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INTRINSIC ISOMETRIC MANIFOLD LEARNING WITH
APPLICATION TO LOCALIZATION*

ARIEL SCHWARTZ' AND RONEN TALMONf¥

Abstract. Data living on manifolds commonly appear in many applications. Often this re-
sults from an inherently latent low-dimensional system being observed through higher dimensional
measurements. We show that under certain conditions, it is possible to construct an intrinsic and
isometric data representation, which respects an underlying latent intrinsic geometry. Namely, we
view the observed data only as a proxy and learn the structure of a latent unobserved intrinsic man-
ifold, whereas common practice is to learn the manifold of the observed data. For this purpose, we
build a new metric and propose a method for its robust estimation by assuming mild statistical priors
and by using artificial neural networks as a mechanism for metric regularization and parametriza-
tion. We show successful application to unsupervised indoor localization in ad-hoc sensor networks.
Specifically, we show that our proposed method facilitates accurate localization of a moving agent
from imaging data it collects. Importantly, our method is applied in the same way to two different
imaging modalities, thereby demonstrating its intrinsic and modality-invariant capabilities.

Key words. manifold learning, intrinsic, isometric, metric estimation, inverse problem, sensor
invariance, positioning
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1. Introduction. Making measurements is an integral part of everyday life, and
particularly, exploration and learning. However, we are usually not interested in the
values of the acquired measurements themselves, but rather in understanding the la-
tent system which drives these measurements and might not be directly observable.
For example when considering a radar system, we are not interested in the pattern
of the electromagnetic wave received and measured by the antenna, but rather in
the location, size and velocity of the object captured by the wave reflection pat-
tern. This example highlights the difference between “observed” properties, which
can be directly measured, and “intrinsic” properties corresponding to the latent driv-
ing system. The importance of this distinction becomes central when the same latent
system is observed and represented in multiple forms; the different measurements and
observation modalities may have different observed properties, yet they share certain
common intrinsic properties and structures, since they are all generated by the same
driving system.

Different observation modalities are not all equally suitable for examining the
underlying driving system. It is often the case that systems, which are governed by a
small number of variables (and are hence inherently low-dimensional in nature), are
observed via redundant complex high-dimensional measurements, obscuring the true
low-dimensional and much simpler nature of the latent system of interest. As a result,
when trying to tackle signal processing and machine learning tasks, a considerable
amount of effort is put initially on choosing or building an appropriate representation
of the observed data.

Much research in the fields of machine learning and data mining has been devoted
to methods for learning ways to represent information in an unsupervised fashion,
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directly from observed data, aiming to lower the dimensionality of the observations,
simplify them and uncover properties and structures of their latent driving system
[4]. This field of research has recently gained considerable attention due to the ability
to acquire, store and share large amounts of information, leading to the availability
of large scale data sets. Such large data sets are often generated by systems, which
are not well understood and for which tailoring data representations based on prior
knowledge is impossible.

A particular representation learning subclass of methods is manifold learning
[4, 42,12, 3, 35, 48, 31]. In manifold learning it is assumed that observed data lie near
a low-dimensional manifold embedded in a higher-dimensional ambient observation
space. Typically the goal then is to embed the data in a low-dimensional Euclidean
space while preserving some of their properties.

Most manifold learning methods operate directly on the observed data and rely on
their geometric properties [42, 4, 12, 15, 23, 31, 32, 37, 44]. This observed geometry,
however, can be significantly influenced by the observation modality which is often
arbitrary and without a clear known connection to the latent system of interest.
Consequently, it is subpar to preserve observed properties, which might be irrelevant,
and instead, one should seek to rely on intrinsic properties of the data, which are
inherent to the latent system of interest and invariant to the observation modality.

Intrinsic geometry can be especially beneficial when it adheres to some useful
structure, such as that of a vector space. Indeed there exist many systems whose dy-
namics and state space geometry can be simply described within an ambient Euclidean
space. Unfortunately, when such systems are observed via an unknown non-linear ob-
servation function, this structure is typically lost. In such cases, it is advantageous
to not only circumvent the influence of the observation function but also to explicitly
preserve the global intrinsic geometry of the latent system.

We claim that in many situations, methods which are both intrinsic and glob-
ally isometric are better suited for manifold learning. In this paper, we propose a
dimensionality reduction method which robustly estimates the push-forward metric
of an unknown observation function using a parametric estimation implemented by
an Artificial Neural Network (ANN). The estimated metric is then used to calcu-
late intrinsic-isometric geometric properties of the latent system state space directly
from observed data. Our method uses these geometric properties as constraints for
embedding the observed data into a low-dimensional Euclidean space. The proposed
method is thus able to uncover the underlying geometric structure of a latent system
from its observations without explicit knowledge of the observation model.

The structure of this paper is as follows. In section 2 we present the general
problem of localization based on measurements acquired using an unknown observa-
tion model. This problem provides motivation for developing an intrinsic-isometric
manifold learning method. In section 3 we formulate the problem mathematically. In
section 4 we present our dimensionality reduction method, which makes use of the
push-forward metric as an intrinsic metric. In section 5, we propose a robust method
for estimating this intrinsic metric directly from the observed data using an ANN.
In section 6 we present the results of our proposed algorithm on synthetic data sets.
In addition, we revisit the localization problem described in section 2 in the specific
case of image data and show that the proposed intrinsic-isometric manifold learning
approach indeed allows for sensor invariant positioning and mapping in realistic con-
ditions using highly non-linear observation modalities. In section 7 we conclude the
work, discuss some key issues and outline possible future research directions.
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2. The localization problem and motivation. Our motivating example is
that of mapping a 2-dimensional region and positioning an agent within that region
based on measurements it acquires. We denote the set of points belonging to the
region by X C R? and the location of the agent by x € X (as illustrated in Figure 1).
At each position the agent makes measurements y = f(x), which are functions of its
location. The values of the measurements are observable to us; however, we cannot
directly observe the shape of X or the location of the agent x, therefore they represent
a latent system of interest.

Fig. 1: Agent in a 2-dimensional space

Latent System Measurement Values

f

Measurement
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F(X) =Y CR?

