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Abstract. A. Bornhöft, R. Hanke-Rauschenbach, and K. Sundmacher, [ Nonlinear Dyn., 73
(2013), pp. 535–549] introduced a qualitative simplification to the ADM1 model for anaerobic di-
gestion. We obtain global results for this model by first analyzing the limiting system, a model
of single species growth in the chemostat in which the response function is non-monotone and the
species decay rate is included. Using a Lyapunov function argument and the theory of asymptot-
ically autonomous systems, we prove that even in the parameter regime where there is bistability,
no periodic orbits exist and every solution converges to one of the equilibrium points. We then
describe two algorithms for stochastically perturbing the parameters of the model. Simulations done
with these two algorithms are compared with simulations done using the Gillespie and tau-leaping
algorithms. They illustrate the severe impact environmental factors may have on anaerobic digestion
in the transient phase.
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1. Introduction. Anaerobic digestion is a biochemical process where microor-
ganisms or multicellular organisms break down organic material in the absence of
oxygen. Anaerobic digestion is an important part of many industrial practices, in-
cluding the treatment of wastewater and the production of biogas. The role of
anaerobic digestion in such applications has been an active area of recent research
[1–4, 10, 12, 14, 15, 19, 21]. This paper focuses on a particular model of anaerobic
digestion in biogas production.

The foundation of previous work on the mathematical analysis of the production
of biogas is the Anaerobic Digestion Model 1 (ADM1) [1] introduced in 2002. If
implemented as a system of differential equations, this model has 32 state variables,
including seven different species of microorganisms. Understandably, anything other
than numerical analysis has not been feasible.

In an effort to formally analyze the system, several groups [4, 10, 12, 24] have
studied various subsystems of ADM1. Recently, Weedermann et al. [24,25] combined
two previous models [10, 12] to get a reasonably complete picture using only eight
state variables. Due to the inclusion of two pathways to biogas production in [24]
and because the model captures the ADM1’s sensitivity to the accumulation of acetic
acid, [24] illustrates some of the complexity of ADM1, which must exhibit the same
or an even richer dynamics than the model in [24].

Bornhöft et al. [4] introduced a model with five state variables based on their
observations from a numerical steady-state analysis of the ADM1 model, and con-
jectured that their model undergoes the same bifurcations as the ADM1 model with
the substrate inlet concentration as bifurcation parameter. The model in [4] is the
first simplified model to consider the effects of ammonia. It is demonstrated that the

∗Submitted to the editors March 5, 2019
†McMaster University meadowta@mcmaster.ca
‡Dominican University mweederm@dom.edu
§McMaster University wolkowic@math.mcmaster.ca
Funding: Natural Sciences and Engineering Discovery Grant # 9358 and Accelerator supple-

ment.

1

ar
X

iv
:1

90
3.

01
25

7v
1 

 [
q-

bi
o.

Q
M

] 
 4

 M
ar

 2
01

9

mailto:meadowta@mcmaster.ca
mailto:mweederm@dom.edu
mailto:wolkowic@math.mcmaster.ca


2 GLOBAL ANALYSIS OF A SIMPLIFIED MODEL OF ANAEROBIC DIGESTION

Simple
Substrates

(S1)

(1)
Acidogenesis

(X1)

Volatile
Fatty Acids

(S2)

Ammonia
(S3)

(2)
Methanogenesis

(X2)
Biogas

-

Fig. 1. The anaerobic digestion process. (1) Acidogenic microorganisms break down simple
substrates into VFAs and ammonia. (2) Methanogenic microorganisms break down VFAs into biogas
such as methane. This process is inhibited by ammonia.

proposed model is able to capture the same effects of ammonia on anaerobic digestion
that are displayed by the ADM1 model. However, the analysis in this paper shows
that the model does not possess all of the dynamics of ADM1, even if a broader class
of growth functions is considered than the ones that were initially proposed. The
model is missing some of the dynamics shown in [24], namely the possible bistability
between two equilibria that both correspond to biogas production, a behaviour of the
full ADM1 model that is also noted in [4].

The model in [4] considers two stages of anaerobic digestion, acidogenesis and
methanogenesis. In the first stage, simple substrates are broken down by acidogenic
microorganisms. The microorganisms use the energy from the simple substrates to
grow, and produce volatile fatty acids (VFAs) and ammonia as byproducts. The
VFAs and ammonia have opposing effects on the pH of the system; an increase in the
concentration of VFAs will decrease the pH, while an increase in the concentration
of ammonia will increase the pH. In the second stage, methanogenic microorganisms
convert the VFAs to biogas. The methanogenic microorganisms are very sensitive to
the environment, and can only tolerate a relatively narrow pH range. Furthermore,
ammonia is toxic to the methanogenic microorganisms in large quantities and will
restrict their growth. The flow chart in Figure 1 summarizes the process.

In this paper we provide a formal mathematical analysis of the model proposed
in [4], allowing a more general class of response functions. In section 2, we describe
the model and assumptions, and give properties of the solutions of the system. If
the substrate input concentration is too low, the system converges to a state where
no microorganisms are present. We show that if the substrate input concentration
is high enough to allow the acidogenic microbial population to survive, the system
reduces to a limiting system that is a two-dimensional basic model of growth in the
chemostat that includes the decay rates and allows for any non-monotone response
function.

In section 3, we study the dynamics of this limiting system. We obtain a new
global result in the case that the parameters allow bistability by proving that no
nontrivial periodic orbits exist.

In section 4 we use the theory of asymptotically autonomous systems and the
results for the limiting system from section 3 to provide a complete global analysis of
the anaerobic digestion model in [4] for a more general class of response functions.

In section 5, we propose two alternative prototype functions to model the growth
of the methanogenic archaea and capture the inhibition by ammonia. These proto-
types complement the one used in [4], which has the property that there is no growth
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in the absence of ammonia. The prototypes we introduce allow growth in the ab-
sence of ammonia, but are either unimodal or decreasing in ammonia. We provide
bifurcation diagrams for all three prototypes, and compare how they influence the
outcome.

In section 6 we further investigate the model when the parameters are selected so
that there are two stable steady states. In industrial applications of processes such
as anaerobic digestion, operators must be aware of how physical and environmental
processes, and changes in the biology of the species can affect the long term health of
the reactor. One way to address these challenges is to include the effects of stochas-
ticity in simulations of the model. Stochasticity can be a result of random births
and deaths, or of fluctuations in the model parameters, possibly due to mutations
or changes in the environment. Models of chemostats that include stochasticity have
been considered in the literature (e.g., [6,13]), but our approach differs from the ones
presented in those papers. We consider stochasticity in the case where there are fluc-
tuations in the parameters, and compare the results to two well known methods for
simulating stochasticity in the case where there are random births and deaths. Our
studies give new insight into why seemingly identical reactor setups can lead to very
different reactor performances. In section 7, we summarize our results and discuss
their implications for biogas production using anaerobic digestion.

2. The Model. Let X1, X2, S1, S2 and S3 denote the concentrations of the
acidogenic microorganisms, methanogenic microorganisms, simple substrates, acetic
acid and ammonia, respectively. The model is described by the system

Ṡ1 = (S(0) − S1)D − y1µ1(S1)X1,(2.1a)

Ẋ1 = −D1X1 + µ1(S1)X1,(2.1b)

Ṡ2 = −DS2 + y2µ1(S1)X1 − y3µ2(S2, S3)X2,(2.1c)

Ṡ3 = −DS3 + y4µ1(S1)X1,(2.1d)

Ẋ2 = −D2X2 + µ2(S2, S3)X2,(2.1e)

where D is the dilution rate, S(0) is the input concentration of simple substrates,
Di = D + ki, where ki ≥ 0 are the respective decay rates of Xi, and yi are yield
constants.

