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INSTABILITY OF THE SOLITARY WAVES FOR THE GENERALIZED

BOUSSINESQ EQUATIONS

BING LI, MASAHITO OHTA, YIFEI WU, AND JUN XUE*

Abstract. In this work, we consider the generalized Boussinesq equation

∂2
t u− ∂2

xu+ ∂2
x(∂

2
xu+ |u|pu) = 0, (t, x) ∈ R× R,

with 0 < p < ∞. This equation has the traveling wave solutions φω(x − ωt), with the
frequency ω ∈ (−1, 1) and φω satisfying

−∂xxφω + (1− ω2)φω − φp+1
ω = 0.

Bona and Sachs [2] proved that the traveling wave φω(x − ωt) is orbitally stable when
0 < p < 4, p

4
< ω2 < 1. Liu [9] proved the orbital instability under the conditions 0 < p < 4,

ω2 < p

4
or p ≥ 4, ω2 < 1. In this paper, we prove the orbital instability in the degenerate

case 0 < p < 4, ω2 = p

4
.

1. Introduction

In this paper, we consider the stability theory of the generalized Boussinesq equation

∂2t u− ∂2xu+ ∂2x(∂
2
xu+ |u|pu) = 0, (t, x) ∈ R× R, (1.1)

with the initial data

u(0, x) = u0(x), ut(0, x) = u1(x). (1.2)

Here 0 < p <∞.

The Boussinesq equation was originally derived by Boussinesq [3]. It arises from studying
an approximation to the evolution of the free surface of a water wave.

Equation (1.1) has the solitary wave solution u(x, t) = φω(x−ωt), where φω is the ground
state solution of the following elliptic equation

−∂xxφω + (1− ω2)φω − φp+1
ω = 0, |ω| < 1. (1.3)

The ground state solution φω is an even function and it has the property of exponential decay,
that is, |φω| ≤ C1e

−C2|x| for some C1, C2 > 0 and |∂xφω| ≤ C3e
−C4|x| for some C3, C4 > 0.
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Equation (1.1) has the equivalent system form
{
ut = vx,

vt = (−uxx + u− |u|pu)x.
(1.4)

Then the system (1.4) has the following solitary wave solution
(
u
v

)
(t, x) =

(
φω(x− ωt)

−ωφω(x− ωt)

)
.

For the H1 × L2-solution (u, v)T of (1.1)–(1.2), the momentum Q and the energy E are
conserved under the flow, where

Q

(
u
v

)
=

∫

R

uv dx; (1.5)

E

(
u
v

)
=

1

2

∫

R

(|ux|2 + |u|2 + |v|2) dx− 1

p+ 2

∫

R

|u|p+2 dx. (1.6)

There are several related results for the generalized Boussinesq equation. For a local
existence result, Liu [9] proved that the system (1.4) is locally well-posed in H1(R)×L2(R).
For the stability theories, Bona and Sachs [2] proved that when 0 < p < 4, p

4
< ω2 < 1, the

solitary wave solution is orbitally stable. Liu [9] proved the orbital instability if 0 < p < 4 and
ω2 < p

4
or p ≥ 4 and ω2 < 1. Liu [10] proved that when the wave speed ω = 0, the solitary

wave solution is strongly unstable by blow-up. Liu, Ohta, and Todorova [11] showed that
when 0 < p <∞ and 0 < 2(p+ 2)ω2 < p, the solitary wave solution is strongly unstable by
blow-up. For the abstract Hamiltonian systems, we refer the readers to Grillakis, Shatah, and
Strauss [5, 6] for the stability/instability theories, in which the Vakhitov-Kolokolov stability
criteria of the solitary waves were confirmed except the degenerate cases. In the degenerate
cases, it was also proved by Comech and Pelinovsky [4] (see also [14]) that the solitary
wave solution is orbitally unstable under some regularity restrictions in the nonlinearity (for
example, p should be suitably large in our cases). In this paper, we consider the stability
theory on the solitary wave solutions of the generalized Boussinesq equation and aim to show
its instability in the degenerate cases without any regularity restriction. It is worth noting
that none of the above two frameworks of Grillakis, Shatah and Strauss [5, 6] and Comech
and Pelinovsky [4] are available in our cases, either because of the degeneration or because
of insufficient regularity of the nonlinearity.

Before starting our theorem, we give some definitions. Let v0 =
∫ x

−∞
u1(y) dy, ~u =

(u, v)T , ~u0 = (u0, v0)
T , and

−→
Φω = (φω,−ωφω)

T . For ε > 0, we denote the set Uε

(−→
Φω

)
as

Uε

(−→
Φω

)
= {~u ∈ H1(R)× L2(R) : inf

y∈R
‖~u−−→

Φω(· − y)‖H1×L2 < ε}. (1.7)

Definition 1.1. We say that the solitary wave solution φω(x−ωt) of (1.1) is orbitally stable

if for any ε > 0, there exists δ > 0 such that if ‖~u0 −
−→
Φω‖H1×L2 < δ, then the solution ~u(t)

of (1.1) with ~u(0) = ~u0 exists for all t ∈ R, and ~u(t) ∈ Uε

(−→
Φω

)
for all t ∈ R. Otherwise,

φω(x− ωt) is said to be orbitally unstable.

Then the main result in the present paper is the following.

Theorem 1.2. Let 0 < p < 4, ω ∈ (−1, 1) and φω be the solution of (1.3). If |ω| =
√

p

4
,

then the solitary wave solution φω(x− ωt) is orbitally unstable.
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The main method that we use in the present paper is from [19], in which the instability
of the standing wave solutions of the Klein-Gordon equation in the degenerate cases was
proved. Instead of construction of the Lyapunov functional, the argument in [19] is to use
the monotonicity of the virial quantity to control the modulations. However, the details of
this argument depend sensitively on the problem, and the key ingredients of our proof are
the following.

(1) The nonstandard modulation and coercivity properties are given. More precisely,
define the functional Sω as

Sω(~u) = E(~u) + ωQ(~u).

Inspired by [12, 13, 18], we establish the following nonstandard coercivity properties. We

prove the existence of suitable directions
−→
Γω,

−→
Ψω ∈ H1(R) × L2(R) such that the following

coercivity properties hold. Suppose that ~η ∈ H1(R)× L2(R) satisfies
〈
~η,
−→
Γω

〉
=
〈
~η,
−→
Ψω

〉
= 0;

then 〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
&
∥∥~η
∥∥2
H1×L2.

The choices of
−→
Γω,

−→
Ψω play important roles in our estimation.

−→
Ψω can be regarded as the

negative direction, which satisfies
〈
S ′′
ω

(−→
Φω

)−→
Ψω,

−→
Ψω

〉
< 0. However, we remark that

−→
Γω /∈

Ker(S ′′
ω(
−→
Φω)), which is much different from the standard. Moreover, by suitably setting the

translation and scaling parameters y, λ, we can establish the modulation by writing

~u =
(
~η +

−−→
Φλ(t)

)
(· − y(t))

such that ~η verifies similar orthogonal conditions above (by replacing
−→
Γω,

−→
Ψω with

−→
Γλ,

−→
Ψλ,

respectively).

(2) A subtle control on the modulated translation parameters is obtained. Instead of
the rough control of the modulation parameter y as ẏ − λ = O(‖~η‖H1×L2), we obtain the
following finer estimate:

ẏ − λ = ‖φλ‖−2
L2

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
− ‖φλ‖−2

L2

[
Q(~u0)−Q

(−→
Φω

)]
+O(‖~η‖2H1×L2).

The subtle estimate benefits from the choices of
−→
Γω,

−→
Ψω in the first step and the dynamic of

the solution. This estimate has great effects when we set up the structure of virial identity
I ′(t) in the following.

(3) The monotonicity of the virial quantity is constructed. The key ingredient here is to
suitably define a quantity I(t) and obtain its monotonicity. To this end, the crucial issue is
to prove the following structure of I ′(t) as

I ′(t) = ρ(~u0) + h(λ) +R(~u),

where

ρ(~u0) ≥ C1a, C1 > 0;

h(λ) ≥ C2(λ− ω)2 + C3a(λ− ω)2 + o(λ− ω)2, C2 > 0, C3 > 0,

and R(~u) is an easy remainder term which can be dominated by ρ and h. Here a is the
difference between the initial data and the soliton. The obstacles in the proof come from
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nonconservation terms among I ′(t) and how to eliminate the first-order terms about ~η and
λ. These make much technical complexity. By a delicate analysis and the utilization of the
estimates above, we overcome all difficulties and finally obtain the monotonicity of I(t).

The rest of the paper is organized as follows. In Section 2, we give some preliminaries.

In Section 3, we show the coercivity property of the Hessian S ′′
ω

(−→
Φω

)
. In Section 4, we show

the existence of modulation parameters. In Section 5, we control the modulation parameters
obtained in Section 4. In Section 6, we show the localized virial identities. Finally, we prove
the main theorem in Section 7.

2. Preliminary

2.1. Notations. For f, g ∈ L2(R) = L2(R,R), we define

〈f, g〉 =
∫

R

f(x)g(x) dx

and regard L2(R) as a real Hilbert space. Similarly, for ~f,~g ∈
(
L2(R)

)2
=
(
L2(R,R)

)2
, we

define

〈~f,~g〉 =
∫

R

~f(x)T · ~g(x) dx.

For a function f(x), its Lq-norm ‖f‖Lq =
(∫

R

|f(x)|q dx
) 1

q

and its H1-norm ‖f‖H1 =

(‖f‖2
L2 + ‖∂xf‖2L2)

1

2 . For ~f = (f, g)T , its H1 × L2-norm ‖~f‖H1×L2 = (‖f‖2
H1 + ‖g‖2

L2)
1

2 .

