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1. Introduction. Fractional differential equations (FDEs) have been used ef-
fectively to model complex physical processes governed by non-local interactions, for
example, modeling contaminant transport in rivers [9], the spread of invasive species
[1] and the transport at the earth surface [34]. In particular, the two-sided fractional
diffusion equation is required in applications such as hydrology [4, 6, 46] and plasma
turbulent transport [8]. However, one of the open problems in applying FDEs to real-
world applications is the proper specification and numerical implementation of bound-
ary conditions (BCs), consistent with the type of fractional derivatives involved, i.e.,
of Riemann-Liouville (R-L) type or Caputo type [31]. The most popular BCs used are
the classical (local) Dirichlet BCs, see [27, 28, 4, 26, 8] and references therein. How-
ever, the diffusion equation with Dirichlet BCs does not conserve mass [18]. The clas-
sical (local) Neumann BCs have also been employed by many researchers [29, 36, 41].
Due to the non-locality of the fractional operator, the local BCs may not be suit-
able depending on the type of fractional derivative, hence non-local/fractional BCs
have been considered in some other works, for instance, see [45, 20, 47, 40, 39, 21].
Moreover, by imposing the no-flux BCs, namely, homogeneous fractional Neumann
boundary conditions, we can recover the mass conservation [2, 3, 18]. However, the
numerical implementation of non-local BCs is not straightforward and requires special
treatment in order to preserve the accuracy of the numerical method used, especially
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in high order methods such as spectral Galerkin methods.
In this work, we consider the following conservative two-sided FDEs with general

BCs:

− d

dx
Dα−1
x u(x) + cu(x) = f(x), x ∈ Λ := (−1, 1), (1.1)

where 1 < α < 2, f(x) is a given function. The function Dα−1
x u(x) can be considered

as a flux function of the fractional diffusion equation in the conservative form [30, 33]

∂

∂t
u(x, t)− ∂

∂x
Dα−1
x u(x, t) = 0. (1.2)

For the operator Dα−1
x , we consider two types of fractional derivative, namely, R-L

and Caputo. Consequently, we study the following two types of fractional problem
with the consistent BCs:

• Conservative R-L FDEs, i.e., Dα−1
x = Dα−1

p , with the R-L fractional Dirichlet
boundary conditions (FDBCs)

I2−α
p u(−1) = g1, I2−α

p u(1) = g2 (1.3)

or the R-L fractional Neumann boundary conditions (FNBCs)

Dα−1
p u(−1) = g1, Dα−1

p u(1) = g2, (1.4)

• Conservative Caputo FDEs, i.e., Dα−1
x = CDα−1

p , with the classical local
Dirichlet BCs

u(−1) = g1, u(1) = g2, (1.5)

which recovers the case of homogeneous Dirichlet boundary problem consid-
ered in [23] if g1 = g2 = 0, or the Caputo FNBCs

CDα−1
p u(−1) = g1,

CDα−1
p u(1) = g2. (1.6)

The definitions of the fractional operators Isp ,Dsp,CDsp, s > 0 can be found in (2.13)
and (2.14). From physical point of view, the FNBCs (R-L or Caputo) is the reflecting
(no-flux) BCs, and the homogeneous classical Dirichlet BCs is the absorbing BCs [2].
For the R-L problem with FDBCs, although the physical meaning may not be clear,
it is mathematically interesting, see [7] for the one-sided FDEs or [22] for the Riesz
FDEs. Therefore, in the present work we consider and analyze all four types of the
aforementioned BCs.

It is well known that it is difficult to obtain analytic forms of the solutions of FDEs,
hence efficient numerical methods are required. For the one-dimensional two-sided
FDEs, there are several available numerical methods, for example, the finite difference
method [26, 37], the finite element method [11, 38], and the spectral method [19,
43, 24, 22, 10, 23] and references therein. In the early works, the emphasis was
on obtaining high accuracy by ignoring the issue of low regularity of the solution
of FDEs, i.e., assuming that the solution is smooth, for example, [11, 19, 37, 24].
However, solutions of fractional boundary value problems have endpoints singularities
that limit the convergence rate of numerical discretizations significantly. In order to
resolve this issue, special treatments are required. Jin et al. proposed finite element
approximations by using a regularity reconstruction [17] or regularity pickup [16] to
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improve the convergence rate for one-sided FDEs; Mao and Shen developed a spectral
element method using a geometric mesh to obtain spectral convergence with respect to
the square root of of the number of degrees of freedom [25]. The spectral method using
Jacobi poly-fractonomials, also known as general Jacobi functions, as basis function
was first proposed in the work [43] and in subsequent work [22, 23] by matching
the singularities at the endpoints. A tunable spectral collocation method was also
developed in [44]. Hesthaven et al.[42] considered local Dirichlet and Neumann BCs,
and proposed a multi-domain spectral penalty method for one-sided FDEs in non-
conservative form with Caputo fractional derivatives, but it does not preserve the
positivity of solutions [2].

However, most available numerical methods assume local Dirichlet BCs. In the
present work, we aim to use spectral approximation to solve the two-sided FDEs
(1.1) with general BCs (1.3)-(1.6). Unlike the case of a simple model problem with
homogeneous Dirichlet BCs in which we can analyze the singularities at the endpoints
(see [23]), the endpoint singularities of the solutions of the two-sided FDEs with
general BCs used in the present work are not known, especially for the case of non-
homogeneous BCs. This means that there is no suitable basis function that can
approximate the solution well as in the case of [23]. In the present work, we develop a
spectral penalty method (SPM) for FDEs with two-sided fractional R-L and Caputo
derivatives. In particular, we formulate SPM by using the Jacobi poly-fractonomial
approximation for the R-L FDEs while using the polynomial approximation for the
Caputo FDEs. The penalty method for spectral approximations was first introduced
by Gottlieb and Funaro [12] for collocation, and subsequently, several works appeared
employing the penalty method to solve general boundary value problems (BVPs) for
integer-order (see [15, 13, 14, 5]).