Let R+ and R2
+ denote the set of non-negative real numbers and the non-negative

plane, respectively. We make the following assumptions concerning µ1 and µ2:
(H1) µ1(S1) ∈ C1(R+), and µ′1(S1) > 0 for all S1 > 0.
(H2) µ1(0) = 0, µ1(S1) > 0 for all S1 > 0.
(H3) µ2(S2, S3) ∈ C1(R2

+), and µ2(S2, S3) > 0 if S2 > 0 and S3 > 0.
(H4) limS3→∞ µ2(S2, S3) = 0 for all S2 ≥ 0.
(H5) limS2→∞ µ2(S2, S3) = 0 for all S3 ≥ 0.
(H6) µ2(0, S3) = 0 for all S3 ≥ 0 and µ2(S2, 0) ≥ 0 for all S2 > 0
(H7) There exists Γ(S3) ∈ C(R+) such that for S2 < Γ(S3), ∂S2

µ2(S2, S3) > 0 and
for S2 > Γ(S3), ∂S2µ2(S2, S3) < 0.

Unlike in [4], we do not assume that both Xi have identical decay rates. (H1) and
(H2) are satisfied by any of the Holling type I, II or III growth functions, which are
standard to chemostat models. (H3), (H4), and (H5) capture the inhibitory nature
of S2 and S3, guaranteeing that large quantities of either S2 or S3 will be detrimental
to the growth of X2. (H6) ensures that an absence of acetic acid will result in no
growth of the methanogenic microorganisms, while an absence of ammonia does not



4 GLOBAL ANALYSIS OF A SIMPLIFIED MODEL OF ANAEROBIC DIGESTION

necessarily have this effect. We would like to note that the prototype describing the
growth of methanogens proposed in [4] has the property that limS3→0 µ2(S2, S3) = 0
for all S2 ≥ 0. We decided to relax this condition. (H7) intends to capture the nature
of the inhibition mechanisms outlined in [4], whereby small concentrations of S2 are
limiting on the growth of X2, while large concentrations of S2 will increase the pH
and hence be inhibitory. The curve Γ(S3) indicates that for each fixed S3 there is
at most one S2 such that ∂S2

µ2(S2, S3) = 0. The curve Γ(S3) therefore gives the
optimal concentration of S2 for growth of X2 as a function of S3. We make no further
assumptions about how µ2(S2, S3) changes with S3. In many cases, including ADM1,
µ2(S2, S3) will have a unimodal shape for fixed S2, but we do not want to rule out the
possibility of other profiles that may be useful. For examples of functions satisfying
these hypotheses, refer to section 5.

Here, we introduce some notation. The break-even concentration of S1, λ1, is the
unique positive extended real number that satisfies

(2.2) µ1(λ1) = D1.

If no such number exists, we take λ1 = +∞. When S1 = λ1 and X2 = 0, the
equilibrium concentrations of S2 and S3, λ2 and λ3, respectively, are given by

λ2 =
y2
y1

(S(0) − λ1)(2.3)

λ3 =
y4
y1

(S(0) − λ1).(2.4)

The break-even concentrations of S2, σ1 and σ2, are the extended real numbers
σ2 ≥ σ1 that solve

(2.5) µ2(σi, λ3) = D2.

If no such numbers exist, which is the case when µ2(Γ(S3), S3) < D2, then we write
σ1 = σ2 = +∞. Note that by (H7), there is at most one turning point of µ2(S2, λ3),
and therefore at most two solutions to µ2(S2, λ3) = D2.

System (2.1) has a total of four possible equilibria,

E = (S(0), 0, 0, 0, 0)(2.6a)

E0 = (λ1, X
∗
1 , λ2, λ3, 0)(2.6b)

E1 = (λ1, X
∗
1 , σ1, λ3, X

∗
2,σ1

)(2.6c)

E2 = (λ1, X
∗
1 , σ2, λ3, X

∗
2,σ2

),(2.6d)

where

X∗1 =
D(S(0) − λ1)

y1D1
and X∗2,σi

=
D(λ2 − σi)
y3D2

.

These equilibria are only biologically meaningful if each of the components is non-
negative. E1 and E2, when they exist, are called interior equilibria, since they lie in
the interior of the positive cone R5

+. E and E0 are called boundary equilibria, since
they lie on the boundary of the positive cone R5

+.
The following propositions give well-posedness results for system (2.1), provide

conditions for the washout of the microorganisms in the reactor when the substrate
input concentration is too low, and introduce the limiting system when the input
concentration is high enough so that the acidogens survive. The proofs are given in
Appendix A.
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Proposition 2.1. Assume that Xi(0) ≥ 0 and Si(0) ≥ 0.
i) If X1(0) = 0, then solutions converge to E as t→∞.

ii) If X1(0) > 0 and X2(0) = 0, then X1(t) > 0 and Si(t) > 0 for all t > 0 while
X2(t) = 0 for all t ≥ 0.

iii) If X1(0) > 0 and X2(0) > 0, then Xi(t) > 0 and Si(t) > 0 are positive for all
t > 0.

iv) All solutions are bounded for t ≥ 0.

Proposition 2.2. If λ1 ≥ S(0), then E is a globally asymptotically stable equi-
librium of (2.1).

Proposition 2.3. If λ1 < S(0), then (2.1) is a quasi-autonomous system with
limiting system

Ṡ2 = −DS2 + λ2D − y3µ2 (S2, λ3)X2,(2.7a)

Ẋ2 = −D2X2 + µ2(S2, λ3)X2.(2.7b)

By Theorem 1.4 in [22], it will be enough to study the dynamics of this limiting
system.

3. Global Analysis of Growth in the Chemostat. After the change of vari-
ables

X(t) = y3X2(t), S(t) = S2(t), µ(S(t)) = µ2(S2(t), λ3), S0 = λ2,

system (2.7) becomes a model of the chemostat:

Ṡ(t) = −(S(t)− S0)D − µ(S(t))X(t)(3.1a)

Ẋ(t) = −D2X(t) + µ(S(t))X(t).(3.1b)

Recall that µ2(S(t), λ3) satisfies (H3) and (H4), and hence µ(S(t)) is a non-
monotone response function with break-even concentrations 0 < σ1 < σ2, the ex-
tended real numbers that solve µ(σi) = D2.

We define the equilibria of (3.1) that correspond to E0, E1, and E2, respectively,
for system (2.1) defined in (2.6b)-(2.6d):

E0 = (S0, 0), E1 = (σ1, X
∗
σ1

), E2 = (σ2, X
∗
σ2

).

where X∗σi
=
D(S0 − σi)

D2
, i = 1, 2.

Models of the chemostat have been well studied (e.g., see [11,20] and the references
therein). Model (3.1) is a model of growth of a single species in the chemostat with
non-monotone response function that includes the species decay rate, i.e. D2 = D+ ε
where ε > 0 is the species decay rate.