Fig. 2: Creation of the observed manifold

We simultaneously consider two distinct possible measurement models as de-
scribed in Figure 3. The first measurement modality described in Figure 3a is concep-
tually similar to measuring Received Signal Strength (RSS) values at x from antennas
transmitting from different locations. Such measurements typically decay as the agent
is further away from the signal origin. The second possible measurement model, vi-
sualized in Figure 3b, consists of measurements, which are more complex and do
not have an obvious interpretable connection to the location of the agent. Although
both of these measurement modalities are 3-dimensional, the set of observable mea-
surements resides on a 2-dimensional manifold embedded in 3-dimensional ambient
observation space, as visualized in Figure 2. This is due to the inherit 2-dimensional
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(a) First measurement modality (b) Second measurement modality

Fig. 3: Two different observation function modalities. a A “free-space” signal strength
decay model. The antenna symbol represents the location from which the signal
originates b A second measurement modality of arbitrary and unknown nature. In
both cases the variation in color represents different measurement values

nature of the latent system. _

The respective observation functions, f and f, of these measurement modalities
are both bijective on X, i.e. no two locations within X correspond to the same set of
measurement values. Therefore, one can ask whether the location of the agent x can
be inferred given the corresponding measurement values. If the measurement model
represented by the observation function is known, this becomes a standard problem
of model-based localization, which is a specific case of non-linear inverse problems
[20]. However, if the observation function is unknown or depends on many unknown
parameters, recovering the location from the measurements becomes much more chal-
lenging. The latter case represents many real-life scenarios. For example, acoustic
and electromagnetic wave propagation models, which are complex and depends on
many a priori unknown factors such as room geometry, locations of walls, reflection,
transmission, absorption of materials, etc. Image data can also serve as a possible
indirect measurement of position. we note that although the image acquisition model
is well known, the actual image acquired also depends on the geometry and look of the
surrounding environment. If the surrounding environment is not known a priori then
this observation modality also falls into the category of observation via an unknown
model.

In this work, we will consider the case of observation via an unknown model,
and address the following question: is it be possible to retrieve x from f(x) without
knowing f7

Given that the described problem involves the recovery of a low-dimensional struc-
ture from an observable manifold embedded in a higher-dimensional ambient space, we
are inclined to use a manifold learning approach. However, standard manifold learning
algorithms do not yield satisfactory results, as can be seen in Figure 4. While some of
the methods provide an interpretable low-dimensional parametrization of the latent
space by preserving the basic topology of the manifold, none of the tested methods
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recover the true location of the agent or the structure of the region it moves in.
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Fig. 4: Manifold learning for positioning and mapping based on observed measure-
ments . The first row corresponds to the application of manifold learning methods to
the manifold created via the observation function visualized in Figure 3a. The second
row corresponds to application of manifold learning methods to the manifold cre-
ated via the observation function visualized in Figure 3b. The bottom row represents
application of manifold learning methods directly to the latent manifold

This problem demonstrates the inadequacy of existing manifold learning algo-
rithms for uncovering the intrinsic geometric structure of a latent system of interest
from its observations. We attribute this inadequacy to two main factors: the lack of
intrinsicness and the lack of geometry preservation or isometry. Existing manifold
learning algorithms generate new representations of data, while preserving certain
observed properties. When data originates from a latent system measured via an
observation function, the observed measurements are affected by the specific (and of-
ten arbitrary) observation function, which in turn affects the learned low-dimensional
representation. As a consequence, the same latent system observed via different ob-
servation modalities is represented differently when manifold learning methods are
applied (as can be seen in Figure 4). This fails to capture the intrinsic character-
istics of the different observed manifolds, which originate from the same latent low-
dimensional system. Settings involving different measurement modalities of unknown
measurement modalities necessitate manifold learning algorithms, which are intrinsic,
i.e., that their learned representation is independent of the observation function and
invariant to the way in which the latent system is measured.

Intrinsicness by itself is not enough in order to retrieve the latent geometric struc-
ture of the data. be seen in Figure 4, even when the same manifold learning methods
are applied directly to the low-dimensional latent space, thus avoiding any observa-
tion function, preservation of the geometric structure of the latent low-dimensional
space is not guaranteed. In order to explicitly preserve the geometric structure of the
latent manifold, the learned representation needs to also be isometric, i.e., distance
preserving.

In this paper, we present a manifold learning method, which is isometric with
respect to the latent intrinsic geometric structure. We will show that, under certain
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assumptions, our method allows for the retrieval of x and X from observed data
without requiring explicit knowledge of the specific observation model, thus solving a
“blind inverse problem”. In the context of motivating positioning problem, we achieve
sensor-invariant localization, enabling the same positioning algorithm to be applied
to problems from a broad range of signal domains with multiple types of sensors.

3. Problem formulation. Let X be a path-connected n-dimensional manifold
embedded in R™. We refer to X as the intrinsic manifold and it represents the set
of all the possible latent states of a low-dimensional system. These states are only
indirectly observable via an observation function f : X — R™ which is a continuously-
differentiable injective function that maps the latent manifold into the observation
space R™. The image of f is denoted by Y = f (X) and is referred to as the observed
manifold. Since f is injective we have that n < m.

Here, we focus on a discrete setting, and define two finite sets of sample points
from X and ). Let X, = {Xi}ij\; be the set of N intrinsic points sampled from X,
and let Y5 = f (Xs) be the corresponding set of observations of Xj.

Under the above setting and given access only to Y;, we wish to generate a new
embedding X, = {%;}~, of the observed points Y, = {y;}., into n-dimensional
Euclidean space while respecting the geometric structure of the latent sample set X.

In order to provide a quantitative measure for “intrinsic structure preservation”,
we utilize the stress function commonly used for Multi Dimensional Scaling (MDS)
[8, 14, 11]. This function penalizes the discrepancies between the pairwise distances
in the constructed embedding and an “ideal” target distance or dissimilarity. In our
case the target distances are the true pairwise distances in the intrinsic space. This
results in the following cost function:

(1) o (&) = (% = %5 = Ixi = x5)°

1<j

Namely, low stress values imply that the geometric structure of the embedding respects
the intrinsic geometry conveyed by the pairwise distances in X'. Our goal then is to

find a set of embedded points /'FS = {ii}ﬁil that minimizes o sress (zfs)

Minimizing o stress X5> is seemingly a standard Least Squares Multi Dimensional

Scaling (LS-MDS) problem, which is considered challenging, since it leads to a non-
convex optimization problem [14, 21], typically requiring a “good” initialization point
located within the main basin of attraction, and hence, facilitating convergence to
the global minimum. However, a significant additional challenge in our specific task
is approximating the ground-truth pairwise Euclidean distances ||x; — x;|| from the
observed data even though the observation function f is unknown.

4. Intrinsic isometric manifold learning. In this section we describe a man-
ifold learning algorithm, which is both intrinsic and isometric.

Let M (y;) denote the push-forward metric tensor on ) with respect to the dif-
feomorphism between X and ) defined by:

df df ]!

(2) M(y:) = Ir (f " (ys) s (f 7" (vi)

where 4 (f=1 (y;)) is the Jacobian of the observation function f with respect to the
intrinsic variable at the intrinsic point x; = f~!(y;). The algorithm requires, as a
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prerequisite, that M (y;) be known for all y; € ). This appears to be a restrictive
condition that requires knowledge of the observation function f. Nevertheless, we
show in section 5 that in several scenarios these metrics can be robustly approximated
from the accessible sample set )5 without explicit knowledge of f.

