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Abstract

We study the following optimization problem over a dynamical system that consists of several
linear subsystems: Given a finite set of n × n matrices and an n-dimensional vector, find a
sequence of K matrices, each chosen from the given set of matrices, to maximize a convex
function over the product of the K matrices and the given vector. This simple problem has many
applications in operations research and control, yet a moderate-sized instance is challenging
to solve to optimality for state-of-the-art optimization software. We propose a simple exact
algorithm for this problem. Our algorithm runs in polynomial time when the given set of
matrices has the oligo-vertex property, a concept we introduce in this paper for a finite set of
matrices. We derive several sufficient conditions for a set of matrices to have the oligo-vertex
property. Numerical results demonstrate the clear advantage of our algorithm in solving large-
sized instances of the problem over one state-of-the-art global optimization solver. We also
propose several open questions on the oligo-vertex property and discuss its potential connection
with the finiteness property of a set of matrices, which may be of independent interest.

1 Introduction

Many real-world systems exhibit significantly different dynamics under various modes or condi-
tions, for example a manual transmission car operating at different gears, a chemical reactor under
different temperatures and flow rates of reactants, and a group of cancer cells responding to dif-
ferent drugs. Such phenomena can be modeled under a unified framework of switched systems. A
switched system is a dynamical system that consists of several subsystems and a rule that speci-
fies the switching among the subsystems. Finding a switching rule to optimize the dynamics of a
switched system under certain criteria has found numerous applications in power system operations,
chemical process control, air traffic management, and medical treatment design [39, 26, 25, 16]. In
this paper, we study the following discrete-time switched linear system:

x(k + 1) = Tkx(k), Tk ∈ Σ, k = 0, 1, . . . , (1)

where x(k) is an n-dimensional real vector that captures the system state at period k, the set Σ
contains m real matrices in Rn×n, each of which describes the dynamics of a linear subsystem, and
the initial vector x(0) is a given n-dimensional real vector a. Such a system with switching only
at fixed time instants appear in many practical applications, and is also employed to approximate
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the more complex dynamics of a continuous-time hybrid system with switching times defined over
the real line [39, 25].

We are interested in the following optimization problem (P) related to the system in (1):

Given a switched linear system described in (1), a positive integer K, and a convex function
f : Rn → R, find a sequence of K matrices T0, T1, . . . , TK−1 ∈ Σ to maximize f(x(K)).

One type of such convex functions are the `p norms.

Example 1. Consider a switched linear system consisting of two subsystems with system matrices

A =

[
1 1
1 0

]
and B =

[
1 1
0 1

]
, an initial vector a = (2, 1)>, and K = 8. Figure 1 illustrates the

trajectory of x(k) under three different switching sequences, with the final state x(8) being (53, 23)>,
(58, 41)>, and (71, 41)>, respectively.
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Figure 1: The trajectory of x(k) under three matrix sequences

We give three examples below to illustrate the applications of Problem (P) and its connection to
other problems in control and optimization.

The first example is on design of treatment plans. Antibiotic resistance renders diseases that
were once easily treatable dangerous infections, and has become one of the most pressing public
health problems around the world. Several groups of researchers studied how to design sequential
antibiotic treatment plans to restore susceptibility after bacteria develop resistance [29, 31]. They
model the percentages of n genotypes of an enzyme produced by bacteria in a population after
k periods of treatment with the vector x(k), and model the mutation rates among n genotypes
under each antibiotic with a probability transition matrix. The goal is to design a sequence of
antibiotics to maximize the percentage of the wild type at the end of the treatment, which is
sensitive to all antibiotics. The treatment design problem is equivalent to solve (P) with a = e1, a
unit vector with the first component being 1 which denotes 100% wild type in the beginning, and
f(x(K)) = −e>1 x(K). In the same vein, (P) can model the sequential therapy design problem for
many other diseases when x(k) describes the related biometrics of a patient at period k and each
matrix models the evolution of patient biometrics under a particular treatment [16].

The second example is the matrix mortality problem in control [6, 7]. Given a positive integer
k, a set of matrices is said to be k-mortal if the zero matrix can be expressed as a product of k
matrices in the set (duplication allowed). A set of matrices is said to be mortal if it is k-mortal for
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some finite k. The matrix mortality problem captures the stability of switched linear systems under
certain switching rules. It can be shown that a finite set of n×n non-negative matrices is k-mortal
if and only if the optimal objective value of (P) is 0 with a = 1, K = k, and f(x(K)) = −1>x(K),
where 1 is an n-dimensional vector with each component being 1.

The third example concerns the joint spectral radius of a set of matrices, an important quantity
which has found many applications in wavelet functions, constrained coding, and network security
management, etc [18]. The joint spectral radius of a finite set Σ of matrices is defined as ρ(Σ) =
lim supk→∞ ρ̂k(Σ, ‖ · ‖) [36], where

ρ̂k(Σ, ‖ · ‖) = max{‖Tk−1Tk−2 . . . T0‖1/k | Tj ∈ Σ, j = 0, . . . , k − 1} (2)

and ‖ · ‖ is some matrix norm. If we select the matrix norm in (2) to be induced by the `p norm of
a vector, then

(ρ̂k(Σ, ‖ · ‖))k = sup
‖a‖p=1

max{‖x(K)‖p | (1)}. (3)

Observe that the inner maximization problem of the right-hand side of (3) is a special case of (P)
with the convex function f(x) = ‖x‖p. In general, let v∗ be the optimal objective value of (P) with
f(x) = ‖x‖ for some norm ‖ · ‖ and an initial vector a. Then (v∗)1/k provides a lower bound of the
quantity ρ̂k(Σ, ‖ · ‖).

A simple way to solve (P) is to enumerate all possible matrix sequences, but such an approach
quickly becomes impractical as m and K increase. Even for m = 5 and K = 30, we need to
enumerate 530 solutions, a formidable task for the current fastest computer. Another general
approach to solve (P) is to formulate it as a mixed-integer nonlinear optimization problem, which
can be solved by global optimization solvers, but the problem size that can be handled by state-of-
the-art commercial solvers is also limited. In addition, the time complexity of the tree-based search
algorithms employed by these global solvers is difficult to analyze in general. In many applications,
problem (P) has to be solved repeatedly with different parameters, so it is of vital importance to
have a fast algorithm for (P).

We now present our results. We develop a simple dynamic programming algorithm to solve
(P) exactly, which means that an optimal matrix sequence is guaranteed at the termination of the
algorithm. Our algorithm is much faster than the state-of-the-art global optimization solver Baron
in solving the same instance of (P). Another advantage of our algorithm is that it does not require
any additional property of the function f such as smoothness or strong convexity. The main idea of
our algorithm is to find out the extreme points of a polytope by iteratively constructing the convex
hull of linear transformations of another polytope’s extreme points. As pointed out by one referee,
this idea has been used before to construct a special polytope needed to compute the joint spectral
radius of a finite set of matrices [13].

Furthermore, we introduce a new concept for a finite set of matrices to analyze the time complex-
ity of our algorithm. In particular, we assume that all input data are integers and the value of the
convex function f can be queried through an oracle in constant time; we adopt the random-access
machine [32] as the model of computation, in which each basic operation (addition, comparison,
multiplication, etc.) is assume to take the same amount of time and the time complexity of an
algorithm is the number of steps/operations required to execute the algorithm. We define the fol-
lowing notations that are useful for presenting the time-complexity results. Given a finite set Σ of
n× n real matrices and a vector a ∈ Rn, let

Pk(Σ, a) := conv({x(k) | x(k) = Tk−1 · · ·T0a, Tj ∈ Σ, j = 0, . . . , k − 1})
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be the convex hull of all possible values of x(k) in (1) for each integer k ≥ 0. Let Nk(Σ, a) be the
number of extreme points of Pk(Σ, a) and

Nk(Σ) = sup
a∈Rn
{Nk(Σ, a)}.

We introduce the following concept for a set of matrices.

Definition 1. A set of matrices Σ is said to have the oligo-vertex property if there exists α > 0,
positive integer k0, and positive constant d such that Nk(Σ) ≤ αkd for any k ≥ k0.

The oligo-vertex property of a set of matrices indicates the number of extreme points of Pk(Σ, a)
grows at most polynomially in k for any initial vector a, despite the number of possible values of
x(k) grows exponentially with k in general. With the big-Oh notation commonly used in computer
science, the oligo-vertex property basically states that Nk(Σ) = O(kd) as k →∞ for some positive
constant d.

Our contributions

We summarize the contributions of this paper as follows.

1. We present a simple dynamic programming algorithm to solve (P) exactly. Our algorithm
does not require any additional property of f other than convexity. Numerical experiments
demonstrate that the algorithm is much faster than state-of-the-art global optimization soft-
ware in solving large-sized instances. Our algorithm can be considered as a variant of the
algorithm for computing the joint spectral radius in [13] with the same basic idea. On the
other hand, as it is applied to a different problem, changes such as initialization, the pruning
rule, and termination conditions have been made.

2. We introduce the concept of the oligo-vertex property for a finite set of matrices, and show
that our algorithm runs in polynomial time if the given set of matrices has the oligo-vertex
property. To the best of our knowledge, this is the first time such a property is introduced
for a set of matrices.