In Wolkowicz and Lu [26], model (3.1) extended to the n species case was analyzed.
The results of that paper, if applied to the single species growth model, completely
determine the dynamics of (3.1) when µ(S(t)) is any monotone increasing function
or it is non-monotone and σ1 < S0 ≤ σ2. However, the case that µ(S(t)) is a non-
monotone response function and σ1 < σ2 < S0, remained open. Here, we provide a
proof in this case and thus complete the global analysis of system (3.1). In particular,
we prove that there are no periodic orbits, and hence although the outcome is initial
condition dependent, either the species dies out or it approaches an equilibrium.

In the following theorem, we summarize what is known for the dynamics of (3.1),
and provide a proof in the case that had remained open.
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Theorem 3.1. Consider model (3.1). Assume µ(S) is continuously differen-
tiable, µ(0) = 0, µ(S) ≥ 0 for all S > 0, and there exist positive numbers σ1 ≤ σ2
(possibly infinite) such that µ(S) < D2 if 0 < S < σ1, µ(S) > D2 if σ1 < S < σ2, and
µ(S) < D2 if S > σ2. Let S(0) ≥ 0 and X(0) > 0.

i) If S0 ≤ σ1 ≤ σ2, then E0 is globally asymptotically stable.
ii) If σ1 < S0 ≤ σ2, then E1 is globally asymptotically stable.

iii) If σ1 = σ2 < S0, then E0 is locally asymptotically stable and attracts all
solutions except the solutions in the stable manifold of E1 = E2.

iv) If σ1 < σ2 < S0, then E1 and E0 are locally asymptotically stable and E2
is a saddle. Furthermore, any orbit that is not in the stable manifold of E2
converges to either E1 or E0.

Proof. i)-ii) See [26].
iii) This result follows from standard phase plane analysis. When σ1 = σ2, E1

and E2 coalesce and are unstable. All orbits converge to E0 except those in the stable
manifold of the degenerate saddle E1 = E2.

iv) If σ1 < σ2 < S0, then E0, E1, and E2 all lie in R2
+. From standard local

stability analysis, it follows that E0 and E1 are both locally asymptotically stable and
E2 is a saddle.

Next we show that no nontrivial periodic solutions are possible. We proceed using
proof by contradiction. Suppose that there exists a nontrivial periodic solution, Φ.
By Proposition 2.1 all solutions are bounded in forward time and the first quadrant is
invariant. Orbits above the Ṡ = 0 nullcline (shown in Figure 2 by the dashed curve)
move from right to left, and so if they cross the Ẋ = 0 nullclines (Shown in Figure 2 by
dashed vertical lines) cross them from right to left. Orbits below the Ṡ = 0 nullcline
move from left to right, and so if they cross the Ẋ = 0 nullclines, cross them from
left to right. Orbits thatmare to the right of the line S = σ2 that meet the S′ = 0
nullcline cross it downward. Therefore, if a periodic orbit exists, it must lie entirely
to the left of S = σ2, since if an orbit enters the region below the S′ = 0 nullcline and
to the right of S = σ2, it is trapped in that region and must converge to E0 by the
Poincaré-Bendixson Theorem. If it is to the left of S = σ2 and above Ṡ = 0 it moves
to the left. Therefore, by the Poincaré-Bendixson Theorem and standard phase-plane
analysis, Φ must surround E1, and must lie entirely in the set

G = {(S,X) : 0 < S < σ2, X > 0}.

Define the Lyapunov function,

V (S,X) =

∫ S

σ1

(µ(ξ)−D2)(S0 − σ1)

D2(S0 − ξ)
dξ +

[
X −X∗σ1

−X∗σ1
ln

(
X

X∗σ1

)]
,(3.2)

as in [26]. See Figure 2 for phase portraits of system (3.1) with typical level sets of
the Lyapunov function. Note that (3.2) is a valid Lyapunov function for E1 in G, and

V̇ (S,X) = X(µ(S)−D2)

(
1− µ(S)(S0 − σ1)

D2(S0 − S)

)
,

is non-positive, for all S ∈ [0, σ2] and X ≥ 0, i.e., for all S in the closure of G. By
examining

∇V (S,X) =

(
(µ(S)−D2)(S0 − σ1)

D2(S0 − S)
, 1−

X∗σ1

X

)
= 0,
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(a) (b)

Fig. 2. Phase portraits of system (3.1) with the level sets of V (S,X). The dashed lines are
the nullclines for X and the dashed curve is the nullcline for S. The equilibria E0, E1, and E2 are
indicated by filled circles, and the point (σ2, X∗σ1 ) is indicated by an open diamond. The grey curves
are the level sets of V (S,X). The bold curve is the level set of V (S,X) that passes through the point
(σ2, X∗σ1 ). The set U is shaded in gray. These figures were produced using Maple [16].

we see that E1 and (σ2, X
∗
σ1

) are the only critical points of V (S,X) for which S ≤ σ2.
The point (σ2, X

∗
σ1

) is directly above E2 in phase space, since by definition X∗σ1
> X∗σ2

.
Notice that ∂2V (S,X)/∂X2 = X∗σ1

/X2 > 0 for all X > 0, ∂V (S,X)/∂S < 0 for 0 <
S < σ1, ∂V (S,X)/∂S > 0 for σ1 < S < σ2, and ∂V (S,X)/∂S < 0 for σ2 < S < S0.
It follows that E1 is a local minimum of V (S,X), and (σ2, X

∗
σ1

) is a saddle point of
V (S,X). The level set V (S,X) = V (σ2, X

∗
σ1

) is given by

V (σ2, X
∗
σ1

) =

∫ σ2

σ1

(µ(ξ)−D2)(S0 − σ1)

D2(S0 − ξ)
dξ.

For S ≤ σ2, this level set is a closed curve surrounding E1 that passes through the
point (σ2, X

∗
σ1

). (See the bold level set in Figure 2 where two possible configurations

are shown.) Since V̇ (S(t), X(t)) ≤ 0, the set

U = {(S,X) ∈ R2
+ : 0 ≤ S ≤ σ2, V (S,X) ≤ V (σ2, X

∗
σ1

)}

is a positively invariant set. Since any periodic orbit must lie entirely in G and
must surround an equilibrium point, it must enter U . Since U positively invariant,
it follows that Φ is contained entirely in U . By the minor variation of LaSalle’s
invariance principle [26], any trajectory in U converges to the largest invariant set in
U ∩{(S,X) : V̇ (S,X) = 0}. The only such invariant set is E1, and hence no nontrivial
periodic orbit exists, a contradiction.

Now, from standard phase plane analysis and the Poincaré-Bendixson Theorem,
it follows that all orbits converge to one of the three equilibria as t tends to infinity.
The one-dimensional stable manifold of E2 acts as a separatrix, defining the basins of
attraction for E1 and E0.

4. Global Analysis of the Full System (2.1) .

Theorem 4.1. Consider model (2.1).
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i) If λ1 ≥ S(0)
1 , then E is globally asymptotically stable.

ii) If λ1 < S
(0)
1 and λ2 ≤ σ1 ≤ σ2, then E0 is a globally asymptotically stable

equilibrium.

iii) If λ1 < S
(0)
1 and σ1 < λ2 ≤ σ2, then E1 is a globally asymptotically stable

equilibrium.

iv) If λ1 < S
(0)
1 and σ1 < σ2 < λ2, then E0 and E1 are locally asymptotically

stable, and E2 is a saddle. Furthermore any orbit that does not lie on the
stable manifold of E2 converges to one of E0 or E1.