4.1. Local intrinsic geometry approximation. The minimization of the cost
function given in (1) first requires the approximation of the intrinsic Euclidean pair-
wise distances d; j = dpuctidean (Xi, Xj) = ||X; — x| without direct access to the latent
intrinsic data points X;. We overcome this problem by approximating these distances
using the push-forward metric as follows:

(3) @2, =@+ 0 (lyi—vil")

where the approximation CLJ is given by

(4) di; = % i =yl M (i) ly; — i) + % i — vl M(y;) [y: — 5]
This approximation has been used is several papers [18, 17, 16, 19, 27, 37, 40, 38,
39, 41] and error analysis for it was presented in [17, 37]. The approximation can be
viewed as a result of the relation between the intrinsic and observed manifolds. If one
recognizes that X can be viewed as a Riemannian manifold then M (y;) is the push-
forward metric tensor on )Y with respect to the diffeomorphism between X and ). By
using this metric on ), an isomorphism is established between the two manifolds X
and Y which enables us to use ) as a proxy for making intrinsic geometric calculations
on the latent manifold X just as if they were calculated directly on the latent intrinsic
manifold X. This effectively “ignores” the observation function f and the distortions
it induces on the geometry of the observed manifold.

Since the push-forward metric changes at each point on the manifold, this distance
approximation is only locally valid. The locality of the approximation is demonstrated
empirically in section 6. In addition, rigorous error analysis was provided in [17],
where it was shown that the approximation is accurate for points on the observed
manifold when ||y, — yj||4 is sufficiently small with respect to the higher derivatives
of the observation function.

4.2. Embedding via partial-stress minimization. Once the local pairwise
intrinsic Euclidean distances are estimated, our goal then is to build an embedding
of the observed manifold into n-dimensional Euclidean space, which respects those
distances. However, due to the local nature of the distance estimation we only have
valid approximation of short intrinsic distances and we cannot directly minimize the
“stress” function presented in (1). Instead we use the following weighted variant of
the stress function:

) oo () = S wi (IR~ %l - i)

i<j

where unknown (or unreliable) distance estimations are assigned with zero weight and
are thus excluded from the construction of the low-dimensional embedding.

Since the observation function is unknown one cannot calculate the error term in
the approximation (3). As a result, determining the scale at which distance estima-
tions are deemed reliable from the observed data itself is still an open issue which is
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similar to local scale determination issues for many other common non-linear manifold
learning methods. A good rule of thumb is to select for each point its distance to its k
nearest neighbors, where for most datasets tested, the use of 10-30 nearest neighbors
provided the best results.

While the full stress function (1) can be globally optimized via eigenvector de-
composition, this can no longer be done for (5). However, it can be minimized via
an iterative descent algorithm where the partial stress function is repeatedly up-
per bounded by a simple convex function whose exact minimum can be analytically
found. This optimization method is referred to as Scaling by MAjorizing a COmpli-
cated Function (SMACOF) optimization [14, 21] and it was adapted to the weighted
stress function described in (5).

Since the cost function (5) is non-convex with respect to the embedding coor-
dinates, the iterative optimization process is only guaranteed to converge to some
local minimum. In order to converge to a “good” minimum, the optimization pro-
cess requires a good initialization point, that represents a possible embedding of the
data into low-dimensional Euclidean space which is roughly similar to the actual low-
dimensional intrinsic structure.

4.3. Embedding initialization using intrinsic Isomap. In order to con-
struct an initial embedding for the LS-MDS problem described in subsection 4.2, we
propose the use of an intrinsic variant of Isomap [42]. This variant uses intrinsic,
instead of observed, geodesic distances. These intrinsic geodesic distances can be ap-
proximated from the already calculated approximations of local intrinsic Euclidean
distances by first constructing a graph from the data points, where only properly
approximated intrinsic distance are represented by weighted edges, and then solving
an “all-to-all” shortest path problem. The use of the push-forward metric and the
shortest path algorithm provides a numerical approximation of the intrinsic geodesic
distance. Once all intrinsic pairwise geodesic distances are approximated one can use
classical MDS to create an n-dimensional embedding in which Euclidean distances
best respect the approximated geodesic distances. The main difference between this
method and the standard Isomap algorithm is that instead of assuming local isometry
(as is the case for Isomap) we use the push-forward metric on the observed manifold
in order to explicitly guarantee local isometry.

To understand why the push-forward metric and the shortest path algorithm
provide an approximation of the intrinsic geodesic distances, we look at the definition
of path length on the manifold. Let v (t) € X where t € [a,b] be an arbitrary path
on the intrinsic manifold. The length of this path can be calculated by the following
integral:

Lyl = / by ()| dt

Using the push-forward metric, one can rewrite this integral in the observed space:

5) - t ,
Ll = Ly O = [ (fwt))’ (Lo F ") f(v(ﬂ))dt

Where the sub-script fpp indicates that the push-forward metric with respect to
the observation function f is used as a metric. This equation states that all length
calculations for corresponding paths on the pair of diffeomorphic manifolds X and
Y will be identical if one uses the push-forward metric on the observed manifold
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Y. In this calculation the push-forward metric accounts for local stretching and
contraction of the manifold due to the observation function, and changes the way
we measure distances in order to compensate for this. This gives us a practical
method to calculate intrinsic path lengths using only observed data. Using intrinsic
curve length calculation one can calculate geodesic distances as the infimum intrinsic
length over all paths in ) which connect f(x;) and f(x;) . Since only a final set
of points sampled from this manifold is given, this minimization over all continuous
paths can be approximated by a minimizing over all paths passing through the limited
set of sample points. This presents geodesic distance approximation as a shortest-path
problem where only short distances for which we have proper distance approximations
are represented by edges on the graph.

For the restricted class of convex latent intrinsic manifolds, the Euclidean and
geodesic metrics coincide [30] allowing the intrinsic variant of Isomap, which uses
intrinsic geodesic distances, to directly recover a proper embedding of the points into
a low-dimensional space. This can also be observed in our results when applying the
algorithm to convex problems. However, many problems of interest have a non-convex
intrinsic state-space for which the discrepancy between the two metrics results in a
distorted embedding which will not properly respect the intrinsic Euclidean geometry
[30]. For intrinsic manifolds which are not extremely non-convex, the discrepancy
between geodesic and Euclidean intrinsic distances can be small and the resulting
embedding produced is often “quite close” to a proper intrinsic isometric embedding.
This suggests that it possible to use the embedding generated by intrinsic intrinsic
variant of Isomap as a initial point for further iterative optimization of the partial
stress function (5).