Further, we write X . Y or Y & X to indicate X ≤ CY for some constant C > 0. We
use the notation X ∼ Y to denote X . Y . X . We also use O(Y ) to denote any quantity
X such that |X| . Y and use o(Y ) to denote any quantity X such that X/Y → 0 if Y → 0.
Throughout the whole paper, the letter C will denote various positive constants which are
of no importance in our analysis.

2.2. Some basic definitions and properties. In the rest of this paper, we consider the

case of 0 < p < 4, and ωc =
√

p

4
, ω = ±ωc. Let ~u = (u, v)T ,

−→
Φω = (φω,−ωφω)

T . Recall the
conserved equalities,

Q(~u) =

∫

R

uv dx,

E(~u) =
1

2
(‖u‖2L2 + ‖ux‖2L2 + ‖v‖2L2)− 1

p+ 2
‖u‖p+2

Lp+2.

First, we give some basic properties on the momentum and energy.

Lemma 2.1. Let |ω| =
√

p

4
; then the following equality holds:

∂λQ
(−→
Φλ

)∣∣∣
λ=ω

= 0.
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Proof. Note that for λ ∈ (−1, 1), we have

Q
(−→
Φλ

)
= −λ‖φλ‖2L2. (2.1)

By rescaling, we find

φλ(x) = (1− λ2)
1

pφ0

(√
1− λ2x

)
. (2.2)

This implies that

Q
(−→
Φλ

)
= −λ(1− λ2)

2

p
− 1

2‖φ0‖2L2.

By a straightforward computation, we have

∂λQ
(−→
Φλ

)
= −(1− λ2)

2

p
− 3

2

(
1− 4

p
λ2
)
‖φ0‖2L2 .

Finally, we substitute λ2 = p

4
into the equality above and thus complete the proof. �

Now we define the functional Sω as

Sω(~u) = E(~u) + ωQ(~u). (2.3)

Then we have

Q′(~u) =

(
v
u

)
, (2.4)

E ′(~u) =

(
−∂xxu+ u− |u|pu

v

)
, (2.5)

S ′
ω(~u) =

(
−uxx + u− |u|pu+ ωv

v + ωu

)
.

Note that S ′
ω

(−→
Φω

)
= ~0. Moreover, for the real-valued vector ~f = (f, g)T , a direct computation

shows

S ′′
ω

(−→
Φω

)
~f =

(
−∂xxf + f − (p+ 1)φp

ωf + ωg
g + ωf

)
, (2.6)

and for any vector ~ξ, ~η,
〈
S ′′
ω

(−→
Φω

)
~ξ, ~η
〉
=
〈
S ′′
ω

(−→
Φω

)
~η, ~ξ
〉
.

Moreover, taking the derivative of S ′
ω

(−→
Φω

)
= ~0 with respect to ω gives

S ′′
ω

(−→
Φω

)
∂ω

−→
Φω = −Q′

(−→
Φω

)
. (2.7)

Then a consequence of Lemma 2.1 is

Corollary 2.2. Let λ ∈ (−1, 1), |ω| = ωc; then

Sλ

(−→
Φλ

)
− Sλ

(−→
Φω

)
= o
(
(λ− ω)2

)
.

Proof. From the definition of Sω(~u) in (2.3), we have

Sλ

(−→
Φλ

)
− Sλ

(−→
Φω

)
= Sω

(−→
Φλ

)
− Sω

(−→
Φω

)
+ (λ− ω)

(
Q
(−→
Φλ

)
−Q

(−→
Φω

))
.

Recall that S ′
ω

(−→
Φω

)
= ~0; then we use Taylor’s expansion to calculate

Sλ

(−→
Φλ

)
− Sλ

(−→
Φω

)
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=
1

2

〈
S ′′
ω

(−→
Φω

)(−→
Φλ −

−→
Φω

)
,
(−→
Φλ −

−→
Φω

)〉

+ (λ− ω)
(
Q
(−→
Φλ

)
−Q

(−→
Φω

))
+ o
(
(λ− ω)2

)
. (2.8)

Note that −→
Φλ −

−→
Φω = (λ− ω)∂ω

−→
Φω + o(λ− ω);

then we find 〈
S ′′
ω

(−→
Φω

)(−→
Φλ −

−→
Φω

)
,
(−→
Φλ −

−→
Φω

)〉

=(λ− ω)2
〈
S ′′
ω

(−→
Φω

)
∂ω

−→
Φω, ∂ω

−→
Φω

〉
+ o
(
(λ− ω)2

)

=− (λ− ω)2
〈
Q′
(−→
Φω

)
, ∂ω

−→
Φω

〉
+ o
(
(λ− ω)2

)

=− (λ− ω)2∂λQ
(−→
Φλ

)∣∣∣
λ=ω

+ o
(
(λ− ω)2

)
,

where we have used equality (2.7) in the second step. Using Lemma 2.1, we have

∂λQ
(−→
Φλ

)∣∣∣
λ=ω

= 0.

Hence,

Q
(−→
Φλ

)
−Q

(−→
Φω

)
= o
(
λ− ω

)
,

and 〈
S ′′
ω

(−→
Φω

)(−→
Φλ −

−→
Φω

)
,
(−→
Φλ −

−→
Φω

)〉
= o
(
(λ− ω)2

)
.

Taking these two results into (2.8), we obtain the desired estimate. �

3. Coercivity

In this section, we prove a coercivity property on the Hessian of the action S ′′
ω

(−→
Φω

)
.

First, we study the kernel of S ′′
ω

(−→
Φω

)
in the following lemma. The proof is standard, and it

is a consequence of the result from [17].

Lemma 3.1. The kernel of S ′′
ω

(−→
Φω

)
satisfies that

Ker
(
S ′′
ω

(−→
Φω

))
=
{
C∂x

−→
Φω : C ∈ R

}
.

Proof. First, we need to show the relationship “⊃”. For any ~f ∈
{
C∂x

−→
Φω : C ∈ R

}
, using

(1.3), we have

S ′′
ω

(−→
Φω

)
~f = S ′′

ω

(−→
Φω

)(
C∂x

−→
Φω

)
= C

(
∂x
(
− ∂xxφω + (1− ω2)φω − φp+1

ω

)

−ωφ′
ω + ωφ′

ω

)
= ~0. (3.1)

Then (3.1) implies that ~f is in the kernel of S ′′
ω

(−→
Φω

)
, and we have the conclusion

Ker
(
S ′′
ω

(−→
Φω

))
⊃
{
C∂x

−→
Φω : C ∈ R

}
.
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Second, we prove the reverse relationship “⊂”. For any ~f ∈ Ker
(
S ′′
ω(
−→
Φω)

)
, by the

expression of S ′′
ω

(−→
Φω

)
in (2.6), we have

{
−∂xxf + (1− ω2)f − (p+ 1)φp

ωf = 0,

g + ωf = 0.
(3.2)

By the work of Weinstein [17], the only solutions to (3.2) are
{
f = C∂xφω,

g = −Cω∂xφω,
C ∈ R.

This implies that ~f ∈
{
C∂x

−→
Φω : C ∈ R

}
, and we have

Ker
(
S ′′
ω

(−→
Φω

))
⊂
{
C∂x

−→
Φω : C ∈ R

}
.

Finally, combining the two relationship gives us

Ker
(
S ′′
ω

(−→
Φω

))
=
{
C∂x

−→
Φω : C ∈ R

}
.

This gives the proof of the lemma. �

The second lemma is the uniqueness of the negative eigenvalue of S ′′
ω

(−→
Φω

)
.

Lemma 3.2. S ′′
ω(
−→
Φω) exists only one negative eigenvalue.

Proof. It is known that the operator −∂xx+(1−ω2)− (p+1)φp
ω has only one negative eigen-

value (see [17]), and we denote it by λ−1. Then there exists a unique associated eigenvector
ζ ∈ H1(R) such that

−∂xxζ + (1− ω2)ζ − (p+ 1)φp
ωζ = λ−1ζ. (3.3)

Using the expression of S ′′
ω(
−→
Φω) in (2.6), we have

〈
S ′′
ω(
−→
Φω)

−→
Φω,

−→
Φω

〉

=

∫

R

(−∂xxφω + φω − (p+ 1)φω
p+1 − ω2φω,−ωφω + ωφω) ·

(
φω

−ωφω

)
dx

=− p‖φω‖p+2
Lp+2 < 0.

This implies that S ′′
ω(
−→
Φω) has at least one negative eigenvalue, say, µ0. Assume its associated

eigenvector ~η0 = (ξ0, η0)
T , that is,

S ′′
ω(
−→
Φω)~η0 = µ0~η0.

Using the expression of S ′′
ω(
−→
Φω) in (2.6) again, the last equality yields

{−∂xxξ0 + ξ0 − (p+ 1)φp
ωξ0 + ωη0 = µ0ξ0,

η0 + ωξ0 = µ0η0.

From the second equality, we have η0 = − ω
1−µ0

ξ0. Then we substitute it into the first equality
to get

−∂xxξ0 + (1− ω2)ξ0 − (p+ 1)φp
ωξ0 = µ0

( ω2

1− µ0

+ 1
)
ξ0.
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Hence, by (3.3), (µ0, ~η0) is exactly the pair satisfying

µ0 =
1

2

(
λ−1 + ω2 + 1−

√
λ2−1 + 2(ω2 − 1)λ−1 + (ω2 + 1)2

)
, ~η0 =




ζ
ωζ

µ0 − 1


 . (3.4)

This implies that S ′′
ω(
−→
Φω) has exactly one simple negative eigenvalue. This completes the

proof of Lemma 3.2. �

The next lemma gives one of the negative direction of S ′′
ω

(−→
Φω

)
.

Lemma 3.3. Let

~ψω =
1

2ω

(
∂ωφω

−ω∂ωφω

)
,

−→
Ψω =

(
φω

0

)
.