3. We derive several sufficient conditions for a set of matrices to have the oligo-vertex property.
On the other hand, we show that (P) is NP-hard for a pair of stochastic matrices or a pair
of binary matrices, which implies that the oligo-vertex property is unlikely to hold for an
arbitrary pair of n× n matrices unless P=NP. Finally we propose several open questions on
the oligo-vertex property.

The oligo-vertex property we propose may be of independent interest to readers. We want to
point out some similarities between the oligo-vertex property and another important property for
a set of matrices that is also concerned with long matrix products—the finiteness property. A
finite set Σ of matrices is said to have the finiteness property if the joint spectral radius ρ(Σ) is
equal to (ρk(Tk−1Tk−2 . . . T0))

1/k with Tk−1, Tk−2, . . . , T0 ∈ Σ for some finite integer k, where ρ(T )
denotes the spectral radius of the matrix T . The finiteness property has been studied extensively
for different families of matrices [24, 19], as it has many implications on stability and stabilization of
switched systems. The finiteness property and the oligo-vertex property both hold for the following
sets of matrices: commuting matrices, any finite set of matrices with at most one matrix’s rank
being greater than one [27], and a pair of 2 × 2 binary matrices [20]. We suspect that there is a
deeper connection between these two properties. We pose several open questions on the oligo-vertex
property at the end of this paper.
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The rest of the paper is organized as follows. In Section 2, we review results related to the
problem we study, with a main focus on computational complexity. In Section 3, we first prove
that (P) is NP-hard for a pair of stochastic matrices or binary matrices, and then introduce an
exact algorithm for (P) and analyze its time complexity for general n and n = 2. In Section 4,
we present several sufficient conditions for a set of matrices to have the oligo-vertex property. In
Section 5, we prove that a pair of 2× 2 binary matrices has the oligo-vertex property. We present
some computational results in Section 6, and conclude in Section 7 with some open problems.

2 Related Work

Our problem aims to find the optimal switching rule of a discrete-time switched linear system
without continuous control input. There have been a rich body of theoretical and computational
results on optimal control of switched linear systems, such as finding optimal switching instants
given a fixed switching sequence [43], minimizing the number of switches with known initial and final
states [10], finding suboptimal policies [3], study of the exponential growth rates of the trajectories
under different switching rules [17], and characterizing the value function of switched linear systems
with linear and quadratic objectives [44]. We refer interested readers to the books [39, 25] and recent
surveys [40, 45] for more details on switched linear systems. Finding the optimal switching sequence
for a switched linear system also belongs to a broader class of problems called mixed-integer optimal
control [37, 38] or optimal control of hybrid systems [2], which can be formulated as a mixed-integer
nonlinear optimization problem and solved by general mixed-integer optimization solvers.

We now survey results in the literature that are closely related to the problem we study. Blondel
and Tsitsiklis showed that the matrix mortality problem is undecidable for a pair of 48×48 integer
matrices and the matrix k-mortality problem is NP-complete for a pair of n × n binary matrices
with n being an input parameter [6]. The complexity of the matrix k-mortality problem is however
unknown when the matrix dimension n is fixed. For the antibiotics time machine problem, Mira et
al. used exhaustive search to find the optimal sequence of antibiotics for a small sized problem [29].
Tran and Yang showed that the antibiotics time machine problem is NP-hard when the number of
matrices and the matrix dimension are both input parameters [41]. The antibiotics time machine
can be also seen as a special finite-horizon discrete-time Markov decision process in which no state is
observable. It has been shown in [33] that the finite-horizon unobservable Markov decision process
is NP-hard. Therefore, our results identify several polynomially solvable cases of finite-horizon
unobservable Markov decision processes. Computing the joint spectral radius for a finite set of
matrices either exactly or approximately has been shown to be NP-hard [42], and has been a topic
of active research [4, 34, 1]. Guglielmi and Protasov proposed an algorithm to compute the joint
spectral radius of a finite set of matrices [13]. The key component of the algorithm is to construct a
special polytope P from which the joint spectral radius of the given set of matrices can be computed
accordingly. Similar to our algorithm, the polytope P is constructed by finding out its extreme
points, through an iterative procedure of taking the convex hull of linear transformation of extreme
points of another polytope. However, the purposes, the running time, and the implementation
details of the two algorithms are different. The algorithm in [13] aims to find a polytope that gives
an extremal norm for the given set of matrices, and only terminates in finite time for the set of
matrices satisfying certain conditions. On the other hand, our algorithm aims to construct the
convex hull of all possible states reachable by the switched system after K periods, and will always
terminate after exactly K periods for any given set of matrices. The algorithm in [13] has recently
been improved in [28]. The finiteness conjecture [24], which states that the finiteness property
holds any set of real matrices, had remained a major open problem in the control community until
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early 2000s when a group of researchers showed that there exists a pair of 2× 2 matrices that does
not have the finiteness property [8, 5, 23]. The first constructive counterexample for the finiteness
conjecture was proposed in [15]. The finiteness conjecture was shown to be true for a pair of 2× 2
binary matrices [20] and a finite set of matrices with at most one matrix’s rank being greater than
one [27].

3 Computational Complexity and the Algorithm

3.1 Notations

We first introduce some notations that will be used throughout this paper. Let N, Z, R, R+, and
R− denote the sets of natural numbers (including 0), integers, real numbers, non-negative real
numbers, and non-positive real numbers, respectively. We use xi to denote the i-th component
of a given vector x. Let ‖x‖∞ and ‖T‖∞ denote the infinity norm of vector x and matrix T ,
respectively. Given two positive integers i, j, let [i : j] denote the set of integers {i, i+ 1, . . . , j} if
i ≤ j and ∅ if i > j. Given two scalar functions f and g defined on some subset of real numbers,
we write f(x) = O(g(x)) as x → ∞, if there exist α and x0 ∈ R such that |f(x)| ≤ α|g(x)| for all
x ≥ x0. Given a set S, let |S| denote the cardinality of S, conv(S) denote the convex hull of S,
int(S) denote the interior of S, and ∂S denote the boundary of S, respectively. Let ext(S) denote
the set of extreme points of a convex set S. Given a set S ⊆ Rn and a matrix T ∈ Rn×n, let
TS := {Tx | x ∈ S} be the image of S under the linear mapping defined by T . Let Qi denote the
i-th quadrant of the plane under the standard two-dimensional Cartesian system, for i = 1, 2, 3, 4.
For example, Q1 = {x ∈ R2 | x1 ≥ 0, x2 ≥ 0}.

3.2 Complexity

Theorem 1. (P) is NP-hard for a pair of left (right) stochastic matrices and a linear function f .

Proof. We prove the result based on a reduction from the 3-SAT problem. A 3-SAT problem asks
whether there exists a truth assignment of several variables such that a given set of clauses defined
over these variables, each with three literals, can all be satisfied. The 3-SAT problem is known to
be NP-complete [11].

Given an instance of the 3-SAT problem with n variables y1, . . . , yn andm clauses C1, . . . , Cm, we
construct an instance of (P) with Σ = {A,B} as follows. Matrices A and B are m(2n+1)×m(2n+1)
adjacency matrices of two directed graphs GA and GB, respectively. The construction of GA and GB

will be explained in detail below. We set the total number of periods K = n. Let ek ∈ Rm(2n+1) be a
vector with the k-th entry being 1 and all other entries being 0. We set x(0) =

∑m
j=1 e(j−1)(2n+1)+1

and f(x) = c>x with c = −
∑m

j=1 ej(2n+1). We claim that the 3-SAT instance is satisfiable if and
only if the optimal objective value of the constructed instance of (P) is −m.

Graph GA is constructed as follows. It contains m(2n + 1) nodes, divided equally into m
groups, each group corresponding to a clause. There is no arc between nodes in different groups.
Let uj,1, uj,2, . . . , uj,2n+1 be the 2n + 1 nodes corresponding to clause j. The arcs among these
nodes are as follows. Node uj,2n+1 has a self loop. There is an arc from uj,l+1 to uj,l for l = [1 : 2n]
unless literal yl is included in clause Cj ; in that case, there will be an arc from node uj,n+l+1 to
node uj,l. Graph GB is constructed similarly with the same set of nodes. There is an arc from
uj,l+1 to uj,l for l = [1 : 2n] unless literal ycl is included in clause Cj ; in that case, there will be an
arc from node uj,n+l+1 to node uj,l. An example for the clause Cj = y1 ∨ yc3 ∨ y4 with a total of 4
variables is shown in Figure 2.
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Figure 2: The nodes and arcs in GA and GB corresponding to the clause Cj = y1 ∨ yc3 ∨ y4 with a
total of 4 variables.

For j ∈ [1 : n], let Aj (Bj) be the adjacency matrix of the component of GA (GB) corresponding
to the j-th clause. Since each node has in-degree 1, each column of Aj (Bj) has exactly one entry
being 1, so Aj (Bj) is a left stochastic matrix. We can associate each truth assignment of y1, . . . , yn
with a sequence of matrices T j

0 , . . . , T
j
n−1 with T j

t ∈ {Aj , Bj} for t ∈ [0 : n− 1]. In particular, if yt

is true (false), then T j
t−1 is A (B). Consider the product

[0, · · · , 0,−1]T j
n−1T

j
n−2 · · ·T

j
0


1
0
...
0

 .
It can be verified that this product is −1(0) if any only if the truth assignment of y1, . . . , yn makes
clause j satisfied (unsatisfied).