This approach harnesses the ability of eigen-decomposition to give a globally
optimal solution for an embedding problem given all pairwise distances and the ability
of iterative optimization to use a partial stress function to only consider local intrinsic
FEuclidean structure. By combining the two we get the benefits of a globally optimal
solution of an approximate problem and the ability to solve the exact problem by
locally optimal methods

The flow of this algorithm is illustrated in Figure 5.

4.4. Failure detection and a multi-scale scheme. Convergence of the de-
scribed iterative optimization process to a low-stress embedding is achieved, provided
that the initial embedding obtained by our intrinsic variant of the Isomap algorithm
is sufficiently close to the true intrinsic structure and that we have enough accurate
pairwise distance estimates such the embedding problem is sufficiently constrained
and well-posed as described in subsection 4.2.

The described embedding method could fail due to various adverse conditions such
as extremely noisy samples, insufficient data, sparse sampling, non-convexity of the
intrinsic manifold, etc. A poor intrinsic isometric embedding can be detected by lack
of consistency between the intrinsic geodesic distances estimated from the observed
data and the geodesic distances in the constructed low-dimensional embedding.

One of the possible causes of a failed embedding is a highly non-convex latent
manifolds. To handle such manifolds we also devise an iterative multi-scale operation
scheme aimed to take advantage of the fact that small patches of the manifold are
typically convex or approximately convex, thus increasing the chance of the LS-MDS
optimization converging to a good solution. In this multi-scale scheme, large patches
of points on the manifold are split to partially overlapping patches. Each of the sub-
patches can be further recursively split to smaller and smaller patches until small
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Fig. 5: Flow graph of our intrinsic-isometric manifold learning method applied to an
observed manifold

enough patches, that are not extremely non-convex and allow for the successful ap-
plication of our algorithm, ,are reached.

Once two sub-patches are successfully embedded into a low dimensional Euclidean
space they are registered using a rotation transformation which optimally aligns their
overlapping points. After registration, these patches are merged into a larger scale
patch. To avoid the accumulation of error stemming from this bottom-up procedure,
the embedding obtained by merging of the embedding of the sub-patches is used
only as an initial embedding that is further iteratively optimized as described in
subsection 4.3.

The proposed multi-scale scheme is illustrated on a non-convex manifold depicted
in Figure 6. We note that the splitting of the patches is implemented by using the
already calculated estimates of the intrinsic geodesic distances between points. We
further remark that while the visualization is in the intrinsic space, the estimation of
the geodesic distances, and hence, the scale selection are performed directly on the
observed manifold.

5. Intrinsic Metric Estimation. For the algorithm presented in section 4 we
assumed that the metric M (y;) is given at every point y, € )s. This metric is the
intrinsic “push-forward” metric, which allows us to approximate intrinsic Euclidean
and geodesic distances and has a key role in recovering the intrinsic latent manifold.
Therefore, in order to apply the algorithm proposed in section 4, M (y;), which is
typically unknown, needs to be robustly approximated from the observed data. This
approximation is the subject of this section.

5.1. Intrinsic isotropic Gaussian mixture model. We present a basic set-
ting, which allows the approximation of the intrinsic metric directly from the observed
data. Assume that the intrinsic data are sampled from an n-dimensional Gaussian
Mixture Model (GMM) consisting of NV isotropic Gaussian distributions, all with the
same known variance o2,,, where the means of these distributions are points on the
intrinsic manifold, denoted by {xi}ij\il = Xg C X. To distinguish between the model
means and the observed data points, the data points are denoted by double indexing,
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Fig. 6: A highly non-convex manifold a is split to two partially overlapping sub-patches
colored blue and green b,, c. Their overlap is colored red. The initial embeddings
of the sub-patches obtained by two separate applications of the intrinsic Isomap d,e.
Based on these two initial embeddings, intrinsic-isometric embeddings are constructed
separately for each sub-patch f,g, which are then registered and merged according to
their overlapping areas to attain an embedding of the entire which is then further
optimized using the LS-MDS optimization process..

h Final intrinsic isometric embedding of entire manifold.

ie., x;; € X and:

X5 NN(Xi,O'Z»QntI) 5 j = 1, .. .,Ni
where N; is the number of points sampled from the i-th Gaussian and I is the identity
matrix. The intrinsic points are observed via an observation function f : R™ —
R™ and are subject to Additive White Gaussian Noise (AWGN) with variance o2,
introduced in the observation process. This results in the following observation model:

yig = [ (Xij) +wi;

where w; ; ~ N (0,02, I). Broadly, if 67, is small with respect to the second deriva-
tive of f, the observed data follows a Gaussian distribution with transformed mean
and covariance:

d d
Oy = £+~ N (G oB g 0 x0T 4031

For a more rigorous analysis, see [17]. Namely, the observed data follows a GMM
distribution, with anisotropic covariance, induced by the Jacobian of the observation
function. Each Gaussian in this GMM can be interpreted according to probabilis-
tic Principal Component Analysis (PCA) [44], where it is shown that the optimal

maximum-likelihood estimator of the matrix 4 (x;) % (x;)"

= = can be computed by ap-
plying PCA and finding the n most significant principal directions of the observed

sample covariance matrix S;, i.e.:

N.
1 «— _ T
Si=+ Z Yij — Vil lyij; — ¥il
L
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where ¥; is the sample mean:
N,
B 1 X
Yi = N Z Yi.j
i“
j=1
This matrix can be decomposed using spectral decomposition:

m
S; = E oiupul
k=1

And the maximum-likelihood estimator is given by [44]:

df AT -
2 (x5 () = Y (0 = o) we
k=1
(7) . m
2 - 2
ag m—n Z O

k=n-+1

Assuming that the clustering structure of observed measurements is known (i.e. we
are able to group together observation points originating from the same Gaussian
component), M (y;) = % (x;) % (x;)" can be estimated directly from S;, separately
for each model i. This setting is similar to the setting presented in [37] where short
bursts of intrinsic diffusion processes with isotropic diffusion were used, resulting in an
approximate intrinsic GMM model and leading to the same estimator of the intrinsic
metric using local applications of PCA.

We note that a common characteristic of local estimation methods, such as the
one described above, is that these methods typically operate at a scale on which the
observation function f is approximately linear and can be well approximated by its
Jacobian. The curvature of the manifold dictates how fast the Jacobian and the metric
changes along the manifold and therefore restricts the scale at which samples are
relevant for estimation of the metric at a specific point. If the data is not sufficiently
sampled, the number of data points that will be incorporated into the estimation
of a single local metric will be small, resulting in an a poor estimation. This non-
robustness is not unique to these specific metric estimation methods and many non-
linear estimation problems and manifold learning techniques are non-robust due to
their local nature as discussed in [5]. To overcome this limitation, the remainder of
this section introduces global (parametric) regularization of the metric estimation,
imposing a smooth variation of the estimated metrics along the intrinsic manifold.