Then

S ′′
ω

(−→
Φω

)
~ψω =

−→
Ψω. (3.5)

Moreover, we have
〈
S ′′
ω(
−→
Φω)~ψω, ~ψω

〉
< 0.

Proof. Taking the derivative of (1.3) with respect to ω, we have

−∂xx(∂ωφω) + (1− ω2)∂ωφω − (p+ 1)φp
ω∂ωφω = 2ωφω. (3.6)

Using the expression of S ′′
ω

(−→
Φω

)
in (2.6), we have

S ′′
ω

(−→
Φω

)
~ψω =

1

2ω

(
−∂xx(∂ωφω) + (1− ω2)∂ωφω − (p+ 1)φp

ω∂ωφω

0

)
.

This combined with (3.6) gives

S ′′
ω

(−→
Φω

)
~ψω =

(
φω

0

)
=

−→
Ψω. (3.7)

Now we show
〈
S ′′
ω

(−→
Φω

)
~ψω, ~ψω

〉
< 0. From (3.7), we have

〈
S ′′
ω

(−→
Φω

)
~ψω, ~ψω

〉
=
〈−→
Ψω, ~ψω

〉
=

∫

R

(φω, 0) ·
1

2ω

(
∂ωφω

−ω∂ωφω

)
dx

=
1

2ω

∫

R

φω ∂ωφω dx =
1

4ω
∂ω‖φω‖2L2. (3.8)

Note that, by (2.2),

‖φω‖2L2 = (1− ω2)
2

p
− 1

2‖φ0‖2L2 .

Hence,

∂ω‖φω‖2L2 = −
(4
p
− 1
) ω

1− ω2
‖φω‖2L2 < 0.

This completes the proof. �

Now we prove the following coercivity property.
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Proposition 3.4. Let |ω| < 1. Suppose that ~η = (ξ, η)T ∈ H1(R)× L2(R) satisfies
〈
~η, ∂x

−→
Φω

〉
=
〈
~η,
−→
Ψω

〉
= 0, (3.9)

where
−→
Ψω = (φω, 0)

T . Then 〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
& ‖~η‖2H1×L2 .

Proof. From the expression of S ′′
ω

(−→
Φω

)
in (2.6), we can write S ′′

ω

(−→
Φω

)
as

S ′′
ω

(−→
Φω

)
= L+ V,

where L =

(
−∂xx + 1 ω

ω 1

)
, and V =

(
−(p + 1)φp

ω 0
0 0

)
. Hence V is a compact perturbation

of the self-adjoint operator L.

Step 1. Analyse the spectrum of S ′′
ω

(−→
Φω

)
.

We first compute the essential spectrum of L. Note that for any ~f = (f, g)T ∈ H1(R)×
L2(R),

〈L~f, ~f〉 =
〈(−∂xx + 1 ω

ω 1

)(
f
g

)
,

(
f
g

)〉

=

∫

R

(−∂xxf + f + ωg, ωf + g) ·
(
f
g

)
dx

= ‖∂xf‖2L2 + ‖f‖2L2 + 2ω〈f, g〉+ ‖g‖2L2

= ‖~f‖2H1×L2 + 2ω〈f, g〉. (3.10)

For the term 2ω〈f, g〉, applying Hölder’s and Young’s inequalities, we have

|2ω〈f, g〉| ≤ |ω|‖~f‖2H1×L2.

Taking this estimate into (3.10), we have

〈L~f, ~f〉 ≥ (1− |ω|)‖~f‖2H1×L2.

Since |ω| < 1, we get

〈L~f, ~f〉 & ‖~f‖2H1×L2.

This means that there exists δ > 0 such that the essential spectrum of L is [δ,+∞). By

Weyl’s Theorem, S ′′
ω

(−→
Φω

)
and L share the same essential spectrum. So we obtain the essential

spectrum of S ′′
ω

(−→
Φω

)
. Recall that we have obtained the only one negative eigenvalue µ0 of

S ′′
ω

(−→
Φω

)
in Lemma 3.2 and the kernel of S ′′

ω

(−→
Φω

)
in Lemma 3.1. So the discrete spectrum of

S ′′
ω

(−→
Φω

)
is µ0, 0, and the essential spectrum is [δ,+∞).

Step 2. Positivity.

The argument here is inspired by [1, 8]. By Lemma 3.2, we have the unique negative

eigenvalue µ0 and eigenvector ~η0 of S
′′
ω

(−→
Φω

)
. For convenience, we normalize the eigenvector ~η0

such that ‖~η0‖L2×L2 = 1. Hence, for vector ~η ∈ H1(R)×L2(R), by the spectral decomposition

theorem we can write the decomposition of ~η along the spectrum of S ′′
ω

(−→
Φω

)
,

~η = aη~η0 + bη∂x
−→
Φω + ~gη,
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where aη, bη ∈ R, ∂x
−→
Φω ∈ Ker

(
S ′′
ω

(−→
Φω

))
and ~gη lies in the positive eigenspace of S ′′

ω

(−→
Φω

)
,

that is, ~gη satisfies

〈~gη, ~η0〉 = 〈~gη, ∂x
−→
Φω〉 = 0,

and there exists an absolute constant σ > 0 such that〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉
≥ σ‖~gη‖2L2×L2. (3.11)

Since ~η satisfies the orthogonality condition
〈
~η, ∂x

−→
Φω

〉
= 0 in (3.9) and

〈
~η0, ∂x

−→
Φω

〉
= 0, we

have bη = 0, and thus

~η = aη~η0 + ~gη. (3.12)

Substituting (3.12) into
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
, we get

〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
=
〈
S ′′
ω

(−→
Φω

)
(aη~η0 + ~gη), aη~η0 + ~gη

〉

= a2η

〈
S ′′
ω

(−→
Φω

)
~η0, ~η0

〉
+ 2µ0aη

〈
~gη, ~η0

〉
+
〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉
.

Due to the orthogonality property of eigenvector 〈~gη, ~η0〉 = 0, we have
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
= a2η

〈
S ′′
ω

(−→
Φω

)
~η0, ~η0

〉
+
〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉

= µ0a
2
η〈~η0, ~η0〉+

〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉

= µ0a
2
η +

〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉
. (3.13)

To ~ψω, by spectral decomposition theorem again, we may write

~ψω = a~η0 + b∂x
−→
Φω + ~g,

where a, b ∈ R, and ~g lies in the positive eigenspace of S ′′
ω

(−→
Φω

)
. We note that

〈
~ψω, ∂x

−→
Φω

〉
= 0.

Indeed, since φω is an even function, we have that ∂ωφω is even and ∂xφω is odd. Hence, we
get

〈
~ψω, ∂x

−→
Φω

〉
=

1 + ω2

2ω

∫

R

∂ωφω ∂xφω dx = 0.

Then b = 0, and thus

~ψω = a~η0 + ~g.

Therefore, a similar computation as above shows that
〈
S ′′
ω

(−→
Φω

)
~ψω, ~ψω

〉
=
〈
S ′′
ω

(−→
Φω

)
(a~η0 + ~g), a~η0 + ~g

〉

=
〈
S ′′
ω

(−→
Φω

)
(a~η0), a~η0

〉
+
〈
S ′′
ω

(−→
Φω

)
~g,~g
〉

= µ0a
2 +

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉
.

For convenience, let −δ0 =
〈
S ′′
ω

(−→
Φω

)
~ψω, ~ψω

〉
. Then by Lemma 3.3, we know that δ0 > 0.

Moreover, we have

−δ0 = µ0a
2 +

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉
. (3.14)
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Using the orthogonality assumption
〈
~η,
−→
Ψω

〉
= 0 in (3.9) and (3.5), we have

0 =
〈
~η,
−→
Ψω

〉
=
〈
aη~η0 + ~gη, S

′′
ω

(−→
Φω

)
~ψω

〉

=
〈
aη~η0 + ~gη, S

′′
ω

(−→
Φω

)
(a~η0 + ~g)

〉

=
〈
aη~η0, S

′′
ω

(−→
Φω

)
(a~η0)

〉
+
〈
~gη, S

′′
ω

(−→
Φω

)
~g
〉

= µ0aaη〈~η0, ~η0〉+
〈
S ′′
ω

(−→
Φω

)
~g,~gη

〉

= µ0aaη +
〈
S ′′
ω

(−→
Φω

)
~g,~gη

〉
.

So we get the equality

0 = µ0aaη +
〈
S ′′
ω

(−→
Φω

)
~g,~gη

〉
.

By the Cauchy-Schwarz inequality, we have

(µ0aaη)
2 =

〈
S ′′
ω

(−→
Φω

)
~g,~gη

〉2

≤
〈
S ′′
ω

(−→
Φω

)
~g,~g
〉〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉
.

This gives

(−µ0a
2)(−µ0a

2
η) ≤

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉
. (3.15)

The last equality combining with (3.14) implies that

−µ0a
2
η ≤

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉

−µ0a2
=

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉
+ δ0

,

that is,

µ0a
2
η ≥ −

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉
+ δ0

. (3.16)

Inserting (3.16) into (3.13), we obtain

〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
≥
(
1−

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉
+ δ0

)〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉

=
δ0〈

S ′′
ω

(−→
Φω

)
~g,~g
〉
+ δ0

〈
S ′′
ω

(−→
Φω

)
~gη, ~gη

〉
.

Recalling that ~gη satisfies (3.11), we have
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
≥ δ0σ〈

S ′′
ω

(−→
Φω

)
~g,~g
〉
+ δ0

‖~gη‖2L2×L2, σ > 0. (3.17)

From the expression of ~η in (3.12) and the inequality (3.16), we have

‖~η‖2L2×L2 = ‖aη~η0 + ~gη‖2L2×L2 = a2η + ‖~gη‖2L2×L2
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≤ −

〈
S ′′
ω

(−→
Φω

)
~g,~g
〉

µ0δ0

〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
+ ‖~gη‖2L2×L2

.
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
.

