitions.

Definition 6.5. Set ` ∈ N. Let G be a graph on n vertices, and B be a bottle
graph with neck σ and width ω. Suppose that there exists a B-tiling T of G, and let
{z1, . . . , z`} ⊆ V (G) \ V (T ). We say that {z1, . . . , z`} is an expanding set of size ` for
T in G if the following is true: There exists an injection f : {z1, . . . , z`} → T such
that zi has a neighbor in every ω-vertex class of f(zi) for each 1 ≤ i ≤ `.

Definition 6.6. Set k, `,m ∈ N. Let G be a graph on n vertices, and let
(v1, v2, . . . , vn) be an ordering of the vertices of G. Let B be a bottle graph with
neck σm and width ωm. Suppose that there exists a B-tiling T of G, and let
{z1, . . . , z`} ⊆ V (G) \V (T ). Denote by ΩT the set of all vertices in V (G) that belong
to ωm-classes of copies of B in T . Let z ∈ {z1, . . . , z`} and y ∈ ΩT , and denote by By
the copy of B in T that contains y. Then there exist 1 ≤ i, j ≤ n such that z := vi,
y := vj , and i 6= j. We say that (z, y) is a k-swapping pair with respect to (v1, . . . , vn)
if the following is true: z is adjacent to at least σ vertices in the σm-class of By, z,
is adjacent to at least ω vertices in each ωm-class of By that does not contain y, and
j ≥ i+k. We say that {z1, . . . , z`} is a k-swapping set of size ` for T in G with respect
to (v1, . . . , vn) if there exists a set of ` vertices {y1, . . . , y`} ⊆ ΩT such that (zi, yi) is
a k-swapping pair with respect to (v1, . . . , vn) for each 1 ≤ i ≤ ` and Byp 6= Byq for
all p 6= q.

Suppose B is a B-tiling in a reduced graph R. Very roughly speaking, the purpose
of expanding sets is to extend B to a larger tiling, while swapping sets allows us to
“rotate” which vertices are uncovered by our tiling (which helps for future expansion
of B to a larger tiling).

7. Almost perfect H-tilings in graphs.

Lemma 7.1. Let B be an r-partite bottle graph with neck σ and width ω, where
b := |B|. Set η, γ > 0 and n,m ∈ N such that 0 < 1/n � γ � 1/m � η � 1/b. Set
B∗ := B(m). Let G be a graph on n vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn,
where

di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .

Let V (G) = {v1, . . . , vn} such that dG(vi) = di for all 1 ≤ i ≤ n. Suppose the largest
B∗-tiling in G covers precisely n′ ≤ (1 − η)n vertices. Then for any B∗-tiling T
covering n′ vertices in G there exists an expanding set of size γn for T in G or an
ωγn
σ -swapping set of size γn for T in G with respect to (v1, . . . , vn).

Proof. By repeatedly applying Proposition 6.4, we see that n′ ≥ ηn/2. Define
a bijection I : V (G) → [n], where I(x) = i implies that dG(x) = di. Let V (G) :=
{v1, . . . , vn} such that I(vi) = i. Set n′′ := n − n′, and let G′′ := G \ V (T ). Let
V (G′′) = {x1, . . . , xn′′}, where I(x1) < I(x2) < · · · < I(xn′′). For each 1 ≤ i ≤ n′′,
set si := I(xi). Then dG(xi) = dsi . Choose j to be the largest integer such that

dG(xj) ≤
b− ω
b

n+ (η − 2γ)n.

Notice that sj ≤ ωn/b. We will refer to x1, . . . , xj as small vertices and xj+1, . . . , xn′′

as big vertices.
Case 1: Suppose we have γn big vertices z1, . . . , zγn ∈ V (G′′) such that

dG(zi, G
′′) ≤ b− ω

b
n′′ +

ηn

4
for all 1 ≤ i ≤ γn.(7.1)
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Then

dG(zi, T ) ≥ b− ω
b

n′ +
ηn

4
for all 1 ≤ i ≤ γn.