5.2. Maximum-Likelihood intrinsic metric estimation. In subsection 5.1,
the observed data were modeled by a GMM with covariance matrices that depend
on the Jacobian of the observation function (6). Under this statistical model, an un-
constrained maximum-likelihood estimation of the metric M (y;) is a local estimator,
which only uses data from a single Gaussian and does not impose any smoothness on
the metric, limiting the number of samples incorporated in the estimation and the
estimation accuracy.

To overcome this, we propose a constrained non-local maximume-likelihood esti-
mator; the intrinsic isotropic GMM model described in subsection 5.1 results in the
following approximate global log-likelihood function for the observed data:

N N
(8) L ({3]; (x;) % (xi)T}_ ) = —% ZNZ- {dln (27) + In|C;| + Tr (C; 'S;) }
i=1 i=1
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where N is the number of Gaussians in the GMM, N; is the number of points sampled
from the i-th Gaussian, S; is the sample covariance of the i-th observed Gaussian
distribution and C; denotes the (population) covariance which is given by:

df df
(9) C; = Ufm% (xi) o (xi)" + 02,1

This log-likelihood is also presented in [43].

We restrict the Jacobian of the observation function to a parametric family
of functions, which we denote by J (y;|6) : R™ — R™*" where 6 represents the
parametrization of the family. Estimation is then performed by choosing 6 that max-
imizes the parameterized log-likelihood function:

N
(10)  £({yis}10) =5 > N {dn (20) + 0 [C (3l6)| + T (C (yil6) " 8.) }

=1

where
T
C (yl‘e) = az'QntJ (yl‘e) J (yl‘e) + Ugbs]:

We note that the log-likelihood in (10) only differs by a constant from the following
function:

N
R({yi;}10) ==Y NiDkr (CillS:)

i=1

al C|
=—Y N{In- =t +Tr(C 'S,
1) 2 {mig] + (s

N
= L({yig}10)+ 5 D N {din (27) — In S, }
=L ({yi;}0) + constant

where D, (C;||S;) is the well known Kullback-Leibler divergence between Gaussian
distributions with the same mean and two different covariances matrices C; and S;.
This divergence reaches its minimal value when C; and S; are equal. Thus maximiza-
tion of the likelihood is equivalent to minimization of the Kullback—Leibler divergence
between the covariance, expressed by the parametric model, and the sample covari-
ance, which is empirically built from data.

5.3. Parametric estimation using regularized artificial neural networks.
To increase the robustness of the estimation, and specifically, to avoid large variations
in the metric estimates, we use a parametric family of smooth functions, implemented
by an ANN. Neural networks are compositions of linear transformations and non-
linear operation nodes, which can be adapted to approximate a specific function by
choosing the values of the linear transformations in the network. These values are
called the “weights” of the network. Thus, in the context of our work, the parameter
vector 6 consists of the weights of the network. By choosing the non-linear operation
nodes to be smooth functions, e.g., the standard sigmoid function s (x) = ﬁ, we
can explicitly impose smoothness. The input of the network are the observed data
and the output are n x m matrices J (y;|6), which are estimates of the Jacobian of the

observation function at the input points. The estimation is carried out by optimizing
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the weights of the network using the likelihood (10) as the cost function. The neural
network structure used in this work contains two hidden layers and an additional
linear layer at the output, which was added in order to allow for automatic scaling of
the output.

The use of ANNs has several advantages with respect to other smooth parametric
function families. First, ANNs are general and have proven to perform well in a wide
spectrum of applications. Second, many methods for network regularization exist,
facilitating convenient implementation of the smoothness constraint. Third, due to
their extreme popularity, there are many software and hardware solutions allowing
for efficient and fast construction and optimization.

This estimation method also has some secondary advantages in addition to pro-
viding additional robustness to the intrinsic metric estimation when compared to
local metric estimation methods. As opposed to local methods which only estimate
the intrinsic metric for observed sample points, the regression approach gives rise to
an estimation of the intrinsic metric on the whole observed space. This can be used
to generate additional points in between existing points, thus artificially increasing
the sample density. This can improve both the short-range intrinsic distance esti-
mation described in subsection 4.1 and the geodesic distance estimation described in
subsection 4.2. Both effects could improve the results of the algorithm presented in
this paper. In addition, it was shown in [5], that by learning the tangent plane to
the manifold at each point, one can “walk” on the manifold by making infinitesimal
steps each time in the tangent plane. Since with the method proposed in this chapter,
we do not only estimate the tangent plane but the intrinsic metric as well, we know
how far we have gone in terms of the distance, an ability that might be relevant to
applications such as non-linear interpolation [10].

5.4. Implementation. In order to optimize the network weights with respect
to non-standard cost function (presented in (10)) we implemented the described met-
ric estimation network in Python using Theano [6], which allows for general symbolic
derivation and gradient calculation. To facilitate better and faster optimization, the
stochastic gradient descent method ADAptive Moment estimation (ADAM) [25] was
used. This method uses momentum and moment estimation over time to automat-
ically and adaptively scale the learning rate of the optimization process for faster
convergence.

We control the estimated function complexity by limiting the number of nodes
in the network. In addition, we use a weight decay penalty term, which encourages
small weights and, in general, prevents large variations of the output functions with
respect to changes in the input [26].

In unsupervised settings, choosing the network hyper-parameters (e.g., the num-
ber of nodes and the emphasis put on the weight decay term) is not straight-forward,
since there are no “labels” or ground truth values for the intrinsic metric (or the
Jacobian). Here, it is carried out by cross-validation using the log-likelihood function
as the cost function. In our tests, we used k-fold cross-validation where 20% of the
observed samples were used for validation purposes. This was repeated for each set
of hyper-parameters, where the validation set was sampled randomly from the whole
data at each iteration.

6. Experimental results.

6.1. Simulated data. Consider the intrinsic manifold A corresponding to a 2-
dimensional square with a cross shaped hole at its center. This latent manifold is
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observed via the following observation function:

y1 (x) sin (2.5 - x1) - sin (z2)
(12) vy =f(x)=| y2(x) |=| sin(2.5-x1) - cos (x2)
Y3 (x) — sin (z2)

The observation function embeds the data in 3-dimensional Euclidean space by wrap-
ping it around the unit sphere resulting in the observed manifold Y = {f (x) | x € X'}.
The sample sets X and )s are generated by uniformly sampling N = 1000 points
from X.