The remainder of this article is structured as follows. We recall some basic
notations and properties for fractional calculus and Jacobi poly-fractonomials and
develop the spectral relationship between the fractional operators and the Jacobi
poly-fractonomials in Section 2. We establish in Section 3 the well-posedness for the
weak problem of the conservative R-L problem with the FDBCs/FNBCs. We formu-
late SPM for the conservative R-L and Caputo FDEs in Section 4, where the poly-
fractonomial approach is used for the R-L problem while the polynomial approach
is used for the Caputo problem. We also address the question of coercivity of SPM
and provide sufficient conditions for different types of fractional problems. Moreover
we present estimates of the penalty parameters and associated functions. In Section
5, we present several numerical examples to illustrate the proposed methods, demon-
strating that SPM can deliver superior accuracy compared with a Petrov-Galerkin
spectral tau method (PGS-τ), an extension of the high accuracy method of [23]. Fur-
thermore, we verify numerically the theoretical estimates for the sufficient conditions
for coercivity as well as the estimates for the penalty parameters. Finally, we present
an application to the time dependent fractional diffusion equation in Section 6. We
conclude in Section 7.

2. Preliminaries. In this section, we recall the basics of fractional integrals and
derivatives, and review some relevant properties of the Jacobi poly-fractonomials. In
particular, we introduce the spectral relationships between fractional operators and
Jacobi polynomials.

2.1. Fractional integrals and derivatives. We begin by presenting the def-
initions of fractional integrals and derivatives. Consider a generic interval (a, b), let
Γ(·) be the usual Gamma function.
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Definition 1. (Fractional integrals and derivatives). For σ ∈ R+, the left and
right fractional integrals are defined respectively as [31]

aI
σ
x v(x) =

1

Γ(σ)

∫ x

a

v(y)

(x− y)1−σ dy, xI
σ
1 v(x) =

1

Γ(σ)

∫ b

x

v(y)

(y − x)1−σ dy, x ∈ (a, b).

Thus, for σ ∈ [k− 1, k), k ∈ N, we define the left and right R-L fractional derivatives
as

aD
σ
xv(x) = Dk

aI
k−σ
x v(x), xD

σ
b v(x) = (−1)kDk

xI
k−σ
b v(x)

and the left and right Caputo fractional derivatives as

C
aD

σ
xv(x) = aI

k−σ
x Dkv(x), C

xD
σ
b v(x) = (−1)kxI

k−σ
b Dkv(x),

where Dk := dk/dxk. The fractional integral operators satisfy the following semi-
group property: for σ, ρ ≥ 0,

−1I
σ
x −1I

ρ
xv(x) = −1I

σ+ρ
x v(x), xI

σ
1 xI

ρ
1v(x) = xI

σ+ρ
1 v(x), (2.1)

and the adjoint property: for σ ≥ 0,

(−1I
σ
xu, v) = (u, xI

σ
1 v). (2.2)

By the above two properties, we can deduce the following fractional integration by
parts:

(−1I
2σ
x u, v) = (−1I

σ
xu, xI

σ
1 v) = (u, xI

2σ
1 v), σ ≥ 0. (2.3)

2.2. Jacobi poly-fractonomials. Let Pµ,νn (x), µ, ν > −1, n ∈ N be the clas-
sical Jacobi polynomial. We now review the definition of Jacobi poly-fractonomials
(also called general Jacobi functions) J−µ,−νn and discuss the spectral relationship
for the two-sided fractional operators. The Jacobi poly-fractonomials are defined as
follows: for all x ∈ Λ,

J−µ,−νn (x) := (1− x)µ(1 + x)νPµ,νn (x), µ, ν > −1, n ∈ N.

The Jacobi poly-fractonomials J−µ,−νn (x), n ≥ 0 are orthogonal with respect to the
weight function ω−µ,−ν(x):∫

Λ

J−µ,−νn (x)J−µ,−νm (x)ω−µ,−ν(x)dx = γµ,νn δmn, (2.4)

where γµ,νn is given by the equation (3.88) in [35].
Moreover, for 1 < α < 2, 2 − α ≤ ν, µ < 0, µ + ν + 2 − α = 0, 0 ≤ p ≤ 1, and

x ∈ (a, b), let

Cα,p := C(α, µ, ν) = (sinπµ+ sinπν)/sinπα, (2.5)

and denote

Iµ,ν,%p,a,b := Cα,p(paI
%
x + (1− p)xI%b ) and Dµ,ν,qp,a,b :=

dk

dxk
Iµ,ν,k−qp,a,b (2.6)
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the two-sided fractional integral of order % and the two-sided fractional R-L derivatives
of order q ∈ (k − 1, k), k ∈ N, respectively. See [23] for more details.

Lemma 1. For a given p, 0 < p < 1 and 1 < α < 2, if α − 2 < µ, ν < 0 and
µ, ν, p satisfying

µ+ ν = α− 2, psin(πµ) = (1− p)sin(πν), (2.7)

then for t ∈ (0, 1) and k = 0, 1, 2, . . . , we have that

Iµ,ν,2−αp,0,1 tν(1− t)µtk =

k∑
j=0

ak,jt
j , (2.8)

where

ak,j = (−1)k
(−1)jΓ(j + α− 1)Γ(µ+ 1)

Γ(α− 1− ν − k + j)Γ(j + 1)Γ(k + 1− j)
. (2.9)

Proof. For 0 < p < 1 and g(t) = tν(1 − t)µtk, using the same argument as for the
Lemma 5.1 of [10], the following two equations hold:

0I
2−α
t g(t) =

Γ(1 + ν + k)

Γ(3− α+ ν + k)
t2−α+ν+k

2F1(1 + ν + k,−µ; 3− α+ ν + k, t),

tI
2−α
1 g(t) =

Γ(−2 + α− ν − k)

Γ(−ν − k)
t2−α+ν+k

2F1(1 + ν + k,−µ; 3− α+ ν + k, t)

+
Γ(µ+ 1)Γ(2− α+ ν + k)

Γ(2− α)Γ(3− α+ ν + µ+ k)
2F1(−k, α− 1;−ν − 1 + α− k, t),

where 2F1(a1, b1; c1;x) =
∑∞
j=0

(a1)j(b1)j
(c1)j

xj

j! (|x| < 1, a1, b1, c1 ∈ R, − c1 /∈ N) is

a hypergeometric function, and the rising factorial in the Pochhammer symbol for
a1 ∈ R and j ∈ N is defined by

(a1)0 = 1; (a1)j := a1(a1 + 1) · · · (a1 + j − 1) =
Γ(a1 + j)

Γ(a1)
, for j ≥ 1.

