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HÖLDER STABLY DETERMINING THE TIME-DEPENDENT ELECTROMAGNETIC POTENTIAL OF

THE SCHRÖDINGER EQUATION

YAVAR KIAN∗ AND ERIC SOCCORSI∗

ABSTRACT. We consider the inverse problem of determining the time and space dependent electromagnetic potential of the
Schrödinger equation in a bounded domain of Rn, n > 2, by boundary observation of the solution over the entire time span.
Assuming that the divergence of the magnetic potential is fixed, we prove that the electric potential and the magnetic potential
can be Hölder stably retrieved from these data, whereas stability estimates for inverse time-dependent coefficients problems
of evolution partial differential equations are usually of logarithmic type.
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1. INTRODUCTION

1.1. Statement of the problem. Let Ω be a bounded, simply connected domain of Rn, n > 2, with C2 boundary ∂Ω.
For T ∈ (0,+∞), we consider the initial boundary value problem (IBVP)




(i∂t +∆A + q)u = 0 in Q := (0, T )× Ω,

u(0, ·) = 0 in Ω,

u = g on Σ := (0, T )× Γ,

(1.1)

where ∆A is the Laplace operator (∇+ iA(t, x)) · (∇+ iA(t, x)), associated with the real-valued magnetic potential
A := (aj)16j6n ∈ W 1,∞(Q;R)n, i.e.

∆A :=

n∑

j=1

(
∂xj

+ iaj(t, x)
)2

= ∆+ 2iA(t, x) · ∇+ i(∇ ·A(t, x)) − |A(t, x)|2 (1.2)

and q ∈ L∞(Q;R) is a real-valued electric potential. Here and in the remaining part of this text, we denote by
∇ := (∂x1

, . . . , ∂xn
)T the gradient operator with respect to the spatial variable x := (x1, . . . , xn) ∈ R

n, the symbol
· (resp., | · |) stands for the Euclidian scalar product (resp., norm) in Rn, and the divergence operator with respect to
x ∈ Rn is represented by the notation ∇·.

For all s, r ∈ (0,+∞) and for X being either Ω or ∂Ω, we equip the functional spaces Hr,s((0, T ) × X) :=
Hr(0, T ;L2(X)) ∩ L2(0, T ;Hs(X)) with the following norm

‖u‖2Hr,s((0,T )×X) := ‖u‖2Hr(0,T ;L2(X)) + ‖u‖2L2(0,T ;Hs(X)),

and we write Hr,s(Q) (resp., Hr,s(Σ)) instead of Hr,s((0, T )× Ω) (resp., Hr,s((0, T )× ∂Ω)). Then, for all

g ∈ H(Σ) :=
{
g ∈ H

9
4
, 3
2 (Σ); g(0, ·) = ∂tg(0, ·) = 0 on ∂Ω

}
,

we establish in Proposition 2.1 below, that there exists a unique solution ug ∈ H1,2(Q) to (1.1) and that the mapping
g 7→ ug is continuous. As a corollary the Dirichlet-to-Neumann (DN) operator associated with (1.1), defined by

ΛA,q : H(Σ) → L2(Σ)

g 7→ (∂ν + iA · ν)ug,
(1.3)
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where ν(x) denotes the unit outward normal to ∂Ω at x, is bounded. The main purpose of this paper is to examine the
stability issue in the inverse problem of determining the electromagnetic potential (A, q) from the knowledge of ΛA,q.

However, there is a natural obstruction to uniqueness in this problem, in the sense that the mapping (A, q) 7→ ΛA,q

is not injective. This can be seen from the identity

i∂t +∆A + q = e−iφ(i∂t +∆Ã + q̃)eiφ, φ ∈ W 3,∞(Q)

arising from (1.2) with (Ã, q̃) = GA,q(φ) := (A − ∇φ, q + ∂tφ), which entails that (i∂t + ∆Ã + q̃)eiφug =

eiφ(i∂t + ∆A + q)ug = 0 for all g ∈ H(Σ). Therefore, if φ vanishes on Σ then it is apparent that eiφug is the
H1,2(Q)-solution to (1.1), where (Ã, q̃) is substituted for (A, q). Consequently, it holds true that

ΛÃ,q̃g = (∂ν + iÃ · ν)eiφug = eiφ(∂ν + iA · ν)ug = ΛA,qg,

despite of the fact that (Ã, q̃) does not coincide with (A, q) whenever φ is not uniformly zero in Q. Otherwise
stated, since the DN map (1.3) is invariant under the gauge transformation (A, q) 7→ GA,q(φ) associated with φ ∈

W
3,∞
∗ (Q) := {φ ∈ W 3,∞(Q); φ|Σ = 0}, then it is hopeless to retrieve (A, q) through ΛA,q and the best we can

expect is to determine the gauge class GA,q(W
3
∗ (Q)) := {GA,q(φ), φ ∈ W

3,∞
∗ (Q)} of (A, q). Moreover, for any

two gauge equivalent electromagnetic potentials (A, q) and (Ã, q̃), there exists a unique φ ∈ W
3,∞
∗ (Q) such that we

have (Ã, q̃) = GA,q(φ) and we notice for each for t ∈ (0, T ) that the function φ(t, ·) is solution to the following
elliptic system: 




−∆φ(t, ·) = ∇ · (Ã−A)(t, ·) in Ω,

φ(t, ·) = 0 on ∂Ω.

Therefore, if the time-dependent electromagnetic potential (A, q) can be determined modulo gauge invariance by ΛA,q

then it is actually possible to recover (A, q) itself provided the divergence ∇ ·A is known.

1.2. What is known so far. Since inverse problems are of great interest in applied sciences, it is no surprise that the
determination of coefficients in partial differential equations such as the magnetic Schrödinger equation under study
in this article has attracted the attention of numerous mathematicians over the previous decades.

For instance, using the Bukhgeim-Klibanov method [14], Baudouin and Puel [2] proved Lipschitz stable identifi-
cation of the time independent electric potential in the dynamical (i.e., non stationary) Schrödinger equation from a
single boundary observation of the solution. Here the measurement can be performed on any subpart of the boundary
fulfilling the geometric control property expressed by Bardos, Lebeau and Rauch in [1]. This condition was removed
by Bellassoued and Choulli in [5], provided the electric potential is a priori known in a neighborhood of the boundary.
We refer to [18] for the Lipschitz stable reconstruction of the magnetic potential in the Coulomb gauge class by a finite
number of boundary measurements of the solution to the Schrödinger equation. More recently, in [12], Ben Aïcha and
Mejri claimed simultaneous Lipschitz stable determination of the electric potential and the divergence free magnetic
potential, from the same type of boundary data.