Therefore, this gives
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
&
∥∥~η
∥∥2
L2×L2

. (3.18)

To obtain the final conclusion, we still need to estimate
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
& ‖~η‖2H1×L2 .

Using the expression of S ′′
ω

(−→
Φω) in (2.6), we have

〈S ′′
ω

(−→
Φω

)
~η, ~η〉 =

∫

R

(−∂xxξ + ξ − (p+ 1)φp
ωξ + ωη, η + ωξ) ·

(
ξ
η

)
dx

= ‖∂xξ‖2L2 + ‖~η‖2L2×L2 + 2ω

∫

R

ξη dx− (p+ 1)

∫

R

|φω|pξ2 dx.

Thus by Hölder’s and Young’s inequalities and (3.18), we get

‖∂xξ‖2L2 =
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
− 2ω

∫

R

ξη dx+ (p+ 1)

∫

R

|φω|pξ2 dx− ‖~η‖2L2×L2

≤
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
+ 2|ω|‖ξ‖L2‖η‖L2 + (p+ 1)‖φω‖pL∞‖ξ‖2L2

≤
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
+
(
|ω|+ (p + 1)‖φω‖pL∞

)
‖~η‖2L2×L2

.
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
+ ‖~η‖2L2×L2 .

〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
. (3.19)

Therefore, together (3.18) and (3.19), we obtain

‖~η‖2H1×L2 = ‖∂xξ‖2L2 + ‖~η‖2L2×L2 .
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
.

Thus we obtain the desired result. �

Applying Proposition 3.4, we obtain the following corollary, which is the nonstandard
coercivity property and one of the key ingredients in our proof. Corollary 3.5 shows that we

can replace the element ∂x
−→
Φω in the orthogonal condition (3.20) by a suitably defined vector

−→
Γω. The new orthogonal condition

〈
~η,
−→
Γω

〉
= 0 has an essential effect on the estimates of

the translation parameter y and λ in Section 5.

Corollary 3.5. Let |ω| < 1. Suppose that ~η ∈ H1(R)× L2(R) satisfies
〈
~η,
−→
Γω

〉
=
〈
~η,
−→
Ψω

〉
= 0, (3.20)

where
−→
Γω ∈ H1(R)× L2(R) and ∂x

−→
Γω =

−→
Ψω = (φω, 0)

T . Then
〈
S ′′
ω

(−→
Φω

)
~η, ~η
〉
&
∥∥~η
∥∥2
H1×L2

. (3.21)
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Proof. We define

~ξ = ~η + b∂x
−→
Φω, ~ξ ∈ H1(R)× L2(R).

If we choose

b = −

〈
~η, ∂x

−→
Φω

〉

‖∂x
−→
Φω‖2L2×L2

,

then
〈
~ξ, ∂x

−→
Φω

〉
= 0.

Moreover, by (3.20), we have
〈
~ξ,
−→
Ψω

〉
=
〈
~η + b∂x

−→
Φω,

−→
Ψω

〉
=
〈
~η,
−→
Ψω

〉
+ b
〈
∂x
−→
Φω,

−→
Ψω

〉
. (3.22)

Note that

b
〈
∂x
−→
Φω,

−→
Ψω

〉
= b

∫

R

(
∂xφω, (−ω)∂xφω

)
·
(
φω

0

)
dx = b

∫

R

∂xφωφω dx = 0.

Hence,
〈
~ξ,
−→
Ψω

〉
= 0. Therefore, ~ξ satisfies the orthogonality condition (3.9) in Proposition

3.4. Then using the conclusion of Proposition 3.4 and S ′′
ω(
−→
Φω)∂x

−→
Φω = ~0, we get

〈
S ′′
ω(
−→
Φω)~η, ~η

〉
=
〈
S ′′
ω(
−→
Φω)

(
~ξ − b∂x

−→
Φω

)
,
(
~ξ − b∂x

−→
Φω

)〉

=
〈
S ′′
ω(
−→
Φω)~ξ, ~ξ

〉
− 2b

〈
S ′′
ω(
−→
Φω)∂x

−→
Φω, ~ξ

〉
+ b2

〈
S ′′
ω(
−→
Φω)∂x

−→
Φω, ∂x

−→
Φω

〉

=
〈
S ′′
ω(
−→
Φω)~ξ, ~ξ

〉
& ‖~ξ‖2H1×L2,

where we have used the self-adjoint property of the operator S ′′
ω(
−→
Φω) in the second step.

Now we claim that ‖~ξ‖2
H1×L2 & ‖~η‖2

H1×L2 . Indeed, using the orthogonality assumption
(3.20), we have

〈
~ξ,
−→
Γω

〉
=
〈
~η + b∂x

−→
Φω,

−→
Γω

〉
= −b

∫

R

(φω,−ωφω) ·
(
φω

0

)
= −b‖φω‖2L2 .

Thus, by Hölder’s inequality, we have

|b| =

∣∣∣
〈
~ξ,
−→
Γω

〉∣∣∣
‖φω‖2L2

. ‖~ξ‖H1×L2. (3.23)

Now from (3.23),

‖~η‖H1×L2 =
∥∥∥~ξ − b∂x

−→
Φω

∥∥∥
H1×L2

≤ ‖~ξ‖H1×L2 + |b|
∥∥∥∂x

−→
Φω

∥∥∥
H1×L2

. ‖~ξ‖H1×L2 .

This completes the proof. �
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4. Modulation

We now suppose for contradiction that the solitary wave solution is stable; that is, for
any ε > 0, there exists δ > 0 such that when

‖~u0 −
−→
Φω‖H1×L2 < δ,

we have

~u ∈ Uε

(−→
Φω

)
. (4.1)

Then the modulation theory shows that by choosing suitable parameters, the orthogonality
conditions in Corollary 3.5 can be verified. The modulation is obtained via the standard
implicit function theorem.

Proposition 4.1. (Modulation). Let |ω| = ωc. There exists ε0 > 0 such that for any

ε ∈ (0, ε0), ~u ∈ Uε

(−→
Φω

)
, the following properties are verified. There exist C1-functions

y : R → R, λ : R → R
+

such that if we define ~η by

~η(t) = ~u
(
t, ·+ y(t)

)
−−−→
Φλ(t), (4.2)

then ~η satisfies the following orthogonality conditions for any t ∈ R:
〈
~η,
−−→
Γλ(t)

〉
=
〈
~η,
−−→
Ψλ(t)

〉
= 0, (4.3)

where
−→
Γλ ∈ H1(R) × L2(R) and ∂x

−→
Γλ =

−→
Ψλ =

(
φλ

0

)
. Moreover, the following estimate

verifies that

‖~η‖H1×L2 + |λ− ω| . ε. (4.4)

Proof. We use the implicit function theorem to prove this proposition. Here we only give the
important steps of the proof and refer the reader to [17, 18, 12, 13] for the similar argument.
Define

p = (~u;λ, y), p0 = (
−→
Φω;ω, 0).

Let ε be the parameter decided later, and define the functional pair (F1, F2) : Uε

(−→
Φω

)
×R×

R
+ → R

2 as

F1(p) =
〈
~η,
−→
Γλ

〉
, F2(p) =

〈
~η,
−→
Ψλ

〉
.

We claim that there exists ε0 > 0, such that for any ε ∈ (0, ε0), there exists a unique C1

map: Uε

(−→
Φω

)
→ R

+ × R such that (F1(p), F2(p)) = 0.

Indeed, firstly we have
F1(p0) = F2(p0) = 0.

Second, we prove that

|J | =
∣∣∣∣
∂λF1 ∂yF1

∂λF2 ∂yF2

∣∣∣∣
p=p0

6= 0.

Indeed, a direct calculation gives that

∂λF1(p) = ∂λ

〈
~η,
−→
Γλ

〉
= ∂λ

〈
~u
(
t, x+ y(t)

)
−−−→
Φλ(t),

−→
Γλ

〉
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=
〈
~u
(
t, x+ y(t)

)
−−−→
Φλ(t), ∂λ

−→
Γλ

〉
−
〈
∂λ
−−→
Φλ(t),

−→
Γλ

〉
.

When p = p0, we observe that ~u
(
t, x+ y(t)

)
−−−→
Φλ(t) = 0, and the first term vanishes. For the

second term, we note that
−→
Γλ is an odd vector and ∂λ

−−→
Φλ(t) is an even vector, so we get

∂λF1(p)
∣∣∣
p=p0

= 0.

A similar computation shows that

∂yF1(p)
∣∣∣
p=p0

=
〈
∂x~u(x+ y),

−→
Γλ

〉∣∣∣
p=p0

=
〈
∂x
−→
Φλ,

−→
Γλ

〉∣∣∣
p=p0

= −‖φω‖2L2;

∂λF2(p)
∣∣∣
p=p0

= −
〈
∂λ
−→
Φλ,

−→
Ψλ

〉∣∣∣
p=p0

= −
〈
∂λφλ, φλ

〉∣∣∣
p=p0

= −1

2
∂λ‖φλ‖2L2

∣∣∣
p=p0

=
1

2ω
‖φω‖2L2 ;

∂yF2(p)
∣∣∣
p=p0

=
〈
∂x
−→
Φλ,

−→
Ψλ

〉∣∣∣
p=p0

=

∫

R

∂xφλφλ dx
∣∣∣
p=p0

= 0.

Then we find that
∣∣∣∣
∂λF1 ∂yF1

∂λF2 ∂yF2

∣∣∣∣
p=p0

=
1

2ω
‖φω‖4L2 6= 0.