Order the nodes of GA or GB lexicographically, i.e.,

u1,1, u1,2, . . . , u1,2n+1, u2,1, . . . , u2,2n+1, . . . , um,2n+1.

Let A and B be the adjacency matrix of GA and GB, respectively. Then both A and B are block
diagonal matrices with m blocks of (2n+ 1)× (2n+ 1) matrices. In particular,

A =


A1

A2

. . .

Am

 , B =


B1

B2

. . .

Bm

 . (4)

Both A and B are left stochastic matrices. When x(0) =
∑m

j=1 e(j−1)(2n+1)+1, c = −
∑m

j=1 ej(2n+1),
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Tt ∈ {A,B} for t ∈ [0 : n− 1],

c>Tn−1 . . . T0x(0) =

m∑
j=1

[0, · · · , 0,−1]T j
n−1T

j
n−2 · · ·T

j
0


1
0
...
0

 .
Therefore, there exists a truth assignment such that the 3-SAT instance is satisfied if and only if
the optimal objective value of the constructed instance of (P) is −m. This reduction is done in
time polynomial in m and n.

To prove that (P) is NP-hard for a pair of right stochastic matrices, we can construct an instance
of (P) in a similar way to the case of left stochastic matrices and show that there exists a truth
assignment such that the 3-SAT instance is satisfied if and only if the optimal objective value of
the constructed instance is −m. In particular, we let x(0) = −

∑m
j=1 ej(2n+1) (the vector c in the

instance of (P) with left stochastic matrices above), f(x) = c>x with c =
∑m

j=1 e(j−1)(2n+1)+1 (the
initial vector x(0) in the instance of (P) with left stochastic matrices above), and the two matrices
be the transpose of the two matrices A and B defined in (4).

Since the matrices constructed in the proof of Theorem 1 are also binary matrices, we have the
following result.

Corollary 1. (P) is NP -hard for a pair of binary matrices and a linear function f .

3.3 The Algorithm

In this section, we present a simple forward dynamic programming algorithm to solve (P) exactly,
described in Algorithm 1. The critical step of Algorithm 1 is Step 6, which constructs Ek, the set
of extreme points of Pk(Σ, a), sequentially for k = 0, 1, . . . ,K.

Algorithm 1 A forward dynamic programming algorithm to solve (P).

1: Input: Matrices Σ = {A1, . . . , Am} ∈ Zn×n, initial vector a ∈ Zn, value oracle f , and positive
integer K.

2: Output: A sequence of matrices T0, . . . , TK−1 ∈ Σ that maximize f(Tk−1Tk−2 · · ·T0a).
3: Initialize: Set E0 = {a}.
4: for k = 0, 1, . . . ,K − 1 do
5: Set F i

k = AiEk for i = 1, . . . ,m.
6: For each point x ∈ ∪mi=1F

i
k, check if x is an extreme point of conv(∪mi=1F

i
k), by solving a

linear program. Let Ek+1 be the set of all extreme points of conv(∪mi=1F
i
k).

7: end for
8: Find an x∗(K) ∈ arg max{f(x) | x ∈ EK} by enumeration.
9: Retrieve the optimal matrix sequence TK−1, TK−2, . . . , T0 from x∗(K).

We specify the details of Step 6 later. In fact, Step 6 can be any algorithm that takes a set
of points S as input and output ext(conv(S)). There are several efficient algorithms the construct
the convex hull of a set of points on the plane, more efficient than linear programs. It is, however,
difficult to construct conv(S) efficiently in higher dimensional space. The correctness of Algorithm 1
is shown in the proposition below.

Proposition 1. Algorithm 1 solves (P) correctly.

8



Proof. First it is not difficult to show by induction that the set Ek constructed in Algorithm 1 is
the set of extreme points of Pk(Σ, a) for each k ∈ [0 : K]. Since maximizing a convex function
f over a finite set S is equivalent to maximizing f over conv(S) as well as maximizing f over
ext(conv(S)) [35], (P) is equivalent to max{f(x) | x ∈ PK(Σ, a)} = max{f(x) | x ∈ EK}. Then the
result follows.

Remark 1. The fact that we are maximizing a convex function in the objective is critical for the
correctness of Algorithm 1. If we minimize f(x(K)) in (P) instead, then Algorithm 1 will not give
the correct optimal solution in general.

We now specify the linear program in Step 6 of Algorithm 1. Given a finite set S = {p1, . . . , pl} ⊆
Rn, checking if a point pj ∈ S is an extreme point of conv(S) can be done by solving the linear
program below.

v∗ = max
z,z0

(pj)>z − z0 (5a)

s.t. (pi)>z − z0 ≤ 0, i = 1, . . . , l, i 6= j, (5b)

(pj)>z − z0 ≤ 1, (5c)

z ∈ Rn, z0 ∈ R. (5d)

Problem (5) is always feasible and bounded. Suppose its optimal solution is z∗ and z∗0 , and v∗

is the corresponding optimal objective value. If v∗ > 0, then we find a hyperplane (z∗)>x = z∗0
that separates pj and the set S \ {pj}, so pj is an extreme point of conv(S). Otherwise pj is
not an extreme point of conv(S). Problem (5) can be solved by various interior point methods
in polynomial time, for example Karmarkar’s algorithm. Recall that M is the maximum absolute
value of the entries of A1, . . . , Am, and a.

Proposition 2. If Karmarkar’s algorithm is employed to solve the linear programs at Step 6, the
running time of Algorithm 1 is O(m2n4.5(log n+ logM)

∑K−1
k=0 kNk(Σ)2).

Proof. We first show that the sizes of all data in Algorithm 1 are polynomial in the problem input
size, which is polynomial in K, n, and logM . To see this, for any integer k ≥ 0,

‖x(k)‖∞ = max{‖Aix(k − 1)‖∞ | Ai ∈ Σ} ≤ max{‖Ai‖∞ | Ai ∈ Σ} · ‖x(k − 1)‖∞
≤ (max{‖Ai‖∞ | Ai ∈ Σ})k · ‖a‖∞ ≤ (nM)kM.

Therefore, the size of x(k) is O(n log ‖x(k)‖∞) = O(kn(log n+ logM)).
At Step 6 of iteration k, the number of operations of solving one linear program (5) with S =

∪mi=1F
i
k using Karmarkar’s algorithm isO(n3.5L) [21], where the input length L = O(

∑m
i=1 |F i

k|n log ‖x(k)‖∞) =
O(kmn(log n + logM)|Ek|). Since we need to solve m|Ek| linear programs, one for each point in
S, the running time of Step 6 is m|Ek|O(n3.5L) = O(km2n4.5(log n+ logM)|Ek|2). At iteration k,
Step 5 takes O(mn2) time, Step 8 takes |EK | queries to the value oracle of function f , and Step 9
can be performed in K steps if a m-ary tree is used to store the values of x(k) for each k. Therefore,
the step with the dominating complexity is Step 6, and the overall running time of Algorithm 1 is
O(m2n4.5(log n+ logM)

∑K−1
k=0 k|Ek|2). Since |Ek| ≤ Nk(Σ), the result follows.

3.3.1 Speeding up Algorithm 1 when n = 2

When n = 2, there are many efficient algorithms to construct the convex hull of a set of points
directly, such as Graham’s scan and Jarvis’s march [9]. Graham’s scan constructs the convex hull
of l points on the plane in O(l log l) time [12]. With a similar analysis as in Proposition 2, we have
the result below.
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Proposition 3. When n = 2 and Graham’s scan is employed at Step 6 of Algorithm 1 to construct
Ek+1, the running time of Algorithm 1 is O(m logm

∑K−1
k=0 Nk(Σ) +m

∑K−1
k=0 Nk(Σ) logNk(Σ)).

4 Polynomially Solvable Cases

In this section, we focus on discovering conditions on a set of matrices for which (P) is polynomially
solvable. Propositions 2 and 3 indicate that (P) is polynomially solvable if Nk(Σ) is polynomial
in k. This motivated us to introduce the concept of the oligo-vertex property in Section 1. Recall
that a set of matrices Σ has the oligo-vertex property if Nk(Σ) = O(kd) for some constant d. The
following proposition gives the detailed time complexity of our algorithms for matrices with the
oligo-vertex property, following directly from Proposition 2 and 3.

Proposition 4. If the set of matrices Σ in (P) has the oligo-vertex property and Nk(Σ) = O(kd)
for some constant d, then (P) can be solved in O(m2n4.5K2d+2(log n+ logM)) time for general n
and in O(mKd+1(logm+ logK)) time when n = 2.

Thus our focus in this section is to discover conditions for a set of matrices to have the oligo-
vertex property. We introduce additional notations that will be used in the rest of the paper. Given
a set of matrices Σ = {A1, A2, . . . , Am} ⊆ Rn and a vector a ∈ Rn, define

Xk(Σ, a) = {x(k) | x(k) = Tk−1 · · ·T0a, Tj ∈ Σ, j ∈ [0 : k − 1]} (6)

Ek(Σ, a) = ext(Pk(Σ, a)) (7)

for each integer k ≥ 0. Recall that Pk(Σ, a) = conv(Xk(Σ, a)), Nk(Σ, a) = |Ek(Σ, a)|, and Nk(Σ) =
supa∈Rn{Nk(Σ, a)}. Since Pk(Σ, a) is the convex hull of at most mk points, both Nk(Σ, a) and
Nk(Σ) are well defined and bounded above by mk.

