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Abstract

One of the simplest problems on directed graphs is that of identifying the set of vertices
reachable from a designated source vertex. This problem can be solved easily sequentially by
performing a graph search, but efficient parallel algorithms have eluded researchers for decades.
For sparse high-diameter graphs in particular, there is no known work-efficient parallel algorithm
with nontrivial parallelism. This amounts to one of the most fundamental open questions in
parallel graph algorithms: Is there a parallel algorithm for digraph reachability with nearly linear
work? This paper shows that the answer is yes.

This paper presents a randomized parallel algorithm for digraph reachability and related
problems with expected work Õ(m) and span Õ(n2/3), and hence parallelism Ω̃(m/n2/3) =
Ω̃(n1/3), on any graph with n vertices and m arcs. This is the first parallel algorithm having
both nearly linear work and strongly sublinear span, i.e., span Õ(n1−ǫ) for any constant ǫ > 0.
The algorithm can be extended to produce a directed spanning tree, determine whether the
graph is acyclic, topologically sort the strongly connected components of the graph, or produce
a directed ear decomposition, all with work Õ(m) and span Õ(n2/3).

The main technical contribution is an efficient Monte Carlo algorithm that, through the
addition of Õ(n) shortcuts, reduces the diameter of the graph to Õ(n2/3) with high probability.
While both sequential and parallel algorithms are known with those combinatorial properties,
even the sequential algorithms are not efficient, having sequential runtime Ω(mnΩ(1)). This
paper presents a surprisingly simple sequential algorithm that achieves the stated diameter
reduction and runs in Õ(m) time. Parallelizing that algorithm yields the main result, but doing
so involves overcoming several other challenges.

http://arxiv.org/abs/1711.01700v1


1 Introduction

There are essentially no good parallel algorithms known for the most basic problems on general
directed graphs, especially when the graph is sparse. This paper yields several.

A good parallel algorithm should have polynomial parallelism and be (nearly) work efficient.
The work W (n) of a parallel algorithm on a size-n problem is the total number of primitive
operations performed. Ideally, the work of the parallel algorithm should be similar to the best
sequential running time T ∗(n) known for the problem. An algorithm is work efficient if W (n) ∈
O(T ∗(n)) and nearly work efficient if W (n) ∈ Õ(T ∗(n)) = O(T ∗(n) ·poly(log n)), where Õ hides
logarithmic factors.1 (As a slight abuse of notation, Õ(1) is used to mean O(poly(log n)), where
the n should be clear from context.)2 The span S(n), also called depth , of a parallel algorithm
is the length of the longest chain of sequential dependencies.3 By Brent’s scheduling principle [1],
such an algorithm can generally be scheduled to run in O(W (n)/p) time on p ≤ W (n)/S(n)
processors; adding more processors beyond that point does not yield asymptotic speedup. The
limit W (n)/S(n) is called the parallelism of the algorithm; an algorithm is moderately parallel

if the parallelism is Ω(nǫ), for some constant ǫ > 0, and highly parallel if the span is Õ(1).
The goal is to achieve speedup with respect to the best sequential algorithm, which is why work
efficiency matters. A nearly work-efficient algorithm runs in Õ(T ∗(n)/p) time on p ≤ W (n)/S(n)
processors, but inefficient algorithms may require enormous numbers of processors to beat the
sequential algorithm.

Remark. Aside from the context provided in this introduction and high-level ideas, most of
the paper does not require any specific knowledge of parallel algorithms; the challenge lies in
producing an algorithm with properties amenable to parallelization. Most implementation details
are straightforward, so the parallel model and implementation details are deferred to Section 5.

Problem and history. Perhaps the most basic problem on directed graphs is the single-source
reachability problem: given a directed graph G = (V,E) and source vertex s ∈ V , identify the
set of vertices reachable by a directed path originating from s. Throughout, let n = |V | be the
number of vertices and m = |E| be the number of arcs, and for conciseness of bounds assume
that m ∈ Ω(n). This problem has simple sequential solutions: both breadth-first search (BFS) and
depth-first search (DFS) solve the problem in O(m) time. There are two natural parallel algorithms
for the reachability problem, which seem to be folklore. See Table 1 for a comparison. Parallel
transitive closure [9], which amounts to repeated squaring of the adjacency matrix, is highly parallel
but far from work efficient even for dense graphs. Parallel BFS is similar to sequential BFS, except
that arcs from each layer (vertices with the same distance) are explored in parallel. Parallel BFS
is work efficient (see, e.g., [14]), but the span is proportional to the diameter, which is Θ(n) in the
worst case. Both algorithms fall short of our goals, but they remain the state of the art.

The only other progress on general graphs are work/span tradeoffs. Ullman and Yannakakis [20]
raised the question over 25 years ago of whether it is possible to solve digraph reachability with
sublinear work without sacrificing work efficiency. Instead, their algorithm [20], henceforth termed

1In addition to uncluttering the bounds, ignoring logarithmic factors is particularly convenient when comparing
parallel algorithms — the precise bounds depend on the specifics of the parallel model, but the bounds typically only
vary by logarithmic factors (see [9] for discussion) — allowing us to focus on the high-level discussion.

2The standard definition for soft-O is that f(n) ∈ Õ(g(n)) if f(n) ∈ O(g(n) poly(log g(n))). This paper uses
f(n) ∈ Õ(g(n)) to mean f(n) ∈ O(g(n) poly(log n)), with the only relevant difference being the meaning of Õ(1).

3Older PRAM literature often characterizes algorithms by a number of processors and parallel running time. Span
here is generally equivalent to parallel time, and work corresponds to the product of processors and time.
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Work Span
Nearly

work efficient?

Number of processors to
achieve Õ(n/k) runtime,

for m ∈ Θ(n)

parallel BFS O(m) Õ(n) Yes Not Possible unless k = Õ(1)

parallel Trans. Closure Õ(M(n)) Õ(1) No kM(n)/n ≫ nk for k ≤ n

Spencer’s [18] Õ(m + nρ2) Õ(n/ρ) if ρ = Õ(
√

m/n) k3 for k ≤ n

UY [20]∗ Õ(mρ+ ρ4/n) Õ(n/ρ) if ρ = Õ(1) k2 for k ≤ n2/3 †

This paper∗ Õ(m) Õ(n2/3) Yes k for k ≤ n1/3

Table 1: Comparison of parallel algorithms for single-source reachability. Two of the algorithms are
parameterized by ρ, 1 ≤ ρ ≤ n, which trades off work and span. M(n) is the work of the best highly parallel
n× n matrix multiplication, which is at least the current best sequential time of O(n2.372869) [15].
∗: the algorithm is randomized. Bounds are with high probability.
†: for higher k, the dependence on k becomes worse and more complicated to state.

UY, and Spencer’s algorithm [18] exhibit tradeoffs between work and span. Though not originally
described in the same terms, both algorithms can be parameterized by a value ρ, 1 ≤ ρ ≤ n.
Table 1 summarizes the performance bounds.4 For ρ = 1, both algorithms are a parallel BFS. As
ρ increases, the span decreases but the work increases. When ρ = n, both algorithms converge
to transitive closure via regular Θ(n3)-work matrix multiplication. They differ for intermediate ρ.
Spencer’s algorithm is deterministic and, for sufficiently dense graphs, can be nearly work efficient
with moderate parallelism. In contrast, UY is randomized and never simultaneously work efficient
and moderately parallel, but it exhibits a better work/span tradeoff for sparse graphs.

Other work focuses on either restricted graph classes or sequential preprocessing. Kao and
Klein [10] give an algorithm for reachability on planar digraphs with Õ(n) work and Õ(1) span.
Klein [13] gives an algorithm that preprocesses the graph in O(np) sequential time, where p ≥ 1 is
a parameter; after the preprocessing, reachability can be solved in O(m/p) time on p processors.

1.1 Shortcutting Approach and Contributions

The high-level approach is intuitive: (1) reduce the diameter of the graph through the addition
of shortcuts, or arcs whose addition does not change the transitive closure of the graph; (2) run
parallel BFS on the shortcutted graph. UY [20] fits this general strategy (and parallel BFS and
transitive closure are extreme cases), but Spencer’s algorithm [18] does not. If the BFS phase is to
complete with Õ(m) work, then the number of shortcuts added must be limited to Õ(m).

Ignoring the cost of computing the shortcuts, O(n) shortcuts are known to be sufficient to reduce
the diameter of any graph to Õ(

√
n). UY [20] with ρ =

√
n, for example, accomplishes this task.

Ignoring logarithmic factors, this is the best diameter reduction known for general graphs using a
linear number of shortcuts. As Hesse [8] shows, however, there exist graphs requiring Ω(mn1/17)
shortcuts to reduce their diameter below Θ(n1/17).5 Hesse’s lower bound implies a lower bound on
reachability via shortcutting: any nearly work-efficient algorithm must have Ω̃(n1/17) span.

The main technical challenge is to produce the shortcuts efficiently, which is a challenge even
ignoring parallelism. There is no Õ(m)-time sequential algorithm known to reduce every graph’s
diameter to Õ(n1−ǫ), for any constant ǫ > 0. For contrast, consider the most natural approach
(similar to UY [20]): sample

√
n vertices, perform a graph search from each, and add shortcuts

4The work bound stated by Ullman and Yannakakis [20] is worse, for small ρ, than the bound displayed in Table 1.
The table shows the improved bound observed by Schudy [17].

5Closing the gap between n1/17 and
√
n is an interesting open question but not addressed by this paper.
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Algorithm 1: Sequential algorithm for shortcutting

SeqSC1(G = (V,E))
1 if V = ∅ then return ∅
2 select a pivot x ∈ V uniformly at random
3 let R+ denote the set of vertices reachable from x
4 let R− denote the set of vertices that can reach x
5 S := {(x, v)|v ∈ R+} ∪ {(u, x)|u ∈ R−} // add shortcuts to/from vertices

// having paths from/to x, resp.

6 VB := R+ ∩R− ; VS := R+\VB ; VP := R−\VB ; VR := V \(VB ∪ VS ∪ VP )
7 return S ∪ SeqSC1(G[VS]) ∪ SeqSC1(G[VP ]) ∪ SeqSC1(G[VR])

between all related pairs of samples. It is straightforward to prove that this algorithm yields a graph
with O(

√
n log n) diameter, but the running time of the

√
n independent searches is O(m

√
n).

This paper has the following main contributions:

• (Section 3.) An Õ(m)-time sequential Monte Carlo algorithm that shortens the diameter of
any graph to Õ(n2/3), with high probability, through the addition of Õ(n) shortcuts.

• (Sections 4 and 5.) A Monte Carlo parallel algorithm having Õ(m) work and Õ(n2/3) span that
shortens the diameter of any graph to Õ(n2/3), with high probability, through the addition
of Õ(n) shortcuts.

• Applying the diameter reduction then parallel BFS yields a Las Vegas algorithm for single-
source reachability with Õ(m) work and Õ(n2/3) span, with high probability.

• (Section 6.) An extension that finds a directed spanning tree of G rooted at source s, i.e., a
tree rooted at s including only arcs in G and containing all vertices reachable from s.

Applying existing reductions yields the following Las Vegas randomized parallel algorithms, both
with Õ(m) work and Õ(n2/3) span with high probability:

• An algorithm that identifies and sorts the strongly connected components of the graph. (Use
the new reachability algorithm in Schudy’s algorithm [17].)

• An algorithm that finds a directed ear decomposition of any strongly connected graph. (Use
the new directed spanning tree algorithm with Kao and Klein’s algorithm [10].)

1.2 Algorithm and Analysis Overview

The sequential algorithm is simple enough that the main subroutine is given immediately. (See
also Algorithm 1.) The algorithm is recursive. First select a random vertex x, called the pivot .
Perform a graph search forwards and backwards from x to identify subsets R+ and R−, respectively.
Add shortcuts from R− to x and from x to R+. The graph is next partitioned into four subsets of
vertices: VB comprises vertices in both R+ and R−, VS comprises vertices in R+ but not R−, VP

comprises vertices in R− but not R+, and VR is all remaining vertices. Recurse on the subgraphs
induced by the three subsets VP , VS , and VR.

Ignoring the addition of shortcuts, Algorithm 1 is essentially the divide-and-conquer algorithm
for topologically sorting the strongly connected components of a graph described by Coppersmith
et al. [3]. Their proof thus carries over to prove that this algorithm runs in O(m log n) sequential
time in expectation, but they do not address the diameter problem.

What should be surprising is that Algorithm 1 reduces the graph’s diameter, captured by the
following lemma. The proof is not obvious and leverages new insights and techniques.

Lemma 1.1. Let G = (V,E) be a directed graph, and consider any vertices u, v ∈ V such that
there exists a directed path from u to v in G. Let S be the shortcuts produced by an execution of
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Algorithm 1. Then with probability at least 1/2 (over random choices in Algorithm 1), there exists
a directed path from u to v in GS = (V,E ∪ S) consisting of O(n2/3 log4/3 n) arcs.

As a corollary, through a simple application of a Chernoff bound and union bound across ≤ n2

related pairs, the union of shortcuts across O(log n) independent executions of Algorithm 1 reduces
the diameter of the graph to Õ(n2/3) with high probability.

Unusual aspects and insight. The analysis focuses on shortcutting a particular path. But
unlike most divide-and-conquer analyses, the division step here does not seem to effect progress.
Partitioning a graph is good for reducing the problem size (which is what Coppersmith et al. [3]
leverage), but it is not good for preserving paths — and once vertices fall in different subproblems,
there can be no subsequent shortcuts between them. This feature is likely why previous algorithms,
such as UY [20], perform independent searches on the original graph.

A key insight in the analysis is that the partitioning step also reduces by a constant factor the
number of vertices that could cause the path to split again later. In doing so, the probability of
splitting the path goes down, and hence the probability of shortcutting it goes up. The end effect
is that the path is likely to be significantly shortcutted before it is divided into too many pieces.

The proof of this filtering insight (Lemma 3.4) leverages antisymmetric relationships between
certain vertices. Interestingly, the lack of symmetry in directed graphs is exactly the feature that
makes good parallel algorithms for digraphs so elusive, but here asymmetry is crucial to the proof.

Building a parallel algorithm. The main obstacle to parallelizing Algorithm 1 is the graph
searches employed to find R+ and R−. In fact, these searches are exactly the single-source reacha-
bility problem that we want to solve. The obvious solution to try is to instead limit the searches to a
distance of Õ(n2/3), but unfortunately doing so causes other problems. The parallel algorithm and
the analysis are thus more involved. Section 4 provides a sequential algorithm with distance-limited
searches. Given that, the parallel implementation (Section 5) is straightforward.