All the above mentioned results involve a finite number of boundary observations of the solution, performed over
the entire time span. This is no longer the case in [6] where the magnetic field was stably recovered from the knowledge
of the DN map associated with the dynamic Schrödinger equation. In the same spirit, Bellassoued and Dos Santos
Ferreira proved stable identification of the electric potential by the DN map associated with the Schrödinger equation
on a Riemannian manifold in [7]. This result was extended in [3] to simultaneous determination of the electric potential
and the magnetic field. We also refer to [19, 23, 30] for an extensive treatment of similar inverse problems. We stress
out that all the above results were established in a bounded domain and that the analysis carried out in [2] (resp. [5]
and [6]) was adapted to the case of unbounded cylindrical domains in [8] (resp., [9] and [33, 34]).

All the above mentioned works are concerned with space-only dependent (i.e. time independent) coefficients.
Actually, there is only a very small number of papers available in the mathematical literature, dealing with the inverse
problem of determining time-dependent coefficients of the Schrödinger equation. For instance, it was proved in [20]
that the DN map uniquely determines the time-dependent electromagnetic potential modulo gauge invariance. The
stability issue for the same problem was examined in [17], where the time-dependent electric potential was logarithmic
stably recovered from boundary observation for all times and internal measurement at final time, of the solution. More
recently, in [11], this approach was adapted to the case of an electromagnetic potential with sufficiently small time
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independent magnetic part. To the best of our best knowledge, these two last articles are the only mathematical papers
studying the stability issue in the inverse problem of determining time-dependent coefficients of the Schrödinger
equation. Nevertheless, we point out that similar problems were addressed in [4, 10, 15, 16, 21, 22, 24, 25, 26, 28, 29,
31, 38, 37, 39] for either parabolic, hyperbolic, or even time-fractional diffusion equations.

1.3. Main result. The main result of this paper is the following Hölder stability estimate of the electromagnetic
potential entering the Schrödinger equation in (1.1), with respect to the DN map.

Theorem 1.1. Fix M ∈ (0,+∞) and for j = 1, 2, let Aj ∈ W 5,∞(Q)n ∩ H6(Q)n and qj ∈ W 4,∞(Q) satisfy the

three following conditions:

∂αxA1(t, x) = ∂αxA2(t, x), (t, x) ∈ Σ, α ∈ N
n, |α| 6 5, (1.4)

∇ ·A1(t, x) = ∇ · A2(t, x), (t, x) ∈ Q (1.5)

and
2∑

j=1

(
‖Aj‖W 5,∞(Q)n + ‖Aj‖H6(Q)n + ‖qj‖W 4,∞(Q)

)
6M. (1.6)

Then, there exist three positive constants, r and s, depending only on n, and C, depending only on T , Ω and M , such

that we have

‖A1 −A2‖L2(0,T ;H5(Ω)) 6 C‖ΛA1,q1 − ΛA2,q2‖
r (1.7)

and

‖q1 − q2‖H−1(Q) 6 C‖ΛA1,q1 − ΛA2,q2‖
s. (1.8)

In Theorem 1.1 and the remaining part of this article, the DN mapsΛAj ,qj , j = 1, 2, lie in the spaceB(H(Σ), L2(Σ))

of linear bounded operators from H(Σ) into L2(Σ) and ‖ · ‖ denotes the usual norm in B(H(Σ), L2(Σ)).

1.4. Brief comments and outline. To the author’s best knowledge, Theorem 1.1 is the only result available in the
mathematical literature claiming Hölder stable determination of space and time varying coefficients appearing in an
evolution PDE (all the other existing stability estimates derived in this framework are at best of logarithmic type).
Moreover, even if the identification of unknown coefficients depending on both time and space variable is of great
interest in its own, it is worth mentioning that it can also be linked with the inverse problem of determining a nonlinear
perturbation of a PDE. As a matter of fact it was proved in [16, 27] by mean of a linearization process that the
semilinear term entering a nonlinear parabolic equation can be identified by solving the inverse problem of determining
the time-dependent coefficient of a related linear parabolic equation. From this viewpoint there is no doubt that
Theorem 1.1 is a useful tool for adapting this strategy to the case of semilinear Schrödinger equations.

The remaining part of this article is organized as follows. In the coming section, Section 2, we study the well-
posdeness of problem (1.1) and we prove that the DN map (1.3) is well defined as a linear bounded operator from
H(Σ) into L2(Σ). In Section 3 we build a set of geometrical optics solutions to (1.1) which are the main tool for
deriving Theorem 1.1. Finally, the proof of the stability estimate (1.7) is presented in Section 4, whereas the one of
(1.8) is given in Section 5.

2. ANALYSIS OF THE FORWARD PROBLEM

The main result of this section is the following existence and uniqueness result for the IBVP (1.1).

Proposition 2.1. For M ∈ (0,+∞), let A ∈W 2,∞(Q;R)n and q ∈W 1,∞(Q;R) satisfy

‖A‖W 2,∞(Q)n + ‖q‖W 1,∞(Q) 6M. (2.1)

Then, for every g ∈ H(Σ), the system (1.1) admits a unique solution u ∈ H1,2(Q). Moreover, there exists a positive

constant C, depending only on M , T and Ω, such that we have

‖u‖H1,2(Q) 6 C‖g‖H(Σ). (2.2)

With reference to (1.3) and the continuity of the trace operator fromH1,2(Q) into L2(Σ), Proposition 2.1 immedi-
ately entails the following:
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Corollary 2.1. Under the conditions of Proposition 2.1, the DN map ΛA,q is well defined by (1.3) and acts as a

bounded operator from H(Σ) into L2(Σ).

The proof of Proposition 2.1 can be found in Section 2.3 by mean of an existence and uniqueness result for the
IBVP (1.1) with homogeneous Dirichlet boundary condition and suitable source term, stated in Section 2.2. As a
preamble, we recall that the sesquilinear form associated with the operator −∆A(t,·) + q(t, ·) = −(∇ + iA(t, ·)) ·

(∇+ iA(t, ·)) + q(t, ·) is H1(Ω)-elliptic with respect to L2(Ω), uniformy in t ∈ (0, T ).

2.1. H1(Ω)-ellipticity with respect to L2(Ω). We define the magnetic gradient ∇A, associated with A ∈ L∞(Q)n,
by

∇Au(t, x) := (∇+ iA(t, x))u(x), u ∈ H1
0 (Ω), (t, x) ∈ Q, (2.3)

and for q ∈ L∞(Q), we introduce the sesquilinear form

a(t;u, v) :=

∫

Ω

∇Au(t, x) · ∇Av(t, x)dx+

∫

Ω

q(t, x)u(x)v(x)dx, u, v ∈ H1
0 (Ω). (2.4)

Then, the Hölder inequality yields

‖∇Au(t, ·)‖
2
L2(Ω)n >

‖∇u‖2L2(Ω)n

2
− 2‖A‖2L∞(Q)n‖u‖

2
L2(Ω),

for every u ∈ H1
0 (Ω) and t ∈ (0, T ), so we get

a(t;u, u) + λ‖u‖2L2(Ω) > α‖u‖2H1(Ω), u ∈ H1
0 (Ω), t ∈ (0, T ), (2.5)

with λ := 1
2 + ‖q‖2L∞(Q) + 2‖A‖2L∞(Q)n and α := 1

2 .