Some obvious cases that have the oligo-vertex property include a set Σ of m pairwise commuting
matrices with constant m (for which Nk(Σ) = O(km−1) since there are at most

(
k+m−1
m−1

)
elements

in Xk(Σ, a)), and a pair of projection matrices since there are at most 2k elements in Xk(Σ, a).

Proposition 5. A set Σ of m matrices in Rn×n with at most one matrix with rank greater than
one has the oligo-vertex property and Nk(Σ) = O(mk).

Proof. Let Σ = {A1, . . . , Am}. With loss of generality, assume that no Ai is the zero matrix, and
A1, A2, . . . , Am−1 are of rank one. Then for any a ∈ Rn the set AiPk(Σ, a) contains at most two
extreme points for i = 1, . . . ,m − 1. For each integer k ≥ 0, Pk+1(Σ, a) = conv(∪mi=1AiPk(Σ, a)),
so Nk+1(Σ, a) ≤

∑m
i=1 |ext(AiPk(Σ, a))| ≤ 2(m − 1) + Nk(Σ, a). Then Nk+1(Σ, a) ≤ N0(Σ, a) +

2k(m− 1), so Nk(Σ) = O(mk).

Proposition 6. A set Σ of two 2× 2 matrices that share at least one common eigenvector has the
oligo-vertex property and Nk(Σ) = O(k).

Proof. If matrices A and B in Σ share two eigenvectors, then they commute and there are at
most k + 1 different points in Xk(Σ, a) for any a. Now suppose that A and B in Σ share exactly
one eigenvector q1. Then q1 must be a real vector. Assume the corresponding eigenvalues of q1
in A and B are λ11 and µ11, respectively. Since q1 is a real vector, λ11 and µ11 are both real-
valued. Without loss of generality, assume ‖q1‖2 = 1. Let q2 ∈ R2 be a unit vector orthogonal
to q1. Consider the vector Aq2. Since q1 and q2 form a basis of R2, we have Aq2 = λ12q1 + λ22q2
for some λ12, λ22 ∈ R. Similarly, we have Bq2 = µ12q1 + µ22q2 for some µ12, µ22 ∈ R. Let
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Q =
[
q1 q2

]
, Λ =

[
λ11 λ12
0 λ22

]
, M =

[
µ11 µ12
0 µ22

]
. We have Λ and M as real matrices, QQ> = I,

A = QΛQ>, and B = QMQ>.
Any product of k matrices with A and B can be written in the form of Al1Bm1Al2Bm2 . . . AlsBms

with l1,ms ∈ N, l2, . . . , ls,m1, . . . ,ms−1 > 0 for some s ≥ 1, and
∑s

j=1(lj + mj) = k. We simplify
the product as follows.

Al1Bm1Al2Bm2 . . . AlsBms

= Q

[
λl1+...+ls
11 µm1+...+ms

11 ∗
0 λl1+...+ls

22 µm1+...+ms
22

]
Q>

= Q

[
λp11µ

k−p
11 ∗

0 λp22µ
k−p
22

]
Q>,

where p = l1 + . . . + ls and ∗ represents some real number. Let Πp be the set of all matrices

in the form of

[
λp11µ

k−p
11 ∗

0 λp22µ
k−p
22

]
calculated from a product of k matrices with p matrix A’s

and (k − p) matrix B’s. The set Π0 contains one matrix in the form of

[
µk11 ∗
0 µk22

]
. Call this

matrix C0. The set Πk contains one matrix in the form of

[
λk11 ∗
0 λk22

]
. Call this matrix Ck. For

1 ≤ p ≤ k− 1, any matrix in Πp can be represented as a convex combination of two matrices in Πp,
the ones with the smallest and largest ∗ entries. Call these two matrices Cp and Dp. Then for any
p ∈ [1 : k−1], the vector x(k) = Al1Bm1Al2Bm2 . . . AlsBmsa with

∑s
j=1 lj = p can be represented by

a convex combination of Cpa andDpa. Hence Pk(Σ, a) = conv({C0a,C1a,D1a,C2a,D2a, . . . , Cka}).
Therefore Nk(Σ, a) ≤ 2k and Nk(Σ) = O(k).

Remark 2. Each right stochastic matrix has an eigenvector (1, 1)>. Therefore, any pair of
2 × 2 right stochastic matrices has the oligo-vertex property and the corresponding problem (P) is
polynomially solvable.

Finally we present a lemma showing that the oligo-vertex property is invariant under any
similarity transformation.

Lemma 1. A finite set of n×n matrices Σ has the oligo-vertex property if and only if SΣS−1 has
the oligo-vertex property for any nonsingular real matrix S.

Proof. It suffices to show that Nk(Σ) = Nk(SΣS−1). We claim that Pk(Σ, a) = Pk(SΣS−1, Sa)
for any a ∈ Rn. To see this, note that any extreme point p of Pk(Σ, a) can be written as p =
Tk−1Tk−2 · · ·T0a with Tj ∈ Σ or j ∈ [0 : k − 1]. Then

p = Tk−1Tk−2 · · ·T0a = S−1(STk−1S
−1)(STk−2S

−1) · · · (ST0S−1)Sa.

We have p ∈ S−1Pk(SΣS−1, Sa). Therefore, Pk(Σ, a) ⊆ S−1Pk(SΣS−1, Sa). Similarly, we can show
that Pk(Σ, a) ⊇ S−1Pk(SΣS−1, Sa), so Pk(Σ, a) = S−1Pk(SΣS−1, Sa). Since S is nonsingular, the
number of extreme points of Pk(Σ, a) equals the number of extreme points of Pk(SΣS−1, Sa),
i.e., Nk(Σ, a) = Nk(SΣS−1, Sa). Thus Nk(Σ) = supa∈Rn Nk(Σ, a) = supa∈Rn Nk(SΣS−1, Sa) ≤
Nk(SΣS−1). By symmetry, we can show that Nk(SΣS−1) ≤ Nk(Σ). Therefore, Nk(Σ) =
Nk(SΣS−1).
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5 The 2× 2 Binary Matrices

Our main result in this section is the following theorem.

Theorem 2. A pair of 2× 2 binary matrices has the oligo-vertex property.

The seemingly innocent looking statement above is the most difficult to prove in this paper. In fact,
we are unable to provide a unified argument for all 2×2 binary matrices. This is not too surprising,
however, since to the best of our knowledge there is no unified argument to show that any pair
of 2 × 2 binary matrices has the finiteness property either [20]. We hope that the techniques we
develop in this paper can be useful in proving the oligo-vertex property for other matrices in the
future.

There are a total of 16 2× 2 binary matrices, resulting in a total of 120 different pairs of 2× 2
binary matrices. To prove Theorem 2, we first show that the result holds for most of the 120 pairs,
and then provide separate proofs for each of the remaining pairs. Among the 16 binary matrices,
one matrix has rank zero, nine matrices have rank one, and six matrices have rank two. The pair
of matrices has the oligo-vertex property if one matrix is the zero or identity matrix. According to
Proposition 5, the pair of matrices has the oligo-vertex property if one matrix is singular. Therefore,
only the following five binary matrices of rank two give rise to interesting pairs:

A1 =

[
0 1
1 0

]
, A2 =

[
1 1
0 1

]
, A3 =

[
1 0
1 1

]
, A4 =

[
1 1
1 0

]
, A5 =

[
0 1
1 1

]
.

The five matrices above give rise to ten different pairs of binary matrices. Observe that

A1A1A
−1
1 = A1, A1A2A

−1
1 = A3, A1A4A

−1
1 = A5, A2A5A

−1
2 = A4.

Then by Lemma 1, we can group the ten pairs of matrices into the following five clusters:

1. {A1, A2}, {A1, A3}

2. {A1, A4}, {A1, A5}

3. {A2, A3}

4. {A4, A5}

5. {A2, A4}, {A3, A5}, {A2, A5}, {A3, A4},

and it suffices to show that one pair of matrices within each cluster has the oligo-vertex property.
In the rest of this section, we are going to show separately that each of the following five pairs of
matrices has the oligo-vertex property.

Σ1 = {A1, A2},Σ2 = {A1, A4},Σ3 = {A2, A3},Σ4 = {A4, A5},Σ5 = {A2, A4}.

We first present in the table below a complete description of how Nk(Σ, a) grows with k for the
five pairs of matrices, according to the location of the initial vector a.
The results in Table 1 show that the number of extreme points of Pk(Σ, a) grows linearly with k
when the initial vector is in the first or the third quadrant for most pairs of binary matrices except
Σ1.

Example 2. Figure 3 illustrates how the number of extreme points Nk(Σ1, a) changes with k given
different initial vector a’s. For the chosen a’s, the growth is at most linear in k for k ≤ 40.
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Σ1 Σ2 Σ3 Σ4 Σ5

a ∈ Q1 ∪Q3 O(k2) O(k) O(k) O(k) O(k)
a ∈ int(Q2) ∪ int(Q4) O(k4) O(k) O(k2) O(k2) O(k2)

Table 1: The number of extreme points Nk(Σ, a)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

Figure 3: The number of extreme points Nk(Σ1, a) given different initial vector a’s.