Using the formula Γ(1− z)Γ(z) = π
sin(πz) gives

Γ(−2 + α− ν − k)

Γ(−ν − k)
= − sin(πν)

sin(πµ)

Γ(1 + ν + k)

Γ(3− α+ ν + k)
.

By letting p given by (2.7) and noting that Γ(2 − α)Γ(α − 1) = − π
sin(πα) and Γ(2 −

α+ ν + k)Γ(−1− α− ν − k) = (−1)k+1 π
sin(πµ) , we obtain the equality (2.8). �

Lemma 1 implies that the two-sided fractional integral of Jacobi poly-fractonomials
return polynomials; this is also true for the one-sided and Riesz fractional integrals,
which are subcases of the general case [43, 22].

Theorem 1. For a given p, 0 < p < 1 and 1 < α < 2, if α − 2 < µ, ν < 0 and
µ, ν, p satisfying the condition (2.7), then for n = 0, 1, 2, . . . , it holds that

Iµ,ν,2−αp,0,1 ωµ,ν∗ Gn(µ, ν, t) = λnGn(ν, µ, t), where λn =
Γ(n+ α− 1)

Γ(n+ 1)
, (2.10)
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where Gn(µ, ν, t) = Pµ,νn (x(t)) is defined on interval (0, 1) and x(t) = 2t−1, ωµ,ν∗ (t) =
tν(1− t)µ.

Proof. The proof is similar to the one of Lemma 5.2 in [10]. Let PN be the
space of polynomials of degree at most N , for h(x) ∈ Pn−1, (Gn(ν, µ, t), h)ων,µ∗ = 0,

(Iµ,ν,2−αp,0,1 ωµ,ν∗ Gn(µ, ν, t), h)ων,µ∗ = 0, hence,

Iµ,ν,2−αp,0,1 ωµ,ν∗ Gn(µ, ν, t) = CGn(ν, µ, t)

with C is a constant. Since the coefficient of xn in Gn(µ, ν, t) and Gn(ν, µ, t) is
Γ(2n+µ+ν+1)
n!Γ(n+µ+ν+1) , then from an,n, we get

Γ(n+ α− 1)

Γ(n+ 1)
= λn.

�

Due to Theorem 1 and Lemma 1, we can get the following results:

Theorem 2. For a given p, 0 ≤ p ≤ 1 and 1 < α < 2, if α − 2 ≤ µ, ν ≤ 0 and
µ, ν, p satisfying the condition (2.7), then for x ∈ (−1, 1), n = 0, 1, 2, . . . , it holds that

Iµ,ν,2−αp,−1,1 J−µ,−νn (x) = λnP
ν,µ
n (x), where λn =

Γ(n+ α− 1)

Γ(n+ 1)
, (2.11)

and

Dµ,ν,k+α−2
p,−1,1 J−µ,−νn (x) = C̃αP

ν+k,µ+k
n−k (x), where C̃α =

Γ(n+ k + α− 1)

2kΓ(n+ 1)
. (2.12)

Proof. For 0 < p < 1, by the transformation x := 2t−1 in equation (2.10), we deduce
(2.11) by

Iµ,ν,2−αp,−1,1 J−µ,−νn (x) = Iµ,ν,2−αp,−1,1 ωµ,νPµ,νn (x) = Iµ,ν,2−αp,0,1 ωµ,ν∗ Gn(µ, ν, t)

= λnGn(ν, µ, t) = λnP
ν,µ
n (x).

For p = 1, we set µ = α−2, ν = 0 while for p = 1 we set µ = 0, ν = α−2. Obviously,
µ, ν satisfy (2.7), then we can derive (2.11) for p = 0, 1 by using [7, Equations (2.34)
and (2.35)]. Equation (2.12) can be deduced from (2.6), (2.11) and from equation
(3.101) in [35]. �

For the sake of simplicity, we denote

I%p := Iµ,ν,%p,a,b , and D%p := Dµ,ν,%p,a,b (2.13)

be the R-L two-sided fractional integral and derivative if no confusion arises. Similarly,
we can define the two-sided Caputo fractional derivative

CD%p := Cα,p(p
C
−1D

%
x − (1− p)CxD

%
1). (2.14)
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3. Well-posedness. Before establishing the discretization scheme for the frac-
tional problems (1.1) with the general BCs (1.3)-(1.6), we first show the well-posedness
of the continuous weak problem. For the case of conservative Caputo problem, the
well-posedness results have been shown in [21]. Also, for the one-sided model problem
without the reaction term, i.e., c ≡ 0, Wang and his collaborators showed the well-
posedness of the fractional Dirichlet boundary problem in the conservative Caputo
sense (cf. [40]) and the fractional Neumann boundary problem in both conservative
Caputo and R-L sense (cf. [39]). We discuss in this section the well-posedness of the
case of two-sided conservative R-L fractional problem.