2.2. Existence and uniqueness result. The proof of Proposition 2.1 essentially boils down to the following existence
and uniqueness result for the following IBVP associated with a suitable source term F :





(i∂t +∆A + q)v = F in Q,

v(0, ·) = 0 in Ω,

v = 0 on Σ.

(2.6)

Lemma 2.2. Let M , A and q be the same as in Proposition 2.1 and let F ∈ H1(0, T ;L2(Ω)) verify F (0, ·) = 0 a.e.

in Ω. Then, the system (2.6) admits a unique solution v ∈ C([0, T ], H1
0(Ω) ∩H

2(Ω)) ∩ C1([0, T ], L2(Ω)) satisfying

‖v‖C([0,T ],H2(Ω)) + ‖v‖C1([0,T ],L2(Ω)) 6 C‖F‖H1(0,T ;L2(Ω)), (2.7)

for some positive constant C depending only on T , Ω and M .

Proof. We proceed as in the derivation of [35, Section 3, Theorem 10.1] by applying the Faedo-Galerkin method.
Namely, we pick a Hilbert basis {ek, k ∈ N∗} of H1

0 (Ω) and consider an approximated solution of size m ∈ N∗ :=
{1, 2, . . .} of (2.6), of the form

vm(t, x) :=

m∑

k=1

gk,m(t)ek(x), (t, x) ∈ Q, (2.8)

where the functions gk,m are defined in such a way that we have




i〈∂tvm(t, ·), ek〉L2(Ω) − a(t; vm(t, ·), ek) = 〈F (t, ·), ek〉L2(Ω), t ∈ (0, T ),

vm(0, ·) = 0,
(2.9)

for all k = 1, . . . ,m. Since F ∈ W 1,1(0, T ;L2(Ω)) then (2.9) admits a unique solution vm ∈ W 1,∞(0, T ;H1
0(Ω))

such that the function wm := ∂tvm solves the following Cauchy problem for every k = 1, . . . ,m:




i〈∂twm(t, ·), ek〉L2(Ω) − a(t;wm(t, ·), ek) = a′(t; vm(t, ·), ek) + 〈∂tF (t, ·), ek〉L2(Ω), t ∈ (0, T ),

wm(0) = 0.
(2.10)
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Here, for all t ∈ (0, T ) and all u, v ∈ H1
0 (Ω), we have set with reference to (2.3)-(2.4)

a′(t;u, v) := i

∫

Ω

∂tA(t, x) ·
(
u(x)∇Av(t, x) −∇Au(t, x)v(x)

)
dx+

∫

Ω

∂tq(t, x)u(x)v(x)dx. (2.11)

1) The first part of the proof is to establish three a priori estimates for the functions vm and wm.
a) To this end, we fix t ∈ (0, T ) and we multiply for each k ∈ {1, . . . ,m} the first line of (2.9) by gk,m(t), sum up

over k = 1, . . . ,m, and infer from (2.8) that

i〈∂tvm(t, ·), vm(t, ·)〉L2(Ω) − a(t; vm(t, ·), vm(t, ·)) = 〈F (t, ·), vm(t, ·)〉L2(Ω).

Taking the imaginary part of both sides of the above identity then yields

d

ds
‖vm(s, ·)‖2L2(Ω) = 2Im〈F (s, ·), ∂tvm(s, ·)〉L2(Ω), s ∈ (0, T ).

Since vm(0, ·) = 0, we get upon integrating the above identity over (0, t) that

‖vm(t, ·)‖2L2(Ω) = 2Im

∫ t

0

〈F (s, ·), vm(s, ·)〉L2(Ω)ds 6

∫ t

0

‖F (s, ·)‖2L2(Ω)ds+

∫ t

0

‖vm(s, ·)‖2L2(Ω)ds.

Therefore, by Gronwall’s lemma, there exists a positive constant c0, depending only on T , Ω and M such that we
have:

‖vm‖L∞(0,T ;L2(Ω)) 6 c0‖F‖L2(Q). (2.12)

b) Similarly, by multiplying the first line of (2.9) by g′k,m(t), summing up over k = 1, . . . ,m, and applying (2.8)
once more, we get that

i‖∂tvm(t, ·)‖2L2(Ω) − a(t; vm(t, ·), ∂tvm(t, ·)) = 〈F (t, ·), ∂tvm(t, ·)〉L2(Ω), t ∈ (0, T ).

Upon taking this time the real part in the above identity, we find that

a(s; vm(s, ·), ∂tvm(s, ·)) + a(s; ∂tvm(s, ·), vm(s, ·)) = −2Re〈F (s, ·), ∂tvm(s, ·)〉L2(Ω), s ∈ (0, T ),

which may be equivalently rewritten as

d

ds
a(s; vm(s, ·), vm(s, ·)) = a′(s; vm(s, ·), vm(s, ·))− 2Re〈F (s, ·), ∂tvm(s, ·)〉L2(Ω), s ∈ (0, T ).

Now, by integrating with respect to s over (0, t), we obtain that

a(t; vm(t, ·), vm(t, ·)) =

∫ t

0

a′(s; vm(s, ·), vm(s, ·))ds − 2Re

∫ t

0

〈F (s, ·), ∂tvm(s, ·)〉L2(Ω)ds. (2.13)

Next, as
∫ t

0
〈F (s, ·), ∂tvm(s, ·)〉L2(Ω)ds = 〈F (t, ·), vm(t, ·)〉L2(Ω) −

∫ t

0
〈∂tF (s, ·), vm(s, ·)〉L2(Ω)ds, we get

∣∣∣∣
∫ t

0

〈F (s, ·), ∂tvm(s, ·)〉L2(Ω)ds

∣∣∣∣ 6 ‖F (t, ·)‖L2(Ω)‖vm(t, ·)‖L2(Ω) +

∫ t

0

‖∂tF (s, ·)‖L2(Ω)‖vm(s, ·)‖L2(Ω)ds,

so that ‖vm(t, ·)‖2H1(Ω) can be upper bounded with the aid of (2.5), (2.11) and (2.13), by the following expression

c

(∫ t

0

‖vm(s, ·)‖2H1(Ω)ds+

∫ t

0

‖∂tF (s, ·)‖
2
L2(Ω)ds

)
+

2

α
‖F (t, ·)‖L2(Ω)‖vm(t, ·)‖L2(Ω) +

λ

α
‖vm(t, ·)‖2L2(Ω),

where c is a positive constant depending only on M . From this, the two basic inequalities

‖F (t, ·)‖L2(Ω)‖vm(t, ·)‖L2(Ω) 6
α

4
‖vm(t, ·)‖2L2(Ω) +

1

α
‖F (t, ·)‖2L2(Ω)

and

‖F (t, ·)‖2L2(Ω) = 2Re

∫ t

0

〈F (s, ·), ∂tF (s, ·)〉L2(Ω)ds 6

∫ t

0

(
‖F (s, ·)‖2L2(Ω) + ‖∂tF (s, ·)‖

2
L2(Ω)

)
ds,

and from the estimate (2.12), it then follows that

‖vm(t, ·)‖2H1(Ω) 6 2c

∫ t

0

‖vm(s, ·)‖2H1(Ω)ds+ 2

(
c+

2

α2
+
c20
4

+
λc20
α

)
‖F‖2H1(0,T ;L2(Ω)).