To prove the results in Table 1, we first introduce a few notations that will be used in the rest
of this section. Given a pair Σ of matrices and a vector a ∈ R2, we divide the set of extreme points
Ek(Σ, a) of Pk(Σ, a) into five groups.

Definition 2. Let Ei
k(Σ, a) be the set of extreme points of Pk(Σ, a) that are maximizers of the

linear program max{cx | x ∈ Pk(Σ, a)} for some c ∈ int(Qi), for i = 1, 2, 3, 4. Let E0
k(Σ, a) be the

set of extreme points of Pk(Σ, a) that are maximizers of the linear programs max{cx | x ∈ Pk(Σ, a)}
where c ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}.

Then

Ek(Σ, a) = ∪4i=0E
i
k(Σ, a) and Nk(Σ, a) ≤

4∑
i=0

|Ei
k(Σ, a)|. (8)

Example 3. Figure 4 illustrates the polytopes Pk(Σ3, a) and the sets of extreme points Ei
k(Σ3, a)

for i ∈ [0 : 4] with a = (2, 1)>, for k = 5 and k = 7.

5.1 Σ1 = {A1, A2}

Proposition 7. The pair Σ1 has the oligo-vertex property and Nk(Σ1) = O(k4).

Proposition 7 is an immediate consequence of the following propositions.

Proposition 8. For any a ∈ int(Q1) ∪ int(Q3), Nk(Σ1, a) = O(k2).

Proposition 9. For any a ∈ ∂Q1 ∪ ∂Q3, Nk(Σ1, a) = O(k2).

Proposition 10. For any a ∈ int(Q2) ∪ int(Q4), Nk(Σ1, a) = O(k4).

We first focus on proving Proposition 8. Our strategy is to bound the cardinality of Ei
k(Σ1, a) for

each i. Then according to (8), Nk(Σ1) will be bounded as well.
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(a) P5(Σ3, (2, 1)>) and Ei
5(Σ3, (2, 1)>)
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(b) P7(Σ3, (2, 1)>) and Ei
7(Σ3, (2, 1)>)

Figure 4: Examples of polytopes Pk(Σ3, a) and associated sets of extreme points Ei
k(Σ3, a) for

i ∈ [0 : 4].

Lemma 2. For any a ∈ int(Q1) and integer k ≥ 2, |E1
k(Σ1, a)| ≤ k + 1.

Proof. To simplify the notations, we write E1
k and Pk instead of E1

k(Σ1, a) and Pk(Σ1, a) respectively
in the rest of the proof. We claim that |E1

k | ≤ |E1
k−1|+ 1 for k ≥ 2. Then |E1

k | ≤ |E1
1 |+ (k − 1) ≤

2 + (k − 1) = k + 1. To prove the claim, we first show that E1
k ⊆ A1E

1
k−1 ∪A2E

1
k−1. Note that

max{cx | x ∈ Pk} = max{max{cA1x | x ∈ Pk−1},max{cA2x | x ∈ Pk−1}}. (9)

Given c ∈ int(Q1), both cA1 and cA2 are in the interior of Q1, so the maximizers of linear programs
on the right are in the set E1

k−1. Therefore, E1
k ⊆ A1E

1
k−1 ∪A2E

1
k−1.

Next we show that some points in A1E
1
k−1 ∪A2E

1
k−1 cannot belong to E1

k . Let p = (p1, p2)
> ∈

E1
k−1 be the maximizer of the linear program max{x1 + x2 | x ∈ Pk−1} with the smallest x2-

coordinate. Note that there is no other point in E1
k−1 whose x2-coordinate is p2. Otherwise suppose

that there is such a point p′. The fact that p is the maximizer of max{x1 + x2 | x ∈ Pk−1} implies
p1 > p′1. Then cp′ < cp for any c ∈ int(Q1), which contradicts that p′ ∈ E1

k−1. Now we can partition
E1

k−1 into three sets S1 = {x | x ∈ E1
k−1, x2 > p2}, S2 = {p}, and S3 = {x | x ∈ E1

k−1, x2 < p2}.
Then E1

k ⊆ A1S1 ∪A1S2 ∪A1S3 ∪A2S1 ∪A2S2 ∪A2S3. We show below that the points in A1S1 or
A2S3 cannot be in E1

k .
First consider any point x ∈ S1.

• If x1 < x2, we have cA2x− cA1x = c1x1 + c2(x2 − x1) > 0.

• Suppose x1 ≥ x2 and c1 < c2. Since x1+x2 ≤ p1+p2, we have x1−p1 ≤ p2−x2 < 0. Therefore,
cA1p− cA1x = c1(p2 − x2) + c2(p1 − x1) ≥ c1(x1 − p1) + c2(p1 − x1) = (c1 − c2)(x1 − p1) > 0.

• Suppose x1 ≥ x2 and c1 ≥ c2. Since x1 + x2 ≤ p1 + p2, p2− x1 ≥ x2− p1. Since x1 ≥ x2 > p2
and x1+x2 ≤ p1+p2, we have p1 ≥ x2. Then cA2p−cA1x = c1p1+c1(p2−x2)+c2(p2−x1) ≥
c1p1 + c1(p2 − x2) + c2(x2 − p1) = (c1 − c2)(p1 − x2) + c1p2 > 0.

Therefore, A1x ∈ A1S1 cannot be a maximizer of linear program (9) with c ∈ int(Q1).
Now consider any point x ∈ S3. Since p2−x2 > 0 and p1+p2 ≥ x1+x2, cA2p−cA2x = c1(p1+p2−

x1−x2)+c2(p2−x2) > 0. Therefore, A2x ∈ A2S3 cannot be a maximizer of linear program (9) with
c ∈ int(Q1). Hence, |E1

k | ≤ |A1S2|+|A1S3|+|A2S1|+|A2S2| = |S1|+|S2|+|S3|+|S2| = |E1
k−1|+1.

Lemma 3. For any a ∈ int(Q1) and integer k ≥ 2, |E3
k(Σ1, a)| ≤ 2.
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Proof. To simplify the notations, we write E3
k instead of E3

k(Σ1, a) in the rest of the proof. Let
a = (a1, a2)

> ∈ int(Q1). Assume that a1 ≤ a2. The case in which a1 > a2 can be proved similarly.
We show below by induction that E3

k ⊆ {Ak
1a,A

k−2
1 A2A1a} for any k ≥ 2. For the base case k = 2,

given any c ∈ int(Q3), cA
2
1a− cA2

2a = −2c1a2 > 0, cA2
1a− cA1A2a = c1(a1−a2)− c2a1 > 0. Hence,

E3
2 ⊆ {A2

1a,A2A1a}.
Now suppose that E3

t ⊆ {At
1a,A

t−2
1 A2A1a} for some t ≥ 2. We want to show that E3

t+1 ⊆
{At+1

1 a,At−1
1 A2A1a}. We assume that t is even (a similar argument can be used to prove the result

when t is odd). Similar to the proof of (9) in Lemma 2, we have E3
k ⊆ A1E

3
k−1 ∪A2E

3
k−1 for k ≥ 2.

Then by the induction hypothesis, we have E3
t+1 ⊆ {A

t+1
1 a,At−1

1 A2A1a,A2A
t
1a,A2A

t−2
1 A2A1a}.

Since t is even, At
1a = a and At−2

1 A2A1a = (a1 +a2, a1)
>. For any c ∈ int(Q3), cA

t+1
1 a− cA2A

t
1a =

−c1a1 + c2(a1 − a2) > 0, and cAt+1
1 a− cA2A

t−2
1 A2A1a = −2c1a1 > 0.

Hence, E3
t+1 ⊆ {A

t+1
1 a,At−1

1 A2A1a}. We conclude that |E3
k | ≤ 2 for any integer k ≥ 2.

Lemma 4. For any a ∈ int(Q1) and integer k ≥ 2, |E4
k(Σ1, a)| ≤ |E4

k−1(Σ1, a)|+ |E1
k−1(Σ1, a)|+ 2

and |E2
k(Σ1, a)| ≤ |E4

k−1(Σ1, a)|.

Proof. To simplify the notations, we omit the dependence of Σ1 and a in the rest of the proof. We
first prove that |E4

k | ≤ |E4
k−1|+ |E1

k−1|+ 2. Note that

max{cx | x ∈ Pk} = max{max{cA1A1x | x ∈ Pk−2},max{cA1A2x | x ∈ Pk−2},
max{cA2A1x | x ∈ Pk−2},max{cA2A2x | x ∈ Pk−2}}.

Since Pk−2 ⊆ int(Q1), for any c with c1 > 0 and c2 < 0 and x ∈ Pk−2, cA
2
2x = (c1, 2c1 + c2)x >

(c1, c2)x = cA2
1x, cA

2
2x = (c1, 2c1 + c2)x > (c2, c1 + c2)x = cA1A2x. Therefore, max{cx | x ∈ Pk} =

max{max{cA2A1x | x ∈ Pk−2},max{cA2A2x | x ∈ Pk−2}} = max{cA2x | x ∈ Pk−1}. Now that
cA2 = (c1, c1+c2) is a vector in the first or the fourth quadrant, the maximizers of max{cx | x ∈ Pk}
must be in A2E

1
k−1∪A2E

4
k−1∪A2S, where S is the set of extreme points of Pk−1 that are maximizers

of max{x1 | x ∈ Pk−1}. Therefore, |E4
k | ≤ |A2E

4
k−1|+ |A2E

1
k−1|+ |A2S| ≤ |E4

k−1|+ |E1
k−1|+ 2.