First we evaluate the validity of the intrinsic Euclidean distance estimation pre-
sented in (4) and the ability of the embedding method proposed in section 4 to recover
the latent geometric structure of the data given the intrinsic metric over the observed
manifold. To do so, we analytically calculate % (xi) % (xi)T by taking the derivative
of the observation function given in (12) with respect to the intrinsic latent variable.

The results of applying the proposed intrinsic isometric embedding algorithm to
this data set are displayed in Figure 7. In Figure 7a we present the intrinsic latent
manifold in the intrinsic space and in Figure 7b we present the observed manifold
embedded in the observation space. In Figure 7c we visualize the intrinsic metric by
plotting corresponding ellipses at several sample points. These ellipses represent the
images, under the observation function, of circles of equal radius in the intrinsic space
according to the estimated metric. This visualizes the amount of local stretch and
contraction in each direction that the observed manifold experiences with respect to
the latent intrinsic manifold. In Figure 7d we scatter plot the ground truth intrinsic
Euclidean pairwise distances and the approximated pairwise distances using (4). In
Figure Te, we scatter plot the same distances, but restrict the depicted pairs of points
to only include the k nearest neighbors in the observation space, which are the only
distances taken into account by our proposed algorithm. For this example, we use
k = 30. Since the points in the scatter plot are concentrated near the identity map
(colored in red), we see that the distance approximation is indeed valid for short
distances for which the manifold is approximately linearly distorted.

In order to compare our proposed algorithm to manifold learning methods which
are not intrinsic-isometric, we plot for each method the resulting embedding and a
scatter plot which for each pair of points compares the Euclidean distance in the
resulting embedding to the true intrinsic Euclidean distance as measured in the in-
trinsic space. Again a concentration of points along the identity map represents a
better embedding. Above this scatter plot we also note the calculated stress value
according to (1) which serves as a quantitative measure of the embedding success.
These visualizations are calculated and plotted for standard Isomap (Figure 7f and
Figure 7i, intrinsic Isomap (Figure 7f and Figure 7j) and for our proposed intrinsic-
isometric algorithm (Figure 7h and Figure 7k). Since the embedding cost functions
for these methods are invariant to ridge rotations of the points, all of these plots were
registered to the ground truth data for visualization purposes.

As can be clearly observed from these results, our method successfully recovers
the structure of the data in the intrinsic space and achieves the minimal stress value.
Standard Isomap and the intrinsic variant of Isomap fail to do so and construct a dis-
torted embedding, which does not respect the intrinsic geometric structure, resulting
in higher stress values. The failure of standard Isomap in recovering the data can be
explained by its dependence on the observation function. Intrinsic Isomap fails due
to the non-convexity of the intrinsic manifold and the discrepancy it induces between
Euclidean and geodesic intrinsic distances.
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Next, we analyze the effect of using an intrinsic metric which is estimated from the
observed data, as opposed to using the exact intrinsic metric. To do so we extend the
previous example to include estimation of the metric under the setting described in
subsection 5.1. Specifically, we use either N; = 5 or IV; = 200 random measurements
sampled from an isotropic Gaussian with intrinsic variance o2, = 0.03? centered at
each of the data points in the intrinsic space. Additionally, observation noise is added
with variance aibs =0.03%.

In Figure 8 we compare the trivial local estimation (as described in subsection 5.1)
and the global estimation approach implemented via an ANN, as proposed in section 5.
For each metric estimation method, we plot in Figure 8, similarity to the previous
example: Figure 8a, Figure 8b and Figure 8c a visualization of the metric using
ellipses, Figure 8d, Figure 8e and Figure 8f a scatter plot of the true intrinsic distance
against the approximated intrinsic distances, Figure 8g, Figure 8h and Figure 8i
the resulting low-dimensional embedding, and Figure 8j, Figure 8k and Figure 8l the
scatter plot of the Euclidean distances in the embedding compared to the true intrinsic
distances, including a calculation of the actual stress value. These are attained for
the case of local estimation with dense sampling N; = 200 (Figure 8a, Figure 8d,
Figure 8g, Figure 8j), for the case of local estimation with sparse sampling N; =
5 (Figure 8b, Figure 8e, Figure 8h, Figure 8k) and finally for our proposed ANN
estimation method with sparse sampling N; = 5 (Figure 8c, Figure 8f, Figure 8i,
Figure 81).
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It can be seen that the local metric estimations in the sparse case are “noisy”,
when compared to those estimated in the dense sampling case, and can sometimes
change abruptly between nearby locations on the manifold. This inaccuracy in the
estimated local metrics adversely effects the intrinsic distance estimation, and in turn,
hinders the recovery of the intrinsic-isometric learned representation.

It is evident that our neural network based estimation method outperforms the
local metric estimation and enables us to learn intrinsic-isometric representation given
sparse sampling and in the presence of observation noise.

6.2. Localization from image data. In section 2 we provided initial moti-
vation for our work through the simple and intuitive example of localization using
observations acquired via an unknown model. We now revisit this example and dis-
cuss in detail how the algorithm proposed in this work can be applied to the problem
of positioning using image based measurements. Through this problem we examine
the advantages of intrinsic geometry preservation and demonstrate its relevance to
high-dimensional and complex scenarios.

The experimental setting is as follows: an agent is located within a compact,
path-connected subset X of R? which represents a closed indoor environment. The
shape of X used in this experiment is depicted in Figure 9. At each sample point
x € X, an image is acquired by the agent. These images serve as an indirect obser-
vation or measurement of the location of the agent. Such observations are made in
a sufficient number of different locations so that X is completely covered. The di-
mension of the intrinsic manifold for this problem is n = 2, corresponding to the two
dimensional physical space and the dimension of the observation space corresponds
to the dimensionality of the generated images and is in general high-dimensional.

-2 0 2 4

Fig. 9: Outline of the latent manifold which represents a confined indoor environment

To simulate this setting, we used “Blender”', a professional, freely available and
open-source modeling software. Using “Blender”, we constructed a 3-dimensional
model mimicking the interior of an apartment. The created model is shown in Fig-
ure 10. The region of the model in which there are no objects and in which the
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simulated agent is allowed to move, corresponds to the shape of X presented in Fig-
ure 9. “Blender” allows us to render an image of the 3D model as seen via a virtual
camera. Using this ability, we produce a set of 360 degree panoramic color images of
size 128 x 256 pixels, taken from the point of view of the agent as seen in Figure 11.

In order for the observation to depend solely on the location of the agent, as
is assumed by our proposed algorithm, we were required to omit the affect of the
orientation of the agent. This was implemented in the frequency domain by applying
a Fourier transform to each frame and then estimating and removing the linear phase
in the horizontal direction. Since cyclic rotations of images are equivalent to an
addition of linear phase in the Fourier domain, this makes the observations invariant
to the agent orientation.