3.1. Fractional integral/derivative spaces. For σ ≥ 0, define the fractional
integral spaces associated with the left and right fractional integrals:

J−σl (Λ) :=
{
v : −1I

σ
x v ∈ L2(Λ)

}
and J−σr (Λ) :=

{
v : xI

σ
1 v ∈ L2(Λ)

}
with norms

‖v‖2
J−σl (Λ)

:= (−1I
σ
x v,−1I

σ
x v) = ‖−1I

σ
x v‖2L2(Λ) and

‖v‖2
J−σr (Λ)

:= (xI
σ
1 v, xI

σ
1 v) = ‖xIσ1 v‖2L2(Λ),

(3.1)

respectively. Moreover, we define the following fractional integral space and norm
associated with the fractional integral Iσp for σ ≥ 0:

J−σp (Λ) :=
{
v : Iσp v ∈ L2(Λ)

}
with ‖v‖2

J−σp (Λ)
:= (Iσp v, Iσp v) = ‖Iσp v‖2L2(Λ). (3.2)

When p = 1 (resp. p = 0), the fractional integral space J−σp (Λ) reduces to the space

J−σl (Λ) (resp. J−σr (Λ)).
We now show that J−σp (Λ), σ ≥ 0 is a Hilbert space. To do this, we only need

to verify that ‖v‖J−σp (Λ) = 0 if and only if v(x) = 0. On the one hand, if v(x) = 0,

obviously, ‖v‖J−σp (Λ) = 0. On the other hand, by the spectral relation (2.11), we have

that there exists a unique pair of µ, ν satisfying (2.7) (where 2−α replaced by σ), such
that v ∈ L2

ω−µ,−ν (Λ) and ‖v‖L2
ω−µ,−ν

(Λ) ∝ ‖Iσp v‖L2
ων,µ

(Λ). Thus, ‖v‖J−σp (Λ) = 0 gives

Iσp v(x) = 0 and then ‖v‖L2
ω−µ,−ν

(Λ) = 0. Then v(x) = 0 follows the completeness of

the space L2
ω−µ,−ν (Λ) (see the argument in [23, Section 3.4]).

More technical results for the fractional integral spaces that would be used in
next subsection are presented in Appendix A.

As a consequence of the fractional integral space Jδ−1
p (Λ) for 0 < δ < 1, we can

define the following Riemann-Liouville fractional derivative space and norm:

Hδ
RL(Λ) :=

{
v : v ∈ Jδ−1

p (Λ), Dδpv ∈ L2(Λ)
}
, ‖v‖2HδRL(Λ) := ‖v‖2

Jδ−1
p (Λ)

+ ‖Dδpv‖2L2(Λ).

(3.3)
Obviously, the fractional derivative space Hδ

RL(Λ) is a complete space. We then define

the space Hδ,0
RL(Λ), 0 < δ < 1 as follows:

Hδ,0
RL(Λ) :=

{
v : v ∈ Hδ

RL(Λ), I1−δ
p v(±1) = 0

}
.

3.2. Weak problems and their well-posedness. In this subsection, we give
the weak formulations of the fractional Dirichlet boundary problem (1.1)-(1.3) and the
fractional Neumann boundary problem (1.1)-(1.4), and prove their well-posedness.
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3.2.1. Fractional Dirichlet boundary problem. For the sake of simplicity,
for the Dirichlet boundary problem, we only discuss the homogeneous BCs, i.e.,

I2−α
p u(−1) = 0, I2−α

p u(1) = 0. (3.4)

Actually, the non-homogeneous problem can be transferred into a homogeneous prob-
lem by using the lifting technique. The weak formulation of problem (1.1)-(3.4)
is obtained by multiplying the fractional integral of the test function v(x) where
v(x) ∈ Hα−1,0

RL (Λ), i.e., I2−α
p v(x), on both sides of equation (1.1) and integrating over

Λ. Then, the weak formulation of (1.1)-(3.4) is to find u(x) ∈ Hα−1,0
RL (Λ), such that

A(u, v) = F(v) ∀v(x) ∈ Hα−1,0
RL (Λ), (3.5)

where the bilinear form A(·, ·) and the linear functional F(v) are, respectively, given
by

A(u, v) := c(u, I2−α
p v) + (Dα−1

p u,Dα−1
p v), (3.6)

F(v) := 〈f, I2−α
p v〉. (3.7)

Lemma 2. The bilinear form A(·, ·) is continuous and coercive in Hα−1
RL (Λ) ×

Hα−1
RL (Λ) , i.e.,

|A(u, v)| . ‖u‖Hα−1
RL (Λ)‖v‖Hα−1

RL (Λ); A(u, u) & ‖u‖2
Hα−1
RL (Λ)

∀u, v ∈ Hα−1
RL (Λ). (3.8)

Proof. By the Cauchy-Schwarz inequality, we have

|A(u, v)| ≤ c‖u‖L2(Λ)‖v‖Jα−2
p (Λ) + ‖Dα−1

p u‖L2(Λ)‖Dα−1
p v‖L2(Λ) (3.9)

Moreover, by letting q = 2 in Lemma 8, we deduce

‖u‖2
Jα−2
p (Λ)

≤ C1‖u‖2Jα−2
l (Λ)

+ C2‖u‖2Jα−2
r (Λ)

≤ C‖u‖2L2(Λ).

This means that L2(Λ) ⊂ Jα−2
l (Λ), L2(Λ) ⊂ Jα−2

r (Λ) and L2(Λ) ⊂ Jα−2
p (Λ). On the

other hand, Hα−1(Λ) ⊂ L2(Λ) where

Hα−1(Λ) :=
{
w : ‖w‖L2(Λ) + ‖Dα−1

p w‖L2(Λ) <∞
}
.

Then, by the interpolation theorem, ∀ η > 0, there exists a constant Cη such that

‖u‖L2(Λ) ≤ η‖u‖Hα−1(Λ) + Cη‖u‖Jα−2
p (Λ).

Letting η = 1/2, we arrive at

‖u‖L2(Λ) ≤ 1/2(‖u‖L2(Λ) + ‖Dα−1
p u‖L2(Λ)) + C1/2‖u‖Jα−2

p (Λ),

which yields

‖u‖L2(Λ) ≤ C‖u‖Hα−1
RL (Λ).

Thus, we obtain from the above estimate and (3.9) that the bilinear form A(·, ·) is
continuous in Hα−1

RL (Λ)×Hα−1
RL (Λ), i.e., the estimate (3.8) holds true.
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If c > 0, the coercivity can be readily derived by the fractional integration by
parts (2.3) and letting s = 1 − α/2, t = 2 − α in the estimate (A.5). For the case
of c ≡ 0, the coercivity can be obtained by applying the Poincaré inequality to the
function I2−α

p u(x), namely,

‖u‖Jα−2
p (Λ) ≤ C‖D

α−1
p u‖L2(Λ) ∀u ∈ Hα−1,0

RL (Λ).