Set ω∗ := ωm. For each 1 ≤ i ≤ γn, we see that zi can be adjacent to at most
a b−ω

b -proportion of the vertices in T without having a neighbor in each ω∗-class of
some copy of B∗ in T . Since γ � 1/m � η � 1/b, for each 1 ≤ i ≤ γn there are at
least (

b−ω
b n′ + ηn

4

)
−
(
b−ω
b n′

)
ω∗

=
ηn

4ω∗
≥ γn

copies of B∗ in T that have at least one neighbor of zi in each of their ω∗-classes.
Thus, we can define an injection f : {z1, . . . , zγn} → T such that zi has a neighbor in
each ω∗-class of f(zi) for each 1 ≤ i ≤ γn. Hence, {z1, . . . , zγn} is an expanding set
of size γn for T in G.

Case 2: We may assume there does not exist an expanding set of size γn for T in
G.

In particular, there are at most γn − 1 vertices in V (G′′) that have a neighbor
in every ω∗-class of γn copies of B∗ in T . (Note that these could be small or big
vertices.) Remove such vertices from V (G′′), and call the remaining graph G′′1 . In
particular, no big vertex in G′′1 satisfies (7.1). Set n′′1 := |G′′1 |.

Subcase A: Suppose we have γn small vertices xi1 , . . . , xiγn ∈ V (G′′1) such that

(7.2) dG(xi` , G
′′
1) ≤ b− ω − σ

b
n′′1 +

σ

ω
i` + 2γn for all 1 ≤ ` ≤ γn.

Then by (7.2) and the degree sequence condition of the lemma, we have

(7.3) dG(xi` , T ) ≥ b− ω − σ
b

n′ +
(σ
ω
si` −

σ

ω
i`

)
+
ηn

2
for all 1 ≤ ` ≤ γn.

Let k ∈ {1, . . . , γn}. Denote by Ω∗T the set of all vertices in G that belong to ω∗-
classes of copies of B∗ in T . Set σ∗ := σm. We aim to count the number of vertices
y ∈ Ω∗T such that (xik , y) is an ωγn

σ -swapping pair (with respect to (v1, . . . , vn)). Let
T1 denote the subcollection of copies B1 of B∗ in T such that xik is adjacent to a
vertex in every ω∗-class of B1. Then since we removed earlier all vertices that have a
neighbor in every ω∗-class of γn copies of B∗ in T , we have

dG(xik , T1) ≤ (γn− 1)bm.

Suppose y ∈ Ω∗T , and let B∗y be the copy of B∗ in T containing y. We say y is
swappable with xik if xik is adjacent to at least σ vertices in the σ∗-class of B∗y and
at least ω vertices in each ω∗-class of B∗y that does not contain y. Denote the set of
vertices that are swappable with xik by S(xik). Let T2 denote the subcollection of
copies B2 of B∗ in T \ T1 such that B2 does not contain any vertex in S(xik). Then

dG(xik , T2) ≤ (bm− ωm− σm+ σ − 1)|T2|.

Note that the −ωm term is present since xik cannot be adjacent to a vertex in every
ω∗-class of any copy of B∗ in T \ T1. Let T3 := T \ (T1 ∪ T2). Then

dG(xik , T3) ≤ (bm− ωm)|T3|.
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Observe that |T1|+ |T2|+ |T3| = n′/bm. Then

dG(xik , T ) = dG(xik , T1) + dG(xik , T2 ∪ T3)

≤ (γn− 1)bm+

(
b− ω − σ

b
n′ +

(σ − 1)

bm
n′
)

+ σm|T3|.
(7.4)

Using (7.3) and (7.4) we see that

|T3| ≥
sik − ik
ωm

+
ηn

2σm
− (γn− 1)b

σ
− (σ − 1)n′

bσm2
≥ sik − ik

ωm
+

ηn

8σm
,

where the the last inequality follows as γ � 1/m� η � 1/b.
Note that as T3 ∩ T2 = ∅, every copy B3 of B∗ in T3 must contain a vertex from