Therefore, the implicit function theorem implies that there exists ε0 > 0 such that for any

ε ∈ (0, ε0), ~u ∈ Uε

(−→
Φω

)
, there exist unique C1-functions

y : Uε

(−→
Φω

)
→ R, λ : Uε

(−→
Φω

)
→ R

+,

such that
〈
~η,
−→
Γλ

〉
=
〈
~η,
−→
Ψλ

〉
= 0. (4.5)

Furthermore,
(
∂uλ ∂vλ
∂uy ∂vy

)
= J−1

(
∂uF1 ∂vF1

∂uF2 ∂vF2

)
.

This implies that

|λ− ω| . ‖~u−−→
Φω‖H1×L2 < ε.

This finishes the proof of the proposition. �

5. Dynamic of the parameters

In this section, we control the modulation parameters y and λ. The effect of giving a
precise control on modulation parameters is to obtain the structure of I ′(t) in Section 7. The
main result is the following.
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Proposition 5.1. Let ~u = (u, v)T be the solution of (1.4) with ~u ∈ Uε

(−→
Φω

)
, where ε is

obtained in Proposition 4.1. Let y, λ, ~η = (ξ, η)T be the parameters and vector obtained in
Proposition 4.1; then

ẏ − λ = ‖φλ‖−2
L2

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
− ‖φλ‖−2

L2

[
Q(~u0)−Q

(−→
Φω

)]
+O(‖~η‖2H1×L2)

and

λ̇ = O
(
‖~η‖H1×L2

)
.

The proof of the proposition is split into the following two lemmas. The first lemma is

Lemma 5.2. Under the same assumption in Proposition 5.1, we have

ẏ − λ = −‖φλ‖−2
L2 〈η, φλ〉+O

(
‖~η‖2H1×L2

)
,

and

λ̇ = O
(
‖~η‖H1×L2

)
.

Proof. Recall the definition ~η(t) = ~u
(
t, ·+ y(t)

)
−−−→
Φλ(t) in (4.2), that is,

{
u(t, x) = φλ

(
x− y(t)

)
+ ξ
(
t, x− y(t)

)
,

v(t, x) = −λφλ

(
x− y(t)

)
+ η
(
t, x− y(t)

)
.

(5.1)

Using the first equation of the equivalent system (1.4), we have

λ̇∂λφλ − (ẏ − λ)∂xφλ = −ξ̇ + (ẏ − λ)∂xξ + λ∂xξ + ∂xη. (5.2)

We recall the definition of
−→
Γλ in Proposition 4.1 and denote γλ as the first component of

−→
Γλ.

Now we multiply both sides of equality (5.2) by γλ and integrate to obtain

〈λ̇∂λφλ,γλ〉 − 〈(ẏ − λ)∂xφλ, γλ〉
= 〈−ξ̇, γλ〉+ (ẏ − λ)〈∂xξ, γλ〉+ λ〈∂xξ, γλ〉+ 〈∂xη, γλ〉. (5.3)

We know that φλ is an even function and γλ is an odd function, so 〈λ̇∂λφλ, γλ〉 = 0. By the
orthogonality condition (4.3), we have

〈∂xξ, γλ〉 = −〈~η,−→Ψλ〉 = 0,

so we get

〈ξ̇, γλ〉 = ∂t〈ξ, γλ〉 − 〈ξ, ∂tγλ〉 = ∂t〈~η,
−→
Γλ〉 − 〈ξ, ∂tγλ〉 = −〈ξ, ∂tγλ〉 = −λ̇〈ξ, ∂λγλ〉.

Thus, we simplify equality (5.3) to obtain

(ẏ − λ)‖φλ‖2L2 − λ̇〈ξ, ∂λγλ〉 = −〈η, φλ〉. (5.4)

Next we multiply both sides of equality (5.2) by the first component of
−→
Ψλ and integrate to

obtain

〈λ̇∂λφλ,φλ〉 − (ẏ − λ)〈∂xφλ, φλ〉
= 〈−ξ̇, φλ〉+ (ẏ − λ)〈∂xξ, φλ〉+ 〈λ∂xξ, φλ〉+ 〈∂xη, φλ〉. (5.5)



INSTABILITY OF SOLITARY WAVES 17

Now we consider the term in (5.5) one by one. From Lemma 2.1, we have ∂λ‖φλ‖2L2 =

−‖φλ‖
2

L2

λ
, so

〈λ̇∂λφλ, φλ〉 = λ̇

∫

R

φλ∂λφλ =
1

2
λ̇∂λ‖φλ‖2L2 = − λ̇

2λ
‖φλ‖2L2.

The term −(ẏ − λ)〈∂xφλ, φλ〉 vanishes as φλ is an even function. By the orthogonality
condition (4.3), we have

〈ξ̇, φλ〉 = ∂t〈ξ, φλ〉 − 〈ξ, ∂tφλ〉 = ∂t〈~η,
−→
Ψλ〉 − 〈ξ, ∂tφλ〉 = −〈ξ, ∂tφλ〉.

Thus we simplify equality (5.5) to obtain

λ̇
[
− 1

2λ
‖φλ‖2L2 − 〈ξ, ∂λφλ〉

]
+ (ẏ − λ)〈ξ, ∂xφλ〉 = −〈λξ + η, ∂xφλ〉. (5.6)

Since
−→
Ψλ,

−→
Γλ,

−→
Φλ are smooth functions with exponential decay, combining (5.4) and (5.6), we

get




(ẏ − λ)‖φλ‖2L2 − λ̇〈ξ, ∂λγλ〉 = −〈η, φλ〉,

λ̇
[
− 1

2λ
‖φλ‖2L2 − 〈ξ, ∂λφλ〉

]
+ (ẏ − λ)〈ξ, ∂xφλ〉 = O(‖~η‖H1×L2).

(5.7)

We denote

A =

(
−〈ξ, ∂λγλ〉 ‖φλ‖2L2

− 1
2λ
‖φλ‖2L2 − 〈ξ, ∂λφλ〉 〈ξ, ∂xφλ〉

)
.

Then by a direct calculation, we get
(

λ̇
ẏ − λ

)
= A−1

(
−〈η, φλ〉

O
(
‖~η‖H1×L2

)
)

=

(
O
(
‖~η‖H1×L2

)

−‖φλ‖−2
L2 〈η, φλ〉+O

(
‖~η‖2

H1×L2

)
)
.

This proves the lemma. �

The second lemma we need is the following.

Lemma 5.3. Under the same assumption in Proposition 5.1, we have∫

R

ηφλ dx =
[
Q(~u0)−Q

(−→
Φω

)]
+
[
Q
(−→
Φω

)
−Q

(−→
Φλ

)]
+O

(
‖~η‖2H1×L2

)
.

Proof. Using equality (5.1) and the expression Q(~u) =
∫
R
uv dx, we have

Q(~u) = Q

(
φλ + ξ

−λφλ + η

)

=

∫

R

−λφ2
λ dx− λ

∫

R

ξφλ dx+

∫

R

ηφλ dx+

∫

R

ξη dx.

Now we analyse the last equality one by one. By (2.1), we have Q
(−→
Φλ

)
=
∫
R
−λφ2

λ dx. Recall

that we have the orthogonality condition
〈
~η,
−−→
Ψλ(t)

〉
= 0 in (4.3), then

−λ
∫

R

ξφλ dx = −λ
∫

R

~η · −−→Ψλ(t) dx = 0.

The final term gives
∫
R
ξη dx = O

(
‖~η‖2

H1×L2

)
. Therefore,

Q(~u) = Q
(−→
Φλ

)
+

∫

R

ηφλ dx+O(‖~η‖2H1×L2).
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From the conservation law of momentum, we know
∫

R

ηφλ dx = Q(~u)−Q
(−→
Φλ

)
+O

(
‖~η‖2H1×L2

)

=
[
Q(~u0)−Q

(−→
Φω

)]
+
[
Q
(−→
Φω

)
−Q

(−→
Φλ

)]
+O

(
‖~η‖2H1×L2

)
.

This proves the lemma. �

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. Combining the estimates obtained in Lemmas 5.2 and 5.3, we have

ẏ − λ = −‖φλ‖−2
L2

∫

R

ηφλ dx+O(‖~η‖2H1×L2)

= ‖φλ‖−2
L2

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
− ‖φλ‖−2

L2

[
Q(~u0)−Q

(−→
Φω

)]
+O

(
‖~η‖2H1×L2

)
.

This gives the proof of the proposition. �

6. Localized virial identities

The following lemmas are the localized virial identities. One can see [11] for the details
of the proof.

Let ν is a H2-solution of ∂xν = u, and

I1(t) =

∫

R

ν∂tν dx.

Lemma 6.1. Let ~u ∈ H1(R)× L2(R) be the solution of the system (1.4), then

I ′1(t) = ‖v‖2L2 − ‖u‖2L2 − ‖ux‖2L2 + ‖u‖p+2
Lp+2.

Let

I2(t) =

∫

R

ϕ
(
x− y(t)

)
uv dx,

then we have the following lemma.

Lemma 6.2. Let ϕ ∈ C3(R), ~u ∈ H1(R)× L2(R) be the solution of (1.4), then

I ′2(t) =− ẏ

∫

R

ϕ′
(
x− y(t)

)
uv dx− 1

2

∫

R

ϕ′
(
x− y(t)

)(
3|ux|2 + v2 + u2 − 2(p+ 1)

p+ 2
|u|p+2

)
dx

+
1

2

∫

R

ϕ′′′
(
x− y(t)

)
u2 dx.
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7. Proof of the main theorem

This section is devoted to prove our main theorem.

7.1. Virial identities. Let ϕ(x) be a smooth cutoff function, where

ϕ(x) =

{
x, |x| ≤ R,

0, |x| ≥ 2R,
(7.1)

0 ≤ ϕ′ ≤ 1, |ϕ′′′| . 1
R2 for any x ∈ R. Moreover, we denote

I(t) =
(4
p
− 2
)
I1(t) + 2I2(t).

Then we have the following lemma.