�

For the linear functional F(v) given by (3.7), we have for f ∈ H−1(Λ),

F(v) = 〈f, I2−α
p v〉 ≤ ‖f‖H−1(Λ)‖v‖Hα−1

RL (Λ).

We then have the following result:
Lemma 3. Let f ∈ H−1(Λ). The linear functional F(v) given by (3.7) is contin-

uous on Hα−1
RL (Λ).

Using Lemma 2, 3 and the Lax-Milgram theorem, we have the well-posedness of
the weak problem (3.5), namely, we have the the following result:

Theorem 3. For f ∈ H−1(Λ), the weak problem (3.5) admits a unique solution
u(x) ∈ Hα−1,0

RL (Λ) satisfying

‖u‖Hα−1
RL (Λ) . ‖f‖H−1(Λ). (3.10)

The estimate (3.10) follows from

‖u‖2
Hα−1
RL (Λ)

. A(u, u) = 〈f, I2−α
p u〉 ≤ ‖f‖H−1(Λ)‖u‖Hα−1

RL (Λ).

3.2.2. Fractional Neumann boundary problem. We now consider the frac-
tional Neumann boundary problem (1.1)-(1.4). In this case, we assume that c is
positive away from 0. For the case of c ≡ 0, we can add the condition of mass
conservation, but we will not discuss this case here. The weak formulation of prob-
lem (1.1) and (1.4) is obtained in the same way as that for the fractional Dirichlet
boundary problem. Then, we obtain the weak formulation of (1.1) and (1.4): find
u(x) ∈ Hα−1

RL (Λ), such that

A(u, v) = F(v) ∀v(x) ∈ Hα−1
RL (Λ), (3.11)

where the bilinear form A(u, v) is, again, given by (3.6) and the linear functional F(v)
in this case is given by

F(v) := 〈f, I2−α
p v〉+ g2 I2−α

p v(1)− g1 I2−α
p v(−1). (3.12)

The continuity and coercivity of the bilinear form A(·, ·) are given in Lemma 2.
Next we prove the continuity of the linear functional F(v) for the fractional Neumann
boundary problem.

Lemma 4. Let f ∈ H−1(Λ). The linear functional F(v) given by (3.12) is
continuous on Hα−1

RL (Λ).

Proof. We can estimate F(v) in the following way:

F(v) = 〈f, I2−α
p v〉+ g2 I2−α

p v(1)− g1 I2−α
p v(−1)

≤ ‖f‖H−1(Λ)‖v‖Hα−1
RL (Λ) + |g2| · |I2−α

p v(1)|+ |g1| · |I2−α
p v(−1)|

≤
(
‖f‖H−1(Λ) + C(|g1|+ |g2|)

)
‖v‖Hα−1

RL (Λ).
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Hence, the linear functional F(v) is continuous on Hα−1
RL (Λ). �

Again, by using the Lax-Milgram lemma, we can establish the well-posedness of
the weak problem (3.11), namely, we arrive at the following Theorem:

Theorem 4. For f ∈ H−1(Λ), the weak problem (3.11) admits a unique solution
u(x) ∈ Hα−1

RL (Λ) satisfying

‖u‖Hα−1
RL (Λ) . ‖f‖H−1(Λ) + C(|g1|+ |g2|),

where C is a constant.

4. Spectral penalty method (SPM). We now consider the spectral approx-
imation to the solution of the fractional problem (1.1). One possibility is to extend
the method of [23] and formulate a PGS-τ as presented in Appendix B to solve the
general non-homogeneous fractional boundary problem. However, as we will see, the
accuracy of PGS-τ is not as high due to the limited regularity of the solution of frac-
tional problems with general non-homogeneous boundaries. Thus, we formulate SPM
to discretize the fractional problem (1.1) with general BCs (1.3)-(1.6).

4.1. SPM for conservative two-sided R-L FDEs. We first introduce SPM
for the two-sided conservative R-L FDE (1.1) with the FDBCs (1.3) or the FNBCs
(1.4). In this case, we shall use the poly-fractonomials, i.e., J−µ,−νk , k = 0, 1, . . .,
introduced in Section 2 to approximate the solutions. To this end, we introduce some
notations. Let ω > 0 be a generic weight function and PN be the space of polynomials
of degree at most N . In addition, let µ, ν be two real number satisfying the condition
(2.7). We define the finite-dimensional space:

F−µ,−νN := {φ = (1− x)µ(1 + x)νϕ : ϕ ∈ PN} = span
{
J−µ,−νn : 0 ≤ n ≤ N

}
.

4.1.1. Numerical implementation of SPM. By multiplying I2−α
p v on both

sides of (1.1) and introducing the penalty parameters ρ± and the penalty functions
Q±N (x), we have the spectral penalty scheme, more general in a weighted sense, for

(1.1)-(1.3) or (1.1)-(1.4): find uN ∈ F−µ,−νN such that

AR−LP (uN , v, ρ±, Q
±
N )

=〈f, I2−α
p v〉ω + ρ−g1(Q−N , I

2−α
p v)ω + ρ+g2(Q+

N , I
2−α
p v)ω ∀v ∈ F−µ,−νN ,

(4.1)

where the bilinear form AR−LP (·, ·, ·, ·) is given by

AR−LP (u, v, ρ±, Q
±
N ) := −(Dαp u, I2−α

p v)ω + c(u, I2−α
p v)ω

+ρ− B−u(−1) (Q−N , I
2−α
p v)ω + ρ+ B+u(1) (Q+

N , I
2−α
p v)ω

and B±u(±1) = I2−α
p u(±1) for FDBCs (1.3) while B±u(±1) = Dα−1

p u(±1) for FNBCs

(1.4). Q±N and ρ± are to be determined.