6 YAVAR KIAN∗ AND ERIC SOCCORSI∗

Then, an application of Gronwall’s lemma provides a constant C = C(T,M,α) ∈ (0,+∞) such that

‖vm‖L∞(0,T ;H1(Ω)) 6 C‖F‖H1(0,T ;L2(Ω)). (2.14)

c) Further, we put p(t, x) := |A(t, x)|2 + q(t, x) for (t, x) ∈ Q, integrate by parts in the first integral of (2.11) and
obtain for all u, v ∈ H1

0 (Ω) that

a′(t;u, v) = i

∫

Ω

(
u(x)∂tA(t, x) · ∇v(x) − ∂tA(t, x) · ∇u(x)v(x)

)
dx+

∫

Ω

∂tp(t, x)u(x)v(x)dx

=

∫

Ω

(−2i∂tA(t, x) · ∇u(x) + (∂tp(t, x)− i∇ · ∂tA(t, x))u(x)) v(x)dx.

This and (2.10) yield




i〈∂twm(t, ·), ek〉L2(Ω) − a(t;wm(t, ·), ek) = 〈Fm(t, ·), ek〉L2(Ω), t ∈ (0, T ),

wm(0) = 0,
(2.15)

for all k = 1, . . . ,m, where

Fm(t, x) := −2i∂tA(t, x) · ∇vm(t, x) + (∂tp(t, x)− i∇ · ∂tA(t, x))vm(t, x) + ∂tF (t, x), (t, x) ∈ Q. (2.16)

Next, multiplying the first line in (2.15) by g′k,m(t) and summing up over k = 1, . . . ,m, lead to

i〈∂twm(t, ·), wm(t, ·)〉L2(Ω) − a(t;wm(t, ·), wm(t, ·)) = 〈Fm(t, ·), wm(t, ·)〉L2(Ω), t ∈ (0, T ).

Therefore, we have
d

ds
‖wm(s, ·)‖2L2(Ω) = 2Im〈Fm(s, ·), wm(s, ·)〉L2(Ω), s ∈ (0, T ).

Now, for each t ∈ (0, T ), we find upon integrating both sides of the above identity over (0, t) that

‖wm(t, ·)‖2L2(Ω) 6

∫ t

0

‖wm(s, ·)‖2L2(Ω)ds+

∫ t

0

‖Fm(s, ·)‖2L2(Ω)ds,

which, combined with (2.16), entails

‖wm(t, ·)‖2L2(Ω) 6

∫ t

0

‖wm(s, ·)‖2L2(Ω)ds+ c
(
‖∂tF‖

2
L2(Q) + ‖vm‖2L∞(0,T ;H1(Ω))

)
,

for some constant c = c(T,M) ∈ (0,+∞). Therefore, we have

‖wm(t, ·)‖2L2(Ω) 6 c
(
‖∂tF‖

2
L2(Q) + ‖vm‖2L∞(0,T ;H1(Ω))

)
, t ∈ (0, T ),

by Gronwall’s lemma, and consequently

‖wm‖L∞(0,T ;L2(Ω)) 6 C‖F‖H1(0,T ;L2(Ω)), (2.17)

by (2.14), where C is another positive constant depending only on T , M and α.

2) Having established (2.14) and (2.17), we turn now to showing existence of a solution to (2.6). This can be done in
accordance with (2.14) by extracting a subsequence (vm′)m′ of (vm)m, which converges to v ∈ L∞(0, T ;H1

0(Ω)) in
the weak-star topology of L∞(0, T ;H1

0(Ω)). By substituting m′ for m in (2.9) and sendingm′ to infinity, we get that




(i∂t +∆A + q)v = F in Q,

v(0, ·) = 0 in Ω.
(2.18)

As a consequence, we have ∂tv ∈ L∞(0, T ;H−1(Ω)) and hence v ∈ L∞(0, T ;H1
0 (Ω)) ∩ W 1,∞(0, T ;H−1(Ω)).

Further, due to (2.17) and the Banach-Alaoglu theorem, there exists a subsequence of (wm)m which converges to
w ∈ L∞(0, T ;L2(Ω)) in the weak-star topology of L∞(0, T ;L2(Ω)). Since wm = ∂tvm for every m ∈ N∗ then
we necessarily have ∂tv = w ∈ L∞(0, T ;L2(Ω)) and thus v ∈ L∞(0, T ;H1

0(Ω)) ∩W
1,∞(0, T ;L2(Ω)). Further,

by arguing in the exact same way as in the derivation of [35, Theorem 8.3 and Remark 10.2, Chapter 3], we get that
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v ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). Moreover, for all fixed t ∈ [0, T ], we deduce from (2.18) that v(t, ·) is

solution to the elliptic boundary value problem



(∆A + q(t, .)) v(t, ·) = F (t, ·)− i∂tv(t, ·) in Ω,

v(t, ·) = 0, on ∂Ω.

As F − i∂tv ∈ C([0, T ];L2(Ω)) then we have v ∈ C([0, T ], H1
0(Ω) ∩ H

2(Ω)) and (2.7) follows directly from this,
(2.4), (2.14) and (2.17). �

Remark 2.3. a) With reference to (2.12), we point out for further use that the solution v to (2.2) satisfies the estimate

‖v‖L∞(0,T ;L2(Ω)) 6 c0‖F‖L2(Q),

for some constant c0 depending only on Ω, T and M .

b) Let M , A and q be the same as in Lemma 2.2, and let F ∈ H1(0, T ;L2(Ω)) satisfy F (T, ·) = 0. Putting

Ã(t, x) := −A(T − t, x), q̃(t, x) := q(T − t, x) and F̃ (t, x) := F (T − t, x) for (t, x) ∈ Q, we see that we have




(i∂t +∆A + q)v = F in Q,

v(T, ·) = 0 in Ω,

v = 0 on Σ,

(2.19)

if and only if ṽ(t, x) := v(T − t, x) is a solution to the system (2.6) where (Ã, q̃, F̃ ) is substituted for (A, q, F ).
Therefore, by Lemma 2.2, there exists a unique solution v ∈ C([0, T ], H1

0(Ω) ∩ H2(Ω)) ∩ C1([0, T ], L2(Ω)) to

(2.19), and it is clear that v verifies the estimate (2.7).