S(xik). By definition of swappable, this in fact implies that every copy B3 of B∗ in
T3 must contain ω∗ vertices from S(xik). Hence, there are at least sik − ik + ωηn

8σ
vertices in S(xik). Not all vertices in S(xik) may form an ωγn/σ-swapping pair with
xik (with respect to (v1, . . . , vn)). Indeed, there are at most sik − ik + ωγn

σ vertices
y ∈ S(xik) with I(y) < sik + ωγn

σ (and so do not form an ωγn/σ-swapping pair with
xik). Hence, since γ � 1/m, η, 1/b, there are at least

ωηn

16σ
≥ bmγn

vertices y ∈ Ω∗T such that (xik , y) is an ωγn
σ -swapping pair. Therefore, since k ∈

{1, . . . , γn} was arbitrary, for each ` ∈ {1, . . . , γn} there exist at least bmγn vertices
y ∈ Ω∗T such that (xi` , y) is an ωγn

σ -swapping pair. Hence, there exists a set of vertices
{y1, . . . , yγn} ⊆ Ω∗T such that (xi` , y`) is an ωγn

σ -swapping pair for each 1 ≤ ` ≤ γn
and B∗yi 6= B∗yj for all i 6= j. Thus, {xi1 , . . . , xiγn} is an ωγn

σ -swapping set of size γn
for T in G.

Subcase B: Assume there does not exist an ωγn
σ -swapping set of size γn for T in

G.
Then there are at most γn−1 small vertices x ∈ V (G′′1) that satisfy (7.2). Remove

such vertices from V (G′′1), call the remaining graph G′′2 , and set n′′2 := |G′′2 |. Then for
every small vertex xi ∈ V (G′′2) we have

dG′′2 (xi) ≥
b− ω − σ

b
n′′2 +

σ

ω
i+ γn′′2 .

For every big vertex y ∈ V (G′′2), recall that y does not satisfy (7.1). So since |G′′ \
G′′2 | ≤ 2γn, we have

dG′′2 (y) ≥ b− ω
b

n′′2 + γn′′2 .

Thus, G′′2 has degree sequence dG′′2 ,1 ≤ dG′′2 ,2 ≤ · · · ≤ dG′′2 ,n′′2 such that

dG′′2 ,i ≥
b− ω − σ

b
n′′2 +

σ

ω
i+ γn′′2 for all 1 ≤ i ≤ ωn′′2

b
.

Hence, by Proposition 6.4 there exists a copy of B∗ in G′′2 , contradicting that the
largest B∗-tiling in G covers n′ vertices.

Thus, Lemma 7.1 holds.
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With Lemma 7.1 at hand we now can prove Theorem 4.1.

Proof of Theorem 4.1. If σ = ω, then Theorem 4.1 is equivalent to the (nondi-
rected) graph version of [16, Theorem 4.2].

So we may assume that σ < ω. Set σ′ := (r − 1)σ and ω′ := (r − 1)ω. Let B
be the r-partite bottle graph with neck σ′ and width ω′, set b := |B|, and observe
that B has a perfect H-tiling. Let t := (ω′ − σ′)b. Note that it suffices to prove the
theorem under the additional assumption that η � 1/b. Define additional constants
ε, d, γ ∈ R and M ′,m ∈ N such that

0 < 1/n� 1/M ′ � ε� d� γ � 1/m� η � 1/b.

Let B∗ := B(m), and set

S :=
2σ

ωγ2
, Q := d1/γe and z := Q(S + 1).