2 Preliminaries

This section provides definitions, notations, and the main probabilistic tools used throughout.
The subgraph of G = (V,E) induced by vertices V ′ ⊆ V is denoted by G[V ′].
If there is a directed path (possibly empty) from u to v in digraph G = (V,E), then u precedes

v and v succeeds u, denoted u � v. We say also that u can reach v and that v can be reached

by u. If u � v and/or v � u, then u and v are related ; otherwise they are unrelated . The
successors or forward reach of x is the set of nodes R+(G,x) = {v|x � v}. The predecessors
or backwards reach of x is the set R−(G,x) = {u|u � x}.

A shortcut is any arc (u, v) such that u � v in G.

Paths and nonstandard notation. The analysis considers paths as well as the relationships
between paths and vertices. A path P = 〈v0, v1, . . . , vℓ〉 is denoted by the sequence of its constituent
vertices, with the arcs between consecutive pairs implied. The first and last vertex of the path are
denoted by head(P ) and tail(P ), and the length of the path, denoted length(P ), is the number
of arcs. For the path P given, head(P ) = v0, tail (P ) = vℓ, and length(P ) = ℓ. Two (possibly
empty) disjoint paths P1 and P2 may be concatenated, denoted P1 7→ P2, as long as the arc
(tail (P1), head(P2)) exists. Splitting a path P into k pieces means partitioning it into subpaths
P1, P2, . . . , Pk such that P = P1 7→ P2 7→ · · · 7→ Pk.

4



A vertex x and a path P can be compared in the following ways. The vertex x is a bridge

of P if x can reach and can be reached by vertices on the path, i.e., if there exists vi, vj ∈ P
such that vi � x and x � vj . Note that every vertex on the path is a bridge. A vertex x is an
ancestor of P if x can reach some vertex on the path, but x cannot be reached by any vertex
on the path. Similarly, x is a descendent of P if x can be reached by some vertex on the path,
but x cannot reach any vertex on the path. The set of all bridges, ancestors, and descendents of
P are denoted Bridge(G,P ), Anc(G,P ), and Desc(G,P ), respectively. Note that these sets are all
disjoint by definition. If a vertex x is a bridge, ancestor, or descendent of the path P , then x and
P are related . Otherwise, they are unrelated .

Tools. The analysis employs one relatively uncommon probabilistic tool — a special case of
Karp’s [11] probabilistic recurrence relations, restated next. Roughly speaking, this theorem relates
two processes: (1) a random process where in each round the problem “size” (Φ in the theorem)
reduces by a constant factor in expectation, and (2) a deterministic process where the problem size
reduces by exactly that constant factor. The theorem says that if the random process uses a few
extra rounds, it is very likely to experience at least the size reduction of the deterministic process.

Theorem 2.1 (Restatement of special case of Theorem 1.36 in [11]). Consider a random process of
the following form. Let I denote the set of all problem instances, and let I0 ∈ I denote the initial
problem instance. In the rth round, the process makes random choices and transforms the instance
from Ir−1 to Ir (a random variable). Let Φ : I → R be any function satisfying 0 ≤ Φ(Ir) ≤ Φ(Ir−1)
for all relevant r ≥ 1 and all feasible sequences I0, I1, I2, . . . of instance outcomes.

Suppose there exists some constant p < 1 such that E[Φ(Ir)|I0, I1, . . . , Ir−1] ≤ p · Φ(Ir−1), and
consider any integers k ≥ 0 and w ≥ 0. Then Pr

{

Φ(Ik+w+2) > pk · Φ(I0)
}

≤ pw.

3 Sequential Diameter Reduction

This section focuses on proving the following theorem. The unmodified G is used to refer to sub-
graphs G = (V,E). When the original input graph is intended, Ĝ is employed instead. Throughout,
x denotes the pivot, and the vertex sets VB , VS , VP , and VR are used with meaning as setup in
Algorithm 1.

Theorem 3.1. There exists a randomized sequential algorithm that takes as input a directed graph

Ĝ = (V̂, Ê) and has the following guarantees, where n =
∣

∣

∣
V̂
∣

∣

∣
, m =

∣

∣

∣
Ê
∣

∣

∣
, and without loss of generality

m ≥ n/2: (1) the running time is O(m log2 n), (2) the algorithm produces a size-O(n log2 n) set S∗

of shortcuts, and (3) with high probability7, the diameter of GS∗ = (V,E ∪ S∗) is O(n2/3 log4/3 n).

As mentioned in Section 1, the algorithm entails taking the union of shortcuts from Θ(log n) runs of
Algorithm 1. To make the running time worst case, there will be one minor modification introduced
later: namely, an extra base case to truncate the recursion.

Sections 3.1 and 3.2 set up the main ideas for proof of Lemma 1.1 but instead proves a
weaker distance bound of O(n1/ lg(8/3)) = O(n0.7067). Section 3.3 tightens the distance bound to

6Karp states the theorem very differently. The process described here corresponds to his recurrence T (I) =
a(Φ(I))+T (h(I)), where a(x) = 0, x < d and a(x) = 1, x ≥ d, for d = pk ·Φ(I0). This recurrence counts the number
of steps to reach the target size. (Note that d depends only on the initial instance and is constant in the recurrence.)
The deterministic counterpart is τ (x) = a(x) + τ (px), which has solution u(Φ(I0)) = ⌈log

1/p(Φ(I0)/d)⌉ ≤ k + 1.
7With high probability means the failure probability can be driven down to 1/nc for any constant c by increasing

the constants hidden inside the big-O notation (specifically the running time and number of shortcuts here).
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O(n2/3 log4/3 n), thereby proving Lemma 1.1. It is worth emphasizing that Sections 3.2 and 3.3 use
exactly the same algorithm — the only difference is the details of the analysis. Finally, Section 3.4
completes the proof of Theorem 3.1 by analyzing the running time and number of shortcuts.

3.1 Setup of the Analysis

Fix any simple path P̂ = 〈v0, . . . , vℓ〉 in the graph up front. By partitioning the graph, each call to
SeqSC1 also splits the path into subpaths. The analysis tracks a collection of calls whose subgraphs
contain subpaths of P̂ .

More precisely, a path-relevant subproblem , denoted by pair (G,P ), corresponds to a call
SeqSC1(G) and an associated nonempty subpath P of P̂ to shortcut. The starting subproblem is
(Ĝ, P̂ ). The path-relevant subproblems are most subproblems for which G ∩ P̂ 6= ∅, except with
a base case occurring when a subpath P is shortcutted to two hops — all recursive subproblems
arising beyond that point are not path relevant. The following lemma characterizes the path-
relevant subproblems that arise when executing the call SeqSC1(G) with associated path P .

It is worth emphasizing that the algorithm has no knowledge of the path P ; associating the
subpath with the subproblem is an analysis tool only.

Lemma 3.2. Let P = 〈v0, . . . , vℓ〉 be a nonempty path in G = (V,E), and consider the effect of a
single call SeqSC1(G) in Algorithm 1. The following are the outcomes depending on pivot x:

1. (Base case.) If x is a bridge of P , then the shortcuts (v0, x) and (x, vℓ) are created. There
are no path-relevant subproblems.

2. If x and P are unrelated, then P is entirely contained in G[VR]; the one path-relevant
subproblem is thus (G[VR], P ).

3. If x is an ancestor of P , then P = P1 7→ P2 for P1 = P ∩ G[VR] and P2 = P ∩ G[Vs].
There are thus at most two path relevant subproblems: if P1 is nonempty, (G[VR], P1) is path
relevant; if P2 is nonempty, (G[VS ], P2) is path relevant.

4. If x is a descendent of P , then P = P1 7→ P2 for P1 = P ∩G[VP ] and P2 = P ∩G[VR]. This
case gives rise to at most two path-relevant subproblems, as above.

Proof. The proof follows from the definitions. Consider for example the last case, that x is a
descendent of P . Then there is some latest vertex vk on the path such that vk � x. Then consider
subpaths 〈v0, . . . , vk〉 and 〈vk+1, . . . , vℓ〉. For all vi with i ≤ k, we have vi � vk � x, and hence
P1 = 〈v0, . . . , vk〉 is entirely in VP . All vj with j > k are unrelated to x and hence in VR.

Cases 3 and 4 seem like bad cases because the number of path-relevant subproblems, and hence
arcs in the final path, increases. Section 3.2 argues that these cases do make progress.

The path-relevant subproblems that arise during the execution of the algorithm induce a path-

relevant subproblem tree , where each node s corresponds to a call of SeqSC1 on some path-
relevant subproblem s = (G,P ). For the analysis, it is convenient to consider the flattened path-

relevant tree , where each node corresponding to case 2 in Lemma 3.2 is merged with its only
child. Viewed algorithmically, a node in the flattened path-relevant tree corresponds to sampling
multiple pivots x (and discarding some of the graph) until finally getting one that is related to the
path P .

The analysis considers levels in the flattened path-relevant tree in aggregate, i.e., executing
the algorithm in a breadth-first fashion. The point is to later fit the analysis to Theorem 2.1.
Specifically, the analysis consists of a sequence of rounds, where the instance Ir in round r is the
collection of subproblems defined by the nodes at depth r in the flattened path-relevant tree. We
have the following lemma immediately. All that remains is bounding the lengths (Section 3.2).
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Lemma 3.3. Consider any graph Ĝ = (V̂, Ê) and any path P̂ from u to v. Consider an execution
of Algorithm 1, let S be the shortcuts produced, and let {(G1, P1), . . . , (Gk, Pk)} denote the set of
path-relevant subproblems at level/depth r in the flattened path-relevant tree. Then there is a u-to-v
path in GS = (V̂, Ê ∪ S) of length at most 2r + 2r−1 +

∑k
i=1 length(Pi).

Proof. Let Li denote the set of paths associated with leaves in the tree at depth i. Then a simple

induction over levels proves that: the set of paths {P1, . . . , Pk} ∪
(

⋃r−1
i=1 Li

)

constitute a splitting

(partition) of path P̂ . To perform the inductive step, apply Lemma 3.2 at each internal node.
It remains to bound the path-length in GS by positing a specific path: the concatenation of the

shortcutted paths for the leaves and the full unshortcutted paths for the remaining subproblems.
Each concatenation adds 1 arc, each leaf’s path uses 2 shortcuts, and each remaining non-leaf path
Pi has length(Pi) arcs. Since the degree of each node is at most 2 (Lemma 3.2), the number of
leaves above level r is at most 2r−1, and the number of internal nodes (concatenations) above level
r is also is at most 2r−1. Adding everything together gives the bound.

3.2 Asymmetry Leads to Progress

This section proves that with probability at least 1/2, the distance between u and v is at most
O(n1/ log(8/3)). The main tools are Theorem 2.1 and a proof that the number of path-related
vertices decreases by a constant fraction, on average, with each level in the flattened path-relevant
tree. More precisely, a vertex v is path active at level r if (1) v is part of some path-relevant
subproblem at level r in the flattened tree, and (2) v is related to the path in that subproblem.
The goal is to argue that the expected number of path-active vertices decreases with each level.

Recall that the each node in the flattened tree corresponds to a sequence of calls to SeqSC1,
where the last call happens to draw a pivot x that is path related. The analysis focuses on that last
choice of x. But consider instead the equivalent process of choosing x by first tossing a weighted
coin to determine whether x is bridge, ancestor, or descendent, then choosing the specific vertex
from within that set uniformly at random. The following lemma considers the effect of choosing x
from all path ancestors. Choosing from path descendents is symmetric.

Lemma 3.4. Consider any subproblem (G,P ). Suppose that x is drawn uniformly at random from
Anc(G,P ), let α = |Anc(G,P )|, and let α′ be denote the number of vertices in Anc(G,P ) that are
path active at the next level, i.e., after calling SeqSC1(G). Then E[α′|x ∈ Anc(G,P )] < α/2.

Proof. Define the following binary relation over vertices in Anc(G,P ): u preserves v means
that if x = u, then v remains path active. The relation is irreflexive by virtue of the fact that
x ∈ (R−(G,x) ∩ R+(G,x)) and hence not contained in any subproblems. The goal is to prove
that it is also antisymmetric. Assuming the asymmetry, the total number of pairs satisfying the
preserves relation is at most

(

α
2

)

. The number of vertices preserved by x is α′, and hence E[α′] ≤
(

α
2

)

/α = (α− 1)/2. It remains to prove that the preserves relation is antisymmetric.
Consider any pair with u preserves v, let P = 〈v0, v1, . . . , vℓ〉, and let vk be the earliest vertex

in P with u � vk. Then selecting x = u splits the path into P
(u)
1 = 〈v0, . . . , vk−1〉 and P

(u)
2 =

〈vk, . . . , vℓ〉, as stated in Lemma 3.2, where the superscript (u) indicates x = u. There are two

ways that v could be preserved: either v ∈ V
(u)
R and v ∈ Anc(G[V

(u)
R ], P

(u)
1 ), or v ∈ V

(u)
S and

v ∈ Anc(G[V
(u)
S ], P

(u)
2 ). (No relationships are added in the subproblems, so v cannot, e.g., become

a path descendent.) Suppose the latter is true. Then, by definition of V
(u)
S in Algorithm 1, u � v

and v 6� u. It follows that if x = v, u ∈ V
(v)
P and hence v does not preserve u.
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Suppose instead that v ∈ V
(u)
R , implying u and v are unrelated. Then v can only preserve u

if u ∈ Anc(G[V
(v)
R ], P

(v)
1 ). But v ∈ Anc(G[V

(u)
R ], P

(u)
1 ) implies P

(v)
1 is a subpath of P

(u)
1 , which is

unrelated to u. So u 6∈ Anc(G,P
(v)
1 ) ⊇ Anc(G[V

(v)
R ], P

(v)
1 ), and hence v does not preserve v.

Lemma 3.4 states that if an ancestor is selected, the number of path-active ancestors decreases
by half. The following lemma extends the analysis to consider the effect on the total number of path-
active vertices. The worst case is that the number of ancestors equals the number of descendents.
Then Lemma 3.4 indicates that half of the vertices decrease by half, i.e., a 3/4 reduction in total.

Lemma 3.5. Let η denote the number of path-active vertices in some level-(r − 1) subproblem
(G,P ), and let η′ be a random variable denoting the number of those vertices that are path active
at level-r. Then E[η′] < (3/4)η.