Proof. i) was proved in Proposition 2.2.
ii) - iv) Since each of the Ei, i = 0, 1, 2 for model (2.1) corresponds to Ei for system

(3.1), the results follow from the results for the limiting system given in Theorem 3.1,
followed by an application of the theory for asymptotically autonomous systems, either
by using Theorem 1.4 in [22], or by a direct proof using the Butler-McGehee Lemma
(as stated in Lemma 5.2 in [5] and applied there).

5. Bifurcation Analysis of Full System (2.1). As a result of the analysis of
the previous two sections, the only possible bifurcations that can occur in (2.1) are
transcritical bifurcations and saddle-node bifurcations.

In [4], a prototype growth function was introduced to capture the inhibition
caused by ammonia. This prototype

(5.1) µ2,I(S2, S3) =
mIS2S3

(K + S2)(S3 + k1S2)(1 + k2S3)
,

has the property that when there is no ammonia, which is toxic to the methanogenic
microorganisms, the methanogenic microorganisms are unable to grow. We introduce
two additional prototype functions

µ2,II(S2, S3) =
mIIS2

K + k1(S2 − S3)2 + rS2S3
,(5.2a)

µ2,III(S2, S3) =
mIIIS2(1 + S3)

(K + k1S2 + rS2
2)(a+ S2

3)
,(5.2b)

that satisfy (H3)-(H7). Both µ2,II(S2, S3) and µ2,III(S2, S3) satisfy the additional
property, µ2,(S2, 0) ≥ 0 with equality only when S2 = 0 or in the limit as S2 → ∞.
For the parameters given in Table 1, µ2,II(S2, S3) is strictly decreasing in S3 and can
be thought of as the opposite extreme of µ2,I(S2, S3). It describes the scenario where
ammonia is strictly inhibitory and the methanogenic microorganisms do best without
any ammonia present. With a different set of parameters this response function can
be unimodal in S3. The difference term in the denominator of µ2,II(S2, S3) acts as
a proxy for the influence of pH in the system. Since S2 is acidic, and S3 is basic,
we assume that a large difference between the two concentrations would cause the
pH to be outside of the acceptable range for the growth of X2. The third prototype,
µ2,III(S2, S3) covers the middle ground between µ2,I(S2, S3) and µ2,II(S2, S3); it is
unimodal in S3, like µ2,I(S2, S3), but is non-zero when S2 > 0 and S3 = 0, like
µ2,II(S2, S3).

The substrate input concentration, S(0), and dilution rate, D, are the two pa-
rameters that the operator of a reactor has the ability to control. In our bifurcation
analysis, we focus on how the dynamics of the full system (2.1) change when these
parameters vary. We note that λ2 and λ3 depend on S(0) (see (2.3) and (2.4)), and
hence, maxS2>0 µ2(S2, λ3) changes when S(0) changes. From the stability analysis in
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(a) (b)

(c) (d)

Fig. 3. Plots of each prototype in 3-dimensions: (a) µ2,I(S2, S3), (b) µ2,II(S2, S3), (c)
µ2,III(S2, S3). (d) shows all three prototypes on the same axes for comparison. Parameters val-
ues used are given in Table 1.

section 3, two scenarios are possible. In the first scenario (see Figure 4), there is a
transcritical bifurcation when λ2 = σ1, a transcritical bifurcation when λ2 = σ2, and
a saddle-node bifurcation when maxS2>0 µ2(S2, λ3) = D2. In the second scenario (see
Figure 5) there are two saddle-node bifurcations as λ3 increases. This sequence of bi-
furcations occurs because µ2,I(S2, S3) and µ2,III(S2, S3) are unimodal in S3. With the
parameters listed in Table 1, the second prototype, µ2,II(S2, S3), is strictly decreasing
in S3, and so only the first scenario is possible. The other two prototypes, µ2,I(S2, S3)
and µ2,III(S2, S3), are unimodal in S3, and either scenario is possible.

In the bifurcation diagrams shown in Figures 4 and 5,

(5.3) µ1(S1) =
κS1

r1 + S1
,

and the parameters are the ones used in [4]. Any parameters not given in [4] (e.g.,
mII , mIII , r, and a), were chosen so that the functions, µ2,II and µ2,III, closely
resemble the function µ2,I given in [4]. See Table 1 for the parameter values used. A
plot of each function is shown in Figure 3. The bifurcation diagrams in Figure 4 are
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Table 1
The parameter values used in the following bifurcation diagrams are the ones used in [4], except

mII ,mIII , r, and a, which were chosen so that the response functions µ2,II and µ2,III closely
resemble µ2,I . The parameter D is the bifurcation parameter in Figures 4(a), 4(c) and 4(e), and

S(0) is the bifurcation parameter in Figures 4(b), 4(d) and 4(f).

Parameter S(0) D Di, i = 1, 2 κ K k1 k2 r r1

Value 50 0.15 0.16 1.2 9.28 0.05 0.5 0.1 7.1

Parameter mI mII mIII y1 y2 y3 y4 a

Value 1.64 0.4 3 42.14 116.5 268 1.165 12
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Fig. 4. Bifurcation diagrams with bifurcation parameter D in (a), (c), (e) and S(0) in (b),(d),
(f) and response function µ2(S2, S3) = µ2,I(S2, S3) in (a) and (b), and µ2(S2, S3) = µ2,II(S2, S3)
in (c) and (d) and µ2(S2, S3) = µ2,III(S2, S3) in (e) and (f). The solid curves correspond to the
X2 (methane producing) coordinate of the asymptotically stable equilibrium of model (2.1), and the
dashed curves correspond to the X2 component of unstable equilibria.

qualitatively similar for each uptake function. The bifurcation diagrams corresponding
to µ2,II(S2, S3) and µ2,III(S2, S3) resemble the diagram for ADM1 in [4] more closely
than the diagram for µ2,I(S2, S3).

In the diagrams where D was used as the bifurcation parameter (Figures 4(a),
4(c) and 4(e)), there are three clear regions. In the first region when 0 < D < D∗1 ,
only the equilibria E1 and E0 lie in the positive cone, E1 is globally asymptotically
stable and therefore all non-stationary solutions converge to E1. When D = D∗1 the
washout equilibrium E0 undergoes a transcritical bifurcation. In the second region,
where D∗1 < D < D∗2 all three equilibria lie in the positive cone. E1 and E0 are
locally asymptotically stable and E2 is a saddle. All solutions (except the stable
manifold of E2) converge to one of E1 or E0, depending on initial conditions. When
D = D∗2 , the two interior equilibria E1 and E2 undergo a saddle-node bifurcation.
In the third region, where D∗2 < D only E0 exists, and it is globally asymptotically
stable. Therefore all solutions tend to E0.
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Fig. 5. Bifurcation diagrams with bifurcation parameter S(0) illustrating two saddle-node bifur-
cations. (a) µ2(S2, S3) = µ2,I(S2, S3). (b) µ2(S2, S3) = µ2,III(S2, S3). The solid curves correspond
to the X2 component of locally asymptotically stable equilibria, and the dashed curves correpond to
the X2 component of unstable equilibria for model (2.1). The analogous diagrams for µ2,II(S2, S3)
do not exhibit this behaviour.

6. Stochastic Simulations of the Full System (2.1) . We describe two
stochastic algorithms to capture stochasticity in the parameters. For comparison we
also include simulations done with Gillespie’s stochastic simulation algorithm [8] and
the adaptive tau-leaping algorithm [9].