By taking uN (x) =
∑N
k=0 ũkJ

−µ,−ν
k (x), letting the test functions be J−µ,−νi (x),

0 ≤ i ≤ N , and denoting ϕi(x) = I2−α
p J−µ,−νi (x), we obtain the linear system

(−S + cM +B)U = F̂ + F̃ , (4.2)
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where U = (ũ0, ũ1, · · · , ũN )T and

S = (sik)Ni,k=0, sik = (Dαp J
−µ,−ν
k , ϕi)ω; M = (mik)Ni,k=0, mik = (J−µ,−νk , ϕi)ω;

B = (b+ik + b−ik)Ni,k=0, b
±
ik = ρ±(B±J−µ,−νk )(±1)(Q±N , ϕi)ω;

F̂ = (f̂0, · · · , f̂N )T , f̂i = 〈f, ϕi〉ω;

F̃ = (f̃0, · · · , f̃N )T , f̃i = ρ+g2(Q+
N , ϕi)ω + ρ−g1(Q−N , ϕi)ω.

We point out that the value of Dαp J
−µ,−ν
k and I2−α

p J−µ,−νk can be directly obtained by
the spectral relationship (2.11) and (2.12), and then all the integrals can be calculated
using the Gauss quadrature.

4.1.2. A sufficient condition for the coercivity of (4.1). Once we have SPM
(4.1), then we pose the question on how to choose the parameters ρ± and functions
Q±N . The crucial idea for choosing ρ± and Q±N is to obtain the coercivity of SPM
(4.1). We now give a sufficient condition for the coercivity of SPM (4.1).

We first consider the case of FDBCs (1.3). In this case, B−uN (−1) = I2−α
p uN (−1),

B+uN (1) = I2−α
p uN (1), and we give the sufficient condition for the coercivity with

c = 0.
Theorem 5. Let c = 0, uN be the solution of the penalty scheme (4.1) and

ω(x) = ωα̃,β̃(x) (−1 < α̃, β̃ < 1) be the Jacobi type weight function. Then

AR−LP (uN , uN , ρ±, Q
±
N ) & |WN |21,ω (4.3)

provided

ρ−Q
−
N (x) = D2P−N (x), ρ+Q

+
N (x) = D2P+

N (x), (4.4)

where

P−N (x) =
(1− x)P α̃+1,β̃

N+1 (x)

2P α̃+1,β̃
N+1 (−1)

, P+
N (x) =

(1 + x)P α̃,β̃+1
N+1 (x)

2P α̃,β̃+1
N+1 (1)

(4.5)

and WN (x) = I2−α
p uN (x)− I2−α

p uN (−1) · P−N (x)− I2−α
p uN (1) · P+

N (x).

Proof. By the definition of WN , we have

− (Dαp uN , I2−α
p uN )ω

=− (D2WN ,WN )ω − I2−α
p uN (−1)(D2WN , P

−
N )ω − I2−α

p uN (1)(D2WN , P
+
N )ω

− I2−α
p uN (−1)(D2P−N , I

2−α
p uN )ω − I2−α

p uN (1)(D2P+
N , I

2−α
p uN )ω.

For the polynomial P−N given by (4.5), it can be written as [35, Theorem 3.19]

P−N =
1

P α̃+1,β̃
N+1 (−1)

1

2N + 4 + α̃+ β̃

(
(N + 2 + α̃)P α̃,β̃N+1 − (N + 2)P α̃,β̃N+2

)
. (4.6)

Using the orthogonality and the fact that D2WN ∈ PN , we deduce (D2WN , P
−
N )ω = 0.

We can also obtain (D2WN , P
+
N )ω = 0 by using the same argument. Therefore, by the

above two equations we can deduce that, by providing the condition (4.4), we have

AR−LP (uN , uN , ρ±, Q
±
N ) = −(D2WN ,WN )ω.
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Note that, P+
N (−1) = P−N (1) = 0 and P+

N (1) = P−N (−1) = 1 gives WN (±1) = 0, then
the estimate (4.3) holds true by using the above equation and Lemma 3.5 in [35]. �

Remark 1. Note that for the condition (4.4), the penalty parameter ρ+ (resp.
ρ−) and the function Q+

N (resp. Q−N ) are associated with each other. Thus, to estimate
the penalty parameters and functions, we shall estimate the combinations, namely
ρ±Q

±
N . By (4.6) and the equation (3.101) in [35], we deduce that

D2P−N =
1

(2N + 4 + α̃+ β̃)P α̃+1,β̃
N+1 (−1)

×(
(N + 2 + α̃)dα̃,β̃N+1,2P

α̃+2,β̃+2
N−2 − (N + 2)dα̃,β̃N+2,2P

α̃+2,β̃+2
N

)
.

According to the following estimate

Γ(n+ ã)

Γ(n+ b̃)
∼ nã−b̃, ã, b̃ ∈ R, n ∈ N, n+ ã > 1, and n+ b̃ > 1, (4.7)

we have |P α̃+1,β̃
N+1 (−1)| ∼ N β̃ , dα̃,β̃N+1,2 ∼ N2, dα̃,β̃N+2,2 ∼ N2, moreover, following the

Theorem 3.24 in [35], we have max
x∈Λ
|P α̃+2,β̃+2
N−2 or N (x)| ∼ Nq where q = max(α̃, β̃) + 2.

Thus, we arrive at ρ−Q
−
N = D2P−N = O(N2+q−β̃). Similarly, we can obtain ρ+Q

+
N =

D2P+
N = O(N2+q−α̃). Observe that the condition (4.4) requires that the equality holds,

however, the numerical results (see the right plot of Figure 5.3 in Section 5) show that
the coercivity can be fulfilled by fixing Q±N = O(1) and letting

ρ− ≥ O(N2+q−β̃), ρ+ ≥ O(N2+q−α̃).

In practice, we set Q−N = D2P−N /N
2+q−β̃ , Q+

N = D2P+
N /N

2+q−α̃ and tune the pa-
rameters ρ±.

Now let us consider the case of FNBCs (1.4). In this case, B−uN (−1) = Dα−1
p

uN (−1), B+uN (1) = Dα−1
p uN (1).

Theorem 6. Let uN be the solution of (1.1) and (1.4) and set ω(x) ≡ 1. If

ρ+Q
+
N =

N∑
k=0

1

γν,µk
J−ν,−µk (x)P ν,µk (1), ρ−Q

−
N = −

N∑
k=0

1

γν,µk
J−ν,−µk (x)P ν,µk (−1), (4.8)

where µ, ν satisfying (2.7), then

AR−LP (uN , uN , ρ±, Q
±
N ) ≥ ‖uN‖2Hα−1

RL (Λ)
, (4.9)

where the space Hα−1
RL (Λ) is given in (3.3).