Note that B∗ has a perfect H-tiling.
Suppose G is an n-vertex graph as in the statement of the theorem. Apply

Lemma 5.2 with parameters ε, d, and M ′ to G. This gives us clusters V1, . . . , Vk, an
exceptional set V0, and a pure graph G′, where |V0| ≤ εn and |V1| = · · · = |Vk| =: q.
Let R be the reduced graph of G with parameters ε, d and M ′; thus, k = |R|. By
Lemma 5.3, R has degree sequence dR,1 ≤ dR,2 ≤ · · · ≤ dR,k such that

dR,i ≥
(

1− ω + σ

h

)
k +

σ

ω
i+

ηk

2

=

(
1− ω′ + σ′

b

)
k +

σ′

ω′
i+

ηk

2
for all 1 ≤ i ≤ ωk

h
=
ω′k

b
.

In what follows, when we consider an s-swapping set in some blow-up R(w) of R,
we always implicitly mean an s-swapping set in R(w) with respect to (v1, . . . , vkw),
where V (R(w)) = {v1, . . . , vkw} and dR(w)(v1) ≤ dR(w)(v2) ≤ · · · ≤ dR(w)(vkw). That
is, each blow-up R(w) of R comes equipped with an ordering of its vertices based on
the degrees; these orderings are defined by the functions Ij below.

Claim 7.2. R′ :=R((mt)z) contains a B∗-tiling T covering at least (1−η/2)k(mt)z

= (1− η/2)|R′| vertices.

Proof of Claim 7.2. If R contains a B∗-tiling covering at least (1−η/2)k vertices,
then Lemma 6.2 implies that Claim 7.2 holds. Suppose then that the largest B∗-tiling
T in R covers exactly c vertices, where c < (1 − η/2)k. Then by Lemma 7.1, there
exists an expanding set of size γk for T in R or an ωγk

σ -swapping set of size γk for T
in R. Define B′ to be the r-partite bottle graph with neck σ′ and width ω′ − 1. Set
ω∗ := ω′m.

Step 1: Find a B∗-tiling covering at least (c+γk)(mt)S+1 vertices in R((mt)S+1).
Case 1: There exists an expanding set {z1, . . . , zγk} for T and hence also an

associated injection f : {z1, . . . , zγk} → T .
In this case we do the following: For each 1 ≤ i ≤ γk, separate R[zi ∪ f(zi)] into

a copy of Kr (containing zi and one vertex from each ω∗-class of f(zi)), a copy of B′,
and a copy of B(m− 1). Then we have a (B∗, B(m− 1), B′,Kr)-tiling in R covering
at least c+ γk vertices. By Lemma 6.2, R(mt) contains a B∗-tiling covering at least
(c + γk)mt vertices. Further applying Lemma 6.2 we obtain a B∗-tiling covering at
least (c+ γk)(mt)S+1 vertices in R((mt)S+1), as desired.
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Case 2: There does not exist an expanding set of size γk for T in R.
For each 1 ≤ j ≤ S, Proposition 6.3 implies that R((mt)j) has degree sequence

dR((mt)j),1 ≤ dR((mt)j),2 ≤ · · · ≤ dR((mt)j),k(mt)j such that

dR((mt)j),i ≥
(

1− ω + σ

h

)
k(mt)j +

σ

ω
i+

(
ηk

2
− σ

ω

)
(mt)j for all 1 ≤ i ≤ ωk(mt)j

h .

Define for 0 ≤ j ≤ S bijections Ij : V (R((mt)j)) → [k(mt)j ], where Ij(x) := i
implies that dR((mt)j)(x) = dR((mt)j),i. In particular, suppose that x ∈ V (R), and let
x1, . . . , x(mt)j denote the (mt)j vertices in R((mt)j) that correspond to x. Suppose
that I0(x) = i. Then we may assume that

Ij(xs) = (i− 1)(mt)j + s > (I0(x)− 1)(mt)j for each 1 ≤ s ≤ (mt)j .(7.5)

To put all this another way, one can view I0 as an ordering of the vertices in R in terms
of the vertex degrees; Ij is the ordering of R((mt)j) “inherited” from the ordering I0.