The simulations in this section are all done for the full system (2.1) with

µ1(S1) =
κS1

r1 + S1

and µ2(S2, S3) = µ2,III(S2, S3). The parameters are listed in Table 1. With these
parameters, the deterministic system has two stable equilibria, E0 and E1, and so the
long-term behaviour of the solutions is initial condition dependent. If

(6.1) (S1(0), X1(0), S2(0), S3(0), X2(0)) = (50, 0.4, 0, 0, 1.16),

the solution of the deterministic system converges to E1 (see Table 2), and if

(6.2) (S1(0), X1(0), S2(0), S3(0), X2(0)) = (50, 0.4, 0, 0, 1.14),

the solution of the deterministic system converges to E0 (see Table 2). Thus, for one
set of initial conditions, the deterministic system (2.1) predicts that the methanogens
survive and produce biogas, and for the other it predicts that they do not. These
initial conditions simulate the start up and inoculation of the reactor. The only
difference between the initial conditions in (6.1) and (6.2) is the value of X2(0). Both
initial conditions are close to the separatrix. We only include figures that show the
population of methanogens, X2(t), to compare the effect of stochasticity on biogas
production, which only occurs if X2 is positive. In simulations (not shown) with initial
conditions farther from the separatrix, solutions converged to the same equilibrium
predicted by the deterministic model every time. The figures were produced using
Matlab [17].

We use two different approaches to study the behavior of (2.1) under stochastic
perturbations. The first method is meant to model fluctuations in the parameters
due, for example, to fluctuations in the environment. The second method captures
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Table 2
Equilibria for system (2.1) with parameters given in Table 1, with µ2(S2, S3) = µ2,III(S2, S3).

Equilibria

E (50, 0, 0, 0, 0)

E0 (1.092, 1.088, 135.2, 1.352, 0)

E1 (1.092, 1.088, 3.304, 1.352, 0.4614)

E2 (1.092, 1.088, 28.09, 1.352, 0.3747)

the effect of potential mutations in members of the populations. In both schemes,
multiple parameters are perturbed at randomly chosen times. Because we are varying
many parameters, some of which appear in the non-linearities of the system, we are
unable to write the resulting stochastic equations as a linear stochastic perturbation
of the original system as was done in [23, 27] for chemostat models. In [23], the
dilution rate and in [27], the dilution rate and the decay rates are assumed to vary
stochastically. In one algorithm the perturbations are from the mean and in the other
the perturbations are accumulative. Between perturbations the system is treated as
a deterministic system that is solved numerically.

Let τ0 = 0 and τi+1 = τi − ln(Ti), where Ti ∈ (0, 1) is a uniformly distributed
random variable. Therefore, {τi} describes a monotone increasing sequence of times.
By applying the inverse sampling transform, we see that the difference τi+1 − τi is
exponentially distributed with unit mean and variance. Let P0 be a row vector con-
taining the parameter values present in the deterministic system that are affected by
stochasticity. At each randomly chosen time τi, these parameters values are updated
to obtain a sequence of vectors {Pτi}∞i=1, and we set the parameters equal to Pt = Pτi ,
for t ∈ [τi, τi+1).

In the first stochastic algorithm, which we call the environmental based fluctuation
algorithm, we assume that the parameter values are influenced by the environment.
As such, they cannot be perfectly controlled and so at random intervals of time they
undergo small random changes. However, the parameters remain near their mean
values given in the row vector P0. Following this interpretation, we let Nt be a
diagonal matrix with entries given by Gaussian random variables with mean µ = 1
and standard deviation, σ. We assume that Nt = Nτi for t ∈ [τi, τi+1). Then

(6.3) Pτi+1
= P0Nτi .

Figures 6(a) and 6(b) show five simulations using the environmental based algo-
rithm with σ = 1

10 and

P0 = [S0, D, y1, y2, y3, y4,K, k1,mII , r]

In Figure 6(a) the initial conditions are given by (6.2) and the solution to the deter-
ministic system converges to E0. In Figure 6(b), the initial conditions are given by
(6.1) and solutions converge to E1. The solutions for the deterministic system are
shown in bold for comparison.

In the second stochastic algorithm, which we call the mutation based algorithm,
we assume that the parameters are dependent on properties of the microorganisms
that can mutate, and therefore are subject to changes at random times that accumu-
late. In this case, many of the parameters are beyond the control of the operator,
however we assume that the operator has complete control of the dilution rate D and
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Fig. 6. Sample paths of system (2.1) for the methanogens, X2(t), using the environmental fluc-
tuation based method in Figures 6(a) and 6(b), and using the mutation based method in Figures 6(c)
and 6(d). On the left, the initial conditions are given in (6.2) and are in the basin of attraction of
E0 for the deterministic system. On the right, the initial conditions are given in (6.1) and are in
the basin of attraction of E1 for the deterministic system. The darker curve in each graph is the
solution of the deterministic system and the lighter curves show the results of different stochastic
runs.

the input concentration S0. Following this interpretation, we update the parameters
at random times to obtain,

(6.4) Pτi+1 = PτiNτi = P0

i∏
n=1

Nτn ,

where again σ = 1
10 ,

P0 = [y1, y2, y3, y4,K, k1,mII , r],

and Nτi are as before. Using this algorithm, {Pτi}∞i=1 is a random walk with mean
P0, and the mutations accumulate. Random walks have the property that σ2 → ∞
as t→∞, and therefore the system is subject to wild fluctuations as time increases.
Care must be taken so that the parameters, which have interpretations as positive
quantities only, do not become negative. We ensure non-negativity by taking Pτi+1 =
max{0, PτiNτi}, and control the wild fluctuations by limiting the difference between
current parameter values Pτi and the initial parameter values P0 to be less than four
standard deviations. Figures 6(c) and 6(d) shows five simulations using the mutation
based algorithm.
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Fig. 7. Sample paths of system (2.1) for the methanogens, X2(t), using Gillespie’s SSA in
Figures 7(a) and 7(b), and using the tau-leaping method in Figures 7(c) and 7(d). On the left, the
initial conditions are given in (6.2) and are in the basin of attraction of E0 for the deterministic
system. On the right, the initial conditions are given in (6.1) and are in the basin of attraction of
E1 for the deterministic system. The darker curve in each graph is the solution of the deterministic
system and the lighter curves show the results of different stochastic runs.

We also include simulations using Gillespie’s stochastic simulation algorithm (SSA)
[8], in Figures 7(a) and 7(b). The SSA is an essentially exact description for systems
with a finite number of interacting particles. The SSA is based on the principle of
mass action, and as such the deterministic system must be converted to an equivalent
system that is of the form

Ṡ1 =
∑

i,j,k,`,m

aijklmX
i
1S

j
1S

k
2S

`
3X

m
2 ,(6.5a)

Ẋ1 =
∑

i,j,k,`,m

bijklmX
i
1S

j
1S

k
2S

`
3X

m
2 ,(6.5b)

Ṡ2 =
∑

i,j,k,`,m

cijklmX
i
1S

j
1S

k
2S

`
3X

m
2 ,(6.5c)

Ṡ3 =
∑

i,j,k,`,m

dijklmX
i
1S

j
1S

k
2S

`
3X

m
2 ,(6.5d)

Ẋ2 =
∑

i,j,k,`,m

eijklmX
i
1S

j
1S

k
2S

`
3X

m
2 .(6.5e)

To do so, we rescale the time variable by dt = (r1 + S1)(K + k1S2 + rS2
2)(a+ S2

3)dt̂.
The resulting system has 104 different reaction terms that must be accounted for.
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As such, reporting the system here would be impractical. Although we have rescaled
the time variable, the dynamics of system (6.5) are identical to those of (2.1). The
SSA assumes that each reaction occurs independent of the others, and occurs with
rates given by the coefficients of the differential equations. The SSA determines a
time until each reaction takes place using the rate coefficients and the population
of individuals relevant to that reaction, and increases or decreases the population(s)
of the fastest reaction by a set step size. Once we have realized the simulation, we
scale time back to the original time variable before plotting in order to compare with
the other stochastic algorithms. Five simulations with a step size of 1

100 are shown in
Figures 7(a) and 7(b). In reality, the step size is meant to represent a single individual
in the population, but since SSA is notoriously slow, modelling a population of trillions
of microorganisms and on the order of 1023 molecules in this way is computationally
impossible. It is also well known that as you decrease the step size, the SSA will
approach the deterministic solution [8].