Lemma 7.1. Let R > 0, y, λ, ~η = (ξ, η)T be the parameters and vector obtained in Propo-
sition 4.1. Then

I ′(t) =− 2
(4
p
+ 1
)
E(~u0)−

(
4λ

4− p

p
+ 2λ

)
Q(~u0) +

(
2− 2λ2

4− p

p

)
‖φλ‖2L2

− 2
(
ẏ − λ

)
Q(~u0) +

(
2− 2λ2

4− p

p

)
‖ξ‖2L2 + 2

4− p

p
‖λξ + η‖2L2 +R(~u), (7.2)

where

R(~u) = 2

∫

R

[
1− ϕ′

(
x−y(t)

)](
ẏuv +

3

2
u2x +

1

2
u2 +

1

2
v2 − p + 1

p + 2
|u|p+2

)
dx

+

∫

R

ϕ′′′
(
x− y(t)

)
u2 dx. (7.3)

Proof. From Lemma 6.2 and the conservation law of momentum, we change the form of I ′2(t)
as

I ′2(t) =− ẏ

∫

R

[
ϕ′
(
x− y(t)

)
− 1 + 1

]
uv dx+

1

2

∫

R

ϕ′′′
(
x− y(t)

)
u2 dx

− 1

2

∫

R

[
ϕ′
(
x− y(t)

)
− 1 + 1

][
3|ux|2 + v2 + u2 − 2(p+ 1)

p + 2
|u|p+2

]
dx

=− ẏQ(~u0)−
1

2

[
3‖ux‖2L2 + ‖u‖2L2 + ‖v‖2L2 − 2(p+ 1)

p + 2
‖u‖p+2

Lp+2

]
+

1

2

∫

R

ϕ′′′
(
x− y(t)

)
u2 dx

+

∫

R

[
1− ϕ′

(
x− y(t)

)](
ẏuv +

3

2
|ux|2 +

1

2
v2 +

1

2
u2 − p+ 1

p+ 2
|u|p+2

)
dx.

Then a direct computation gives

I ′(t) =
(4
p
− 2
)
I ′1(t) + 2I ′2(t)

=−
(4
p
+ 1
)
‖ux‖2L2 +

(4
p
− 3
)
‖v‖2L2 +

(
− 4

p
+ 1
)
‖u‖2L2 +

2(p+ 4)

p(p+ 2)
‖u‖p+2

Lp+2

+ 2

∫

R

[
1− ϕ′

(
x− y(t)

)](
ẏuv +

3

2
|ux|2 +

1

2
v2 +

1

2
u2 − p+ 1

p+ 2
|u|p+2

)
dx

+

∫

R

ϕ′′′
(
x− y(t)

)
u2 dx− 2ẏQ(~u0).
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From the conservation law of energy, we have

2E(~u0) = ‖ux‖2L2 + ‖v‖2L2 + ‖u‖2L2 − 2

p+ 2
‖ux‖p+2

Lp+2.

Then

−
(4
p
+ 1
)
‖ux‖2L2 +

(4
p
− 3
)
‖v‖2L2 +

(
− 4

p
+ 1
)
‖u‖2L2 +

2(p+ 4)

p(p+ 2)
‖u‖p+2

Lp+2

=− 2
(4
p
+ 1
)
E(~u0) +

2(4− p)

p

[ p

4− p
‖u‖2L2 + ‖v‖2L2

]

=− 2
(4
p
+ 1
)
E(~u0) +

2(4− p)

p

[
λ2‖u‖2L2 + ‖v‖2L2

]
+ 2
(
1− λ2

4− p

p

)
‖u‖2L2

=− 2
(4
p
+ 1
)
E(~u0) +

2(4− p)

p
‖v + λu‖2L2 − 4λ

4− p

p
Q(~u0) + 2

(
1− λ2

4− p

p

)
‖u‖2L2.

By orthogonality condition (4.3) and using formula (5.1), we have the following two equalities:

‖u‖2L2 = ‖φλ‖2L2 + 2〈φλ, ξ〉+ ‖ξ‖2L2

= ‖φλ‖2L2 + 2〈−→Ψλ, ~η〉+ ‖ξ‖2L2 = ‖φλ‖2L2 + ‖ξ‖2L2,

‖v + λu‖2L2 = ‖ − λφλ + η + λφλ + λξ‖2L2 = ‖λξ + η‖2L2 .

Hence, using the equalities above, we obtain

I ′(t) =− 2
(4
p
+ 1
)
E(~u0) +

2(4− p)

p
‖v + λu‖2L2 − 4λ

4− p

p
Q(~u0) + 2

(
1− λ2

4− p

p

)
‖u‖2L2

+ 2

∫

R

[
1− ϕ′

(
x− y(t)

)](
ẏuv +

3

2
u2x +

1

2
v2 +

1

2
u2 − p+ 1

p+ 2
|u|p+2

)
dx

+

∫

R

ϕ′′′
(
x− y(t)

)
u2 dx− 2ẏQ(~u0)

=− 2
(4
p
+ 1
)
E(~u0) +

2(4− p)

p
‖η + λξ‖2L2 − 4λ

4− p

p
Q(~u0)

+ 2
(
1− λ2

4− p

p

)(
‖φλ‖2L2 + ‖ξ‖2L2

)

+ 2

∫

R

[
1− ϕ′

(
x− y(t)

)](
ẏuv +

3

2
u2x +

1

2
v2 +

1

2
u2 − p+ 1

p+ 2
|u|p+2

)
dx

+

∫

R

ϕ′′′
(
x− y(t)

)
u2 dx− 2(ẏ − λ+ λ)Q(~u0)

=− 2
(4
p
+ 1
)
E(~u0)− 2λ

(
2
4− p

p
+ 1
)
Q(~u0) + 2

(
1− λ2

4− p

p

)
‖φλ‖2L2

− 2(ẏ − λ)Q(~u0) + 2
(
1− λ2

4− p

p

)
‖ξ‖2L2 + 2

4− p

p
‖λξ + η‖2L2 +R(~u).

This proves the lemma. �

Now we consider R(~u) in (7.3).

Lemma 7.2. Let R(~u) be defined in (7.3); then

R(~u) = O(‖~η‖2H1×L2 +
1

R
).
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Proof. Using the definition of the cutoff function ϕ in (7.1), we have

|R(~u)| =
∣∣∣∣∣

∫

{|x−y(t)|>R}

2
[
1− ϕ′

(
x− y(t)

)]

(
ẏuv +

3

2
|ux|2 +

1

2
u2 +

1

2
v2 − p + 1

p + 2
|u|p+2

)
dx+

∫

R

ϕ′′′
(
x− y(t)

)
u2 dx

∣∣∣∣∣

.

∫

{|x−y(t)|>R}

(
1 + |ϕ′

(
x− y(t)

)
|
)(

|ẏ||u||v|+ |ux|2 + u2 + v2 + |u|p+2
)
dx+

1

R2
.

By Hölder’s inequality, |ϕ′| ≤ 1, and |ẏ| . 1 (from Lemma 5.2), we have

|R(~u)| .
∫

{|x−y(t)|>R}

(
|ux|2 + u2 + v2 + |u|p+2

)
dx+

1

R2

.

∫

{|x|>R}

[
(∂xφλ + ∂xξ)

2 + (φλ + ξ)2 + (λφλ − η)2 + |φλ + ξ|p+2
]
dx+

1

R2
,

where we have used equality (4.2) in the last step. Further, using the property of exponential
decay of ∂xφλ, we have

∫

{|x|>R}

(∂xφλ)
2 dx ≤ C

∫

{|x|>R}

e−C|x| dx ≤ C

R
.

Then Young’s inequality gives
∫

{|x|>R}

(∂xφλ + ∂xξ)
2 dx

.

∫

{|x|>R}

[
(∂xφλ)

2 + (∂xξ)
2
]
dx

.
1

R
+ ‖∂xξ‖2L2. (7.4)

Using a similar method, we can prove
∫

{|x|>R}

(φλ + ξ)2 dx ≤ C(
1

R
+ ‖ξ‖2L2), (7.5)

∫

{|x|>R}

(λφλ − η)2 dx ≤ C(
1

R
+ ‖η‖2L2), (7.6)

∫

{|x|>R}

|φλ + ξ|p+2 dx ≤ C(
1

R
+ ‖ξ‖2H1). (7.7)

Thus, we combine (7.4)-(7.7) to obtain

|R(~u)| ≤ C(
1

R
+ ‖~η‖2H1×L2).

This implies that

R(~u) = O(‖~η‖2H1×L2 +
1

R
).

This proves the lemma. �
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7.2. Structure of I ′(t). Our purpose is to control the difference between u and the mod-
ulated solitons and the modulated scaling parameter. Note that the quantities involved in
I ′(t) are nonconserved; the main issue is to analyse the quantities in detail. In particular,
we structure I ′(t) as follows.

Denote

ρ( ~u0) =− 2
(4
p
+ 1
)[
E(~u0)−E

(−→
Φω

)]
− 2λ

(
2
4− p

p
+ 1
)[
Q(~u0)−Q

(−→
Φω

)]

+ 2‖φλ‖−2
L2Q(~u0)

[
Q(~u0)−Q

(−→
Φω

)]
, (7.8)

h(λ) =− 2
(4
p
+ 1
)
E
(−→
Φω

)
− 2λ

(
2
4− p

p
+ 1
)
Q
(−→
Φω

)
+ 2
(
1− λ2

4− p

p

)
‖φλ‖2L2

− 2‖φλ‖−2
L2Q(~u0)

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
, (7.9)

R̃(~u) =R(~u) + 2
(
1− λ2

4− p

p

)
‖ξ‖2L2 + 2

4− p

p
‖λξ + η‖2L2

− 2Q(~u0)

{
(ẏ − λ)− 1

‖φλ‖2L2

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]

+ ‖φλ‖−2
L2

[
Q(~u0)−Q

(−→
Φω

)]
}
. (7.10)

Now we rewrite I ′(t) as follows. In particular, we remark that there are no one-order terms
with respect to ~η and λ.