Proof. Since ω(x) ≡ 1, then using the integration by parts, we obtain

AR−LP (uN , uN , ρ±, Q
±
N ) =c(uN , I2−α

p uN ) + (Dα−1
p uN ,Dα−1

p uN )

+Dα−1
p uN (−1)(ρ−(Q−N , I

2−α
p uN ) + I2−α

p uN (−1))

+Dα−1
p uN (1)(ρ+(Q+

N , I
2−α
p uN )− I2−α

p uN (1)).

The condition (4.8) yields ρ±(Q±N , I2−α
p uN )±I2−α

p uN (±1) = 0. Moreover, using the
coercivity of the continuous problem, i.e., estimate (3.8), we obtain the estimate (4.9).
�

12



Remark 2. Same as in the case of FDBC, for the condition (4.4), the penalty
parameter ρ+ (resp. ρ−) and the function Q+

N (resp. Q−N ) are also associated with
each other. To obtain the estimate of ρ±Q

±
N , we proceed as follows:

ρ−Q
−
N =

N∑
k=0

−1

γν,µk
J−ν,−µk (x)P ν,µk (−1) = −ων,µ(x)h̃ν,µN P ν,µ+1

N (x),

ρ+Q
+
N =

N∑
k=0

1

γν,µk
J−ν,−µk (x)P ν,µk (1) = ων,µ(x)hν,µN P ν+1,µ

N (x),

where

h̃ν,µN =
(−1)N2−ν−µ−1Γ(N + ν + µ+ 2)

Γ(µ+ 1)Γ(ν + 1 +N)
, hν,µN =

2−ν−µ−1Γ(N + ν + µ+ 2)

Γ(ν + 1)Γ(µ+ 1 +N)
.

Using (4.7), we can get hν,µN = O(Nν+1) and h̃ν,µN = O(Nµ+1). Again, following the

Theorem 3.24 in [35], we have max
x∈Λ
|P ν+1,µ
N (x)| ∼ Nν+1 and max

x∈Λ
|P ν,µ+1
N | ∼ Nµ+1.

So

ρ−Q
−
N = ων,µ(x) ·O(N2µ+2), ρ+Q

+
N = ων,µ(x) ·O(N2ν+2).

Similarly, we fix Q±N = ων,µ(x) · O(1) and let ρ− ≥ O(N2µ+2), ρ+ ≥ O(N2ν+2) to
obtain the coercivity (see the right plot of Figure 5.5 in Section 5). In practice, we set

Q−N (x) = −1
N2µ+2

∑N
k=0

1
γν,µk

J−ν,−µk (x)P ν,µk (−1),

Q+
N =

1

N2ν+2

N∑
k=0

1

γν,µk
J−ν,−µk (x)P ν,µk (1)

and tune the parameters ρ±.

4.2. SPM for the conservative two-sided Caputo FDEs. In this subsec-
tion, we consider the two-sided Caputo FDEs with the Dirichlet BCs (1.5) or the
Caputo FNBCs (1.6). Unlike the case of R-L FDEs that looks for the solution in a
poly-fractonomial space, in this case, we seek the solution in the polynomial space.
The reason for this is that unlike the R-L FDEs where we use non-local Dirichlet BCs
that require a poly-fractonomial basis so that they are bounded, for the Caputo FDEs
we use local Dirichlet BCs and hence no special treatment is needed.

4.2.1. Numerical implementation of SPM. The spectral penalty scheme for
(1.1)-(1.5) or (1.1)-(1.6) is to find uN ∈ PN , such that

ACP (uN , v, ρ±, Q
±
N ) = 〈f, v〉ω + g1ρ−(Q−N , v)ω + g2ρ+(Q+

N , v)ω ∀ v ∈ PN , (4.10)

where the bilinear form ACP (·, ·, ·, ·) is given by

ACP (u, v, ρ±, Q
±
N )

:=− (D CDα−1
p u, v)ω + c(u, v)ω + ρ− B−u(−1) (Q−N , v)ω + ρ+ B+u(1) (Q+

N , v)ω,

B±u(±1) = u(±1) for the Dirichlet BCs (1.5) while B±u(±1) = CDα−1
p u(±1) for the

Caputo fractional BCs (1.6). Again, Q±N and ρ± are penalty functions and parameters
to be determined.
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Taking uN (x) =
∑N
k=0 ũkLk(x) where Lk(x) = P 0,0

k (x), k ≥ 0 are the Legendre
polynomials, and letting the test functions be Li(x), 0 ≤ i ≤ N , gives the linear
system

(−S + cM+ B)U = F̂ + F̃ , (4.11)

where U = (ũ0, ũ1, · · · , ũN )T and

S = (sik)Ni,k=0, sik = (D CDαpLk, Li)ω; M = (mik)Ni,k=0, mik = (Lk, Li)ω;

B = (b+ik + b−ik)Ni,k=0, b
±
ik = ρ±(B±Lk)(±1)(Q±N , Li)ω;

F̂ = (f̂0, · · · , f̂N )T , f̂i = 〈f, Li〉ω;

F̃ = (f̃0, · · · , f̃N )T , f̃i = ρ+g2(Q+
N , Li)ω + ρ−g1(Q−N , Li)ω.

Next, we briefly show how to compute the stiffness matrix S. We begin by
presenting the following result:

Lemma 5. [24] For 1 < α < 2, we have

−1D
α−1
x Ln(x) = rnα(1 + x)1−αP (α−1,1−α)

n (x),

xD
α−1
1 Ln(x) = rnα(1− x)1−αP (1−α,α−1)

n (x)
(4.12)

and

−1I
2−α
x Ln(x) = znα(1 + x)2−αP (α−2,2−α)

n (x),

xI
2−α
1 Ln(x) = znα(1− x)2−αP (2−α,α−2)

n (x),
(4.13)

where rnα = Γ(n+1)
Γ(n+2−α) and znα = Γ(n+1)

Γ(n+3−α) .