Proof. Let α, β, and δ denote the number of ancestors, bridges, and descendents, respectively, of
path P in G, with α + β + δ = η. Selecting a pivot x that is unrelated to P can only decreases
the number of path-related vertices, decreasing η even further, so these choices can be ignored.
Consider the first x that is related to P . If, for example, that x is a path ancestor, Lemma 3.4
states E[η′|x ∈ Anc(G,P )] < α/2 + β + δ. If x is a bridge, then η′ = 0 because there are no
path-relevant subproblems. Adding up all three cases and scaling by their probabilities, we have

E[η′] =

(

α

η

)

E[η′|x ∈ Anc(G,P )] +

(

δ

η

)

·E[η′|x ∈ Desc(G,P )]

<

(

α

η

)

(α/2 + β + δ) +

(

δ

η

)

(α+ β + δ/2) (Lemma 3.4)

=
(α+ δ)(α/2 + β + δ/2)

η
+

αδ

η

=
(η − β)(η + β)

2η
+

(
√
αδ)2

η
(η = α+ β + δ)

≤ η2

2η
+

((α + δ)/2)2

η

≤ (3/4)η .

For subproblem s = (G,P ), define φ(s) to be the number of path-active vertices in s. Define
Φ(Ir) =

∑

s∈Ir φ(s), where Ir is the collection of subproblems at level-r in the flattened tree. Then
we have the following. Applying Theorem 2.1 then gives the main lemma.

Corollary 3.6. Given any collection Ir−1 of subproblems, E[Φ(Ir)|Ir−1] ≤ (3/4)Φ(Ir−1).

Proof. Lemma 3.5 states that for each s ∈ Ir, we have E[φ(s1) + φ(s2)] ≤ (3/4)φ(s), where s1 and
s2 are random variables for the at most two path-relevant subproblems of s. The claim follows by
linearity of expectation over all s.

Lemma 3.7. Let Ĝ = (V̂, Ê) be a directed graph, and consider any vertices u, v ∈ V such that
there exists a directed path from u to v in Ĝ. Let S be the shortcuts produced by an execution of

Algorithm 1 and let n =
∣

∣

∣
V̂
∣

∣

∣
. Then with probability at least 1/2, there exists a directed path from u

to v in GS = (V̂, Ê ∪ S) consisting of O(n1/ lg(8/3)) arcs.
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Proof. Choose an arbitrary simple path P̂ from u to v in Ĝ. At most every vertex is path active,
so Φ(I0) ≤ n. By Theorem 2.1 with Corollary 3.6, Pr {Φ(Ir+5) > (3/4)rn} < 1/2. Observe that
Φ(Ir+5) is at least the number of bridge nodes that are still active in round r + 5, and each node
on an active subpath is a bridge node. Thus, by Lemma 3.3, running the algorithm to level r + 5
is enough to yield a shortcutted path length of at most O(2r) + Φ(Ir+5) ≤ O(2r) + (3/4)rn with
probability at least 1/2. Setting both terms equal and solving for r gives r = log8/3 n. Thus, with

probability at least 1/2, the shortcutted path has length O(2r) = O(2log8/3 n) = O(n1/ lg(8/3)).

3.3 A Tighter Path-Length Bound (Lemma 1.1)

This section tightens the path-length bound to O(n2/3 log4/3 n), thereby proving Lemma 1.1.
The main difference versus Section 3.2 is a better potential function associated with subprob-

lems. The 3/4 bound reduction in the number of path-active vertices, as stated in Lemma 3.5, is
indeed tight in the worst case. But the worst case only occurs when the number of ancestors is
equal to the number of descendents. When there is imbalance between the two, the reduction is
better. Consider, for example, the extreme that there are no descendents — then the number of
path active vertices reduces by 1/2 according to Lemma 3.4.

This section uses the following potential function for a subproblem s = (G,P ):

φ(s) = φ1(s)Cφ + φ2(s) , φ1(s) =
√

(α+ β)(δ + β) , φ2(s) = η = (α+ β + δ) ,

where Cφ > 1 is a parameter to be set later, α = |Anc(G,P )|, β = |Bridge(G,P )|, and δ =
|Desc(G,P )|. The main idea of φ1 is to capture imbalance by the geometric mean of the number of
ancestors and descendents, but bridges are included in both counts because bridges can eventually
become ancestors or descendents in induced subgraphs. This imbalance term is more important,
and hence weighted by Cφ. The second term φ2 is added to ensure the following lemma:

Lemma 3.8. η ≤ φ(s) ≤ (Cφ + 1)η, for η = |Anc(G,P )| + |Bridge(G,P )| + |Desc(G,P )|.

Proof. The first inequality is trivial: φ(s) ≥ φ2(s) = η. For the second, φ1(s) is maximized when
β = η, giving a total of φ(s) ≤ φ1(s)Cφ + φ2(s) = ηCφ + η.

The next step is to prove a bound analogous to Lemma 3.5 but for φ1(s).

Lemma 3.9. Consider any path-relevant subproblem s = (G,P ). Let α′, β′, and δ′ be random
variables denoting the total number of path ancestors, bridges, and descendents, respectively, in any
child path-relevant subproblems. Let φ′

1 =
√

(α′ + β′)(δ′ + β′). Then E[φ′
1] ≤ φ1(s)/

√
2.

Proof. First, observe that any pivots x sampled that are not related to the path can only reduce φ1

either by inactivating an ancestor, descendent, or bridge, or by converting a bridge to an ancestor
or descendent. Thus, the proof focuses on the final choice of x. Let α, β, and δ denote the number
of ancestors, bridges, and descendents, respectively, of path P just prior to the final choice of x at
this point. Thus

√

(α+ β)(δ + β) ≤ φ1(s). Let η = α+ β + δ.
Note that β ≥ 1 because a path-relevant subproblem must have a nonempty path and hence at

least one bridge. The implication is that all of the divisors below are nonzero.
The proof focuses on the sums α′ + β′ or δ′ + β′. The value α′ can increase by changing

bridges to ancestors, but the sum α′ + β′ cannot. Applying Lemma 3.4 in the current notation,
E[α′ + β′] ≤ α/2 + β.
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The remainder of the proof is analogous to proof of Lemma 3.5, with φ′
1 = 0 if x is a bridge.

E
[

φ′
1

]

=

(

α

η

)

E[φ′
1|x ∈ Anc(G,P )] +

(

δ

η

)

E[φ′
1|x ∈ Desc(G,P )]

≤
(

α

η

)

E
[

√

(α′ + β′)(δ + β)
]

+

(

δ

η

)

E
[

√

(α + β)(δ′ + β′)
]

≤
(

α

η

)

√

(E[α′ + β′])(δ + β) +

(

δ

η

)

√

(α+ β)(E[δ′ + β′]) (by Jensen’s inequality)

<

(

α

η

)

√

(α/2 + β)(δ + β) +

(

δ

η

)

√

(α+ β)(δ/2 + β) (Lemma 3.4)

=

(

α

η

)

√

(1/2)(1 +
β

α+ β
)(α+ β)(δ + β) +

(

δ

η

)

√

(1/2)(1 +
β

δ + β
)(α + β)(δ + β)

=

(

φ1(s)√
2

) α
√

1 + β
α+β + δ

√

1 + β
δ+β

η

≤
(

φ1(s)√
2

) α
(

1 + β
2(α+β)

)

+ δ
(

1 + β
2(δ+β)

)

η
(because

√
1 + y ≤ 1 + y/2 for y ≥ 0)

≤
(

φ1(s)√
2

)

(α+ β/2) + (δ + β/2)

η

= φ1(s)/
√
2 .

Before extending the bound to the full function φ, the following lemma says that partitioning
ancestors, bridges, and descendents arbitrarily across subproblems does not increase the potential.
This statement is obvious for φ2, so the lemma focuses on φ1.

Lemma 3.10. Consider any integers α1, α2, β1, β2, δ1, δ2 ≥ 0 with such that αi+δi > 0 =⇒ βi > 0.
Let α = α1+α2, β = β1+β2, and δ = δ1+ δ2. Then

√

(α1 + β1)(δ1 + β1)+
√

(α2 + β2)(δ2 + β2) ≤
√

(α+ β)(δ + β).

Proof. If β1 = 0 or β2 = 0, the claim is trivial. (By assumption, β1 = 0 for example implies that
α1 = 0 and δ1 = 0.) Suppose instead that neither is zero.

Let y = α+ β and yi = αi + βi. Similarly let z = δ + β and zi = δi + βi. Both y > 0 and z > 0
by assumption on β > 0. Let ǫy = y1/y and ǫz = z1/z. The proof focuses on a more general split
of y = y1 + y2 and z = z1 + z2.

It suffices to show that for all 0 ≤ ǫy, ǫz ≤ 1 that
√
ǫyy · ǫzz +

√

(1− ǫy)y · (1− ǫz)z ≤ √
yz,

or equivalently (dividing both sides by
√
yz) that

√
ǫyǫz +

√

(1− ǫy)(1 − ǫz) ≤ 1. Fix any ǫy,

treating
√
ǫy and

√

1− ǫy as constants. The expression is maximized at ǫz = ǫy, so
√
ǫyǫz +

√

(1− ǫy)(1 − ǫz) ≤ ǫy + (1− ǫy) = 1, which completes the proof.

Finally, the following lemma considers the full potential φ.

Lemma 3.11. Consider any path-relevant subproblem s = (G,P ), and let s1 and s2 be random
variables denoting its child subproblems in the flattened path-relevant tree (with φ(si) = 0 if the
child does not exist). Then E[φ(s1) + φ(s2)] ≤ φ(s)(1/

√
2 + 2/

√

Cφ).
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Proof. Let α, β, and δ denote the number of ancestors, bridges, and descendents, respectively,
of path P initially. Let α′, β′, and δ′ be random variables denoting the total number of path-
active ancestors, bridges, and descendents after partitioning around x. Let η = α + β + δ and
η′ = α′ + β′ + δ′. Observe that η = φ2(s) and η′ = φ2(s1) + φ2(s2).

Lemma 3.9 already bounds the impact of the partitioning on φ1, so the goal here is to consider
the contribution of φ2 to the total. There are two cases depending on the degree of imbalance
between α and δ. Assume without loss of generality that α ≥ δ.

Case 1: δ ≤ α/Cφ. In this case, the imbalance causes φ2 to decrease significantly. We have

E[η′] = (α/η)E[η′ |x ∈ Anc(G,P )] + (δ/η)E[η′ |x ∈ Desc(G,P )]

≤ (α/η) · (E[α′ + β′] + δ) + (δ/η) · (η)
≤ (α/η) · (α/2 + β + δ) + δ (Lemma 3.4)

≤ α(α + β) + αβ

2η
+ 2δ

≤ η2

2η
+

αβ

2η
+

2α

Cφ
(η ≥ α+ β)

≤ η/2 +
((α+ β)/2)2

2η
+

2η

Cφ

≤ η/2 + η/8 + 2η/Cφ

< φ2(s)/
√
2 + 2φ(s)/Cφ .

Adding the contribution from φ1 and φ2 gives

E[φ(s1) + φ(s2)] = E[φ1(s1) + φ1(s2)] · Cφ + E[φ2(s1) + φ2(s1)]

≤ E[
√

(α′ + β′)(δ′ + β′)] · Cφ + E[η′] (Lemma 3.10)

≤ φ1(s)/
√
2 · Cφ +E[η′] (Lemma 3.9)

≤ φ1(s)/
√
2 · Cφ + φ2(s)/

√
2 + 2φ(s)/Cφ (reduction to η′ above)

= φ(s)/
√
2 + 2φ(s)/Cφ

= φ(s)(1/
√
2 + 2/Cφ) .

Case 2: δ > α/Cφ. In this case, φ1(s) dominates by so much that it does not matter whether
φ2(s) decreases at all. Specifically, φ1(s) =

√

(α+ β)(δ + β) >
√

(α + β)(α + β)/Cφ = (α +
β)/
√

Cφ ≥ (φ2(s)/2)/
√

Cφ, where the last step follows because α ≥ δ =⇒ α + β ≥ η/2. We
therefore have φ(s) ≥ φ1(s)Cφ ≥ φ2(s)(

√

Cφ/2), implying φ2(s) ≤ 2φ(s)/
√

Cφ. The reduction to

φ2 is thus irrelevant. Putting everything together, E[φ(s1) + φ(s2)] ≤ φ1(s)/
√
2 · Cφ + φ2(s) ≤

φ(s)/
√
2 + 2φ(s)/

√

Cφ = φ(s)(1/
√
2 + 2/

√

Cφ).

The worse of the two cases is the second, yielding E[φ′] ≤ φ(s)(1/
√
2 + 2/

√

Cφ).

As before, define Φ(Ir) =
∑

s∈Ir φ(s), where Ir is the collection of subproblems at level-r in the

flattened tree. Choose Cφ = 8 lg2 n. Linearity of expectation yields the following:

Corollary 3.12. Choose Cφ = 8 lg2 n, where n is the initial number of vertices in the input graph

Ĝ. Then given any collection Ir−1 of subproblems, E[Φ(Ir)|Ir−1] ≤ Φ(Ir−1)√
2

(1 + 1/ lg n).
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Algorithm 2: Modified sequential algorithm for shortcutting

SeqSC2(G = (V,E))
1 if the recursion depth is lg n then return ∅
2 S := ∅
3 while V 6= ∅ do

4 select a vertex x ∈ V uniformly at random
5 R+ := R+(G, x)
6 R− := R−(G, x)
7 S := S ∪ {(x, v)|v ∈ R+} ∪ {(u, x)|u ∈ R−} // add shortcuts to/from vertices

// having paths from/to x, resp.

8 VB := R+ ∩R− ; VS := R+\VB ; VP := R−\VB ; VR := V \(VB ∪ VS ∪ VP )
9 S := S ∪ SeqSC2(G[VS]) ∪ SeqSC2(G[VP ])

10 G := G[VR]

11 return S

Proof Lemma 1.1. The proof is analogous to Lemma 3.7. There are two key differences:
the initial potential is higher, at Φ(I0) ≤ (Cφ + 1)n ≤ 9 lg2 n according to Lemma 3.8, and
the reduction of active vertices with each round is slightly worse, at (1/

√
2)(1 + 1/ lg n) from

Corollary 3.12. Assuming n ≥ 16 so that (1/
√
2)6(1 + 1/ lg n)6 < 1/2, Theorem 2.1 implies

Pr
{

Φ(Ir+8) > (1/
√
2)r(1 + 1/ lg n)r(9n lg2 n)

}

< 1/2. As before, Lemma 3.8 states that Φ(Ir+8) is
an upper bound on the number of active vertices and hence also the total length of all remaining
subpaths. Thus, by Lemma 3.3, running the algorithm to level r+8 is enough to yield a shortcutted
path of length at most O(2r)+Φ(Ir+8) ≤ O(2r)+O((1/

√
2)r(1+1/ lg n)rn lg2 n) with probability at

least 1/2. For r = O(lg n), this reduces to O(2r)+Φ(Ir+8) ≤ O(2r)+O((1/
√
2)rn lg2 n). Choosing

r = (2/3)(lg n+ 2 lg lg n) + Θ(1) balances the terms and yields a path of length O(n2/3 log4/3 n).