Finally, we include simulations using the adaptive tau-leaping algorithm in Fig-
ures 7(c) and 7(d). The tau-leaping algorithm is an improvement on the SSA in terms
of speed, and is generally easier to implement, although it is less accurate. One inter-
pretation of the tau-leaping algorithm is that it is analogous to Euler’s method, but
instead of the derivative, a Poisson random variable with mean proportional to the
derivative is used. Here, (2.1) takes the form

S1(t+ τ) = S1(t) + δP (τ Ṡ1(t)),(6.6a)

X1(t+ τ) = X1(t) + δP (τẊ1(t)),(6.6b)

S2(t+ τ) = S2(t) + δP (τ Ṡ2(t)),(6.6c)

S3(t+ τ) = S3(t) + δP (τ Ṡ3(t)),(6.6d)

X2(t+ τ) = X2(t) + δP (τẊ2(t)),(6.6e)

where δ is the step size (typically interpreted to be an individual particle, as with the
SSA). There has been much discussion on how to choose τ appropriately [7, 9]. We
chose

(6.7) τ = min

{
1

|Ṡ1|
,

1

|Ẋ1|
,

1

|Ṡ2|
,

1

|Ṡ3|
,

1

|Ẋ2|

}
so that the fastest reaction determines τ .

The stochasticity as simulated in the environmental based fluctuation algorithm
and the mutation based algorithm stems from uncertainty in the system parameters,
whether due to environmental noise or from mutations. The stochasticity of the SSA
and tau-leaping algorithm is derived from the fact that the populations are treated as
discrete quantities. Since the populations are very large in practice, it may be more
realistic to implement stochasticity using continuous hybrid algorithms that reflect
the uncertainty in the parameters.

In the simulations using all four algorithms, if the stochasticity caused the system
to predict a different outcome than the deterministic system, it usually happened while
the system was transient. Once the system neared an equilibrium, the behaviour was
usually quite stable. In rare instances, noise caused the system to destabilize after
nearing an equilibrium, but this seemed only to occur for the mutation based method
when the noise was quite large.
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7. Conclusion. We analyze the system introduced by Bornhöft et al. [4], which
was proposed as a qualitative reduction of the ADM1 model, and claimed to capture
the most relevant qualitative features of the ADM1 model. We give a complete global
analysis of the dynamics of the model. If the concentration of the simple substrates
is too low, both the acidogenic and methanogenic populations of microogranisms are
eliminated from the reactor and no biogas is produced. Even if the input concentration
of simple substrates is high enough, if the equilibrium concentration of VFAs produced
by the acidogenic microorganisms is too low, then the methanogenic microorganisms
will be eliminated from the reactor, and the system will converge to an equilibrium
where no biogas is produced. If the VFA concentration is in a proper range, the
system has a single globally stable interior equilibrium. Finally, if the equilibrium
concentration of VFAs is very high, then the system possesses two stable equilibria
and one unstable equilibrium, and no sustained oscillatory behaviour is possible. In
this case the long-term behavior is initial condition dependent. Only one of the two
stable equilibria corresponds to the production of biogas meaning that it depends on
the initial conditions whether the reactor will produce biogas in the long-term. The
system does not allow bistability involving two or more biogas producing equilibria,
previously shown to be possible for the ADM1 model [1] and for the models studied
in [24,25]

The dynamics predicted by a bifurcation analysis of the model is qualitatively sim-
ilar for all three prototype functions. Ammonia inhibition is included in the ADM1
model, however, in ADM1 ammonia is not included as a dynamic variable. Ammonia
concentration in ADM1 is computed as the difference of the concentration of inor-
ganic nitrogen and NH+

4 . In the present model, ammonia is included as a dynamic
variable and it is important to determine how to best model the effect of ammo-
nia on the growth of the methanogens to capture the behaviour of ADM1. For all
three prototype functions, inhibition of the growth of acetoclastic methanogens due
to ammonia is unimodal with respect to the ammonia concentration. However, for
µ2,I(S2, S3), acetoclastic methanogens will not grow in the absence of ammonia, while
for µ2,II(S2, S3) and µ2,III(S2, S3) the organisms grow even if the ammonia concentra-
tion is zero. Based on a comparison with Fig. 10 in [4], using µ2,II or µ2,III in model
(2.1), the behavior resembles the behavior or the ADM1 model shown in [4] more
closely than using µ2,I(S2, S3). This indicates that these two functions are better
suited to model the dependence of acetoclastic methanogens on ammonia.

We consider two algorithms that simulate stochastic effects in system (2.1). The
aim of these two algorithms is to model the uncertainty and variation in environmental
and biological parameters that are hard to control with numerical algorithms that are
easy to implement and run relatively quickly. We compare the resulting graphs with
the graphs produced using the well-known Gillespie algorithm and the the tau-leaping
algorithm.The stochastic simulations from all four algorithms seem to indicate that a
failure of the reactor is most likely to occur early in the reactors operating cycle, and
that once the reactor has reached a steady state, it is quite resilient and less affected by
minor perturbations due to mutations or small fluctuations in the environment. The
one possible exception is in our mutation based stochastic algorithm that is intended
to simulate the accumulation of mutations within the microbial population. Therefore,
it appears to be most important to control the environment of the reactor during start
up, and then to carefully monitor the characteristics of the microorganisms within the
reactor after start up.

The analysis of the model of anaerobic digestion proposed by Bornhöft et al. [4]
involved studying the limiting system (3.1), a model of growth in the chemostat in the
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case of a non-monotone response function with species decay rate added to the dilution
rate. Armstrong and McGehee [18] considered model (3.1) extended to n species
competition in the case of monotone response functions. By ignoring the species decay
rate, they were able to apply a conservation law to obtain a limiting system. They then
studied the resulting limiting system, but did not apply the theory of asymptotically
autonomous systems to obtain results for the full system. Butler and Wolkowicz [5]
used a different method, provided a complete global analysis of this n species model for
both arbitrary monotone and non-monotone response functions, and applied results
for asymptotically autonomous systems so that their results applied to the full system,
not just the limiting system. They proved that competitive exclusion holds, i.e., all
solutions approach an equilibrium that can be initial condition dependent in the non-
montone case. In Wolkowicz and Lu [26], the decay rates were no longer ignored.
There it was proved that for a large class of monotone and non-monotone response
functions, again competitive exclusion holds and all populations approach equilibrium.
However, in the case of non-monotone response they only considered the case when
the species with the lowest break-even concentration also has its larger break-even
concentration larger than the substrate input concentration. In the case of only
one species, their method works for all monotone response functions, but for non-
monotone response functions still requires the assumption that the larger break-even
concentration is larger than the input concentration. In this paper we were able to
eliminate this assumption, and hence complete the analysis for the model of growth
in the basic chemostat.