2.3. Completion of the proof of Proposition 2.1. In light of [36, Theorem 2.3, Chapter 4] there exists G ∈ H3,2(Q)
satisfying

G(0, ·) = ∂tG(0, ·) = 0 in Ω and G = g on Γ,

and
‖G‖H3,2(Q) 6 C‖g‖H(Σ), (2.20)

for some positive constant C, depending only on Ω and T . Therefore, the function

F := −(i∂t +∆A + q)G ∈ H1(0, T ;L2(Ω)) (2.21)

verifies F (0, ·) = 0 in Ω. Let v be the C([0, T ], H1
0(Ω) ∩ H2(Ω)) ∩ C1([0, T ], L2(Ω))-solution to (2.6), associated

with the source term F defined by (2.21), which is given by Lemma 2.2. Then, u := G+ v ∈ H1,2(Q) is a solution to
(1.1) and (2.2) follows directly from (2.7) and (2.20). Finally, we get that such a solution is unique by applying (2.2)
with g = 0.

3. GO SOLUTIONS

In this section we build appropriate geometric optics (GO) solutions to the magnetic Schrödinger equation in Q,
which are used in the derivation of the stability estimates of Theorem 1.1, presented in Sections 4 and 5.

Namely, given Aj ∈ W 5,∞(Q)n ∩H6(Q)n and qj ∈ W 4,∞(Q), j = 1, 2, fulfilling the conditions (1.4)-(1.6), we
seek a solution uj to the magnetic Schrödinger equation

(i∂t +∆Aj
+ qj)uj = 0 in Q, (3.1)

of the form

uj(t, x) = ϕσ(t, x)
(
uj,1(t, x) + σ−1uj,2(t, x)

)
+ rj,σ(t, x) with ϕσ(t, x) := eiσ(−σt+x·ω). (3.2)

Here σ ∈ (1,+∞) and ω ∈ Sn−1 := {y ∈ Rn; |y| = 1} are arbitrarily fixed and the remainder term rj,σ in the
asymptotic expansion of uj with respect to σ−1, scales at most like σ−1 as σ → +∞, in a sense that we will make
precise below. Moreover, we impose that uj,1 and uj,2 be in H3(Q), and that they satisfy

ω · ∇Aj
uj,1 = 0 and 2iω · ∇Aj

uj,2 + (i∂t +∆Aj
+ qj)uj,1 = 0 in Q, (3.3)
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and

∃δ ∈

(
0,
T

4

)
, (t ∈ (0, δ) ∪ (T − δ, T )) ⇒ (uj,1(t, x) = uj,2(t, x) = 0, x ∈ Ω) . (3.4)

The two conditons in (3.3) can be understood from the formal commutator formula [i∂t+∆Aj
, ϕσ] = i∂tϕσ+∆ϕσ+

2∇ϕσ · ∇Aj
= 2iσϕσω · ∇Aj

, entailing

(i∂t +∆Aj
+ qj)(uj − rj,σ) = (i∂t +∆Aj

+ qj)ϕσ(uj,1 + σ−1uj,2)

= ϕσ

(
2iσω · ∇Aj

uj,1 + (i∂t +∆Aj
+ qj)uj,1 + 2iω · ∇Aj

uj,2 + σ−1(i∂t +∆Aj
+ qj)uj,2

)

in Q. This and (3.1)-(3.2) lead to defining r1,σ by




(i∂t +∆A1
+ q1)r1,σ = −σ−1ϕσ(i∂t +∆A1

+ q1)u1,2 in Q,

r1,σ(0, ·) = 0 in Ω,

r1,σ = 0 on Σ,

(3.5)

and r2,σ by 



(i∂t +∆A2
+ q2)r2,σ = −σ−1ϕσ(i∂t +∆A2

+ q2)u2,2 in Q,

r2,σ(T, ·) = 0 in Ω,

r2,σ = 0 on Σ.

(3.6)

The initial condition in (3.5) and the final condition in (3.6) are imposed in such a way that the product r1,σr2,σ
vanishes at both ends of the time interval (0, T ).

The first step of the construction of the functionsuj,k, for j, k = 1, 2, involves extending the two magnetic potentials
A1 and A2 to (0, T )× Rn as follows. First, we refer to [40, Theorem 5 in Section 3] and pick a magnetic potential
Ã1 ∈W 5,∞((0, T )× Rn;R)n ∩H6((0, T )× Rn;R)n which coincides with A1 in Q and satisfies

∃R ∈ (0,+∞), ∀t ∈ [0, T ], supp Ã1(t, ·) ⊂ {x ∈ R
n, |x| 6 R}

and the estimate

‖Ã1‖W 5,∞((0,T )×Rn)n 6 C‖A1‖W 5,∞(Q)n and ‖Ã1‖H6((0,T )×Rn)n 6 C‖A1‖H6(Q)n , (3.7)

for some positive constant C depending only on T and Ω. Thus, putting

Ã2(t, x) :=





A2(t, x) if x ∈ Ω,

Ã1(t, x) if x ∈ Rn \ Ω,
(3.8)

we infer from (1.4) that Ã2 ∈ W 5,∞((0, T )×Rn)n ∩H6((0, T )×Rn)n. Moreover, it is clear from (3.7)-(3.8) upon
possibly substituting max(1, C) for C in (3.7), that

‖Ãj‖W 5,∞((0,T )×Rn)n 6 C max
k=1,2

‖Ak‖W 5,∞(Q)n and ‖Ãj‖H6((0,T )×Rn)n 6 C max
k=1,2

‖Ak‖H6(Q)n , j = 1, 2. (3.9)

The next step is to introduce two functions, the first one χ = χδ ∈ C∞(R; [0, 1]), being supported in (δ, T − δ),
satisfies χ(t) = 1 if t ∈ [2δ, T − 2δ] and fulfills

∀k ∈ N, ∃Ck ∈ (0,+∞), ‖χ‖Wk,∞(R) 6 Ckδ
−k,

whereas the second one is defined for τ ∈ R, ξ ∈ ω⊥ := {x ∈ Rn; x · ω = 0} and y ∈ Sn−1 ∩ ω⊥, by

β(t, x) := y · ∇

(
e−i(tτ+ξ·x) exp

(
−i

∫

R

A(t, x+ sω) · ωds

))
, (t, x) ∈ (0, T )× R

n. (3.10)

Here we have set A := Ã1 − Ã2 (that is A = A1 − A2 in Q and A = 0 in ((0, T )× Rn) \Q) in such a way that we
have ω · ∇β(t, x) = 0 for all (t, x) ∈ (0, T )× Rn.
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Now, a direct calculation shows that each of the two functions

u1,1(t, x) := χ(t)β(t, x) exp

(
i

∫ +∞

0

Ã1(t, x + sω) · ωds

)

and

u2,1(t, x) := χ(t) exp

(
i

∫ +∞

0

Ã2(t, x+ sω) · ωds

)

is a solution to the first equation of (3.3) satisfying the condition (3.4). Further, it follows from this,(1.6) and (3.9)-
(3.10) that

‖u1,1‖H3(Q) 6 C〈τ, ξ〉4δ−3 and ‖u2,1‖H3(Q) 6 Cδ−3, (3.11)

where C denotes a positive constant depending only Ω, T and M , which may change from line to line, and 〈τ, ξ〉 is a
shorthand for (1 + τ2 + ξ2)1/2.