3.4 Runtime and Number of Shortcuts

This section completes the proof of Theorem 3.1 by analyzing the running time and number of
shortcuts added. As stated, however, the running time of Algorithm 1 is not worst case, so it does
not meet the promise of a Monte Carlo algorithm.

This section instead analyzes Algorithm 2. Algorithm 2 is obtained from Algorithm 1 by
replacing one of the recursive calls (specifically SeqSC1(G[VR])) with a loop. There is also a new
base case after lg n levels of recursion to make the bounds worst case, where (as always) n here
refers to the number of vertices in the original graph Ĝ. Aside from this one change, Algorithm 1
and Algorithm 2 are equivalent.

The following lemma indicates that the main path-length lemmas (Lemmas 3.7 and 1.1) still
hold even with the truncated execution. More precisely, proof of those lemmas only relies on the
execution reaching a depth much less than lg n in the flattened path-relevant tree.

Lemma 3.13. Consider an execution of Algorithm 1 and the corresponding flattened path-relevant
tree. When mapped to an execution of Algorithm 2 with the same random choices, the first lg n− 1
levels of the flattened tree all have recursion depth < lg n in Algorithm 2.

Proof. The flattened tree only merges some of the calls corresponding to G[VR]. Algorithm 2 merges
all such nodes, which can only reduce the depth of nodes further.

The next lemmas bound the number of shortcuts and running time.
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Lemma 3.14. Consider a graph Ĝ = (V̂, Ê), and let n =
∣

∣

∣
V̂
∣

∣

∣
. Each execution of Algorithm 2

creates O(n log n) shortcuts.

Proof. Consider a call to SeqSC2(G) on G = (V,E). Each shortcut added removes a vertex: if,
e.g., (x, v) is created, then either x ∈ VB or x ∈ VS , both of which sets are removed from G at the
end of the iteration. Thus, there can be at most |V | arcs added.

There are potentially many recursive subproblems, but by the same argument they are all
disjoint subgraphs. Thus, the total number of arcs added at each level of recursion is O(n). There
are O(lg n) levels by construction, which completes the proof.

Lemma 3.15. Consider a graph Ĝ = (V̂, Ê), and let n =
∣

∣

∣
V̂
∣

∣

∣
and m =

∣

∣

∣
Ê
∣

∣

∣
. Algorithm 2 can be

implemented to run in O(m log n) time.

Proof. Proof is similar to Lemma 3.14, getting O(m) total time at each level of recursion, assuming
that the call SeqSC2(G) can be made to run in O(|V | + |E|) time. Given a sample x ∈ V , it is
straightforward to implement each search, and build the induced subgraphs, to run in time O(a)
where a is the number of arcs explored. Each arc is only explored by one search in each direction, so
the total number of arcs visited is O(|E|). Finally, sampling vertices can be achieved by randomly
permuting the vertices up front, iterating over that list, and checking whether the vertex has already
been visited by a search. This takes a total of O(|V |) time

Proof of Theorem 3.1. The full algorithm consists of Θ(log n) independent runs of Algorithm 2.
For each related pair u � v, each run has probability ≥ 1/2 of reducing the distance between those
vertices to O(n2/3 log4/3 n) by Lemma 1.1. Thus, a Chernoff bound across Θ(log n) runs gives a
high-probability result, i.e., failure probability at most 1/nc+2 for any constant c. There are only
n2 related pairs of vertices, so a union bound across all of them gives a failure probability of at
most 1/nc. If there are no failures, then the stated diameter is achieved. The running time and
number of shortcuts are obtained by multiplying the bounds from Lemmas 3.15 and 3.14 by the
Θ(log n) runs.

4 An Algorithm with Distance-Limited Searches

This section presents a modified algorithm that is more amenable to being parallelized. For now,
this algorithm can be viewed as a sequential algorithm — discussion of the parallel implementation
is deferred to Section 5. But the main ideas are guided by certain sequential bottlenecks. As in

Section 3, Ĝ = (V̂, Ê) and n =
∣

∣

∣
V̂
∣

∣

∣
are used only to refer to the original graph.

There are two main obstacles to parallelizing Algorithm 2, but the first is more serious. Finding
the set R−(G,x) or R+(G,x) entails a graph search, which can have linear span in a high-diameter
graph. The solution for this problem is to modify the algorithm to use aD-limited BFS , returning
only the vertices within D hops of the source x, but doing so introduces some other difficulties.
This section thus focuses on modifying the algorithm to work with distance-limited searches for
appropriate distance D.

The second obstacle is best exhibited by the loop in Algorithm 2. If there are no arcs in the
graph, for example, the loop requires Ω(n) iterations. The solution is to perform multiple pivots in
parallel, but in a controlled way that does not sacrifice much performance.

The full algorithm is given in pseudocode as Algorithm 3. Section 4.1 walks through the
ideas incrementally, guided by rough intuitions behind the analysis. The key performance lemma,
analogous to Lemma 1.1, is the following:
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Lemma 4.1. Let Ĝ = (V̂, Ê) be a directed graph, let n =
∣

∣

∣
V̂
∣

∣

∣
, let m =

∣

∣

∣
Ê
∣

∣

∣
, and assume without

loss of generality that m ≥ n/2.
Consider any directed path P̂ from u to v with length(P̂ ) ≤ D, for D = Θ(n2/3 log4/3 n). Let S

be the shortcuts produced by an execution of Algorithm 3 on Ĝ starting with h = lg n. Then with
probability at least 1/2: (1) there exists a path from u to v in GS = (V̂, Ê ∪ S) with length at most
D/2, (2) the number of shortcuts produced is |S| = O(n log2 n), and (3) the total number of vertices
and arcs visited by searches is O(m log2 n). Moreover, the maximum distance used for any search
is O(n2/3 log14 n);

Using multiple runs of Algorithm 3 (see Section 4.3) yields the following:

Theorem 4.2. There exists a randomized algorithm that takes as input a directed graph Ĝ =

(V̂, Ê) and uses distance-limited searches with the following guarantees. Let n =
∣

∣

∣
V̂
∣

∣

∣
, m =

∣

∣

∣
Ê
∣

∣

∣
,

and without loss of generality m ≥ n/2. Then (1) the maximum distance used for any search
is O(n2/3 log14 n); (2) the algorithm produces a size-O(n log4 n) set S∗ of shortcuts; (3) the total
number of vertices and arcs visited by searches is O(m log4 n+n log8 n), and the searches dominate
the overall number of primitive operations performed; and (4) with high probability, the diameter
of GS∗ is O(n2/3 log4/3 n),

Updated notation. If there exists a path with length at most d from u to v, then u �d v. If
u �d v or v �d u, then u and v are d-related . All of the notations and definitions in Section 2 that
depend on � (i.e., successors, predecesors, ancestors, descendents, bridges) are augmented with the
term “d-limited” and a subscript d to indicate that the � in the definition should be replaced by
�d. For example, R+

d (G,x) = {v|x �d v} denotes the d-limited successors of x.

4.1 The Algorithm

The main goal is to replace the searches R+(G,x) in Algorithms 1 and 2 with D-limited searches,
for D = Õ(n2/3). The good news is that Lemma 3.4 still holds when restricted to pivots drawn from
D-limited ancestors. The bad news is that Lemma 3.2 does not hold. For concreteness, consider a
path 〈v0, v1, . . . , vℓ〉. It is possible, for example, that x �D v2k but x 6�D v2k+1 for all 0 ≤ k < ℓ/2.
Thus all the even vertices would be in VS and all the odd ones would be in VR, splitting the path
into Θ(ℓ) pieces with no potential to shortcut them later. In contrast, when the search is not
D-limited, x � vi implies x � vk for all k ≥ i, so VS contains a single contiguous subpath.

The solution is to extend the search a little further and duplicate vertices. That is, start with
a distance of dD, for some d = Õ(1). Any vertices reached this way are called core vertices,
and they are treated similarly to reached vertices in Algorithm 1. Then extend the search a little
farther: to a distance of (d + 1)D. Vertices discovered in the extended search are called fringe

vertices, denoted by F+ and F− in the code. Fringe vertices F+ and incident arcs are duplicated
(similarly for F−), belonging to both G[VR] and G[VS ∪ F+].

The addition of fringe vertices fixes the path-splitting problem, giving an analog of Lemma 3.2,
at least for paths of length ℓ ≤ D. Consider again the bad example where x �dD v2k but x 6�dD

v2k+1. All of the even vertices are core vertices, but now all of the odd vertices are fringe vertices.
Thus, the entire path is indeed contained in the subgraph G[VS ∪ F+]. We still reason about the
path being split across subproblems, but fringe vertices on the path can be treated as belonging to
whichever subproblem is better.

Unfortunately, duplicating fringe vertices introduces another problem — path-related fringe
vertices can be active in multiple subproblems, thereby destroying the progress bound on Φ. In the

14



Algorithm 3: Shortcutting algorithm with distance-limited searches.

ParSC(G = (V,E), h)
/* The value h indicates how many more levels of recursion to perform. ǫπ, Nk, NL,

and D are all global parameters (independent of subproblem) set later. */

1 if h = 0 then return ∅
2 S := ∅
3 randomly permute V , giving vertex sequence X = x1, x2, . . . , x|V |. Mark each xj live
4 split X into subsequences X1, X1, . . . , X2k, with |Xi| = |Xk−i+1| = ⌊(1 + ǫπ)

i⌋ for i < k

and |Xk| = |Xk+1| ≤ ⌊(1 + ǫπ)
k⌋

5 for i := 1 to 2k do

6 choose random d ∈ {1, 2, . . .NL − 1}
7 d := d+ hNkNL − iNL // add the distance offset

8 foreach live xj ∈ Xi do

9 R−
j := R−

dD(G, xj) ; R+
j := R+

dD(G, xj) // core vertices

10 F−
j := R−

(d+1)D(G, xj)\R−
j ; F+

j := R+
(d+1)D(G, xj)\R+

j // fringe vertices

11 S := S ∪
{

(xj , v)|v ∈ R+
j ∪ F+

j

}

∪
{

(u, xj)|u ∈ R−
j ∪ F−

j

}

// add shortcuts

12 append a tag of j to all vertices in R+
j ∪R−

j

13 foreach live xj ∈ Xi do

14 remove from R+
j , R

−
j , F

+
j , and F−

j vertices with a tag < j // first core search wins

15 VB,j := R+
j ∩R−

j ; VS,j := R+
j \VB,j ; VP,j := R−

j \VB,j

16 S := S ∪ ParSC(G[VS,j ∪ F+
j ], h− 1) ∪ ParSC(G[VP,j ∪ F−

j ], h− 1) // include fringe

17 mark all vertices in
⋃

j(R
+
j ∪R−

j ) as dead in X

18 VR := V \⋃j(R
+
j ∪R−

j )

19 G := G[VR]

20 return S

worst case, almost all of the active vertices could be fringe vertices, and the total number of active
vertices could thus increase drastically after partitioning around pivot x.

The solution is to select d (for search distance dD) randomly from the range d ∈ {1, 2, . . . , NL − 1},
for some NL = Õ(1) to be chosen later.8 Any vertices in the fringe for distance dD are in the core
for distances d′D, d′ > d. Thus, on average, only an O(1/NL) fraction of vertices are on the fringe.
For large enough NL, the addition of these fringe vertices does not impact φ(s) much.

It is also important that the distances searched never increases. This is because any progress
towards the number of active vertices is with respect to a particular search distance dD. The
algorithm therefore selects from NL distance options, but offset by some value to reflect future
decreases. With each choice of pivot(s), the offset decreases by at least NL. More precisely, as in
Algorithm 2, the main subroutine consists of a sequence of iterations, where some pivots are chosen
in each iteration. The total number of iterations is bounded by some value Nk, meaning that the
full range of distances effectively owned by a single call has size NkNL. Each time the recursion
depth increases, the offset decreases accordingly by NkNL. We thus use a starting offset of hNkNL,
where h is the number of levels of recursion to perform. As long as h = Õ(1), Nk = Õ(1), and
NL = Õ(1), the maximum distance searched is Õ(D) = Õ(n2/3) as desired.

8Read NL as “number of layers”.
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Algorithm 4: Diameter reduction with distance-limited searches.

ParDiam(Ĝ = (V̂, Ê))
1 for i := 1 to Θ(logn) do
2 foreach j ∈ {1, 2, . . . ,Θ(logn)} do

3 Sj := ParSC(G′, lg n), aborting if number of shortcuts or work exceeds Lemma 4.1

4 Ê := Ê ∪
(

⋃

j Sj

)

// add more arcs to Ĝ

5 return Ĝ

Searches from Multiple Pivots

In addition to being more parallelizable, searching from multiple pivots is also necessary to keep
Nk = Θ(log1+ǫπ n) = Θ(log n/ǫπ) low, where 0 < ǫπ ≤ 1 is chosen later.

A single recursive call ParSC consists of a sequence of iterations, like Algorithm 2 flattening
the recursion of G[VR]. Each iteration proceeds as follows. First, sample a set {xj} of pivots and
perform independent searches from each of them, determining both the dD-limited core (R+

j and

R−
j ) and the (d + 1)D-limited fringe (F+

j and F−
j ) of each pivot. Add shortcuts to and from all

reached vertices. To roughly simulate the effect of selecting one pivot at a time, if a vertex is part
of xj’s core, then it is removed from the core and fringe sets for any x′j with j′ > j. Next, calculate

the sets VS,j and VP,j as in Algorithms 1 and 2 and launch the recursive subproblems G[VP,j ∪F−
j ]

and G[VS,j ∪ F+
j ]. Finally, remove all core vertices from the graph and start the next iteration.

Algorithm 3 uses the following process to control the pivot sampling. Randomly permute all of
the vertices at the start of the call, creating a sequence x1, x2, . . . of pivots to consider. All pivots
are initially live; the live pivots are those still in the graph. In each iteration, select the next group
of pivots from the sequence, where the size of the group is discussed below. Perform searches from
each live pivot, and ignore the dead ones. When a core vertex is removed from the graph, the
vertex is also marked dead in the pivot sequence.