Lemma 7.3.

I ′(t) = ρ(~u0) + h(λ) + R̃(~u).

Proof. We will make a direct calculation. From (7.2), we know that

I ′(t) = −2
(4
p
+ 1
)
E(~u0)− 2λ

(
2
4− p

p
+ 1
)
Q(~u0) + 2

(
1− λ2

4− p

p

)
‖φλ‖2L2

− 2(ẏ − λ)Q(~u0) + 2
(
1− λ2

4− p

p

)
‖ξ‖2L2 + 2

4− p

p
‖λξ + η‖2L2 +R(~u)

= −2
(4
p
+ 1
)[
E(~u0)− E

(−→
Φω

)]
− 2λ

(
2
4− p

p
+ 1
)[
Q(~u0)−Q

(−→
Φω

)]

+ 2‖φλ‖−2
L2Q(~u0)

[
Q(~u0)−Q

(−→
Φω

)]

− 2
(4
p
+ 1
)
E
(−→
Φω

)
− 2λ

(
2
4− p

p
+ 1
)
Q
(−→
Φω

)
+ 2
(
1− λ2

4− p

p

)
‖φλ‖2L2

− 2‖φλ‖−2
L2Q(~u0)

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]

+R(~u) + 2
(
1− λ2

4− p

p

)
‖ξ‖2L2 + 2

4− p

p
‖λξ + η‖2L2

− 2Q(~u0)

{
(ẏ − λ)− ‖φλ‖−2

L2

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
+ ‖φλ‖−2

L2

[
Q(~u0)−Q

(−→
Φω

)]
}

= ρ(~u0) + h(λ) + R̃(~u).
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This completes the proof. �

By Lemma 7.2 and Proposition 5.1, we obtain

R̃(~u) = O
(
‖~η‖2H1×L2 +

1

R

)
. (7.11)

7.3. Positivity of the main parts. The main parts of I ′(t), ρ(~u0), and h(λ) are considered
in this subsection. We shall prove their positivity in the following.

Lemma 7.4. Let ~u0 = (1 + a)
−→
Φω for some small positive constant a. Then

1) ρ(~u0) ≥ C1a, for some C1 > 0;

2) h(λ) ≥ C2(λ− ω)2 +O(a(λ− ω)2) + o((λ− ω)2) for some C2 > 0.

Proof. 1) Recall the definition of ρ(~u0) in (7.8):

ρ(~u0) =− 2
(4
p
+ 1
)[
E(~u0)− E

(−→
Φω

)]
− 2λ

(
2
4− p

p
+ 1
)[
Q(~u0)−Q

(−→
Φω

)]

+ 2‖φλ‖−2
L2Q(~u0)

[
Q(~u0)−Q

(−→
Φω

)]
. (7.12)

First, by Taylor’s type expansion, we have

E(~u0)− E
(−→
Φω

)
=
〈
E ′
(−→
Φω

)
, ~u0 −

−→
Φω

〉
+O

(
‖~u0 −

−→
Φω‖2H1×L2

)

= a
〈
E ′
(−→
Φω

)
,
−→
Φω

〉
+O(a2).

Using the expression of E ′
(−→
Φω

)
in (2.5), we have

E(~u0)− E
(−→
Φω

)
= a

∫

R

(−∂xxφω + φω − φp+1
ω ,−ωφω) ·

(
φω

−ωφω

)
dx+O(a2)

= a

∫

R

(−∂xxφω + (1− ω2)φω − φp+1
ω + ω2φω,−ωφω) ·

(
φω

−ωφω

)
dx+O(a2)

= 2aω2‖φω‖2L2 + O(a2), (7.13)

where we have used equation (1.3) in the last step. Next, we compute the termQ(~u0)−Q
(−→
Φω

)

in (7.12):

Q(~u0)−Q
(−→
Φω

)
=
〈
Q′
(−→
Φω

)
, ~u0 −

−→
Φω

〉
+O

(
‖~u0 −

−→
Φω‖2H1×L2

)

= a
〈
Q′
(−→
Φω

)
,
−→
Φω

〉
+O(a2).

Using the expression of Q′
(−→
Φω

)
in (2.4), we have

Q(~u0)−Q
(−→
Φω

)
= a

∫

R

(−ωφω, φω) ·
(

φω

−ωφω

)
dx+O(a2)

= −2aω‖φω‖2L2 +O(a2). (7.14)

Then we put (7.13) and (7.14) into the expression of ρ(~u0):

ρ(~u0) =− 2
(4
p
+ 1
)[
E(~u0)−E

(−→
Φω

)]
− 2λ

(
2
4− p

p
+ 1
)[
Q(~u0)−Q

(−→
Φω

)]
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+ 2‖φλ‖−2
L2Q(~u0)

[
Q(~u0)−Q

(−→
Φω

)]

=− 2
(4
p
+ 1
)[

2aω2‖φω‖2L2 +O(a2)
]
− 2λ

(
2
4− p

p
+ 1
)[

− 2aω‖φω‖2L2 +O(a2)
]

+ 2‖φλ‖−2
L2Q(~u0)

[
− 2aω‖φω‖2L2 +O(a2)

]

=− 4aω2
(4
p
+ 1
)
‖φω‖2L2 + 4aωλ

(
2
4− p

p
+ 1
)
‖φω‖2L2 − 4aωQ(~u0)

‖φω‖2L2

‖φλ‖2L2

+O(a2). (7.15)

For the term 4aωλ
(
24−p

p
+ 1
)
‖φω‖2L2 , we have

4aωλ
(
2
4− p

p
+ 1
)
‖φω‖2L2 = 4aω2

(
2
4− p

p
+ 1
)
‖φω‖2L2 +O(a|λ− ω|). (7.16)

For the term −4aωQ(~u0)
‖φω‖2L2

‖φλ‖2L2

, we use the expression φω(x) = (1− ω2)
1

pφ0

(√
1− ω2x

)
in

(2.2) and Taylor’s type expansion again to calculate

−4aωQ(~u0)
‖φω‖2L2

‖φλ‖2L2

= −4aωQ(~u0)
(1− ω2)

2

p
− 1

2‖φ0‖2L2

(1− λ2)
2

p
− 1

2‖φ0‖2L2

= −4aωQ(~u0)
(1− ω2)

2

p
− 1

2

(1− λ2)
2

p
− 1

2

= −4aωQ(~u0)(1− ω2)
2

p
− 1

2

[
(1− ω2)

1

2
− 2

p +O(|λ− ω|)
]

= −4aωQ(~u0) +Q(~u0)O(a|λ− ω|).
From the definition of Q(~u) in (1.5), we have

Q(~u0) = Q
(
(1 + a)

−→
Φω

)
= −ω(1 + a)2‖φω‖2L2.

Combining the last two estimates, we obtain

−4aωQ(~u0)
‖φω‖2L2

‖φλ‖2L2

= 4aω2‖φω‖2L2 +O(a2) +O(a|λ− ω|). (7.17)

Finally we put (7.16) and (7.17) into (7.15) to obtain

ρ(~u0) =− 4aω2
(4
p
+ 1
)
‖φω‖2L2 + 4aω28− p

p
‖φω‖2L2

+ 4aω2‖φω‖2L2 +O(a|λ− ω|) +O(a2)

=4aω24− p

p
‖φω‖2L2 +O(a|λ− ω|) +O(a2).

Choosing a and ε0 small enough, where ε0 is the constant in Proposition 4.1, and by (4.4),
we obtain conclusion 1) of this lemma.

2) Recall the definition of h(λ) from (7.9):

h(λ) = −2
(4
p
+1
)
E
(−→
Φω

)
− 2λ

(
2
4− p

p
+ 1
)
Q
(−→
Φω

)
+ 2
(
1− λ2

4− p

p

)
‖φλ‖2L2

− 2‖φλ‖−2
L2Q(~u0)

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
. (7.18)
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First, we consider the last term and claim that

−2‖φλ‖−2
L2Q(~u0)

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]

= 2ω
[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
+ o
(
(λ− ω)2

)
+O

(
a(λ− ω)2

)
. (7.19)

To prove (7.19), we need the following equalities, which can be obtained by Taylor’s type
expansion and Lemma 2.1:

Q
(−→
Φλ

)
−Q

(−→
Φω

)
= ∂λQ

(−→
Φλ

)
∣∣∣∣∣
λ=ω

(λ− ω) +O((λ− ω)2)

= O((λ− ω)2), (7.20)

Q(~u0)−Q
(−→
Φω

)
= O(a), (7.21)

‖φλ‖−2
L2 − ‖φω‖−2

L2 = O(|λ− ω|). (7.22)

Using (7.20)–(7.22), we obtain

−2‖φλ‖−2
L2Q(~u0)

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]

=− 2‖φω‖−2
L2Q

(−→
Φω

)[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
+ o((λ− ω)2) +O

(
a(λ− ω)2

)
.

Further, from (2.1), we get

−2‖φω‖−2
L2Q

(−→
Φω

)[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]

= −2‖φω‖−2
L2 · (−ω‖φω‖2L2) ·

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]

= 2ω
[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
.

Thus, we obtain

−2‖φλ‖−2
L2Q(~u0)

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]

= 2ω
[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
+ o
(
(λ− ω)2

)
+O

(
a(λ− ω)2

)
.

This proves (7.19).

Inserting (7.19) into (7.18), we get

h(λ) = −2
(4
p
+ 1
)
E
(−→
Φω

)
− 2λ

(
2
4− p

p
+ 1
)
Q
(−→
Φω

)
+ 2
(
1− λ2

4− p

p

)
‖φλ‖2L2

+ 2ω
[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
+ o
(
(λ− ω)2

)
+O

(
a(λ− ω)2

)
.