In order to reduce the initial dimensionality of the data, PCA was applied and only
the first 100 principal components were taken. This number of principal components
was chosen, since empirically 100 components embodied most of the power of the
data.

Fig. 10: 3-dimensional model in Blender

Fig. 11: Samples of generated panoramic color images

To stress the fact that our algorithm is invariant with respect to the sensor modal-

Lwww.blender.org
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ity, we also used an additional different image modality. The second modality, which
is also simulated using “Blender”, is a gray-scale depth map. For this modality, the
gray level at each pixel represents the distance from the camera to the nearest object
in the direction of that pixel. Several examples of such images are shown in Figure 12.
This observation modality was also preprocessed similarly to the color images in order
to impose invariance to cyclic rotations in the horizontal axis and to preform initial
dimensionality reduction.

I

Fig. 12: Samples of generated panoramic depth maps

Images are used as inputs to our algorithm since this represents a possible realistic
setting and since it is a non-liner sensor modality which is easy to simulate using
3-dimensional modeling software. We wish to emphasis however, that after the per-
processing stage in which these images are made invariant to cyclic rotations, the input
is no longer treated as an image, and our proposed algorithm uses no additional image
or computer vision related computation on the input. This invariance of the algorithm
to the input type enables us, for example, to apply a dimensionality reduction using
PCA as a preprocessing, despite the fact that it distorts the image structure.

As discussed in section 5, in order to uncover the intrinsic metric of the manifold
from the observed data, we require the intrinsic data sampling to adhere to some
known structure which allows for its estimation from observed data. For this exper-
iment, a different model then the one suggested in subsection 5.1 however the same
neural network parametrization and regularization was used to achieve robustness of
the metric estimation.

For this experiment, the intrinsic sampling is assumed to be acquired by the use
of a rigid sensor array. Consider the values of an observation function f : R™ — R™
observed at x + u for a point x € X and a small displacement . According to the
Taylor series approximation:

Fe+a) = £ (0 + 50 u+0 ([al)

If the difference between the two measurements |[a||*> is small with respect to the
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higher derivatives of the function f we get that:

X af ..
flca) - f(x) ~ 2 (00
If one observes the function at x and at k displacements: x + 0y,...,x + 4 we get

a set of equations :

_4

fx+1) - f(x) =~z (x) 0
d
POt ) — £ () =2 ()
Recasting in matrix form gives:
df .
T dr (x)
where
U =iy, -,y
D=[f(x+w)—f(x), - fx+i)— f(x)
If the vectors Gy, Ua, . . ., U span the n-dimensional intrinsic space (i.e. the matrix

U has a full row rank), we can invert this relationship using the pseudo-inverse of U
in order to recover the Jacobian of the observation function by:

,1_ df
—%(X)

This suggests a method for estimating the Jacobian of an unknown observation func-
tion, using an array of measurements with a known structure. The metric M (y) can
then be estimated by:

Cdf o df
TR

We notice that if this array is rotated around the point x with a rotation matrix R
we get a rotation of the estimated Jacobian:

DU” [fJfJT]

(13) M (y) (x)T ~ DUT [fjfﬂ] B [fijT} )

D [RU| ! [Rfj RO T]  _puTRT [RUUTRT] B
~DU'R'R" [0U7] TR
- pU” [0"] R
- ¥ R

However the estimation of M (y) in (13) is unaffected by this rotation, since:

a0 oo | Foor| =L enm [ L] = Lo oo”
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This shows that the estimation proposed in (13) is invariant to a rigid rotation of
the measurement directions 1y, ..., 0. The invariance to rotations makes this mea-
surement setting practical for intrinsic metric estimation, since the sensor array at
different points can be rotated and the respective observations do need to be aligned.
In our experiment, the sensor array has an ‘L’ shape and consists of 3 sensors with
15¢m distance between measurements as illustrated in Figure 13.

Slight variations in the location of the agent cause slight variations in the point
of view of the camera and therefore in the rendered image, as seen in Figure 13.
These slight observed variations, combined with our assumption about the intrinsic
structure of the data allow us to infer the local intrinsic metric as described in ?77.

o *

)

He

.-;i ’LI‘ J --:i i

Fig. 13: Observation points using a rigid sensor array for a subset of 13 sample points.
On the right, one can see the effect of slight variations in agents position on the viewed
panoramic images

For both modalities, N = 1000 locations were sampled and 3 measurements were
made at each such location using the sensor array described above. A 2-dimensional
embedding was then constructed based on these measurements and using the proposed
algorithm. The constructed embedding was compared to the embedding obtained
using the standard Isomap method. Results are presented in Figure 14, Figure 15.

The proposed algorithm accurately retrieves the intrinsic structure for the two
observation modalities. This is evident by the recovered intrinsic-isometric embedding
structure, which is almost identical to the structure of the points in the latent space.
This can be observed for both modalities by comparing Figure 14a to Figure 14e and
by comparing Figure 15a to Figure 15e, as well as from the fact that most pairwise
distances in the final embedding closely approximate the true intrinsic Euclidean
distances. This also leads to a low stress value for the embedding (as can be observed
for both modalities in Figure 14f and Figure 15f). The success of the embedding stems
from the fact that the estimated intrinsic metric allows for a good estimation of short-
range intrinsic distances (as can be observed for both the modalities in Figure 14c,
Figure 14d, Figure 15c and Figure 15d). We notice that since the observation functions
used are not locally isometric, standard Isomap fails to retrieve the intrinsic structure
of the data or to even provide a 2-dimensional parameterization of the latent space (as
can be observed for the two modalities in Figure 14b Figure 15b). Isomap does, for the
most part, preserve proximity on a local scale (can be observed by points with similar
colors being embedded close to each other), yet the global structure is not preserved
(as can be observed for the two modalities by comparing Figure 14a and Figure 14b
and Figure 15a and Figure 15b). Since standard Isomap is non-intrinsic, it is effected
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by the modality of the observation and we receive a different embeddings for different
sensor modalities (as can be observed by comparing Figure 14b and Figure 15b).

One noticeable weak point of our algorithm, which manifests slightly in these
examples, occurs around the coordinate (9,4) in the true intrinsic space (Figure 14a
and Figure 15a). This region corresponds to a narrow area in the apartment model in
which there are not a lot of sample points. Typically, errors in distance estimations
are attenuated by global self-consistency. However, the distance estimations in this
particular region are not sufficiently redundant due to the small number of sample
points (and pairwise short distances). This leads to a slight distortion in the embed-
ding of this region, which causes a “bend” in the global structure of the embedding
(as seen in Figure 14e and Figure 15e).