Number of pivots. The number of pivots (live or dead) selected in each iteration is controlled
by the parameter 0 < ǫπ ≤ 1. For the first Θ(1/ǫπ) iterations, only one pivot is used. In subsequent
iterations, the number of pivots increases geometrically by roughly (1 + ǫπ). Were the only goal to
keep the number of times a vertex is reached in a search to O(log n), setting ǫπ = 1 and following
the geometric increase would be sufficient. To bound the number of times a path can split in a single
iteration, however, it is important to achieve a tighter bound. There are 2k iterations total, where
k is chosen to be large enough to include all vertices according to the following group sizes. The
first k iterations follow a geometric increase, and the next k iterations follow a geometric decreases.
More precisely, the number of pivots considered in both iteration i and 2k − i + 1 is ⌊(1 + ǫπ)

i⌋,
but iterations 2k and 2k + 1 can be smaller.

4.2 Notation and Shorthand

It is often convenient to refer to iterations of the loop in Algorithm 3. During iteration i, quite a
bit happens: some pivots are processed, some searches are performed, some induced subgraphs are
built, etc, and the claims throughout refer to those objects. Defining every term concretely in every
lemma statement or proof gets tedious and unwieldy. Instead, this paper adopts some notational
conventions consistent with the pseudocode in Algorithm 3, using the variables to implicitly adopt
the meaning of the code.
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Concretely, for iteration i on graph G = (V,E), the following notations are used with the same
meaning as the pseudocode: h, Xi meaining the pivot sequence, and d meaning the random distance
chosen. Moreover, for each xj ∈ Xi, whenever notations R+

j , R
−
j , F

+
j , F−

j , VS,j, or VP,j appear,
they should also be interpreted to have the meaning laid out in the pseudocode.

Min and max distances. In each iteration i, the algorithm chooses a random distances in some

size-(NL − 1) range, but at an offset that depends on the iteration. The values d̄ and
a

d denote the

bounds of the range, i.e., drawing random d ∈
{

d̄, d̄+ 1, . . . ,
a

d− 1
}

. Here d̄ = hNkNL − iNL + 1,

and
a

d = hNkNL − (i − 1)NL. The minimum possible search distance for a core search is d̄D.

The maximum possible search distance for a fringe search is
a

dD. Note that d̄ and
a

d both rely
on the current iteration i and recursion height h, which is consistent with the general notational
shorthand. These min and max distances are useful for classifying vertex relationships as follows:

Definition 4.3. Consider any iteration i of Algorithm 3.

• Vertices u and v are never related if u 6�a

dD
v and v 6�a

dD
u.

• Vertices u and v are partly related if u �a

dD
v or v �a

dD
u.

• Vertices u and v are fully related if u �d̄D v or v �d̄D u. If u and v are fully related, then
they are also partly related.

When comparing a vertex v and a path P , the same terms apply in the natural way. For example,
if v is fully related with any vertex in P , then v and P are fully related.

4.3 Full Diameter-Reduction Algorithm and Proof of Theorem 4.2

Like the algorithm in Section 3, to achieve diameter reduction with high probability requires mul-
tiple passes of Algorithm 3. But now more passes are necessary. The full algorithm, shown in
Algorithm 4, is as follows. Perform Θ(log n) iterations. In each iteration, perform Θ(log n) inde-
pendent executions of Algorithm 3 on the current graph. Add to the graph all of the shortcuts
produced thus far, and continue to the next iteration on the updated graph.

The main reason for the extra passes of Algorithm 3 is that, due to the Õ(D)-limited searches,
the analysis only considers paths of length D. The distance D is chosen to be large enough so
that each iteration is enough to reduce the length of the path to D/2, with high probability, but a
longer path needs to be subdivided.

Proof of Theorem 4.2, assuming Lemma 4.1. Consider any two vertices u ≺ v ∈ V . Let ∆i denote
the length of the shortest path from u to v in the graph after iteration i of the outer loop of
Algorithm 4. The main claim is that with high probability, ∆i ≤ D ·maxn/(D2i), 1. Thus, when
Algorithm 4 returns, the diameter bound is met.

The proof is by induction on i. For i = 0, the length of the shortest path is at most n, so
∆0 ≤ n = D ·n/(D20). For the inductive step (going from iteration i to i+1), consider the shortest
path P from u to v in the current graph. If length(P ) ≤ D, then the path is already short enough.
Otherwise, subdivide the path into at most (n/(D2i)) subpaths, each of subpaths, each of length
at most D. Consider each subpath. By Lemma 4.1, a single execution of Algorithm 3 shortens
the subpath’s length to D/2 with constant probability. Thus, using a Chernoff bound, Θ(log n)
runs shorten the subpath to D/2 with high probability. Taking a union bound over all subpaths
gives high probability that all subpaths are shortened. Concatenating the subpaths yields a path
of length (D/2) · n/(D2i) = n/(D2i+1).
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The search distance follows directly from Lemma 4.1. The number of shortcuts follows from
Lemma 4.1 by multiplying by the number of Θ(log2 n) runs. As for the bound on total number of
arcs visited, observe that the graph size is at most Ê+O(n log4 n) at the end. Thus, by Lemma 4.1,
each run of Algorithm 3 visits O((m log4 n) log2 n) = O(m log6 n) arcs. Multiplying by Θ(lg n) runs
completes the proof.

4.4 Bounds on Number of Vertices Searched

This section bounds the number of times each vertex can be searched in each iteration of the main
loop in Algorithm 3. The main lemma, stated next, is used to prove two corollaries. The first
corollary says that, with high probability, a vertex is not searched more than O(log n) times, where

n =
∣

∣

∣
V̂
∣

∣

∣
. The second corollary gives a tighter bound, but only in expectation.

Lemma 4.4. Consider any iteration i of the loop in the call ParSC(G = (V,E), h). Let y =
∑i−1

i′=1 |Xi| be the number of pivots processed before iteration i begins. Let Gi = (Vi, Ei) be the
remaining subgraph at the start of the iteration and let τ = |V | lnn/y for any n ≥ 2.9 Then for
every v ∈ V and constant c ≥ 2:

With probability at least 1− 1/nc−1: either v 6∈ Vi, or
∣

∣

∣
R−

a

dD
(Gi, v)

∣

∣

∣
≤ cτ and

∣

∣

∣
R+

a

dD
(Gi, v)

∣

∣

∣
≤ cτ .

Proof. All searches before iteration i have distance larger than
a

dD. Moreover, arcs are not added

to the graph on each iteration, so the number of
a

dD-limited predecessors of v can only decrease or
stay the same with each iteration. Thus, if v is to end with > cτ live predecessors, it must have
> cτ live predecessors the entire time. The remainder of the proof bounds the probability of that
event occurring. The argument for successors is symmetric.

For y < c ln n, the claim is vacuous, so consider instead that y ≥ c lnn. Let x1, x2, . . . , xy denote

the sequence of pivots chosen before iteration i begins. While the number of
a

dD-limited predecessors

is above threshold, there are at most |V | choices of xj so we have Pr
{

xj live and xj �a

dD
v
}

≥
cτ/ |V | = c lnn/y. Thus, for y ≥ c lnn,

∏y
j=1 Pr

{

xj dead or xj 6�a

dD
v
}

≤ (1 − c lnn/y)y ≤
1/ec lnn = 1/nc. Taking the union bound across the two failure events (predecessors and successors)
gives failure probability 2/nc < 1/nc−1 for n ≥ 2.

Corollary 4.5. Choose any ǫπ ≤ 1. Consider any iteration i and let Xi be the random set of pivots

selected. Then with high probability with respect to n, no vertex is
a

dD-related to more than O(log n)
live pivots in Xi.

Proof. Use G = (V,E) to refer to the graph at the beginning of the call, before the first iteration
of the loop. Let y be the number of pivots considered before the iteration in question, and let v be
a vertex to analyze. By choice of ǫπ, |Xi| ≤ 3y. (It can only be this large due to roundoff.)

Lemma 4.4 has failure probability 1/nc−1, where we can choose whatever constant c we want.
We can add the failure probabilities at the end by a union bound, so suppose for now that Lemma 4.4

applies. Then v has O(|V | log n/y) a

dD-limited predecessors and successors.
There are two cases. If y > |V | /8, then O(|V | log n/y) = O(log n). Searching from every

remaining vertex would thus only result in O(log n) searches reaching v. To complete the proof,
take a union bound across all v to get at most a nc−2 failure probability.

9The n here can be anything, but the intent is n =
∣

∣

∣
V̂
∣

∣

∣
, the number of vertices in the full graph.
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If y ≤ |V | /8, then y + |Xi| ≤ |V | /2. For every pivot position xj ∈ Xi, there are thus at
least |V | /2 options to draw from. So we have Pr {xj live and xj �dD v} = O(|V | log n/(y |V |)) =
O(log n/y) = O(log n/ |Xi|), where the last step follows from |Xi| ≤ 3y. Applying a Chernoff
bound across all |Xi| pivots, the number of searches that reach v is O(log n) with high probability.
To complete the proof, take a union bound across all v, adding the failure probabilities from the
Chernoff bound and Lemma 4.4.

Corollary 4.6. Consider any iteration i and vertex v, and suppose that ǫπ ≥ 1/n for n =
∣

∣

∣
V̂
∣

∣

∣
. As

long as |Xi| > 1, then the expected number of times that vertex v is visited by searches is O(ǫπ log n).

Proof. Let G = (V,E) denote the graph before the first iteration of the loop. Suppose that
Lemma 4.4 applies, so v has O(|V | log n/y) dD-limited predecessors and successors, where y is the
number of pivots processed before this iteration. The failure event can only increase the expectation
by an additive Pr {failure} · |V | ≤ (1/nc)n = 1/n = O(ǫπ).

The main observation is that when |Xi| > 1, i is not in one of the first or last Θ(1/ǫπ) iterations,
and the number of vertices |Xi| processed in this iteration is at most an O(ǫπ)-fraction of the number
of remaining vertices. Similarly, |Xi| = O(ǫπy).

If y > |V | /8, then O(|V | log n/y) = O(log n), meaning that v has only O(log n) dD-limited
predecessors or ancestors remaining. This iteration thus processes only O(ǫπ log n) of them in
expectation.

If y ≤ |V | /8, let Yj be an indicator random variable for the event that xj �dD v. Since there
are Ω(|V |) pivots to choose from, Pr {Yj} = O(|V | log n/(y |V |)) = O(log n/y). It follows that
E[
∑

xj∈Xi
Yj] = |Xi| ·O(log n/y) = O(ǫπ log n).

The next lemma bounds the number of fringe vertices and arcs explored in a single iteration i.
Note that a particular vertex may be a fringe vertex for multiple searches. The lemma counts the
total number of times that each vertex appears on the fringe. Similarly, arcs may be explored by
multiple fringe searches instance of the vertex, but just once per search. (An arc (u, v) is explored
by xj ’s fringe search if either u or v is a fringe vertex.)

Lemma 4.7. Consider an iteration i and NL ≥ 2. Let V ′ be any subset of the vertices remaining
in the graph, and let E′ be any subset of the arcs remaining in the graph. Then the total number of
fringe vertices also in V ′ is O(|V ′| log n/NL) in expectation over choice of distance. Similarly, the
total number of arcs explored by fringe searches is also in E′ is O(|E′| log n/NL) in expectation.

Proof. By Corollary 4.5, with high probability each vertex in V ′ is visited by at most O(log n)
searches (fringe or core). A failure event can only increase the expectation by an additive Pr {failure}·
∣

∣

∣
V̂
∣

∣

∣

2
≤ (1/nc)n2 ≪ log n for appropriate choice of constant c in the high-probability bound. Thus

the remainder of the proof assumes that each vertex is not visited too many times.
Fix any arbitrary set of pivots that satisfies Corollary 4.5. Consider any v ∈ V ′ and pivot xj .

Let Y v
j be an indicator random variable for the event that v is on xj ’s fringe, where Y

v
j = 0 if xj and

v are never related. For a partly related xj , v is only on the fringe at one distance, so Pr
{

Y v
j

}

≤
1/(NL−1) ≤ 2/NL. The total number of times v is on the fringe is thus E[

∑

xj∈Xi
Y v
j ] = O(log n) ·

(2/NL) = O(log n/NL). Summing across all v gives E[
∑

v∈V ′

∑

xj∈Xi
Y v
j ] = O(|V ′| log n/NL).

The same argument applies to arcs, observing that the arc is explored whenever its endpoints
are at the right distance.
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4.5 Setting Up the Path-Relevant Tree

The definition of path-relevant subproblems and the path-relevant tree differ slightly from Sec-
tion 3.1 to account for the key changes. Algorithm 2 looks closer to Algorithm 3 than Algorithm 1
does, so it is worth contrasting the changes with Algorithm 2.

Nodes in the (unflattened) path-relevant tree are analogous to those in Section 3.1. Each
node corresponds to an iteration of the for loop in Algorithm 3, and associated with the node is the
path-relevant subproblem (G,P ) at the start of the iteration. Analogously, each node in Section 3.1
corresponds to an iteration of while loop in Algorithm 2.

The following lemma, analogous to Lemma 3.2, considers the effect of an iteration on the path-
relevant subproblems. Unlike Lemma 3.2, there may be more than two path-relevant subproblems.

Lemma 4.8. Let P = 〈v0, . . . , vℓ〉 be a nonempty path in G = (V,E) with ℓ ≤ D and consider
the effect of a single iteration of the for loop in Algorithm 3. Let Xi be the set of pivots selected
for this iteration, and let d be the distance chosen for the core search. Then the following are the
outcomes:

1. (Base case.) If Xi contains a live dD-limited bridge of P , then the shortcuts (v0, x) and
(x, vℓ) are created. There are no path-relevant subproblems.

2. If none of the live pivots in Xi are dD-related to P , then P is entirely contained in G[VR];
the one path-relevant subproblem is thus (G[VR], P ) — the next iteration of the for loop.

3. Suppose that just one live pivot in xj ∈ Xi is dD-related to P but it is not a bridge. Then
there exists a 2-way splitting P = P1 7→ P2 splitting of path P such that either (i) P1 is fully
contained in G[VR] and P2 is fully contained in G[VS,j ∪ F+

j ], or (ii) P1 is fully contained in

G[VP,j ∪ F−
j ] and P2 is fully contained in G[VR].

4. Suppose that r of the live pivots in Xi are dD-related to P but none of them are bridges.
Then there exists an (r + 1)-way splitting P = P1 7→ P2 7→ · · · 7→ Pr+1 corresponding to r
consecutive applications, in pivot order, of the 2-way split above. (Some of the paths Pi may
be empty.) It follows that (G,P ) gives rise to at most r + 1 path-relevant subproblems.