Note that for all 0 ≤ j ≤ S, ∑
x∈V (R((mt)j))

Ij(x)

 ≤ k2(mt)2j .(7.6)

Denote by Ω∗T the set of all vertices in V (R) that belong to ω∗-classes of copies
of B∗ in T . As there does not exist an expanding set of size γk for T in R, then there
exists an ωγk

σ -swapping set {z1, . . . , zγk} for T in R. Hence, there also exists a set

{y1, . . . , yγk} ⊆ Ω∗T such that (zi, yi) is an ωγk
σ -swapping pair for each 1 ≤ i ≤ γk such

that B∗yi 6= B∗yj
1 for all i 6= j and such that I0(yi) ≥ I0(zi) + ωγk

σ for all 1 ≤ i ≤ γk.
For each 1 ≤ i ≤ γk, note that R[(zi∪V (B∗yi))\{yi}] can be separated into a copy

of B containing zi and a copy of B(m− 1). Then we have a (B∗, B(m− 1), B)-tiling
T1 covering c vertices in R. Further, since each (zi, yi) is an ωγk

σ -swapping pair, we
have that  ∑

x∈V (R)\V (T1)

I0(x)

 ≥
 ∑
x∈V (R)\V (T )

I0(x)

+
ωγ2k2

σ
.(7.7)

By Lemma 6.2, T1(mt) contains a perfect B∗-tiling T ′; i.e., T ′ is a B∗-tiling
covering c(mt) vertices in R(mt). Observe that T ′ in R(mt) covers proportionally the
same amount of vertices as T in R. Further, (7.5) and (7.7) imply that

∑
x∈V (R(mt))\V (T ′)

I1(x) ≥

 ∑
x∈V (R)\V (T1)

(I0(x)− 1)

 (mt)2

≥

 ∑
x∈V (R)\V (T )

I0(x)

+
ω(γk)2

2σ

 (mt)2.(7.8)

Denote by Ω∗T ′ the set of all vertices in R(mt) that belong to ω∗-classes of copies
of B∗ in T ′. Suppose that there does not exist an expanding set of size γkmt for T ′ in

1As in Definition 6.6.
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R(mt). Then by Lemma 7.1 there must exist an ωγkmt
σ -swapping set of size γkmt for

T ′ in R(mt). As before we can produce a (B∗, B(m− 1), B)-tiling T ′1 covering c(mt)
vertices in R(mt). Then by Lemma 6.2, T ′1(mt) contains a perfect B∗-tiling T ′′; i.e.,
T ′′ is a B∗-tiling covering c(mt)2 vertices in R((mt)2). Observe, similarly as before,
that T ′′ in R((mt)2) covers proportionally the same amount of vertices as T in R and

∑
x∈V (R((mt)2))\V (T ′′)

I2(x) ≥

 ∑
x∈V (R(mt))\V (T ′)

I1(x)

+
ω(γkmt)2

2σ

 (mt)2

(7.8)

≥

 ∑
x∈V (R)\V (T )

I0(x)

+
ω(γk)2

σ

 (mt)4.

Note that (7.6) implies that one can repeat this argument at most S times; that
is, for some j ≤ S we must obtain an expanding set of size γk(mt)j in R((mt)j). More
precisely, we obtain a B∗-tiling T (j) in R((mt)j) covering c(mt)j vertices such that
there exists an expanding set of size γk(mt)j for T (j) in R((mt)j). Then as before,
one can use this expanding set and Lemma 6.2 to obtain a B∗-tiling covering at least
(c+ γk)(mt)S+1 vertices in R((mt)S+1), as desired.

General step: Repeating the whole argument from Step 1 at most Q times we see
that R((mt)Q(S+1)) = R((mt)z) = R′ has a B∗-tiling T covering at least (1−η/2)|R′|
vertices. Thus, Claim 7.2 holds.