Similarly, using that any x ∈ Rn decomposes into the sum x = x⊥ + sω with s := x · ω and x⊥ := x− sω ∈ ω⊥,
it can be checked through standard computations that

uj,2(t, x⊥+sω) := −
1

2i

∫ s

0

exp

(
−i

∫ s

s1

Ãj(t, x⊥ + s2ω) · ωds2

)
(i∂t+∆Aj

+qj)uj,1(t, x⊥+s1ω)ds1, j = 1, 2,

is a solution to the second equation of (3.3) obeying the condition (3.4). Further, by (1.6) and (3.9) we have

‖u1,2‖H3(Q) 6 C〈τ, ξ〉6δ−4 and ‖u2,2‖H3(Q) 6 Cδ−4, (3.12)

and

‖(i∂t +∆A1
+ q1)u1,2‖L2(Q) 6 C〈τ, ξ〉5δ−2 and ‖(i∂t +∆A2

+ q2)u2,2‖L2(Q) 6 Cδ−2. (3.13)

Having specified uj,k for j, k = 1, 2, we turn now to examining the remainder term rj,σ . We first infer from Lemma
2.2 (resp., Statement b) of Remark 2.3) that r1,σ (resp. r2,σ) is well defined as the C([0, T ], H1

0(Ω) ∩ H2(Ω)) ∩
C1([0, T ], L2(Ω))-solution to (3.5) (resp., (3.6)). Next, Statement a) in Remark 2.3 and (3.13) yield

‖r1,σ‖L2(Q) 6 C‖(i∂t +∆A1
+ q1)u1,2‖L2(Q)σ

−1 6 C〈τ, ξ〉5δ−2σ−1. (3.14)

On the other hand, we know from (2.7) and (3.12) that

‖r1,σ‖L2(0,T ;H2(Ω)) 6 C‖eiσ(−σt+x·ω)(i∂t +∆A1
+ q1)u1,2‖H1(0,T ;L2(Ω))σ

−1
6 C〈τ, ξ〉6δ−3σ,

Thus, interpolating with (3.14), we have ‖r1,σ‖L2(0,T ;H1(Ω)) 6 C〈τ, ξ〉6δ−3 and hence

‖r1,σ‖L2(0,T ;H1(Ω)) + σ‖r1,σ‖L2(Q) 6 C〈τ, ξ〉6δ−3. (3.15)

Analogously, we establish that

‖r2,σ‖L2(0,T ;H1(Ω)) + σ‖r2,σ‖L2(Q) 6 Cδ−3. (3.16)

Having built uj,k and rj,σ , for j, k = 1, 2, fulfilling (3.1)–(3.4), we are now in position to derive the stability estimates
(1.7)-(1.8) of Therorem 1.1.

4. PROOF OF THE STABILITY ESTIMATE (1.7)

We stick to the notations of Section 3 and recall from (3.4) that

u1(0, x) = u2(T, x) = 0, x ∈ Ω. (4.1)

The proof of (1.7) boils down to a suitable estimate of the Fourier transform of the function χ2A, presented in Lemma
4.2.
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4.1. Estimation of the Fourier transform of χ2A. We start by proving the following technical estimate.

Lemma 4.1. There exists a constant C = C(T,Ω,M) ∈ (0,+∞) such that we have
∣∣∣∣
∫

Rn+1

χ2(t)β(t, x)ei
∫

+∞

0
A(t,x+sω)·ωdsA(t, x) · ωdxdt

∣∣∣∣
6 C

(
〈τ, ξ〉6δ−8σ5‖ΛA1,q1 − ΛA2,q2‖+ 〈τ, ξ〉8δ−6σ−1

)
, (4.2)

uniformly in ξ ∈ ω⊥.

Proof. For j = 1, 2, put ψj,σ := uj − rj,σ = uj in Σ and let v2 be the H1,2(Q)-solution to




(i∂t +∆A2
+ q2)v2 = 0 in Q,

v2(0, ·) = 0 in Ω,

v2 = ψ1,σ on Σ,

given by Proposition 2.1. In light of (3.1) the function w := v2 − u1 then solves



(i∂t +∆A2
+ q2)w = 2iA · ∇u1 + V u1 in Q,

w(0, ·) = 0 in Ω,

w = 0 on Σ,

with V := i∇ ·A− (|A1|
2 − |A2|

2) + q1 − q2. Next, by multiplying the first equation of the above system by u2 and
integrating by parts over Q, we deduce from (3.1) and (4.1) that∫

Q

(2iA · ∇+ V )u1(t, x)u2(t, x)dxdt =

∫

Σ

∂νw(t, x)u2(t, x)dσ(x)dt. (4.3)

Further, since (∂ν+iA2·ν)v2 = ΛA2,q2ψ1,σ and (∂ν+iA1·ν)u1 = ΛA1,q1ψ1,σ , we have ∂νw = (ΛA2,q2−ΛA1,q1)ψ1,σ

in virtue of (1.4), and hence∣∣∣∣
∫

Σ

∂νw(t, x)u2(t, x)dσ(x)dt

∣∣∣∣ 6 ‖(ΛA2,q2 − ΛA1,q1)ψ1,σ‖L2(Σ)‖ψ2,σ‖L2(Σ)

6 C‖ΛA1,q1 − ΛA2,q2‖‖ψ1,σ‖H(Σ)‖ψ2,σ‖L2(Σ)

6 C‖ΛA2,q2 − ΛA2,q2‖〈τ, ξ〉
6δ−8σ6, (4.4)

by Corollary 2.1, the continuity of the trace operator from H3(Q) into H(Σ), (3.2) and the estimates (3.11)-(3.12).
On the other hand, we know from (3.2) that∫

Q

(2iA · ∇+ V )u1u2(t, x)dxdt = −2σ

∫

Q

(A · ω)u1,1u2,1(t, x)dxdt + r

= −2σ

∫

Q

χ2(t)β(t, x)ei
∫

+∞

0
A(t,x+sω)·ωdsA(t, x) · ωdxdt+ r, (4.5)

where

r := −2σ

∫

Q

u1,1
(
u2,2σ

−1 + ϕσr2,σ
)
A(t, x) · ωdxdt

−2

∫

Q

A ·
(
ϕσ

(
∇u1,1 +∇u1,2σ

−1
)
+∇r1,σ

)
u2(t, x)dxdt +

∫

Q

V u1u2(t, x)dxdt.

Since |r| 6 C〈τ, ξ〉8δ−6 by (3.15)-(3.16), it then follows from (4.5) that

σ−1

∣∣∣∣
∫

Q

(2iA · ∇+ V )u1u2(t, x)dxdt

∣∣∣∣

> 2

∣∣∣∣
∫

Q

χ2(t)β(t, x)ei
∫

+∞

0
A(t,x+sω)·ωdsA(t, x) · ωdxdt

∣∣∣∣− C〈τ, ξ〉8δ−6σ−1,
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which, combined with (4.3)-(4.4), yields (4.2). �

Having established Lemma 4.1 we may now estimate the Fourier transform of χA. We recall that the Fourier
transform of a function f ∈ L1(R1+n)n is defined for all (τ, ξ) ∈ R× Rn by

f̂(τ, ξ) := (2π)−
n+1

2

∫

R1+n

e−i(tτ+x·ξ)f(t, x)dxdt.