Proof. (Case 1.) Suppose that some dD-related bridge xj is selected. Then by definition there exist
vertices va, vb ∈ P such that va �dD xj �dD vb. Since the path has length at most D, it follows
that v0 �(d+1)D xj �(d+1)D vℓ. Since v0 and vℓ are within the fringe search distance, the claimed
shortcuts are added.

(Case 2.) None of the vertices are dD-related to P . Then none of the vertices in P are removed
from VR.

(Case 3.) If xj is a dD-limited ancestor. (The case for a descendent is symmetric.) Then there
exists a vertex vj ∈ P such that xj �dD vj . The vj be the earliest such vertex. Then xj �(d+1)D vj′

for all j′ ≥ j. Since xj is the first (and only) dD-related pivot in pivot sequence, none of those
vertices are in another pivot’s core. So vj , vj+1, . . . , vℓ ∈ R+

j ∪F+
j . Moreover, xj is not a bridge, so

none of them are in R−
j , meaning they are in VS,j ∪ F+

j .
(Case 4.) Consider the path-related pivots in permutation order, applying the above case

inductively.

As in Section 3, the bulk of the analysis is with respect to the flattened path-relevant tree. The
question is when nodes should be flattened. The most natural choice — flatten when case 2 applies
— turns out not to work. The problem is that knowing whether the searches reached the path
reveals information about the distance chosen, which changes the distributed over fringe searches.
Notably, Lemma 4.7 requires the full range of distance choices.
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Instead, an iteration is merged with the next iteration whenever the pivot xj is never related
with the path P . A node in the flattened tree thus consists of a sequence of iterations such that only
the last iteration selects a pivot that partly related with the path. A partly related vertex pivot
may, depending on choice of distance, result in the path splitting. But the analysis pessimistically
charges for the split.

The following lemma, analogous to Lemma 3.3, bounds the length of the path at depth-r in
the tree. Since the degree of each node in the tree is now a random variable, the bound here holds
with failure probability ≤ 1/8.

Lemma 4.9. Consider any graph Ĝ = (V̂, Ê) and any path P̂ from u to v with length(P ) ≤ D.

Consider an execution of Algorithm 3 starting with h = lg n, for n =
∣

∣

∣
V̂
∣

∣

∣
, with parameter ǫπ

satisfying ǫπ ≤ 1/ lg3 n. Let S be the shortcuts produced, and let {(G1, P1), . . . , (Gk, Pk)} denote
the set of path-relevant subproblems at level r ≤ lg n in the flattened path-relevant tree. Then with
probability ≥ 7/8, there is a u-to-v in GS = (V̂, Ê ∪ S) of length at most O(2r) +

∑k
i=1 length(Pi).

Proof. This proof focuses on showing that, with probability at least 7/8, the number of nodes in
the flattened path-relevant tree is O(2r). Otherwise the proof is the same as Lemma 3.3.

Number the nodes in a particular row as 1, 2, . . . , q. Each node selects at least one partly
path-related pivot. Let zt be random variables denoting the number of additional partly-path-
related pivots selected in node t of the tree. By Lemma 4.8, each pivot gives rise to at most one
additional child node. So the number of nodes in the next row is ≤∑q

j=1(2 + zt) = 2q +
∑q

t=1 zt.
If only one pivot is in the pivot set, then E[zt] = 0; otherwise, Corollary 4.6 implies E[zt] =
O(ǫπ log n) = O(1/ log2 n) in general. By Markov’s inequality, Pr {∑q

t=1 zt ≥ 8 lg n · E[
∑q

t=1 zt]} ≤
1/(8 lg n). Thus, with probability at least 1 − 1/(8 lg n), the number of nodes in the next row is
≤ 2q + 8 lg n · E[

∑q
t=1 zt] = 2q + 8 lg n · O(1/ log2 n) = 2q(1 + O(1/ log n)). Taking a union bound

across all r ≤ lg n rows, the probability that even one row increases by more than 2(1+O(1/ log n))
factor is at most 1/8. Assuming no such larger increase occurs, the total number of nodes in the
tree is ≤∑r

r′=0 2
r′(1 +O(1/ log n))r

′

=
∑r

r′=0 2
r′eO(1) = O(2r).

4.6 Progress on Path-Active Vertices

This section is analogous to Section 3.3. The goal is to argue that after (2/3) lg n+ o(log n) rounds
(or levels in the tree), the number of active vertices drops below D/2 with constant probability.
(Or rather, to select the right choice of D so that this is true.) Fortunately, the key lemmas from
Section 3.3 can still be applied, since they only rely on the asymmetry of Lemma 3.4. And although
multiple pivots may be selected in any iteration, the analysis only leverages the progress caused by
the first pivot in sequence order.

There are some differences to the analysis as well. Most notably, the additional of fringe nodes
increases the number of path-active vertices. That increase has an effect on the expected reduction
to the potential, which must be bounded here. It is possible for the potential to increase when
advancing to the next round. Theorem 2.1, however, requires that Φ never increase. This section
updates the definition of Φ and adds a little extra machinery.

Due to the distance-limited searches, the definition of path active is updated with respect to
being partly related. That is, a vertex v is path active at some level r in the flattened tree if (1) v
is part of some path-relevant subproblem at level r, and (2) v is partly related to the path in that
subproblem.

The potential function of a subproblem is the same as in Section 3.3, but with the updated
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definition of being path active. Concretely, for subproblem (G,P ),

φ(s) = φ1(s)Cφ + φ2(s) , φ1(s) =
√

(α+ β)(δ + β) , φ2(s) = η = (α+ β + δ) ,

where α =
∣

∣

∣
Anca

dD
(G,P )

∣

∣

∣
, β =

∣

∣

∣
Bridge a

dD
(G,P )

∣

∣

∣
, and δ =

∣

∣

∣
Desca

dD
(G,P )

∣

∣

∣
.

Fringe nodes. It is useful to track the provenance of vertices, treating fringe vertices as new
vertices. Specifically, a path-active vertex v is said to be preserved by the execution of a specific
node in the flattened tree if (1) v is still path active in a child node s′, and (2) v was not added to
s′ due to a fringe search. That is, if for example s′ operates on the graph G[VS,j ∪F+

j ], and v ∈ F+
j ,

then v is not preserved here. (But the vertex v could be preserved with respect to a different
subproblem.) Given this view of fringe nodes, the analysis can adopt the tools from Section 3 to
consider the effects of the core searches.

How to reason about the randomness. There is one key difference in the reasoning. Think
of the randomness in the following way: first, reveal enough of the randomness in the pivots just
to reveal which pivots are partly path related and fully path related, but not any more specific
than that. This first step is enough to determine whether the iteration is the final iteration of the
flattened node. Then determine the distance searched. Finally, resolve the specific pivot choices.
This process has the same probabilities of any outcome as Algorithm 3, but reasoning about the
randomness in this way helps.

For concreteness, here is a restatement of Lemma 3.4 in the new context. This version only
states a progress argument if the pivot selected is fully related to the path — the reason is that
a different argument will be applied for partly related pivots. Specifically, active vertices that are
not fully related to the path are, by definition, not related at any distance less than d̄D. All such
vertices are always inactive in child subproblems, regardless of random choices. The only unknown
is thus what happens to the fully-related active vertices.

Lemma 4.10. Consider any subproblem (G,P ). Let A = Ancd̄D(G,P ) be the fully-related an-
cestors of path P . Consider any search distance dD ≥ d̄D. Let xj be the first fully-related pivot
selected, and suppose that xj is drawn uniformly at random from A. Let ᾱ = |A|. Let ᾱ′ ≤ ᾱ
denote the number of vertices in A that are preserved. (Recall that preserved means with respect to
core searches only.) Then E[ᾱ′|x ∈ A] < ᾱ/2.

Proof. The proof is similar to Lemma 3.4, except that a subset of vertices is considered, and all
relationships are with respect to �dD instead of �. As before, the goal is to show that the preserves
relation is antisymmetric for all u, v ∈ A.

It is possible u ∈ A be a dD-limited bridge. (It is not a bridge at distance d̄D, but it could be
a bridge at greater distance.) Bridges do not have any path-relevant subproblems, so they do not
preserve any other vertices.

Consider any pair of vertices u, v ∈ A such that u preserves v. The logic follows proof of
Lemma 3.4 with the same two cases, summarized briefly here. If u �dD v, then v cannot preserve
u. If u and v are dD-unrelated, then consider the earliest vertices va with u �dD va and vb with
v �dD vb on the path. For u to preserve v, it must be that b < a, so v cannot also preserve u.

The other lemmas in Section 3.3, e.g., Lemma 3.11 essentially just build algebraically off
Lemma 3.4, so the analogs with respect to Lemma 4.10 hold with the same proof, but for two
issues that require care when applying the lemmas — Lemma 4.10 neither copes with fringe nodes
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nor with active vertices that are partly related but not fully related. Since the algebra remains the
same, these lemmas are not reproved.

Much of the complexity that follows arises from the specific choice of potential function. Using
just the linear function φ2, as in Section 3.2, would simplify many of the details. But the bound
would be worse.

The following lemma implies that fringe nodes can be cleanly factored-out of the φ. The number
f of fringe nodes is included twice in the φ1 term, which overcharges the contribution of fringe nodes.

Lemma 4.11. Consider any α ≥ 0, β ≥ 0, δ ≥ 0, and let η = α+β+δ. Let φ1 =
√

(α+ β)(δ + β)
and φ = φ1 · Cφ + η. For any f ≥ 0 and Cφ ≥ 2,

√

(α+ β + f)(δ + β + f) · Cφ + η + f ≤ φ(1 + 1/
√

Cφ) + 3fC2
φ .

Proof. Let y = α+ β and z = δ + β, and without loss of generality suppose that y ≤ z. Consider
the φ1 term first, and for ease of reference, use superscript f to refer to the version of the terms
including f , e.g., φf

1 =
√

(y + f)(z + f). We have φf
1 ≤ √

yz +
√
yf + zf + f ≤ φ1 +

√
2fz + f .

There are two cases.
Case 1: 2f ≤ z/C

3/2
φ . Then

√
2zf ≤

√

z2/C3
φ = z/C

3/2
φ ≤ η/C

3/2
φ . Putting everything

together gives φf = φf
1Cφ + η + f ≤ (φ1 + η/C

3/2
φ + f)Cφ + η + f = φ + η/

√

Cφ + f(Cφ + 1) ≤
φ(1 + 1/

√

Cφ) + 2fCφ.

Case 2: 2f > z/C
3/2
φ . Then

√
2fz ≤

√

(2f)(2fC
3/2
φ ) = 2fC

3/4
φ < 2fCφ. Putting everything

together gives φf = φf
1Cφ + η+ f ≤ (φ1 +2fCφ + f)Cφ + η+ f = φ+2fC2

φ + fCφ+ f ≤ φ+3fC2
φ

for Cφ ≥ 2.
Taking the larger of the two cases for each term proves the claim.

The next lemmas provide tools to address the active vertices that are not fully related to the
path. The lemmas themselves are purely algebraic and do not directly consider the random choices.
In the lemma, φ1 is meant to capture the potential of the subproblem, whereas φ̄1 captures the
potential just with respect to those vertices fully related to the path. The motivation for these
lemmas is that the potential always decreases down to φ̄ regardless of what pivot is selected. If
a fully related pivot gets selected, the potential reduces even further. The goal is to quantify the
balance between the cases, showing that the situation is at least as good as the situation in which
all vertices are fully path related. When Lemma 4.12 is applied, q shall be used to mean the result
of Lemma 3.11, i.e., q = (1/

√
2 +O(1/Cφ)).

Lemma 4.12. Let g(α, β, δ) be any function over the number of ancestors, bridges, and descen-
dents. Let ᾱ, β̄, and δ̄ be counts that could arise by removing relationships between vertices, i.e.,
reducing any counts or moving bridges to ancestors/descendents. Let p = (ᾱ+ β̄+ δ̄)/(α+β+δ ≤ 1.

Suppose g satisfies g(ᾱ, β̄, δ̄) ≤ √
p · g(α, β, δ) for all valid input values. Then for any q ≥ 2/3,

p · q · g(ᾱ, β̄, δ̄) + (1− p) · g(ᾱ, β̄, δ̄) ≤ q · g(α, β, δ) .

Proof. Substituting in g(ᾱ, β̄, δ̄) ≤ √
p · g(α, β, δ) gives p · q · g(ᾱ, β̄, δ̄) + (1 − p) · g(ᾱ, β̄, δ̄) ≤

pq
√
p · g(α, β, δ) + (1 − p)

√
p · g(α, β, δ) =

√
p(pq − p + 1)g(α, β, δ). The claim follows as long as√

p(pq− p+1) ≤ q. Treat q as a constant and observe how the function of p changes. For q = 2/3,
the expression on the left is maximized at p = 1, solving to exactly q. As q increases, the maximum
of the function shifts even further to the right, meaning that the expression is still maximized for
p ∈ [0, 1] at p = 1.
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Lemma 4.13. The function φ satisfies the conditions of Lemma 4.12. Notably use φ to mean the
potential applied to α, β, and δ, and φ̄ to mean the potential for ᾱ, β̄, and δ̄, where the remainder
of the notation is the same as Lemma 4.12. Then φ̄ ≤ √

p · φ.

Proof. Also define η = α + β + δ and η̄ = ᾱ + β̄ + δ̄. Use φ1 and φ2, respectively, to mean the
potential applied to values α, β, and δ. Similarly use φ̄1 and φ̄2 for ᾱ, β̄, and δ̄.

Bound φ1 and φ2 separately. The latter is trivial — φ2 = η, so η̄ = pη implies φ̄2 = pφ̄2 ≤
√
pφ̄2

for p ≤ 1. The φ1 bound is a little harder because β is double-counted in φ1.
To bound φ1, consider the following. The fraction p dictates how much α, β, and/or δ must be

reduced by in total. The worst case for the desired inequality is to maximize φ̄1. Without loss of
generality, suppose α ≤ δ, The φ̄1 term is maximized when ᾱ and δ̄ are kept as large and as balanced
as possible, so δ should be reduced first. If p(δ+β) > (α+β), then only δ should be reduced, giving
δ̄+ β̄ ≤ p(δ+β). The potential thus becomes φ̄1 =

√

(ᾱ+ β̄)(δ̄ + β̄) ≤
√

(α+ β)(p(δ + β)) =
√
p ·

φ1. If p is smaller, then consider two phases p1 and p2 with p = p1p2 and p1 = (α+β)/(δ+β). During
the first, the potential is maximized as above, leaving φ̄1 =

√
p ·φ1 as above. For the second phase,

α = δ, so the best choice to keep the expression maximized is to balance the reductions from both
counts simultaneously. For this regime, φ̄1 =

√

(ᾱ+ β̄)(δ̄ + β̄) ≤
√

p2(α+ β)p2(δ + β) = p2φ1.
Multiplying the two together gives a maximum value of p2

√
p1 · φ1 ≤

√
p1p2 · φ1.