Now for each 1 ≤ i ≤ k, partition Vi into classes V ∗i , Vi,1, . . . , Vi,(mt)z , where
q′ := |Vi,j | = bq/(mt)zc ≥ q/(2(mt)z) for all 1 ≤ j ≤ (mt)z. Lemma 5.2 implies that
qk ≥ (1− ε)n; therefore,

q′|R′| = bq/(mt)zck(mt)z ≥ qk − k(mt)z ≥ (1− 2ε)n.(7.9)

Fact 5.4 tells us that for each ε-regular pair (Vi1 , Vi2)G′ with density at least d we
have that (Vi1,j1 , Vi2,j2)G′ is 2ε(mt)z-regular with density at least d− ε ≥ d/2 (for all
1 ≤ j1, j2 ≤ (mt)z). Note that 2ε(mt)z ≤ ε1/2. So we can label the vertex set of R′

so that V (R′) = {Vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ (mt)z} and see that if Vi1,j1Vi2,j2 ∈ E(R′),
then (Vi1,j1 , Vi2,j2)G′ is ε1/2-regular with density at least d/2.

We know by Claim 7.2 that R′ has a B∗-tiling T that covers at least
(1 − η/2)|R′| vertices. Let B̂∗ be a copy of B∗ in T , and label the vertices of B̂∗

so that V (B̂∗) = {Vi1,j1 , Vi2,j2 , . . . , Vibm,jbm}. Set V ′ := Vi1,j1 ∪ Vi2,j2 ∪ · · · ∪ Vibm,jbm .
Applying Lemma 6.1 with η2, q′, d/2, ε1/2 playing the roles of β, q, d, ε, we have that
G′[V ′] has a B∗-tiling covering at least (1− η2)q′bm vertices. Applying Lemma 6.1 in
this way to each copy of B∗ in T we see that G′ ⊆ G has a B∗-tiling covering at least

((
1− η2

)
q′bm

)
× ((1− η/2) |R′|) /bm

(7.9)

≥
(
1− η2

)
(1− η/2) (1− 2ε)n ≥ (1− η)n

vertices. Since each copy of B∗ has a perfect H-tiling, G contains an H-tiling covering
all but at most ηn vertices.

Theorem 1.4 easily implies Theorem 1.5.

Proof of Theorem 1.5. Let H, x ∈ (0, 1), and η > 0 be as in the statement of the
theorem. Suppose n is sufficiently large, and let G be an n-vertex graph as in the
statement of the theorem.
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Note that it suffices to prove the result in the case when x ∈ (0, 1)∩Q. Thus, there
exist a, b ∈ N such that x = a/b. Define σ1 := a(r−1)σ and ω1 := a(r−1)ω+(b−a)h =
bh−aσ. Let H1 be the r-partite bottle graph with neck σ1 and width ω1, and observe
that σ1 < ω1 and |H1| = b(r − 1)h.

Claim. H1 contains an H-tiling covering x|H1| vertices.
The claim follows since one can tile H1 with a(r − 1) copies of H, where each

σ-class lies in the σ1-class of H1. Thus, we have an H-tiling covering a(r−1)h = x|H1|
vertices in H1, as desired.

Note that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i =

(
1− ω1 + σ1

b(r − 1)h

)
n+

σ1

ω1
i

for all i ≤ ( h−xσ
(r−1)h )n = ω1n

b(r−1)h . Thus, applying Theorem 1.4 with H1 playing the role

of H, we produce an H1-tiling in G covering all but at most ηn vertices. Then the
claim implies that we have an H-tiling in G covering at least x(1 − η)n > (x − η)n
vertices.

8. Concluding remarks. In this paper we have given a particular degree se-
quence condition that forces a graph to contain an almost perfect H-tiling (Theorem
1.4). In fact, in general for a fixed graph H, Theorem 1.4 yields a whole class of
degree sequences that force an almost perfect H-tiling. Indeed, we have the following
consequence of Theorem 1.4.

Theorem 8.1. Let η > 0 and H be a graph with χ(H) = r and h := |H|. Set
σ ∈ R such that σ(H) ≤ σ ≤ h/r and ω := (h − σ)/(r − 1). Then there exists an
n0 = n0(η, σ,H) ∈ N such that the following holds: Suppose G is a graph on n ≥ n0

vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i for all 1 ≤ i ≤ ωn

h .