To prove that |E2
k | ≤ |E4

k−1|, consider c = (c1, c2) with c1 < 0 and c2 > 0. For any x ∈ Pk−2,

cA1A2x = (c2, c1 + c2)x > (c1 + c2, c1)x = cA2A1x,

cA1A2x = (c2, c1 + c2)x > (c1, 2c1 + c2)x = cA2A2x.

Thus we have max{cx | x ∈ Pk} = max{max{cA1A1x | x ∈ Pk−2},max{cA1A2x | x ∈ Pk−2}} =
max{cA1x | x ∈ Pk−1}. Since cA1 = (c2, c1) is a vector in the interior of the fourth quadrant, the
optimal solutions of max{cx | x ∈ Pk} must be in A1E

4
k−1. Therefore, |E2

k | ≤ |E4
k−1|.

Now we are ready to prove Proposition 8,

Proof of Proposition 8. We only need to prove the case where a ∈ int(Q1). When a ∈ int(Q3), it is
easy to verify that Nk(Σ1, a) = Nk(Σ1,−a). By Lemma 2 and Lemma 3, we have |E1

k(Σ1, a)| ≤ k+1
and |E3

k(Σ1, a)| ≤ 2 for any a ∈ int(Q1) and integer k ≥ 2. By Lemma 4, for any a ∈ int(Q1)
and integer k ≥ 3, |E4

k(Σ1, a)| ≤ |E4
k−1(Σ1, a)| + |E1

k−1(Σ1, a)| + 2 ≤ |E4
k−1(Σ1, a)| + (k + 2) ≤

|E4
2(Σ1, a)|+

∑k−1
i=2 (i+3) ≤ 1

2k
2+ 5

2k−3, and |E2
k(Σ1, a)| ≤ |E4

k−1(Σ1, a)| ≤ 1
2k

2+ 3
2k−5. Therefore,

Nk(Σ1, a) ≤ |E1
k(Σ1, a)|+ |E2

k(Σ1, a)|+ |E3
k(Σ1, a)|+ |E4

k(Σ1, a)|+ |E0
k(Σ1, a)| = O(k2).

The conclusion Nk(Σ1, a) = O(k2) can be easily extended to the case where a is on the boundary
of the first or third quadrant.
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Proof of Proposition 9. We only need to prove the case where a ∈ ∂Q1. The case where a ∈ ∂Q3

follows from the fact Nk(Σ1, a) = Nk(Σ1,−a). We first prove the result when a is on the positive
x1-axis. Without loss of generality, assume that a = (1, 0)>. We claim that for any integer k ≥ 3,

Xk(Σ1, (1, 0)>) = Xk−2(Σ1, (1, 1)>) ∪ {(1, 0)>, (0, 1)>}.

To see this, consider any value of x(k) in Xk(Σ1, (1, 0)>) that is different from (1, 0)> and (0, 1)>.
Since At

1a = (0, 1)> for odd integer t ≥ 1, At
1a = (1, 0)> for even integer t ≥ 1, At

2a = (1, 0)>

for any integer t ≥ 1, and A2A1a = (1, 1)>. For x(k) to take a value different from (0, 1)>

and (1, 0)>, x(k) must be in the form of Tk−1 · · ·Tlx(l) with Tj ∈ Σ1 for j ∈ [l : k − 1] and

x(l) = (1, 1)> for some l ≥ 2. But when x(l) = (1, 1)>, we have Aj
1x(l) = x(l) for any integer j ≥ 1.

Then x(k) = Tk−1 · · ·TlAl−2
1 x(l), which is a point in Xk−2(Σ1, (1, 1)>). Thus Xk(Σ1, (1, 0)>) ⊆

Xk−2(Σ1, (1, 1)>)∪{(1, 0)>, (0, 1)>}. On the other hand, given a point in Xk−2(Σ1, (1, 1)>) written
in the form of Tk−3 · · ·T0(1, 1)> with Tj ∈ Σ1 for j ∈ [0 : k − 3], we can also write it in the form
of Tk−3 · · ·T0A2A1(1, 0)>. Thus Xk(Σ1, (1, 0)>) ⊇ Xk−2(Σ1, (1, 1)>)∪{(1, 0)>, (0, 1)>}. Therefore,
Nk(Σ1, (1, 0)>) ≤ Nk−2(Σ1, (1, 1)>)+2 = O(k2). The last equality follows from Proposition 8. The
case where a is on the positive x2-axis can be proved similarly.

We proceed to prove Proposition 10. Let X2,4
k (Σ1, a) be the set of points in Xk(Σ1, a) that are

in the interior of the second or fourth quadrant, i.e.,

X2,4
k (Σ1, a) = Xk(Σ1, a) ∩ (int(Q2) ∪ int(Q4)).

Lemma 5. For any a ∈ int(Q4) and integer k ≥ 2, X2,4
k (Σ1, a) contains no more than 4k + 4

points.

Proof. Without loss of generality, assume a = (1, a2)
> with a2 < 0. Let u0 = max{1,−a2}

and v0 = min{1,−a2}. Define the following sequence of non-negative numbers recursively: uj =
max{vj−1, uj−1 − vj−1} and vj = min{vj−1, uj−1 − vj−1} for j ∈ [1 : k]. For each t ∈ [0 : k], define
St = {(ut,−vt)>, (−ut, vt)>, (vt,−ut)>, (−vt, ut)>}.

Given any sk ∈ X2,4
k (Σ1, a), assume that sk = Tk−1 · · ·T0a with Tj ∈ Σ1 for j ∈ [0 : k − 1].

We claim that for any integer k ≥ 0, if t out of the k matrices T0, · · · , Tk−1 are A2, then sk ∈ St.
We prove the claim by induction on k. First consider the base case k = 0. If |a2| ≥ 1, then
u0 = −a2 and v0 = 1, so sk = a = (v0,−u0)> ∈ S0. If |a2| < 1, then u0 = 1 and v0 = −a2, so
sk = a = (u0,−v0)> ∈ S0. Now suppose that the claim holds for integer k = l ≥ 0. Specifically,
sl = Tl−1 · · ·T0a ∈ St if t ∈ [0 : l] out of the l matrices T0, · · · , Tl−1 are A2. We want to prove
that any point sl+1 = Tl+1 · · ·T0a in X2,4

l+1(Σ1, a) also belongs to St, if t ∈ [0 : l + 1] out of the
l + 1 matrices T0, · · · , Tl+1 are A2. If Tl+1 = A1, then t out of the l matrices Tl, . . . , T0 are A2.
Based on the induction hypothesis, the point s = Tl · · ·T0a ∈ St. Since A1St = St, s

l+1 = A1s
must be in St as well. If Tl+1 = A2, then (t − 1) out of the l matrices Tl, . . . , T0 are A2. Based
on the induction hypothesis, the point s = Tl · · ·T0a ∈ St−1. The set St contains four points.
We consider one case s = (ut−1,−vt−1)> here, and the result for the other cases can be proved
similarly. We have sl+1 = A2s = (ut−1 − vt−1,−vt−1)>. Since sl+1 is in the interior of second
or fourth quadrant and −vt−1 < 0, we must have ut−1 − vt−1 > 0. If vt−1 ≥ ut−1 − vt−1, then
ut = vt−1, vt = ut−1−vt−1, and sl+1 = (vt,−ut)> ∈ St. If vt−1 < ut−1−vt−1, then ut = ut−1−vt−1,
vt = vt−1, and sl+1 = (ut,−vt)> ∈ St. With the claim, we conclude that X2,4

k (Σ1, a) contains at
most 4k + 4 different points.