The next lemma pulls together all the pieces to argue that the expected reduction on φ(s) is
still almost as good as previously.

Lemma 4.14. Consider any path-relevant subproblem s = (G,P ). Let s1, s2, . . . be random
variables denoting its child subproblems in the flattened path-relevant tree, and suppose NL ≥
C2.5
φ log n = Ω(log6 n). Then E[φ(s1) + φ(s2) + · · · ] ≤ (φ(s)/

√
2)(1 +O(1/

√

Cφ)).

Proof. Let i denote the iteration during which at least one pivot xj that is partly related to the

path P is selected. Before that, the potential can only decrease. Let α =
∣

∣

∣
Anca

dD
(G,P )

∣

∣

∣
denote the

number of partly path-related vertices in the graph G at the start of the iteration. Define β and δ
similarly for bridges and descendents, respectively. Let ᾱ = |Ancd̄D(G,P )| denote the number of
fully path-related ancestors at the start. Similarly for β̄ and δ̄.

If any of the pivots is a bridge, there are no path-relevant subproblems (Lemma 4.8) and the
potential is 0.

Suppose instead that no pivot beyond the first is a bridge, which can only increase the potential.
Then consider the pivots and corresponding partition steps in order, as in Lemma 4.8. Let s1
denote the recursive subproblem generated by the first pivot, and let s1,R denote the nonrecursive
subproblem corresponding to vertices not found by a the core searches. The second pivot partitions
s1,R into recursive problem s2 and remainder s2,R. The third pivot partitions s2,R, and so on. For
r pivots, the subproblems are s1, s2, . . . , sr, sr+1, where sr+1 = sr,R.

The goal is to bound E[
∑r+1

i=1 φ(si)] given that there is at least one partly path-related pivot.
For each of the subproblems, let ᾱi, β̄i, and δ̄i denote the number of fully path-related vertices
that are preserved, i.e., part of core searches. Let η̄i = ᾱ1 + β̄i + δ̄i. Only the fully related vertices
need be considered as these are the only ones that can be active at the next level. Also consider
the result ᾱ1,R, β̄1,R and δ̄1,R of the first search. Let fi denote the number of path-active fringe
nodes added, and let f =

∑r+1
i=1 fi. For simplicity, double-count the fringe vertices, giving us the

24



following:

r+1
∑

i=1

φ(si) ≤ φ(s1) +
r+1
∑

i=2

(φ1(si) + φ2(si))

≤ φ(si) +

(

√

(ᾱi + β̄i + fi)(δ̄i + β̄i + fi) + (η̄i + fi)

)

≤
√

(ᾱ1 + β̄1 + f1)(δ̄1 + β̄1 + f1) + (η̄1 + f1)

+

√

√

√

√

(

r+1
∑

i=2

(ᾱi + β̄i + fi)

)(

r+1
∑

i=2

(δ̄i + β̄i + fi)

)

+

r+1
∑

i=2

(η̄i + fi) (Lemma 3.10)

≤
(

1 +
1

√

Cφ

)(

√

(ᾱ1 + β̄1)(δ̄1 + β̄1) + (η̄1)

+

√

√

√

√

(

r+1
∑

i=2

(ᾱi + β̄i)

)(

r+1
∑

i=2

(δ̄i + β̄i)

)

+

r+1
∑

i=2

η̄i

)

+ 3fC2
φ (Lemma 4.11)

=

(

1 +
1

√

Cφ

)

(

√

(ᾱ1 + β̄1)(δ̄1 + β̄1) + η̄1

+
√

(ᾱ1,R + β̄1,R)(δ̄1,R + β̄1,R) + η̄1,R

)

+ 3fC2
φ (1)

At this point, the multiple pivots and the fringe nodes have all been extracted from the main

expression. Let φ̄′ =
√

(ᾱ1 + β̄1)(δ̄1 + β̄1) + η̄1 and φ̄′′ =
√

(ᾱ1,R + β̄1,R)(δ̄1,R + β̄1,R) + η̄1,R. The

sum φ̄′+ φ̄′′ looks exactly like the random variables generated from a single partition without fringe
nodes. Note that to this point, no expectation has yet been applied; all manipulations thus far are
just algebra on the random variables. Lemma 3.11 can thus be applied as long as the expectation
is performed in a way consistent with Lemma 4.10.

Lemma 4.10 applies if the pivot is fully path related. It does not if the pivot is only partly
path related. There are thus cases depending on how the first pivot x is classified. Let p =
(ᾱ + β̄ + δ̄)/(α + β + δ) be the fraction of partly path-related vertices that are fully related. Let
Fx be the event that x is fully related with the path. Let φ̄ =

√

(ᾱ+ β̄)(δ̄ + β̄) + ᾱ+ β̄ + δ̄. Then

E
[

φ̄′ + φ̄′′] = Pr {Fx} ·E
[

φ̄′ + φ̄′′|Fx

]

+ (1− Pr {Fx}) ·E
[

φ̄′ + φ̄′′|¬Fx

]

≤ p ·E
[

φ̄′ + φ̄′′|Fx

]

+ (1− p) · φ̄ (Lemma 3.10)

≤ p ·
(

1√
2
+

2
√

Cφ

)

φ̄+ (1− p) · φ̄ (Lemma 3.11)

≤
(

1√
2
+

2
√

Cφ

)

φ(s) (Lemmas 4.12 and 4.13)
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Substituting back into Equation 1 gives

E

[

r+1
∑

i=1

φ(si)

]

≤ 1√
2

(

1 + 1/
√

Cφ

)(

1 + 2
√
2/
√

Cφ

)

φ(s) + E[3fC2
φ]

≤ 1√
2

(

1 + 6/
√

Cφ

)

φ(s) + 3C2
φ · E[f ] for Cφ ≥ 4

≤ 1√
2

(

1 + 6/
√

Cφ

)

φ(s) + 3C2
φ · O((ᾱ+ β̄ + δ̄) log n/NL) (Lemma 4.7)

≤ 1√
2

(

1 + 6/
√

Cφ

)

φ(s) + 3C2
φ · O(φ(s) log n/NL)

≤ 1√
2

(

1 + 6/
√

Cφ

)

φ(s) + φ(s) · O(1/
√

Cφ) for NL ≥ C2.5
φ log n

=
1√
2

(

1 +O

(

1
√

Cφ

))

φ(s)

4.7 Analyzing the Layers in the Tree

Define the total potential Φ of a level as follows:

Φ(Ir) = (1 + cΦ/ lg n)
lgn−r

∑

s∈Ir

φ(s) ,

where Ir is the collection of subproblems corresponding to level r in the flattened tree and cΦ is a
constant to be set later.

Corollary 4.15. Suppose Cφ = Θ(lg2 n) and NL = Ω(lg6 n) Then there exists a large-enough
constant cΦ such that E[Φ(Ir)|Ir−1] ≤ Φ(Ir−1)/

√
2.

Proof. Choose cΦ large enough so that 1 + cΦ/ lg n is greater than the (1 + O(1/
√

Cφ)) = 1 +
O(1/ log n)) term in Lemma 4.14. The claim then follows from linearity of expectation over sub-
problems.

The real purpose of the extra (1 + cΦ/ lg n)
lgn−r factor is to offset any potential increases to

the subproblem potentials φ. With an unlucky number of active fringe vertices, it is possible that
Φ increase when going from one row to the next. Such an increase, called a fringe failure , would
preclude the application of Theorem 2.1, The next lemma shows that fringe failures are unlikely.

Lemma 4.16. There exist constants cΦ and cL such that: for Cφ = Θ(lg2 n) and NL ≥ cLC
3
φ lg n =

Ω(log7 n), Pr {Φ(Ir+1) > Φ(Ir)} ≤ 1/(8 lg n).

Proof. Even if all active vertices are preserved, Lemma 3.10 states that the subproblem potentials
∑

s φ(s) cannot increase without the addition of fringe nodes. The active fringe nodes themselves
have two contributions (see Lemma 4.11): a multiplicative (1 + O(1/

√

Cφ)) overhead, and an
additive 3C2

φf . The former does not depend on the number of fringe nodes, so choose cΦ/ lg n

to be say twice as large as the O(1/
√

Cφ) term. Thus for Φ to increase would require that the
total contribution from f fringe nodes exceed f ≥ cΦ/(2 lg n)

∑

s∈Ir φ(s). For large enough NL,
the expected number of fringe nodes is E[f ] = O(

∑

s∈Ir φ(s) log n/NL) ≤
∑

s∈Ir φ(s)/(3C
3
φ) giving
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an expected potential contribution of
∑

s∈Ir φ(s)/Cφ. For large enough cΦ and Cφ = Θ(lg2 n),

this expectation is at most cΦ/(16 lg
2 n)

∑

s∈Ir φ(s). Reaching the target threshold would require
being 8 lg n times the expectation, which occurs with probability at most 1/(8 lg n) by Markov’s
inequality.

To prevent Φ from increasing at all, instead define Φ′ to be equal to Φ, except that it drops
to 0 when a fringe failure occurs. It follows that (1) Φ′ never increases, and (2) E[Φ′(Ir+1|Ir] ≤
E[Φ(Ir+1|Ir]. Theorem 2.1 can now be applied.

Lemma 4.17. Let Ĝ = (V̂, Ê) be a directed graph, and let n =
∣

∣

∣
V̂
∣

∣

∣
. There exists a setting of

D = Θ(n2/3 log4/3 n), Cφ = Θ(log2 n), NL = Θ(log7 n), and ǫπ = O(1/ log3 n) such that the
following holds.

Consider any directed path P̂ with length(P̂ ) ≤ D from u to v. Let S be the shortcuts produced
by an execution of Algorithm 3 on Ĝ with starting h = lg n. Then with probability at least 5/8:
there exists a path from u to v in GS = (V̂, Ê ∪ S) consisting of at most D/2 arcs.

Proof. The starting value of Φ′(I0) ≤ (1 + cΦ/ lg n)
lgn(Cφ + 1)n = O(n log2 n). For large enough

constant w, Theorem 2.1 states that Pr
{

Φ′(Ir+w) > (1/
√
2)rO(n lg n)

}

< 1/8. Then for r =

(2/3) lg n+ (4/3) lg lg n+Θ(1), this expression reduces to Pr
{

Φ′(Ir+w) > cn2/3 lg4/3 n
}

< 1/8, for

some constant c.
If a fringe failure occurs, the bound on Φ′ is meaningless. The probability of a fringe failure is

at most the union bound over r < lg n levels of the failure probability 1/(8 lg n) from Lemma 4.16,
which reduces to 1/8. If neither of these failures occurs, the bound on Φ′ implies a bound on active
unshortcutted subpaths, as all path vertices counted as bridges towards Φ′. Thus, with failure
probability 1/4, the total length of all subpaths in path-relevant subproblems in level-(r + 2) is at
most O(n2/3 lg4/3 n).

Finally, consider the concatenations and shortcutted leaves via Lemma 4.9. With failure prob-
ability 1/8, the total shortcutted length is thus O(n2/3 lg4/3 n). Choose D to be a constant factor
larger than the constant hidden inside the big-O.

4.8 Completing the Proof of Lemma 4.1

This section proves bounds on the number of shortcuts and overall work performed. The main goal
is to show that, with probability at least 7/8, the number of vertices (and hence shortcuts) and
arcs visited by searches is consistent with Lemma 4.17. Thus, with probability at least 1/2, both
Lemma 4.17 and this bound hold. Combining with Lemma 4.17, this yields a proof of Lemma 4.1
and hence also Theorem 4.2.

The settings used are D = Θ(n2/3 log4/3 n), Cφ = Θ(log2 n), NL = Θ(log7 n), ǫπ = Θ(1/ log3 n),
and Nk = Θ(log4 n), as dictated by constraints offered in previous lemmas. The maximum
search distance is immediate: it is at most hDNkNL = O(log n · n2/3 log4/3 n · log4 n · log7 n) =
O(n2/3 log14 n).

Consider each level of recursion in Algorithm 3. Corollary 4.5 holds with high probability, so
assume that it holds for every node at every iteration. Consider any vertex in the iteration in which
it is visited by a core search. By assumption of Corollary 4.5, the vertex, and hence its incident
arcs, is visited by at most O(log n) searches.

The number of vertices (and hence arcs) may increases with each level in the tree due to fringe
searches. The final step of the proof is to argue that the total size of all subproblems in the final
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level of recursion is O(n) vertices and O(m) arcs, and hence the total cost of all levels is O(n log2 n)
vertices and O(m log2 n) arcs.

By Lemma 4.7 with NL = log7 n, the number of vertices and arcs increases with each level of
recursion by an additive O(n′/ log2 n) and O(m′/ log2 n) in expectation, where n′ and m′ are the
current numbers at that level. Thus, by Markov’s inequality, with probability at most 1/(8 lg n), the
increases is not more than a multiplicative 1 +O(1/ log n). Since there are lg n levels of recursion,
this results in probability at most 1/8 of exceeding a total of n(1+O(1/ log n))lgn = O(n) vertices
and m(1 +O(1/ log n))lgn = O(m) arcs.

5 Parallel Version

This section analyzes a parallel version of Algorithm 3 and Algorithm 4. This section assumes the
reader is comfortable enough with parallel algorithms to infer the details, instead focusing only on
the interesting issues.

The main results are as follows.

Theorem 5.1. There exists a randomized parallel algorithm taking as input a directed graph Ĝ =

(V̂, Ê) with the following guarantees. Let n =
∣

∣

∣
V̂
∣

∣

∣
, m =

∣

∣

∣
Ê
∣

∣

∣
, and without loss of generality assume

m ≥ n/2. Then (1) the algorithm produces a size-O(n log4 n) set S∗ of shortcuts; (2) the algorithm
has O(m log6 n + n log10 n) work; (3) the algorithm has O(n2/3 log21 n) span; and (4) with high
probability, the diameter of GS∗ = (V̂, Ê ∪ S∗) is O(n2/3 log4/3 n).

Corollary 5.2. There exists a randomized parallel CREW algorithm for digraph reachability that
has work O(m log6 n+ n log10 n) work and O(n2/3 log21 n) span, both with high probability.