Then G contains an H-tiling covering all but at most ηn vertices.

Proof. Note that it suffices to prove the theorem under the assumption that σ ∈
Q. To prove Theorem 8.1, we define a certain bottle graph H∗ and then apply
Theorem 1.4 with input H∗ to conclude our result.

Since σ ∈ Q, there exist a, b ∈ N such that σ = a/b. Let ω(H) := (h−σ(H))/(r−
1) and t := b(r − 1)(ω(H) − σ(H)). We define H∗ to be the r-partite bottle graph
with neck σt and width ωt (note σt, ωt ∈ N). Also, notice that |H∗| = ht.

Claim. H∗ contains a perfect H-tiling.
We tile t copies of H into H∗. First, tile b(r− 1)(ω(H)− σ) copies of H into H∗

such that the σ(H)-classes are all placed in the σt-class of H∗. This leaves

σb(r − 1)(ω(H)− σ(H))− σ(H)b(r − 1)(ω(H)− σ) = ω(H)b(r − 1)(σ − σ(H))

vertices in the σt-class of H∗ to be covered and

ωb(r − 1)(ω(H)− σ(H))− ω(H)b(r − 1)(ω(H)− σ)

= b((r − 1)ω(ω(H)− σ(H))− (r − 1)ω(H)(ω(H)− σ))

= b((h− σ)(ω(H)− σ(H))− (h− σ(H))(ω(H)− σ))

= b(h− ω(H))(σ − σ(H))
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vertices in each ωt-class of H∗ to be covered. Let H be the r-partite complete graph
with one vertex class of size (r−1)ω(H) and (r−1) vertex classes of size (r−2)ω(H)+
σ(H). Observe that H has a perfect H-tiling (using r − 1 copies of H). To cover the
remaining vertices of H∗, tile b(σ−σ(H)) copies of H into H∗ such that every vertex
class of size (r − 1)ω(H) is placed in the σt class of H∗. Observe that

((r − 2)ω(H) + σ(H))b(σ − σ(H)) = b(h− ω(H))(σ − σ(H)).

Hence, H∗ contains a perfect H-tiling, and the claim holds.
Suppose G is as in the statement of Theorem 8.1. Applying Theorem 1.4 with

input G and H∗, we obtain that G contains an H∗-tiling covering all but at most ηn
vertices. (Note the degree sequence in Theorem 8.1 is precisely the degree sequence
of Theorem 1.4 with input H∗.) Since each copy of H∗ has a perfect H-tiling, we
conclude that G contains an H-tiling covering all but at most ηn vertices.

In a similar way, Theorem 1.5 yields a class of degree sequences forcing an almost
x-proportional H-tiling in G.

Theorem 8.2. Let x ∈ (0, 1) and H be a graph with χ(H) = r and h := |H|. Set
η > 0. Let σ ∈ R such that σ(H) ≤ σ ≤ h/r and ω := (h− σ) /(r − 1). Then there
exists an n0 = n0(η, x, σ,H) ∈ N such that the following holds: Suppose G is a graph
on n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i for all 1 ≤ i ≤

(
h−xσ

(r−1)h

)
n.

Then G contains an H-tiling covering at least (x− η)n vertices.

Proof. Define H∗ as in the proof of Theorem 8.1. Applying Theorem 1.5 with
input H∗, we obtain that G contains an H∗-tiling covering all but at most (x − η)n
vertices. Since each copy of H∗ has a perfect H-tiling, we conclude that G contains
an H-tiling covering all but at most (x− η)n vertices.
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pp. 13–43.

D
ow

nl
oa

de
d 

01
/0

8/
20

 to
 1

47
.1

88
.1

08
.9

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	Notation and definitions
	Extremal examples
	Deriving Theorem 1.4 from a weaker result
	Szemerédi's regularity lemma and auxiliary results
	Tools for proving Theorem 4.1
	Almost perfect H-tilings in graphs
	Concluding remarks
	References