Proof of Proposition 10. We omit the dependence of Σ1 in the rest of the proof to simplify the
notation. Given a set S ⊆ R2, define Xk(S) = ∪a∈SXk(a).
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First note that for any x in the first (third) quadrant, A1x and A2x are both in the first
(third) quadrant. Thus the points in X2,4

i+1(a) can only be linear transformations of points in

X2,4
i (a) under A1 or A2. In addition, for any x in the second or fourth quadrant, A1x is also

in the second or fourth quadrant. Therefore, for any integer i ≥ 0, A1X
2,4
i (a) ∪ A2X

2,4
i (a) =

X2,4
i+1(a) ∪ (A2X

2,4
i (a) ∩ (Q1 ∪Q3)). Given any a in the interior of the second quadrant, we have

Xk(a) =Xk(X2,4
0 (a)) = Xk−1(A1X

2,4
0 (a) ∪A2X

2,4
0 (a))

=Xk−1(X
2,4
1 (a)) ∪Xk−1(A2X

2,4
0 (a) ∩ (Q1 ∪Q3))

=(Xk−2(X
2,4
2 (a)) ∪Xk−2(A2X

2,4
1 (a) ∩ (Q1 ∪Q3)))

∪Xk−1(A2X
2,4
0 (a) ∩ (Q1 ∪Q3))

· · ·
=Xl(X

2,4
k−l(a)) ∪ ∪k−1j=l Xj(A2X

2,4
k−1−j(a) ∩ (Q1 ∪Q3))

(10)

for any l ≥ 1.
On the other hand, for any x in the first or third quadrant, we have shown that there exists

some integer k0 and α > 0 such that Nk(x) ≤ αk2 for any integer k ≥ k0. Setting l = k0 in
equation (10) we have Xk(a) = Xk0(X2,4

k−k0(a)) ∪ ∪k−1j=k0
Xj(A2X

2,4
k−1−j(a) ∩ (Q1 ∪Q3)). Therefore,

Nk(a) ≤ |Xk0(X2,4
k−k0(a))|+

k−1∑
j=k0

∑
x∈A2X

2,4
k−1−j(a)∩(Q1∪Q3)

Nj(x)

≤
∑

x∈X2,4
k−k0

(a)

|Xk0(x)|+
k−1∑
j=k0

|A2X
2,4
k−1−j(a)|αj2

≤ |X2,4
k−k0(a)|2k0 +

k−1∑
j=k0

|X2,4
k−1−j(a)| · αj2

≤ (4k − 4k0 + 4)2k0 +
k−1∑
j=k0

(4k − 4j)αj2 ≤ βk4,

for some constant β. The second last inequality follows from Lemma 5. Therefore Nk(a) =
O(k4).

5.2 Σ2 = {A1, A4}

In this section, we will prove that Nk(Σ2) = O(k).

Lemma 6. Given any polytope P ⊆ R × R+ or P ⊆ R × R−, the number of extreme points of
conv(P ∪A2P ) is at most two more than the number of extreme points of P .

Proof. We first prove the case in which P ⊆ R×R+. The result is easy to show if P is a singleton
or a line segment. Now suppose P is full dimensional. Let r = (r1, r2)

> be the extreme point of
P with the largest x2-coordinate; if there are two such extreme points, let r be the one with a
larger x1-coordinate. Similarly, let s = (s1, s2)

> be the extreme point of P with the smallest x2-
coordinate; let s be the one with a larger x1-coordinate if there are two such extreme points. Divide
the extreme points of P other than r and s into two sets: (1) Set Q1 consisting of extreme points
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visited if we walk clockwise along the boundary of P from s to r; (2) Set Q2 consisting of extreme
points visited if we walk clockwise along the boundary of P from r to s. Let R = {r, s, A2r,A2s}.
Since ext(P ) = Q1 ∪Q2 ∪ {r, s}, the possible extreme points of conv(P ∪A2P ) are among Q1, Q2,
A2Q1, A2Q2, and R.

We claim that any point in Q2 can be represented as a convex combination of points in Q1 ∪
A2Q2∪R. To see this, first consider any point p = (p1, p2)

> ∈ Q2. By the definition of Q2, we have
p2 > 0 and there exists a point h = (h1, h2)

> on the line segment connecting r and s such that
h1 < p1 and h2 = p2. See the illustration in Figure 5. We can verify that p = λA2p+ (1−λ)h with
λ = p1−h1

p1+p2−h1
∈ (0, 1). Thus p can be represented as a convex combination of A2p and h. Since

h can also be represented by a convex combination of r and s, p can be represented as a convex
combination of A2p, r, and s. Therefore, we show that any point in Q2 is a convex combination of
points in Q1 ∪A2Q2 ∪R.

Figure 5: Point p is a convex combination of r, s, and A2p.

Similarly, we can show that any point in A2Q1 is a convex combination of points inQ1∪A2Q2∪R.
Then we have conv(P ∪A2P ) = conv(Q1∪A2Q2∪R). Thus |ext(conv(P ∪A2P ))| = |ext(conv(Q1∪
A2Q2 ∪R))| ≤ |Q1|+ |A2Q2|+ |R| ≤ (|Q1|+ |Q2|+ |{r, s}|) + 2 ≤ |ext(P )|+ 2. The result for any
P ⊆ R× R− can be proved similarly.

Proposition 11. The pair Σ2 has the oligo-vertex property and Nk(Σ2) = O(k).

Proof. To simplify the notation, we omit the dependence of Σ2 in Nk(Σ2, a) and Pk(Σ2, a) in the
rest of this proof. We claim that Nk+1(a) ≤ Nk(a) + 8 for any a ∈ R2 and integer k ≥ 2. Then
Nk(a) ≤ Nk−1(a) + 8 ≤ · · · ≤ N2(a) + 8(k − 2) ≤ 4 + 8(k − 2) = 8k − 12. Thus Nk = O(k).

To prove the claim, first observe that Pk+1(a) = conv(A1Pk(a) ∪ A4Pk(a)) = conv(A1Pk(a) ∪
A2A1Pk(a)). Define P+ = A1Pk(a) ∩ {x | x2 ≥ 0} and P− = A1Pk(a) ∩ {x | x2 ≤ 0}. Notice
that P+ is a polytope in R × R+ and P− is polytope in R × R−, and |ext(P+)| + |ext(P−)| ≤
|ext(A1Pk(a))| + 4 = Nk(a) + 4. The first inequality above follows from the fact the line x2 = 0
may introduce two new extreme points for both P+ and P−. On the other hand,

Pk+1(a) = conv(A1Pk(a) ∪A2A1Pk(a))

= conv(P+ ∪ P− ∪A2(P
+ ∪ P−))

= conv(conv(P+ ∪A2P
+) ∪ conv(P− ∪A2P

−)).

ThusNk+1(a) ≤ |ext(conv(conv(P+∪A2P
+)))|+|ext(conv(P−∪A2P

−))|. By Lemma 6, |ext(conv(P+∪
A2P

+))| ≤ |ext(P+)|+ 2 and |ext(conv(P− ∪ A2P
−))| ≤ |ext(P−)|+ 2. Thus we have Nk+1(a) ≤

|ext(conv(P+))|+ 2 + |ext(conv(P−))|+ 2 ≤ Nk(a) + 8.
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5.3 Σ3 = {A2, A3}

We first prove the following result when the initial vector a is in the first quadrant.

Proposition 12. For any a ∈ Q1, Nk(Σ3, a) = O(k).

Proof. The proof is similar to the proof of Proposition 8 for Σ1. We first bound the cardinality
of Ei

k(Σ3, a) for each i. Similar to the proofs of Lemmas 2, 3, and 4, we can show that for
any a ∈ Q1, |E1

k(Σ3, a)| ≤ 4 when k ≥ 3, E3
k(Σ3, a) ⊆ {Ak

2a,A
k
3a} when k ≥ 1, |E4

k(Σ3, a)| ≤
|E4

k−1(Σ3, a)| + |E1
k−1(Σ3, a)| + 2 and |E2

k(Σ3, a)| ≤ |E2
k−1(Σ3, a)| + |E1

k−1(Σ3, a)| + 2 when k ≥ 1,
respectively. Then |E4

k(Σ3, a)| ≤ |E4
k−1(Σ3, a)| + 6 ≤ |E4

3(Σ3, a)| + 6(k − 3) ≤ 6k − 10. Similarly,

|E2
k(Σ3, a)| ≤ 6k − 10. Finally, for any a ∈ Q1 and integer k ≥ 3, Nk(Σ3, a) ≤

∑4
i=0 |Ei

k(Σ3, a)| ≤
8 + 4 + (6k − 10) + 2 + (6k − 10) + 8 = 12k − 6.

Proposition 13. The pair Σ3 has the oligo-vertex property and Nk(Σ3) = O(k2).

Proof. We only need to prove that Nk(Σ3, a) = O(k2) for any a ∈ int(Q4). Define fk =
sup{Nk(Σ3, a) | a ∈ int(Q4)} for any integer k ≥ 1. Note that fk = sup{Nk(Σ3, a) | a ∈ int(Q2)}
for k ≥ 1 as well. Since Pk(Σ3, a) = conv(Pk−1(Σ3, A2a) ∪ Pk−1(Σ3, A3a)), we have Nk(Σ3, a) ≤
Nk−1(Σ3, A2a)+Nk−1(Σ3, A3a). Consider a vector a = (a1, a2)

> ∈ int(Q4) with a1 > 0 and a2 < 0.

1. If a1 = −a2, we have A2a = (0, a2)
> ∈ Q3 and A3a = (a1, 0)> ∈ Q1. Then there exists α > 0

and integer k0 such that for any integer l ≥ k0, Nl(Σ3, A2a) ≤ αl and Nl(Σ3, A3a) ≤ αl. Thus
for any integer k ≥ k0+1, Nk(Σ3, a) ≤ Nk−1(Σ3, A2a)+Nk−1(Σ3, A3a) ≤ α(k−1)+α(k−1) ≤
2αk. Therefore, Nk(Σ3, a) = O(k).

2. If a1 < −a2, we have A2a = (a1 + a2, a2)
> ∈ Q3 and A3a = (a1, a1 + a2)

> ∈ int(Q4). Then
there exists α > 0 and integer k0 such that for any integer l ≥ k0, Nl(Σ3, A2a) ≤ αl. For any
k ≥ k0 + 1, Nk(Σ3, a) ≤ Nk−1(Σ3, A2a) + Nk−1(Σ3, A3a) ≤ α(k − 1) + fk−1. Then for any
k ≥ k0 + 1, fk ≤ α(k − 1) + fk−1. Thus for any k ≥ 2k0,

fk ≤ α(k − 1) + fk−1 ≤ α(k − 1) + α(k − 2) + fk−2

· · · ≤ α(k − 1) + α(k − 2) + · · ·+ αk0 + fk0

≤ α(k − 1 + k0)(k − k0)
2

+ 2k0 ≤ βk2,

for some β > 0. Therefore, fk = O(k2).