Appendix A. Proofs.

Proof. of Proposition 2.1
i) Assume first that X1(0) = 0 and all other initial conditions are non-negative.

It follows that X1(t) = 0, for all t ≥ 0. Hence, (2.1) reduces to the system of first
order differential equations

Ṡ1 = (S(0) − S1)D,(A.1a)

Ṡ2 = −DS2 − y3µ2(S2, S3)X2,(A.1b)

Ṡ3 = −DS3,(A.1c)

Ẋ2 = −D2X2 + µ2(S2, S3)X2.(A.1d)

Equations (A.1a) and (A.1c) imply that S1 and S3 converge exponentially to S(0)

and 0, respectively. The hyperplane given by S2 = 0 is invariant under (A.1b) by
(H6), and the hyperplane given by X2 = 0 is invariant under (A.1d). By uniqueness
of solutions to initial value problems, if S2(0) ≥ 0 and X2(0) ≥ 0, then S2(t) ≥ 0 and
X2(t) ≥ 0 for all t ≥ 0. Consider Σ = S2 +y3X2. Then Σ̇ = −DS2−y3D2X2 ≤ −DΣ
and thus Σ(t) → 0 as t → 0, implying X2(t) and S2(t) must each converge to 0 as
t→∞.

ii) and iii) Assume thatX1(0) > 0 andX2(0) ≥ 0, with all other initial conditions
non-negative. Notice first that (2.1a) and (2.1b) decouple from the system. They
describe a simple chemostat, for which it is known that if X1(0) > 0 and S1(0) ≥ 0,
then S1(t) > 0 and X1(t) > 0 for all t > 0 (e.g., see [11, 20, 26]). Note that the
hyperplane X2 = 0 is invariant under (A.1d), and so if X2(0) = 0, X2(t) = 0 for
all t ≥ 0, and if X2(0) > 0, then X2(t) > 0 for all t ≥ 0. If S3(0) = 0, then by
(2.1d), Ṡ3(0) > 0, and so there exists ε > 0 such that S(t) > 0 for all t ∈ (0, ε). Let
S3(0) ≥ 0. Suppose that there exists t̂ > 0 such that S3(t) > 0 for all t ∈ (0, t̂) and
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S3(t̂) = 0. Then, Ṡ3(t̂) ≤ 0, but again from (2.1d), Ṡ3(t̂) = y4µ1(S1(t̂))X1(t̂) > 0, a
contradiction. Hence, S3(t) > 0 for all t > 0. Using (2.1c), a similar argument applies
to S2.

iv) It is known (e.g., see [11,20,26]) that solutions to the simple chemostat ((2.1a)
and (2.1b)) are bounded. Hence, there exists 0 < M < ∞ such that S1(t) < M and
X1(t) < M for all t ≥ 0 . Thus, S3 satisfies

(A.2) Ṡ3 ≤ −DS3 + y4M̃,

where M̃ = µ1(M)M . This differential inequality implies that S3(t) ≤ y4M̃
D +

S3(0)e−Dt for all t ≥ 0, and thus S3(t) is bounded for t > 0. Since Di ≥ D the
following differential inequality holds

(A.3) Ẋ2 ≤ −DX2 + µ2(S2, S3)X2.

Let Σ = y3X2 + S2 − y2
y4
S3. Using (A.3), we see that Σ̇ ≤ −DΣ, which implies that

Σ(t) ≤ Σ(0)e−Dt. Since S3(t) is bounded above and we know that S2(t), X2(t) ≥ 0
for all t ≥ 0, they too must be bounded above.

Proof. of Proposition 2.2
Since (2.1a) and (2.1b) depend only on S1(t) and X1(t), these equations decouple

from the full system (2.1), and it follows from known results on the basic model of
the chemostat (e.g., see [11, 20] ) that if λ1 ≥ S(0), then (S1(t), X1(t)) → (S(0), 0) as
t→∞.

Therefore, for any ε > 0, there is a T > 0 such that for t > T , S1(t) < S(0)+ε and
X1(t) < ε. Then, for t > T , Ṡ3(t) ≤ −DS3(t) + y4µ1(S(0) + ε)ε, which gives S3(t) ≤
S3(T )e−Dt + y4

D µ1(S(0) + ε)ε
(
1− e−D(t−T )

)
. Then, limt→∞ S3(t) = y4

D µ1(S(0) + ε)ε.
Since this holds for all ε > 0, letting ε → 0, gives limt→∞ S3(t) = 0. Next, let
Σ2(t) = S2(t) + 1

y3
X2(t). Since D ≤ D2, Σ̇2(t) ≤ −DΣ2(t) + y2µ1(S1(t))X1(t). The

same argument as before proves that limt→∞ Σ2(t) = 0. Since for all t, S2(t) ≥ 0 and
X2(t) ≥ 0, it follows that limt→∞ S2(t) = limt→∞X2(t) = 0.

In the proof of Theorem 4.1 we rely on the fact that (2.1) is quasi-autonomous
with the limiting system (3.1). For completeness, we include both the definition of
quasi-autonomous, and Theorem 1.4 of [22].

Definition A.1. Let X be an open subset of Rk, k ≥ 1. A system

(A.4) ẋ(t) = f(t, x(t))

with x(t) ∈ X is called a quasi-autonomous system with limiting system

(A.5) ẏ(t) = g(y(t))

if for any compact set K ⊂ X

(A.6)

∫ ∞
t0

sup
x(t)∈K

||f(t, x(t))− g(x(t))||dt <∞.

Theorem A.2 (H. Thieme). Let

(A.7) ẋ = f(t, x)

be quasi-autonomous with limit system

(A.8) ẏ = g(y).
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Let x be a forward bounded solution of (A.7) that is defined for all forward times
such that the closure of its forward orbit is contained in the open set X ⊂ R2. The
following alternative holds for the ω-limit set of x, ω:

1. ω contains a periodic orbit of (A.8).
2. ω contains at least one equilibrium of (A.8) and no periodic orbits of (A.8).

To show that system (2.1) is a quasi-autonomous system with limiting system
(2.7), we first prove a lemma.

Lemma A.3. Let ẋ(t)=f(t, x(t)) be quasi-autonomous with limiting system ẏ(t)=
g(y(t)) and assume that there exists h(x(t)) such that for all K ⊂ X compact

(A.9)

∫ ∞
t0

sup
x(t)∈K

||g(x(t))− h(x(t))||dt <∞.

Then ẋ(t) = f(t, x(t)) is quasi-autonomous with limiting system ẏ(t) = h(y(t)).

Proof. By the triangle inequality,∫ ∞
t0

sup
x∈K
||f(t, x)− h(x)||dt ≤

∫ ∞
t0

sup
x∈K
||f(t, x)− h(x) + g(x)− g(x)||dt

≤
∫ ∞
t0

sup
x∈K
||f(t, x)− g(x)||+ ||g(x)− h(x)||dt

≤
∫ ∞
t0

sup
x∈K
||f(t, x)− g(x)||dt+

∫ ∞
t0

sup
x∈K
||g(x)− h(x)||dt

<∞.