Proof. Perform the diameter reduction algorithm, then run a standard parallel BFS but limited
to O(n2/3 log4/3) hops. The work and span of the diameter reduction dominates. If the BFS
completes in the prescribed number of rounds, the algorithm terminates. Otherwise, keep repeating
the diameter reduction and BFS until successful.

Model. This paper adopts the de facto standard work-span model [4], also called work-time [9]
or work-depth model, which abstracts low-level details of the machine such as the number of proces-
sors or how parallel tasks are scheduled. The work-span model allows algorithms to be expressed
through the inclusion of parallel loops, i.e., a parallel foreach. A parallel foreach indicates that
each task corresponding to a loop iteration may execute in parallel, and that all parallel tasks must
complete before continuing to the next step after the loop. It is generally straightforward to map
algorithms from the work-span model to a PRAM model; see, e.g., [9, 12]. Like the asynchronous
PRAM model [6], the work-span model requires that algorithmic correctness not be tied to any
assumptions about how tasks are scheduled beyond the explicit ordering imposed by the loops.
That is to say, it should not be assumed that the instructions across iterations execute in lock step.

The work of an algorithm is the same as the sequential running time in a RAM model if all
parallel loops are replaced by sequential loops. When multiple tasks are combined through a parallel
loop, the span of the composition is the maximum of the span of the individual subproblems, plus
the span of the loop itself. There are several variants to the work-span model. In a binary-forking

model such as [4], the span of a k-way loop is Θ(lg k). Much of the literature on parallel algorithms,
however, adopts an unlimited-forking model , where the span of launching k parallel tasks adds
O(1) to the span. Since many of the subroutines employed are analyzed in this model, this paper
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adopts the unlimited-forking model. PRAM algorithms, for example, correspond to an unlimited
forking model. Both models only differ by logarithmic factors in the span.

The algorithm is a concurrent-read exclusive-write (CREW ) algorithm. CREW means that
multiple parallel tasks may read the same data, but they may not write to the same location.10

Performing Concurrent Searches

The key subroutine in Algorithm 3 are the dD-limited searches to find, e.g., R+
j . One might simply

replace the foreach loops by parallel loops, but the question is how the bookkeeping should be
performed. Ordinarily, a BFS keeps track of already-visited vertices by either annotating vertices
in the graph directly, or equivalently by keeping an extra array indexed by vertex. A natural way
to perform multiple searches in parallel using a CREW algorithm would thus be to duplicate the
bookkeeping efforts for each parallel search, but doing so would increase the work dramatically just
to copy the graph or initialize the arrays.

The key property that allows an efficient implementation is Corollary 4.5 — with high probabil-
ity, no vertex is visited by more than O(log n) parallel searches. The implementation may assume
that this is the case, and just abort by returning immediately if a vertex gets visited too many
times.

The main goal is to support the following for each call to ParSC.

Lemma 5.3. Consider an iteration i in call to ParSC on graph G = (V,E). Let ne be the total
number of arcs traversed by searches, counting each arc once per search that reaches it. Then an
iteration can be implemented with O(ne log

2 n+ |Xi| log n) work and O(n2/3 log15) span.

The remainder of the section is devoted to exhibiting an algorithm that proves Lemma 5.3.
The set of searches from Xi (in one direction) are grouped together as a single modified BFS.

Rather than marking a vertex with a single bit indicating whether it has been discovered, a vertex
is tagged with a list of IDs of the pivots that have reached it. Every time this list of IDs changes,
the vertex may be re-added to the frontier and all of its outgoing arcs explored again. Since a
vertex is not visited too many times, the overhead is not too high.

In more detail, the algorithm is as follows. At the start of the call to ParSC, initialize Θ(log n)
space for each vertex to record the ID tags, initally all null. Use an array to store the frontier
vertices along with the ID of the pivot from which this search originated; a vertex may appear
in the frontier multiple times from different pivots. Save all frontiers so as to identify all vertices
reached by the searches at the end and also to record all new shortcuts.

To start a set of searches from |Xi|, copy all live pivots xj to the frontier array and associate
with each pivot its own ID as the originator of the search. Also update each pivot’s tag list to
include itself.

Each round of the BFS operates as follows. Foreach vertex in the frontier in parallel, identify
the number of outgoing arcs. Next, perform parallel prefix sums so that each arc has a distinct
index in the next frontier array. Foreach arc (u, v) in parallel, let xj be the associated pivot ID.
Check whether v’s ID set includes xj ; this check can be performed in O(log n) sequential time (both
work and span) by scanning through v’s tag list. If xj is not present, record v and xj in (u, v)’s
slot in the next frontier; otherwise record null.

At this point, a vertex may appear many times in the frontier list, even from a single search.
Sort the frontier list by vertex (high priority) and pivot ID (lower priority). Remove duplicate

10CREW is usually a restriction applied to the PRAM [5,7,16] machine model, e.g., a CREW PRAM. In contrast,
the work-span model is an algorithmic cost model, not a machine model. This paper proposes lifting the CREW
qualifier to the work-span level rather than the PRAM level.
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entries with a compaction pass. Now each vertex appears at most once for each search, so O(log n)
times in total. For each slot j in the next frontier in parallel, let v be the vertex stored there.
Check whether this is the first slot for vertex v, i.e., if j − 1 stores a different vertex. If so, scan
through the O(log n) next slots (sequentially), and for each entry of v append the pivot tag to v’s
tag list.

Repeat this process for the number of rounds dictated by the distance dD for the core searches.
Extend the search another D rounds for the fringe search, but use a different tag list and frontier
array going forward.

When the searches complete, sort the arrays of all vertices reached by core searches and by fringe
searches. Foreach vertex v in core searches, in parallel, identify the lowest ID pivot reaching v.
Again use parallel prefix sums and then copy the lowest-ID occurrence of v to a new array for
the recursive searches. Finally, sort the new array by pivot ID so that all vertices in the same
induced subgraph are adjacent. Building the induced subgraphs for recursive calls can again be
accomplished with arc counting, prefix sums, and sorting.

Updating G[VR]. One could build G[VR] explicitly, but doing so would require processing the
full graph. The goal expressed by Lemma 5.3 is to have work proportional to the number of arcs
reached, but G[VR] could be much larger. Instead, simply mark vertices in V as dead when they
have been reached by a core search. Augment the search to ignore dead vertices.

Completing the proof of Lemma 5.3. The basic subroutines used in each round such as prefix sums,
compaction, etc, can all be performed in linear work and O(log n) span. (See e.g., [9].) Scanning the
list of tags also requires O(log n) work per arc on the frontier and O(log n) span as it is performed
sequentially. Using Cole’s merge sort [2], the cost of a sort is O(log n) work per element sorted and
O(log n) span. Multiplying the search distance by O(log n) thus gives the overall span bound. Since
each arc may be reached by O(log n) searches, the bound is O(log2 n) work per arc visited.

Aborting Algorithm 3

To make the work (and shortcut) bound deterministic, Algorithm 4 needs the ability to abort any
runs of Algorithm 3 that exceed the target work bound. (Exceeding the shortcut bound can be
handled simply discarding the result — a true abort is not necessary there.)

Unfortunately, the proof of Lemma 4.1 examines the work in aggregate across levels in the
recursion tree. It is likely that individual recursive subproblems will do more work, so abort
decisions are not local.

One simple option is to augment the algorithm to check the elapsed time, and to return immedi-
ately if some threshold has been reached. Technically, however, this solution violates the work-span
model as the target time bound would depend on both on how efficiently the program is scheduled
and on the number of processors employed.

There is a solution in the work-span model — logically implement the recursive steps of the
algorithm as a BFS. That is, maintain an array of subproblems, initially just ParSC(Ĝ, lgn). To
implement a level of recursive, perform prefix sums to add up the total number of vertices across
all subproblem, and give each vertex (pivot) a specific slot to put its recursive subproblem. Instead
of launching the recursive subproblems immediately, simply record them in the appropriate slot.
When all subproblems at this level of recursion complete, launch all problems at the next level (in
parallel).

The work bound can only be exceeded if the total number of arcs in the next set of subproblems
grows too large. This number can be counted with a parallel reduce after each level of recursion
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completes. None of these steps increase the work or span asymptotically.

Proof of Theorem 5.1. The diameter and shortcut bounds are directly from Theorem 4.2.
Multiplying the cost per arc of Lemma 5.3 with the number of arcs searched in Theorem 4.2 gives
the work bound. Shortcuts can be gathered and larger graphs built for each iteration of Algorithm 4
by sorting, but that is dominated by the other work performed.

The span bound is obtained by multiplying the maximum search distance of O(n2/3 log14 n) by
the O(log n) span per BFS round, the Nk = O(log4 n) iterations in a call, the O(log n) levels of
recursion in a run of Algorithm 3, and the O(log n) iterations of the outer loop of Algorithm 4.
Note that the inner loop of Algorithm 4 can be implemented in parallel. All together, that gives
O(n2/3 log21 n) span.

6 Building a Directed Spanning Tree

This section discusses how to augmented the algorithm to produce a directed spanning tree. It is
not immediately obvious how to do so even for the sequential algorithm of Section 3. To illustrate
the issues, consider the following graph: s → u → v ⇄ w. If w is selected as a pivot first, then
a shortcut (s,w) is added and a BFS from s in the shortcutted graph may discover the following
path: s  w → v. Simply splicing in the path corresponding to the shortcut would result in
s → u → v → w → v, which is no longer a simple path. The goal is to do this splicing, but
in a way that avoids repeated vertices. The situation is slightly more challenge in the case of
Algorithm 4 because the arcs shortcutted could themselves be shortcuts, but the result is just that
several iterations are needed.

The algorithm for building the directed spanning tree is a postprocessing step performed after
the full execution of Algorithm 4. The algorithm references the BFS trees used to build shortcuts,
however, so all BFS trees need to be saved as Algorithm 4 executes. Each shortcut must also be
augmented with a reference to the BFS tree that produced it. The forward-search BFS trees are
directed out from the root, whereas the backward-search BFS trees are directed towards the root.
In this way, the BFS trees correspond to arcs in some graph.

Let G0, G1, . . . , Gk=Θ(log n), where G0 = Ĝ, denote the sequence of graphs built after each
iteration of the outer loop of Algorithm 4. Running BFS on the resulting graph Gk yields a
directed spanning tree Tk in Gk. This section describes how to transform a directed spanning tree
Ti in graph Gi to a directed spanning tree Ti−1 in Gi−1. Iterating Θ(log n) times gives a spanning
tree in the original graph.

Start each iteration by labeling every vertex v in the tree with label low (v) = 0 and high(v),
where high(v) is v’s distance from the root in Ti. This can be accomplished in linear work and
logarithmic span using the Euler-tour method [19].

For the next step, the shortcuts in both directions are treated differently. The goal is to
essentially splice in the paths, which results in vertices appearing multiple times. This multiplicity
will be resolved afterwards.

For each vertex u ∈ Ti in parallel, traverse all forward-search BFS trees created in iteration i
and rooted at u. Label those vertices v with high(v) = high(u), and low (v) is v’s depth (or distance
from u) in the tree. Note that these labelings should be performed on the BFS trees themselves,
not on Ti or Gi, as each vertex may belong to multiple trees and may otherwise be labeled multiple
times concurrently.11

11The Euler-tour technique could be applied to each tree, but a parallel BFS is sufficient here as the trees have
depth O(n2/3 log4/3 n) by construction; the work and span would be at most the work and span of constructing the
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For the backward direction, consider all arcs (u, v) in Ti in parallel. If (u, v) is a shortcut on
a backward-search BFS tree rooted at v, traverse the path from u to v in the BFS tree and label
each vertex w on the path by high(w) = high(u). Also label low (w) with w’s distance from u on
the path.

Finally, sort all arcs (u, v) in the collection of BFS trees traversed in the above process, as well
as the arcs in Ti that also exist in Gi−1, by three values: v’s ID (most significant), high(u), and
low (u) (least significant). Foreach arc (u, v) in the sorted list in parallel, if it is the first arc directed
toward v in sorted order then include the arc (u, v) in Ti−1.

Lemma 6.1. Suppose that Ti is a directed spanning tree in Gi rooted at vertex s. Then the Ti−1

produced is a directed spanning tree rooted at vertex s consisting of only arcs present in Gi−1.

Proof. Since only arcs present in Gi−1 are considered in the last step of the algorithm, Ti−1 is a
subgraph of Gi−1. It is not obvious, however, that it is a tree, nor is it obvious that it spans.

The first step is to show that every vertex, except s, has an incoming arc in Ti−1. Consider
a vertex v and its incoming arc (u, v) in Ti. If (u, v) is present in Gi−1 as well, then it is in
consideration the last step, so v must select an arc. If (u, v) is a shortcut, then it corresponds to
some path in a BFS tree. All arcs in that path, and specifically the arc directed toward v, are also
in consideration. Thus, v has an incoming arc.

For each vertex, let the final label be the lowest label associated with any of its copies. If all
arcs go from lower label to higher label, then there are no cycles. To prove this is the case, the
claim is that every copy of each vertex other than the source (and in particular the lowest-label
copy) has an incoming arc from a vertex with a lower label. Since the minimum incoming arc is
the one used, that would imply that all arcs are from lower to higher label.

To prove the claim, consider a copy of vertex v. There are three cases. If v is in a forward-search
BFS tree and not the root, then v has depth (and hence low (v) label) one higher than its parent
in the tree. If v is in a backward-search path and not the source, the same argument holds.

Otherwise, v’s label is the same as in Ti. In Ti, v’s incoming arc (u, v) satisfies high(u) < high(v)
by construction. If (u, v) is in Gi−1, then this arc satisfies the claim. Otherwise, v the non-root of
a BFS tree with a strictly lower high value, and hence one of the first two cases applies.

7 Conclusions

This work makes the first major progress toward work-efficient parallel algorithms for directed
graphs, but it also exposes several new questions. First, can the performance be improved? Shaving
logarithmic factors would be nice, but doing so seems premature — it is quite likely that Õ(n2/3)
is not the final answer. I would conjecture that an n1/2+o(1)-diameter reduction is possible using a
more sophisticated algorithm based on the one presented herein.

Is true work efficiency, i.e., O(m) work, possible for the diameter-reduction problem? Achieving
that would require first producing an O(m)-time sequential algorithm for the problem.

Hesse’s lower bound provides a lower bound on work-efficient diameter reduction, but that is not
a general lower bound on digraph reachability. Can digraph reachability be improved by relaxing
the shortcutting requirements, perhaps by adopting some ideas from Spencer’s algorithm? Are
there good general lower bounds for work/span tradeoffs of these algorithms?

Finally, can the algorithm be extended to solve unweighted shortest paths?

tree in the first place.
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