Lemma 4.2. There exists a positive constant C, depending only on T , Ω and M , such that the inequality

|ξ|
∣∣∣χ̂2A(τ, ξ)

∣∣∣ 6 C
(
〈τ, ξ〉6δ−8σ5‖ΛA1,q1 − ΛA2,q2‖+ 〈τ, ξ〉8δ−6σ−1

)
, (4.6)

holds for any (τ, ξ) ∈ R1+n.

Proof. The estimate (4.6) being obviously true for ξ = 0, we will solely focus on the case ξ 6= 0. We use the
decomposition x = x⊥ + κω, where κ := x · ω and x⊥ := x − κω, and recall from (3.10) that we have β(t, x) =
β(t, x⊥), so we obtain

∫

R1+n

χ2(t)β(t, x)ei
∫

+∞

0
A(t,x+sω)·ωdsA(t, x) · ωdxdt

=

∫

R

∫

R

∫

ω⊥

χ2(t)β(t, x⊥)e
i
∫

+∞

κ
A(t,x⊥+sω)·ωdsA(t, x⊥ + κω) · ωdx⊥dκdt

= i

∫

R

∫

ω⊥

χ2(t)β(t, x⊥)

(∫

R

∂κe
i
∫

+∞

κ
A(t,x⊥+sω)·ωdsdκ

)
dx⊥dt

= i

∫

R

χ2(t)

(∫

ω⊥

β(t, x⊥)
(
1− ei

∫
R
A(t,x⊥+sω)·ωds

)
dx⊥

)
dt

= i

∫

R

χ2(t)e−itτ

(∫

ω⊥

y · ∇
(
e−iξ·x⊥e−i

∫
R
A(t,x⊥+sω)·ωds

)(
1− ei

∫
R
A(t,x⊥+sω)·ωds

)
dx⊥

)
dt. (4.7)

Next, as we have ∫

ω⊥

y · ∇
(
e−iξ·x⊥e−i

∫
R
A(t,x⊥+sω)·ωds

)(
1− ei

∫
R
A(t,x⊥+sω)·ωds

)
dx⊥

=

∫

ω⊥

∇ ·
(
ye−iξ·x⊥e−i

∫
R
A(t,x⊥+sω)·ωds

)(
1− ei

∫
R
A(t,x⊥+sω)·ωds

)
dx⊥

= −i

∫

ω⊥

e−iξ·x⊥y · ∇

(∫

R

A(t, x⊥ + sω) · ωds

)
dx⊥,

by integrating by parts, (4.7) and the Fubini theorem entail
∫

R1+n

χ2(t)β(t, x)ei
∫

+∞

0
A(t,x+sω)·ωdsA(t, x) · ωdxdt

=

∫

R

χ2(t)e−itτ

(∫

ω⊥

(∫

R

y · ∇(A(t, x⊥ + sω) · ω)ds

)
e−iξ·x⊥dx⊥

)
dt

=

∫

R

χ2(t)e−itτ

(∫

Rn

e−iξ·xy · ∇(A(t, x) · ω)dx

)
dt

=

∫

Rn+1

e−i(tτ+x·ξ)χ2(t)y · ∇(A(t, x) · ω)dxdt.

Therefore, taking y = ξ
|ξ| and applying Stokes formula to the above integral, we obtain

i

∫

R1+n

χ2(t)β(t, x)ei
∫

+∞

0
A(t,x+sω)·ωdsA(t, x) · ωdxdt

= −|ξ|

∫

Rn+1

e−i(tτ+x·ξ)χ2(t)A(t, x) · ωdxdt
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= −(2π)
n+1

2 |ξ|χ̂2A(τ, ξ) · ω,

which yields

|ξ|
∣∣∣χ̂2A(τ, ξ) · ω

∣∣∣ 6 C〈τ, ξ〉6δ−8
(
‖ΛA2,q2 − ΛA2,q2‖σ

5 + 〈τ, ξ〉2δ2σ−1
)
, (4.8)

in virtue of (4.2).

Further, since ∇ · A = 0 in Q, by (1.5), then we have χ̂2A(τ, ξ) · ξ = 0 by direct calculation and hence

χ̂2A(τ, ξ) =

n−1∑

k=1

(
χ̂2A(τ, ξ) · ek

)
ek,

for any orthonormal basis {e1, . . . , en−1} of ξ⊥. Finally, (4.6) follows directly from this upon applying (4.8) with
ω = ek for k = 1, . . . , n− 1. �

Having established Lemma 4.2, we are now in position to derive the stability estimate (1.7).

4.2. Completion of the proof. We start by estimating ‖χ2A‖L2(0,T ;H5(Ω))n . Recalling from (1.4) that χ2A is sup-

ported in (δ, T − δ)× Ω, we see that

‖χ2A‖2L2(0,T ;H5(Ω))n =

∫

R1+n

〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ,

where, as usual, 〈ξ〉 denotes
(
1 + |ξ|2

) 1
2 . Next, forR ∈ (1,+∞) fixed, we putBR := {(τ, ξ) ∈ R1+n; |(τ, ξ)| < R},

use that χ2A ∈ H1(R;H5(Rn))n ∩ L2(R;H6(Rn))n, and obtain
∫

R1+n\BR

〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ 6 R−2

∫

R1+n\BR

|(ξ, τ)|2〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ

6 R−2
(
‖χ2A‖2H1(R;H5(Rn))n + ‖χ2A‖2L2(R;H6(Rn))n

)
.

Therefore, we have ∫

R1+n\BR

〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ 6 CR−2δ−2‖A‖2H6(Q)n 6 CR−2δ−2, (4.9)

where C is a generic positive constant depending only on Ω, T and M , which may change from line to line. Further,
setting ER := {(τ, ξ) ∈ R1+n; |ξ| 6 R− 3

n }, we get
∫

BR∩ER

〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ 6

∫ R

−R

∫

|ξ|6R−
3
n

〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ

6 (1 +R− 3
n )10‖χ̂2A‖2L∞(R1+n)n

(∫ R

−R

∫

|ξ|6R−
3
n

dξdτ

)

and hence ∫

BR∩ER

〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ 6 (2π)−(n+1)211T 2|Ω|2‖A‖2L∞(Q)nR
−2.