Proof. of Proposition 2.3
First we show that (2.1) is quasi-autonomous with limiting system:

Ṡ2 = (−S2 + λ2)D − y3µ2(S2, S3)X2,(A.10a)

Ṡ3 = −DS3 + λ3D,(A.10b)

Ẋ2 = −D2X2 + µ2(S2, S3)X2.(A.10c)

Since we are assuming that µ1(S1) is a monotone response function, the results in [26]
can be applied to the first two equations in (2.1) to prove that (S1(t), X1(t)) converge
exponentially to (λ1, X

∗
1 ) as t → ∞. (The restriction that the results in [26] only

apply to a general class of monotone response functions rather than any monotone
response function does not apply to the single species growth model.)

Let x(t) = (S1(t), X1(t), S2(t), S3(t), X2(t)) be any solution of (2.1), K ⊂ R5
+ be

a compact set, and let || · || denote the Euclidean norm. For t0 ≥ 0, consider

Q1 =

∫ ∞
t0

sup
x∈K
||(Y1(t), Y2(t), Y3(t), Y4(t), 0)|| dt,

where

Y1(t) = (S(0) − S1(t))D − y1µ1(S1(t))X1(t),

Y2(t) = −D1X1(t) + µ1(S1(t))X1(t),

Y3(t) = y2µ1(S1(t))X1(t)−Dλ2,
Y4(t) = y4µ1(S1(t))X1(t)−Dλ3.
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If t0 = 0, then for any 0 < t1 <∞, by continuity of the norm,

(A.11)

∫ t1

0

sup
x∈K
||(Y1(t), Y2(t), Y3(t), Y4(t), 0)|| dt <∞.

Thus, we need only consider the case t0 > 0. By the Cauchy-Schwartz inequality,

Q1 ≤
(∫ ∞

t0

1

t2
dt

) 1
2

(∫ ∞
t0

t2 sup
x∈K

(Y1(t)2 + Y2(t)2 + Y3(t)2 + Y4(t)2) dt

) 1
2

.(A.12)

The first integral,
∫∞
t0

1
t2 dt, is finite. Since all of the terms of

(A.13)

∫ ∞
t0

t2 sup
x∈K

(
Y1(t)2 + Y2(t)2 + Y3(t)2 + Y4(t)2

)
dt,

are positive, we can consider them individually. We begin with the second term,∫ ∞
t0

t2 sup
x∈K

Y2(t)2dt =

∫ ∞
t0

t2 sup
x∈K

X2
1 (t) [−D1 + µ1 (S1(t))]

2
dt.

Since µ1(S1) ∈ C1, by the Mean Value Theorem, for every t > 0, there exists θ(t),
such that S1(θ(t)) lies between S1(t) and λ1. Let M0 = supt∈[0,∞) |µ′1(S1(θ(t))| > 0.
Since S1(t) → λ as t → ∞, µ′1(S1(θ(t)) remains bounded, M0 is finite and | −D1 +
µ1(S1(t))| = |−µ1(λ1)+µ1(S1(t))| = |µ′1(S1(θ(t)))||−λ1+S1(t)| ≤M0|−λ1+S1(t)| →
0, exponentially as t→ 0. Thus, there is a k > 0, such that∫ ∞

t0

t2 sup
x∈K

X2
1 (t)[−D1 + µ1(S1(t))]2dt ≤ X1M̃0

2
∫ ∞
t0

t2e−2ktdt <∞,

where X1 is the maximum value of X1(t) ∈ K, and M̃0 = M0|S1(0)− λ1|.
We now consider the first term,∫ ∞

t0

t2 sup
x∈K

Y1(t)dt =

∫ ∞
t0

t2 sup
x∈K

[
(S(0) − S1(t))D − y1µ1(S1(t))X1(t)

]2
dt

≤
∫ ∞
t0

t2 sup
x∈K

[
(λ1 − S1(t))D − y1µ1(S1(t))X1(t) + (S(0) − λ1)D

]2
dt.

By Young’s inequality ( i.e. that for any two real numbers, a and b, (a+b)2 ≤ 2a2+2b2)
and using D(S(0) − λ1) = D1y1X

∗
1 ,∫ ∞

t0

t2 sup
x∈K

Y1(t)dt≤
∫ ∞
t0

2t2 sup
x∈K

[
(λ1 − S1(t))2D2+y21 (µ1(S1(t))X1(t)−X∗1D1)

2 ]
dt.

Since this integral is a sum of positive terms we may consider each term individually.
The first term is bounded above by the integral of a decaying exponential, and so is
finite. We use Young’s inequality to bound the second term,

2

∫ ∞
t0

t2 sup
x∈K

[
y21 (µ1(S1(t))X1(t)−D1X1(t) +D1X1(t)−X∗1D)

2
]
dt

≤ 4y21

∫ ∞
t0

t2 sup
x∈K

[
X1(t)2(µ1(S1(t))−D1)2 +D2

1 (X1(t)−X∗1 )
2
]
dt,(A.14)
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where both of the terms in (A.14) are bounded above by a decaying exponential and
so this integral is finite. For the third term in (A.13), write∫ ∞
t0

t2 sup
x∈K

[y2µ1(S1(t))X1(t)−Dλ2]
2
dt

=

∫ ∞
t0

t2y22 sup
x∈K

[
µ1(S1(t))X1(t)−D1X1(t) +D1X1(t)− Dλ2

y2

]2
dt

≤ 2

∫ ∞
t0

t2y22 sup
x∈K

[µ1(S1(t))X1(t)−D1X1(t)]
2
dt+2

∫ ∞
t0

t2 sup
x∈K

[y2D1X1(t)−Dλ2]
2
dt.

Noting that y2D1X
∗
1 = Dλ2, the exponential decay of (X1(t) −X∗1 )2, and the same

decay arguments as with the first term in (A.13). The finiteness of the fourth term
in (A.13) follows from a similar idea, noting that y4D1X

∗
1 = Dλ3. Thus, (2.1) is

quasi-autonomous with limiting system (A.10).
Now we finally show that (2.1) has limiting system (2.7). From (A.10b), if follows

that

(A.15) |S3(t)− λ3| = |S3(0)− λ3| e−Dt.

We use this to argue that

Q2 =

∫ ∞
t0

sup
x∈K

√
(y23 + 1)Y5(t)2 +D2Y6(t)2dt <∞,

where, Y5(t) = µ2(S2(t), λ3) − µ2(S2(t), S3(t))X2(t), and Y6(t) = S3(t) − λ3. The
Cauchy-Schwartz inequality allows us to split the integral into more manageable
pieces,

Q2 ≤
(∫ ∞

t0

1

t2
dt

) 1
2
(∫ ∞

t0

t2 sup
x∈K

[(y22 + 1)Y5(t)2 +D2Y6(t)2]dt

) 1
2

.

By (A.15), the term containing Y6(t) is bounded above. In order to show the integral
containing Y5(t) is bounded above we use the fact that µ2(S2, S3) ∈ C1 and (A.15) to
argue that there exists M1 ≥ 0 such that

|µ2(S2(t), λ3)− µ2(S2(t), S3(t))| ≤M1|S3(0)− λ3|e−Dt.

Since X2(t) is bounded we have

(A.16)

∫ ∞
t0

t2 sup
x∈K

[
(y23 + 1)X2M1|S3(0)− λ3|e−Dt

]
dt,

Where X2 is the maximum value of X(t) in K. The integral on the right is finite and
therefore, by Lemma A.3, (2.1) is quasi-autonomous with limiting system (2.7).
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