These results show that our intrinsic-isometric dimensionality reduction algorithm
was successfully applied to the problem of localization and mapping. Basic physical
experiments using a randomly walking agent in 2-dimensional space are underway. In
these experiments a robotic iRobot Roomba programmable robotic vacuum cleaner
was controlled by a Raspberry-Pi mini computer and performed a random walk inside
a 2-dimensional region. Signal acquisition was performed either my measuring the
RSS from WiFi stations or via a wide angle lens which produced 360 degree images.
Results from the experiments will be published when concluded.

The advantage of our algorithms is that it exploits a simple prior assumption
on the unlabeled measurement acquisition process in order to provide latent system
recovery in a manner which is both unsupervised and modality invariant. These two
qualities make it especially suitable for setting where one wants to use an automatic
algorithm for localization or/and when the observation model is unknown; which is
often the case with indoor localization. However, we wish to remark that we make
no claim that this algorithm is superior or even comparable to existing algorithms
tailored to specific measurement modalities (if the measurement modality is known a
priori) or to machine learning tools trained on labeled data-sets.

6.3. Relation to the sensor network localization problem. The intrinsic-
ness of our method is achieved by using the push-forward metric for approximation
of short-range pairwise distances. Once these distances have been calculated, an em-
bedding of the data into a lower dimensional Euclidean space which respects these
distances is constructed. This construction implies that manifold learning problems
(with local intrinsic metrics) can be recast as an Sensor network localization (SNL)
problem [13, 47, 1, 9, 29, 28, 2, 7, 22, 36, 33, 34, 24], in which we are given a num-
ber of scattered sensors, each only able to measure distances to a limited number of
neighboring sensors, and the task then is to generate a global mapping or embedding
of all the sensors in order to accurately localize each sensor.

Perhaps the leading approach to SNL problems is based on relaxation to an
SemiDefinite Programming (SDP) problem [46, 7, 7, 7]. This approach suffers from
two main shortcomings. Firstly, SDP methods scale poorly as the number of points
increase, since SDP solvers scale cubically with the number of points and constraints.
A possible way to reduce the complexity of this approach is to consider representing
it in the basis of the leading eigenvectors of the graph Laplacian [46]. However, this
tends to over-smooth the constructed embedding and poorly models the boundaries
of the sensors network. A second problem is that the optimal inner-product matrix,
found by solving the corresponding SDP, is not necessarily of rank corresponding to
the intrinsic dimension. To reduce the chance of non-low rank solutions, a maximum-
variance regularization term can be added [45, 46]. This however still does not strictly
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constrain the rank of the embedding and after the fact dimension truncation of the
embedding results in an embedding which violates the distance restrictions.

The SNL problem does not have a prevailing solution or method, since each
method suffers from some drawbacks. As a result, most methods take a similar
approach to the one taken in this paper and regard the constructed embedding only
as an initialization point to be further optimized using local descent methods. We
note that a similar method to the one suggested in this paper for construction an
embedding once short pairwise distances are given [36] appears in.

The significant difference between SNL methods and this work is the broadness of
the scope of applicability. For the SNL problem the starting point is the availability
of true short-range pairwise distances between points in a low-dimensional Euclidean
space (calculated by specific hardware in the case of the SNL problem), where as
in this work the measurement of pairwise distances is not immediate and the main
challenge is to first expose the latent low-dimensional Euclidean structure of systems
which initially appear to have high-dimensional and complex structure.

7. Conclusions. In this work, we addressed intrinsic and isometric manifold
learning. We first showed that the need for methods which preserve the latent Eu-
clidean geometric structure of data manifolds arises naturally when inherently low-
dimensional systems are observed via high-dimensional non-linear measurements. We
presented a manifold learning algorithm which uses local properties of the observa-
tion function to calculate a local intrinsic metric (the “push-forward” metric of the
observation function). This metric was used to estimate intrinsic pairwise distances
directly. We discussed several settings under which the estimation of the required
local observation function properties is possible from the observed data themselves.
We recognized that due to their local nature, these metric estimation methods are
not sufficiently robust to noise and sparse sampling when the observation function
is highly non-linear. To overcome this, we proposed a non-local metric estimation
method where an ANN was used as a parametric regressor for the intrinsic metric.
This computational approach was justified based on a maximum-likelihood estimation
under a particular statistical model. We showed that by using smooth non-linearities
in the network and additionally restricting the network structure and its weights, we
provided sufficient regularization to the estimation, making it robust to noise and
sparse sampling. By combining a robust intrinsic metric estimation method and an
algorithm which can use these metrics to build an intrinsic and isometric embedding,
we devised an algorithm, which can automatically recover the geometric structure of
a latent low-dimensional manifold from its observations via an unknown non-linear
high-dimensional function. Finally we focused on the example of mapping and po-
sitioning an agent using a sensor network of unknown nature and modalities. We
showed that our proposed algorithm can recover the structure of the space in which
the agent moves and can accurately position the agent within that space. Due to
the intrinsic nature of our method, this mapping and positioning do not require prior
knowledge of the measurement model. This invariance to the type of measurement
used, was shown to be suitable in a setting such as indoor positioning where the exact
measurement model is usually unknown.

The manifold learning method proposed in this paper does not require any as-
sumptions be made about the structure of the observed data but rather only on the
structure of the data in the intrinsic space. This makes our method invariant to
additional deformation and manipulations applied to the observed date. This has
the advantage of enabling one to perform pre-processing stages, e.g., for reducing the
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dimensionality of the data or for removing noise. For example, in subsection 6.2,
when localization and mapping were performed using image data, our algorithm was
not applied directly to images, but rather to their low-dimensional projections on the
principal components of the data. Importantly, such pre-processing could not be used
prior to applications of vision based algorithms, which make assumptions about the
measurement model and exploit the structure of image data, since this structure is
deformed by the application of PCA.

Another benefit stemming from the invariance to the observation function is the
natural ability to facilitate sensor fusion, since in principle, measurements from dif-
ferent sensor modalities can be simply concatenated, creating a higher-dimensional
observation function. Although this procedure should work in theory, further research
to determine the proper weighting of different measurement modalities is called for.

Supervised machine learning uses labeled data (consisting of pairs of input and de-
sired output values) and attempts to “learn” or infer a functional connection between
the two. Unfortunately acquisition of labeled data is usually non-trivial, expensive
and requires an already existing method to correctly label data. Our method, when
viewed end-to-end, is able to label a large set of points by only making an assump-
tion about the intrinsic measurement process. Our proposed approach can therefore
be seen as a method for automatic acquisition of labeled data, as it operates in a
completely unsupervised manner and produces data labeling as an output.
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Fig. 14: Color image observations. a Intrinsic space. b Embedding using standard

Isomap.

¢ Intrinsic Euclidean distance estimation.

d Intrinsic Euclidean distance

estimation (k-NN). e Intrinsic-isometric embedding. f Euclidean distance discrepancy
and stress in resulting embedding
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