This and (4.9) yield ∫

(R1+n\BR)∪(BR∩ER)

〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ 6 CR−2δ−2. (4.10)

On the other hand, putting ǫ := ‖ΛA1,q1 − ΛA2,q2‖, we derive from (4.6) for all (τ, ξ) ∈ BR \ ER, that

|χ̂2A(τ, ξ)|2 6 C(R
6
n
+12δ−16σ10ǫ2 + R

6
n
+16δ−12σ−2)

6 C(R15δ−16σ10ǫ2 +R19δ−12σ−2)

which involves ∫

BR\ER

〈ξ〉10|χ̂2A(τ, ξ)|2dξdτ 6 C(R26+nδ−16σ10ǫ2 +R30+nδ−12σ−2).
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It follows from this and (4.10) that

‖χ2A‖2L2(0,T ;H5(Ω))n 6 C(R26+nδ−16σ10ǫ2 +R30+nδ−12σ−2 +R−2δ−2). (4.11)

Further, by noticing that ‖A − χ2A‖L2(0,T ;H5(Ω))n 6 ‖1 − χ2‖L2(0,T )‖A‖W 5,∞(Q) and taking advantage of the

fact that the [0, 1]-valued function 1−χ vanishes in [2δ, T − 2δ], we get that ‖1−χ2‖2L2(0,T ) =
∫ 2δ

0
(1−χ2(t))2dt+

∫ T

T−2δ(1− χ2(t))2dt 6 4δ. This entails ‖A− χ2A‖2L2(0,T ;H5(Ω))n 6 4‖A‖2W 5,∞(Q)δ and consequently

‖A‖2L2(0,T ;H5(Ω))n 6 C
(
ǫ2R26+nδ−16σ10 +R30+nδ−12σ−2 +R−2δ−2 + δ

)
, (4.12)

by invoking (4.11). Now, the strategy is to choose δ as a power of R so that R−2δ−2 = δ, i.e. δ = R− 2
3 , and to do

the same with σ, that is to take σ = R
116+3n

6 , in such a way that the three last terms in the right hand side of (4.12)

are equal to R− 2
3 . Evidently, as we have δ ∈

(
0, T4

)
, by assumption, this requires that R be fixed in

((
T
4

)− 3
2 ,∞

)
.

Summing up, we infer from (4.12) that

‖A‖2L2(0,T ;H5(Ω))n 6 C
(
R230+6nǫ2 +R− 2

3

)
. (4.13)

Therefore, we get (1.7) with r := 1
346+9n for all ǫ ∈ (0, ǫr), where ǫr :=

(
T
4

) 1
2r , upon choosing R = ǫ−3r in (4.13),

whereas ‖A‖L2(0,T ;H5(Ω))n 6 2M
ǫrr
ǫr for all ǫ ∈ [ǫr,+∞). This achieves the proof of (1.7).

5. PROOF OF THE STABILITY ESTIMATE (1.8)

Here we use the definitions and notations introduced in Sections 3 and 4, unless for the function β, which is no
longer given by (3.10) but is rather defined by

β(t, x) := e−i(tτ+x·ξ), (t, x) ∈ (0, T )× R
n.

As this definition formally coincides with (3.10) in the particular case where A is uniformly zero and y = iξ, it is
apparent that the estimates derived in Sections 3 and 4 remain valid with this specific choice of β.

Thus, in light of (3.11)–(3.16) and (4.3)-(4.4), it holds true that
∣∣∣∣
∫

R1+n

V u1,1u2,1(t, x)dxdt

∣∣∣∣
6 C

(
‖A‖L∞(Q)n〈τ, ξ〉

8δ−6σ + ‖ΛA2,q2 − ΛA2,q2‖〈τ, ξ〉
6δ−8σ6 + 〈τ, ξ〉6δ−4σ−1

)
. (5.1)

Next, from the very definition of V , we have
∫

R1+n

V u1,1u2,1(t, x)dxdt =

∫

R1+n

qu1,1u2,1(t, x)dxdt − i

∫

R1+n

A · ∇(u1,1u2,1)(t, x)dxdt

−

∫

R1+n

A · (A1 +A2)u1,1u2,1(t, x)dxdt,

by applying the Stokes formula. This, (3.11)–(3.16) and (5.1) yield
∣∣∣∣
∫

R1+n

qu1,1u2,1(t, x)dxdt

∣∣∣∣ (5.2)

6 C
(
‖A‖L∞(Q)n〈τ, ξ〉

8δ−6σ + ‖ΛA2,q2 − ΛA2,q2‖〈τ, ξ〉
6δ−8σ6 + 〈τ, ξ〉6δ−4σ−1

)
. (5.3)

On the other hand, we have∫

R1+n

qu11u21(t, x)dxdt =

∫

R1+n

χ2(t)q(t, x)e−i(tτ+x·ξ)ei
∫

+∞

0
A(t,x+sω)·ωdsdxdt,

whence ∣∣∣∣
∫

R1+n

χ2(t)q(t, x)e−i(tτ+x·ξ)dxdt

∣∣∣∣

6

∣∣∣∣
∫

R1+n

qu11u21(t, x)dxdt

∣∣∣∣ +
∣∣∣∣
∫

R1+n

q(t, x)e−i(tτ+x·ξ)
(
ei

∫
+∞

0
A(t,x+sω)·ωds − 1

)
dxdt

∣∣∣∣ .
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Thus, applying the mean value theorem, we get that
∣∣∣∣
∫

R1+n

χ2(t)q(t, x)e−i(tτ+x·ξ)dxdt

∣∣∣∣ 6
∣∣∣∣
∫

R1+n

qu11u21dxdt

∣∣∣∣+ C‖A‖L∞(Q)n .

Plugging (5.3) into the above estimate, we find that
∣∣∣χ̂2q(τ, ξ)

∣∣∣ 6 C
(
‖A‖L∞(Q)n〈τ, ξ〉

8δ−6σ + ‖ΛA2,q2 − ΛA2,q2‖〈τ, ξ〉
6δ−8σ6 + 〈τ, ξ〉6δ−4σ−1

)
. (5.4)

The next step of the proof is to upper bound ‖A‖L∞(Q)n in terms of ‖ΛA1,q1 − ΛA2,q2‖. To this end, we pick
p ∈ (n+ 1,+∞), apply the Sobolev embedding theorem (see e.g. [13, Corollary IX.14]) and find that ‖A‖L∞(Q)3 6

C‖A‖W 1,p(Q)n . Interpolating, we obtain

‖A‖L∞(Q)n 6 C‖A‖
1/2
W 2,p(Q)n‖A‖

1/2
Lp(Q)n 6 C‖A‖

1/2
Lp(Q)n 6 C‖A‖

1/p
L2(Q)n

and hence
‖A‖L∞(Q)n 6 C‖ΛA1,q1 − ΛA2,q2‖

r/p,

with the help of (1.7). Inserting the above estimate into (5.4) then yields
∣∣∣χ̂2q(τ, ξ)

∣∣∣ 6 C
(
‖ΛA1,q1 − ΛA2,q2‖

r/p〈τ, ξ〉8δ−6σ + ‖ΛA2,q2 − ΛA2,q2‖〈τ, ξ〉
6δ−8 + 〈τ, ξ〉6δ−4σ−1

)

and (1.8) follows from this by arguing in the same way as in the derivation of (1.7) from (4.12).
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