Let

h1(λ) =− 2
(4
p
+ 1
)
E
(−→
Φω

)
− 2λ

(
2
4− p

p
+ 1
)
Q
(−→
Φω

)

+ 2
(
1− λ2

4− p

p

)
‖φλ‖2L2 + 2ω

[
Q
(−→
Φλ

)
−Q

(−→
Φω

)]
. (7.23)

Then

h(λ) = h1(λ) + o
(
(λ− ω)2

)
+O

(
a(λ− ω)2

)
. (7.24)
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Now we claim that

h1(ω) = 0, h′1(ω) = 0, h′′1(ω) > 0. (7.25)

We prove the claim by the following three steps.

Step 1. h1(ω) = 0.

By the definition of h1(λ), we have

h1(ω) =− 2
(4
p
+ 1
)
E
(−→
Φω

)
− 2ω

(
2
4− p

p
+ 1
)
Q
(−→
Φω

)
+ 2
(
1− ω24− p

p

)
‖φω‖2L2.

By (2.1) and E
(−→
Φω

)
in (1.6), we have

h1(ω) = −2
(4
p
+ 1
)(1

2

∫

R

(
|∂xφω|2 + |φω|2 + | − ωφω|2

)
dx− 1

p+ 2

∫

R

|φω|p+2 dx
)

− 2ω
(
2
4− p

p
+ 1
)(∫

R

−ωφ2
ω dx

)
+ 2
(
1− ω24− p

p

)
‖φω‖2L2

= −8

p
ω2‖φω‖2L2 + 2‖φω‖2L2 = 0,

where we have used ω2 = p

4
in the above computation. Therefore, we have h1(ω) = 0.

Step 2. h′1(ω) = 0.

Using the expression of h1(λ) in (7.23), we have

h′1(λ) =− 2
(
2
4− p

p
+ 1
)
Q
(−→
Φω

)
− 4λ

4− p

p
‖φλ‖2L2

+ 2
(
1− λ2

4− p

p

)
∂λ(‖φλ‖2L2) + 2ω∂λQ

(−→
Φλ

)
. (7.26)

By (2.1) and Lemma 2.1, we have

h′1(ω) = −2
(
2
4− p

p
+ 1
)
Q
(−→
Φω

)
+ 4

4− p

p
Q
(−→
Φω

)
+ 2
(
1− ω24− p

p

)
∂λ(‖φλ‖2L2)

∣∣∣
λ=ω

= −2Q
(−→
Φω

)
+ 2
(
1− ω24− p

p

)
∂λ(‖φλ‖2L2)

∣∣∣
λ=ω

. (7.27)

Now we compute the term ∂λ(‖φλ‖2L2)
∣∣∣
λ=ω

. Note that

∂λQ
(−→
Φλ

)
= ∂λ(−λ‖φλ‖2L2) = −‖φλ‖2L2 − λ∂λ(‖φλ‖2L2);

then Lemma 2.1 gives

∂λ(‖φλ‖2L2)
∣∣∣
λ=ω

= − 1

ω
‖φω‖2L2. (7.28)

Taking (7.28) into (7.27), we get

h′1(ω) = 2ω‖φω‖2L2 + 2
(
1− ω24− p

p

)(
− 1

ω
‖φω‖2L2

)

=
2

ω

(
ω2 − 1 + ω24− p

p

)
‖φω‖2L2

=
2

ω

(4
p
ω2 − 1

)
‖φω‖2L2 = 0.
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Thus, we prove the result h′1(ω) = 0.

Step 3. h′′1(ω) > 0.

Taking the derivative of (7.26) with respect to λ, we have

h′′1(λ) =− 4
4− p

p
‖φω‖2L2 − 8λ

4− p

p
∂λ
(
‖φλ‖2L2

)

+ 2
(
1− 4− p

p
λ2
)
∂2λ
(
‖φλ‖2L2

)
+ 2ω∂2λQ

(−→
Φλ

)
.

Since

∂2λQ
(−→
Φλ

)
= −∂2λ

(
λ‖φλ‖2L2

)

= −2∂λ
(
‖φλ‖2L2

)
− λ∂2λ

(
‖φλ‖2L2

)
,

we have

h′′1(λ) =− 4
4− p

p
‖φω‖2L2 − 4

(
2
4− p

p
λ+ ω

)
∂λ
(
‖φλ‖2L2

)

+ 2
(
1− 4− p

p
λ2 − λω

)
∂2λ
(
‖φλ‖2L2

)
.

Hence,

h′′1(ω) =− 4
4− p

p
‖φω‖2L2 − 4ω

8− p

p
∂λ
(
‖φλ‖2L2

)∣∣∣
λ=ω

+ 2
(
1− 4

p
ω2
)
∂2λ‖φλ‖2L2

∣∣∣
λ=ω

.

Using (7.28) and ω2 = p

4
, we have

h′′1(ω) =− 4
4− p

p
‖φω‖2L2 + 4

8− p

p
‖φω‖2L2 =

16

p
‖φω‖2L2 > 0.

Thus, we prove the result h′′1(ω) > 0. This proves the claim (7.25).

Using (7.25) and Taylor’s type extension, we get

h1(λ) = h1(ω) + h′1(ω)(λ− ω) +
1

2
h′′1(ω)(λ− ω)2 + o

(
(λ− ω)2

)

≥ C2(λ− ω)2 + o(λ− ω)2,

where C2 = 1
2
h′′1(ω) > 0. Putting this into (7.24), we obtain the conclusion 2) of this

lemma. �

Hence, combining Lemmas 7.3 and 7.4, and (7.11), we have

I ′(t) ≥ C1a+ C2(λ− ω)2 +O
(
‖~η‖2H1×L2 + a(λ− ω)2 +

1

R

)
. (7.29)

7.4. Upper control of ‖~η‖H1×L2. From (7.29), to prove the monotonicity of I ′(t), we only
need to estimate ‖~η‖H1×L2. In this subsection, we give the following estimate on ‖~η‖H1×L2.

Lemma 7.5. Let ~η be defined in (4.2); then

‖~η‖2H1×L2 . O(a|λ− ω|+ a2) + o
(
(λ− ω)2

)
.



28 BING LI, MASAHITO OHTA, YIFEI WU, AND JUN XUE*

Proof. First, since ~u =
(−→
Φλ + ~η

)
(x− y) in (5.1), we have

Sλ(~u)− Sλ

(−→
Φλ

)
=
〈
S ′
λ

(−→
Φλ

)
, ~η
〉
+

1

2

〈
S ′′
λ

(−→
Φλ

)
~η, ~η
〉
+ o(‖~η‖2H1×L2).

Using S ′
ω

(−→
Φω

)
= ~0 and Taylor’s type extension, we have

Sλ(~u)− Sλ

(−→
Φλ

)
=
1

2

〈
S ′′
λ

(−→
Φλ

)
~η, ~η
〉
+ o(‖~η‖2H1×L2).

Then by the estimate (3.21) in Corollary 3.5, we get

Sλ(~u)− Sλ

(−→
Φλ

)
& ‖~η‖2H1×L2 .

Second, note that

Sλ(~u)− Sλ

(−→
Φλ

)
= Sλ(~u0)− Sλ

(−→
Φω

)
+ Sλ

(−→
Φω

)
− Sλ

(−→
Φλ

)
,

and Taylor’s type extension gives

Sλ(~u0)− Sλ

(−→
Φω

)
= E(~u0)−E

(−→
Φω

)
+ λ
(
Q(~u0)−Q

(−→
Φω

))

= Sω(~u0)− Sω

(−→
Φω

)
+ (λ− ω)

(
Q(~u0)−Q

(−→
Φω

))

=
〈
S ′
ω

(−→
Φω

)
, ~u0 −

−→
Φω

〉
+O

(
‖~u0 −

−→
Φω‖2H1×L2

)
+ (λ− ω)O

(
‖~u0 −

−→
Φω‖H1×L2

)

= O(a2 + a|λ− ω|).
By Corollary 2.2, we have

Sλ

(−→
Φω

)
− Sλ

(−→
Φλ

)
= o((λ− ω)2).

Finally, we get the desired result:

‖~η‖2H1×L2 . Sλ(~u)− Sλ

(−→
Φλ

)
= Sλ(~u0)− Sλ

(−→
Φω

)
+ Sλ

(−→
Φω

)
− Sλ

(−→
Φλ

)

= O(a|λ− ω|+ a2) + o
(
(λ− ω)2

)
.

This completes the proof. �

7.5. Proof of Theorem 1.2. As in the discussion above, we assume that ~u ∈ Uε

(−→
Φω

)
, and

thus |λ− ω| . ε. First, we note that from the definition of I(t) and Young’s inequality, we
have the time uniform boundedness of I(t):

sup
t∈R

I(t) . R
(
‖−→Φω‖2H1×L2 + 1

)
. (7.30)

Now we estimate on I ′(t). From (7.29) and Lemma 7.5,

I ′(t) ≥ C1a + C2(λ− ω)2 + O(‖~η‖2H1×L2) +O
(
a(λ− ω)2 +

1

R

)

≥ 1

2
C1a + C2(λ− ω)2 +O(a|λ− ω|+ a2) + o

(
(λ− ω)2

)
+O

( 1

R

)
.

By (4.4), choosing R satisfying 1
R
≤ a2, and choosing ε, a0 small enough, we obtain that for

any a ∈ (0, a0),

I ′(t) ≥ 1

2
C1a+ C2(λ− ω)2 +O(a2 + a|λ− ω|) + o(λ− ω)2
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≥ 1

4
C1a+

1

2
C2(λ− ω)2.

This implies I(t) → +∞ when t→ +∞, which is contradicted with (7.30). Hence we prove
the instability of the solitary wave φω(x− ωt) and thus give the proof of Theorem 1.2.
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