3. If a1 > −a2, it can be proved that fk = O(k2) with a similar argument as in the case a1 < −a2.

5.4 Σ4 = {A4, A5}

Proposition 14. The pair Σ4 has the oligo-vertex property and Nk(Σ4) = O(k2).

Proof. First observe that A4A5 = A2A2, A4A4 = A2A3, A5A5 = A3A2, and A5A4 = A3A3. When k
is an even integer, every product of k matrices with A2 and A3 can be represented by a product of k
matrices with A4 and A5 and vice versa. Therefore, for any given a ∈ R2, Pk(Σ4, a) = Pk(Σ3, a) and
Nk(Σ4, a) = Nk(Σ3, a). When k is an odd integer, Pk(Σ4, a) = conv(A4Pk−1(Σ4, a)∪A5Pk−1(Σ4, a))
and Nk(Σ4, a) ≤ 2Nk−1(Σ4, a) = 2Nk−1(Σ3, a). Since there exists α > 0 and integer k0 such that
Nk(Σ3, a) ≤ αk2 for any integer k ≥ k0, we have Nk(Σ4, a) ≤ 2αk2 for any integer k ≥ k0.
Therefore, Nk(Σ4) = O(k2).
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5.5 Σ5 = {A2, A4}

Proposition 15. For any a ∈ Q1 with a1 ≥ a2, Nk(Σ5, a) = O(k).

Proof. First similar to the proofs of Lemmas 2, 3, and 4, we can show by induction that for any
a ∈ Q1 with a1 ≥ a2, E

1
k(Σ5, k) = {Ak

4a} and E3
k(Σ5, a) = {Ak

2a} when k ≥ 0, and |E4
k(Σ5, a)| ≤

|E4
k−1(Σ5, a)| + |E1

k−1(Σ5, a)| + 2 and |E2
k(Σ5, a)| ≤ |E2

k−1(Σ5, a)| + |E1
k−1(Σ5, a)| + 2 when k ≥ 1,

respectively. Then |E4
k(Σ5, a)| ≤ |E4

k−1(Σ5, a)| + 3 ≤ |E4
1(Σ5, a)| + 3(k − 1) ≤ 3k − 1. Similarly,

|E2
k(Σ5, a)| ≤ 3k − 1. Finally, for any integer k ≥ 1, Nk(Σ5, a) ≤

∑4
i=0 |Ei

k(Σ5, a)| ≤ 6k + 8.

We now extend Proposition 15 to the case where a is in the first quadrant.

Proposition 16. For any a ∈ Q1, Nk(Σ5, a) = O(k).

Proof. For any a = (a1, a2)
> with a1 ≥ 0 and a2 ≥ 0, both A2a and A4a are contained in the set

{x ∈ R2
+ | x1 ≥ x2}. By Proposition 15, there exists α > 0 and integer k0 such that for any integer

l ≥ k0, Nl(Σ5, A2a) ≤ αl and Nl(Σ5, A4a) ≤ αl. Thus for any integer k ≥ k0 + 1, Nk(Σ5, a) ≤
Nk−1(Σ5, A2a) +Nk−1(Σ5, A4a) ≤ α(k − 1) + α(k − 1) ≤ 2αk. Therefore, Nk(Σ5, a) = O(k).

Finally, we extend the result to a ∈ R2, similar to Proposition 13 for the case Σ3.

Proposition 17. The pair Σ5 has the oligo-vertex property and Nk(Σ5) = O(k2).

6 Computational results

In this section, we compare the performance of our algorithm with one state-of-the-art global
optimization solver Baron [22]. We randomly generate 10 instances for each of the 10 sets of
parameters (n,m,K) for (P), with 100 instances in total. The parameters are summarized in
Table 2. The entries of each matrix are randomly drawn from a uniform distribution over [−1, 1],
and the entries of the initial vector a are randomly drawn from a uniform distribution over [0, 1].
Note that our algorithm does not rely on any additional property of f other than convexity. In order
for Baron to gain a better performance, we choose a simple smooth objective function f(x) = ‖x‖22.
All test instances can be downloaded at https://github.com/qqqhe. The mixed-integer nonlinear
programming (MINLP) formulation of (P) is given in (11) and solved by Baron, where Alij denotes
the (i, j)-th entry of the l-th matrix for l ∈ [m]. Note that we also tried to linearize the constraints
in the MINLP formulation by introducing big-M constants, but we observed that Baron and a
commercial mixed-integer linear programming solver Gurobi [14] easily run into numerical issues
with many big-M constants in the constraints, even for a small-sized instance.

max
x,z

n∑
i=1

x2i (K)

s.t. xi(k) =
m∑
l=1

n∑
j=1

Alijxj(k − 1)zk,l, i ∈ [n], k ∈ [K],

m∑
l=1

zk,l = 1, k ∈ [K],

zk,l ∈ {0, 1}, l ∈ [m], k ∈ [K],

x(0) = a.

(11)
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Our algorithm is coded in Matlab. Computational experiments are conducted on a laptop
with Intel i7-6560U 2.20 GHz and 8 GB of RAM memory, under Windows 10 Operating System.
The MINLP formulation is coded in AMPL and solved by Baron 18.5.8. The time limit for each
instance is set to 600s. When n ≤ 5, our algorithm employs Matlab’s build-in function convhulln
to construct the set of extreme points directly. When n ≥ 6, our algorithm solves a linear program
with the commercial solver Gurobi [14] to identify each extreme point. The computational results
are summarized in Table 2. All test instances are solved to optimality by our algorithm within
the time limit. The average solution time of our algorithm is reported in the rows “Our algorithm
(s)”. On the other hand, Baron cannot solve most instances to optimality, and has a variety of
output for instances of different sizes. Instead of reporting the solution time, we report the number
of instances with different outputs by Baron in three categories that were described in [30]: The
symbol G (G!) denotes that Baron finds a global optimal solution and proves (cannot prove) its
optimality within the time limit; The symbol Limit denotes that Baron finds some feasible solution
within the time limit; The symbol Wrong denotes that Baron reports infeasibility or failure.

(n,m,K) (2,2,20) (2,2,50) (2,2,500) (2,5,500) (2,10,500)

Our algorithm (s) 0.013 0.031 0.300 0.298 0.289

Baron
G/G! 4/6 2/5 4/2 0/0 0/0
Limit 0 2 1 7 7
Wrong 0 1 3 3 3

(n,m,K) (5,2,100) (5,5,100) (5,10,100) (8,2,50) (10,2,20)

Our algorithm (s) 1.094 2.456 2.405 59.457 58.357

Baron
G/G! 0/0 0/0 0/0 0/0 0/0
Limit 0 0 1 0 10
Wrong 10 10 9 10 0

Table 2: The average running time of our algorithm and solution statistics of Baron

Our proposed algorithm has a clear advantage over Baron in solving (P). Our algorithm is very
efficient in solving instances with n = 2 and large m and K, requiring less than one second. When n
increases to 8 and 10, our algorithm is able to solve instances with K = 50 and K = 20 respectively
in less than one minute. On the other hand, Baron is only able to solve several instances with a
pair of 2×2 matrices to optimality. When n or m is larger than 2, it either cannot find the optimal
solution within the time limit or runs into numerical issues. Finally, we observe that when the
problem dimension n ≥ 8, our algorithm is not able to solve instances with K = 100 within the
time limit, since the running time grows rapidly with K. We suspect the reason is that the set of
randomly generated matrices no longer has the oligo-vertex property for larger n. This observation
is also consistent with the fact that (P) is NP-hard for general n.

7 Open Problems and Conclusions

The problem (P) has many applications in operations research and control, and can also be seen as
an approximation to the dynamics of more general continuous-time nonlinear switched systems. In
this paper, we preset an efficient exact algorithm to solve large-sized instances of (P) that cannot be
handled by state-of-the-art optimization software. We introduce an interesting property—the oligo-
vertex property—for a finite set of matrices to help analyze the time complexity of our algorithm.
We now present several open questions on the oligo-vertex property, which we believe may be of
independent interest.
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1. Does any finite set of 2× 2 matrices with rational entries have the oligo-vertex property?

2. Does any finite set of 2× 2 real matrices have the oligo-vertex property?

3. Is there an “easy-to-check” necessary condition for a set of matrices to have the oligo-vertex
property? Is there a finite-time algorithm to test the oligo-vertex property for a given set
of matrices with rational entries? If so, is deciding whether such a set of matrices has the
oligo-vertex property in P or NP?

4. Does the finiteness property imply the oligo-vertex property, and vice versa?

5. Is Nk(Σ) = O(k) for any pair of 2× 2 binary matrices?

The last question comes from our observation thatNk(Σ, a) grows linearly with k for any 2×2 binary
matrices in the computational experiment. We believe an answer to any of the above questions will
be instrumental in designing a faster exact algorithm for (P).
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