To compute sik, i, k = 0, . . . , N , we need to compute both (D C
−1D

α−1
x Lk, Li)ω

and (D C
xD

α−1
1 Lk, Li)ω. By using the definitions of the Caputo and R-L fractional

derivatives, equations (4.12) and [35, (3.176b)], we compute D C
−1D

α−1
x Lk as follows:

D C
−1D

α−1
x Lk(x) = −1D

α−1
x L′k(x) = −1D

α−1
x

k−1∑
n=0,n+k odd

(2n+ 1)Ln(x)

= (1 + x)1−α
k−1∑

n=0,n+k odd

(2n+ 1)rn,αP
(α−1,1−α)
n (x).

Then the inner product (D C
−1D

α−1
x Lk, Li)ω can be computed by using Gauss quadra-

ture with prescribed weight function ω(x). The same procedure can be applied for
(D C

xD
α−1
1 Lk, Li)ω, and then we can obtain the element sik. Furthermore, this pro-

cedure can also be used to compute the boundary matrix B for the Caputo FNBCs.

4.2.2. A sufficient condition for the coercivity of (4.10) with Caputo
FNBCs. For the coercivity of the spectral penalty scheme (4.10) with Dirichlet BCs
(1.4), we cannot provide a rigorous analysis due to technical difficulties. Next, we
only show the analysis of coercivity in the case of Caputo FNBCs.

Theorem 7. Let ω(x) ≡ 1 and uN be the solution of (4.10) with Caputo FNBCs.
If

ρ−Q
−
N (x) = −

N∑
k=0

1

γ0,0
k

Lk(x)Lk(−1), ρ+Q
+
N (x) =

N∑
k=0

1

γ0,0
k

Lk(x)Lk(1), (4.14)
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then

ACP (uN , uN , ρ±, Q
±
N ) ≥ ‖u′N‖2Jα/2−1(Λ). (4.15)

Proof. Since ω(x) ≡ 1, then using the integration by parts, we obtain

ACP (uN , uN , ρ±, Q
±
N ) =c(uN , uN ) + (I2−α

p DuN , DuN )

+ CDα−1
p uN (−1)(ρ−(Q−N , uN ) + uN (−1))

+ CDα−1
p uN (1)(ρ+(Q+

N , uN )− uN (1)).

Using the condition (4.14) gives ρ±(Q±N , uN ) ± uN (±1) = 0. We then obtain the
estimate (4.15) from the estimate (A.1) and (2.3). �

Remark 3. Again, using the same argument, we can obtain

ρ−Q
+
N = O(N2), ρ+Q

−
N = O(N2).

Furthermore, we fix Q±N = O(1) and let ρ− ≥ O(N2), ρ+ ≥ O(N2) to obtain the
coercivity (see the right plot Figure 5.9 in Section 5). In practice, we set Q±N (x) =

± 1
N2

∑N
k=0

1
γ0,0
k

Lk(x)Lk(±1) and tune the parameters ρ±.

Remark 4. Although we are unable to give a rigorous analysis for the case of
classical Dirichlet BCs, we can provide an intuitive approach on how to choose the
penalty parameters and associated functions. Specifically, let ω(x) ≡ 1 and

Q±N (x) =
1

N2

N∑
k=0

1

γ0,0
k

Lk(x)Lk(±1), (4.16)

we have Q±N (x) = O(1) and (Q±N , uN ) = uN (±1)/N2. Thus,

ACP (uN , uN , ρ±, Q
±
N )

=c(uN , uN )− (DI2−α
p DuN , uN ) + uN (−1)ρ−(Q−N , uN ) + uN (1)ρ+(Q+

N , uN )

=c(uN , uN )− (DI2−α
p DuN , uN ) + ρ−u

2
N (−1)/N2 + ρ+u

2
N (1)/N2.

To ensure coercivity, we can provide sufficient large values of ρ± such that

ACP (uN , uN , ρ±, Q
±
N ) ≥ C > 0.

The numerical results show that

ρ+ = ρ− = O(N3)

is a good choice, see the results for Example 3.

5. Numerical examples. We now show several numerical examples to illustrate
the accuracy and coercivity conditions of the proposed SPM, and we will compare the
results against results obtained from PGS-τ .
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5.1. Numerical tests for the conservative R-L FDEs. Example 1. We
begin by considering the conservative R-L FDEs with FDBCs, i.e., (1.1)-(1.3). In
particular, we consider the following two cases:

• Case I: Smooth solution u(x) = (1− x2)2;
• Case II: Smooth right hand function (RHF) f(x) = 1 + cos(πx).

For Case I, the boundary conditions can be computed directly by the exact solution
while for Case II, the boundary conditions are I2−α

p u(−1) = 2, I2−α
p u(1) = 1.

We first test the accuracy to illustrate the effectiveness of SPM (4.1). Set p = 0.8

and α̃ = α
2 , β̃ = α

2 . According to Remark 1, we take ρ− = N2+q−β̃ , ρ+ = N2+q−α̃

with q = max(α̃, β̃) + 2, and Q−N (x) = D2P−N (x)/N2+q−β̃ , Q+
N = D2P+

N (x)/N2+q−α̃,
where P±N (x) are given in (4.5). We compute the L∞ error using 1000 uniformly
distributed points. For comparison, we also compute the L∞ error using PGS-τ
presented in Appendix B. The convergence results of the L∞ error with different
values of fractional order α = 1.2, 1.8 and c = 0, 1 for Case I and Case II are shown in
Figure 5.1 and 5.2, respectively. Here, all the parameters for the PGS-τ are the same
as the ones for SPM except the penalty parameters. For Case II, i.e., for the case
of smooth RHF, since we do not have the analytic solution, we obtain the numerical
solution using SPM with N = 512 as the reference solution; the same approach is
also used for all the tests below, which require a reference solution but do not have
an explicit one. Observe from both Figures that the accuracy with SPM is higher
than that with PGS-τ for all cases. For Case I, algebraic convergence is obtained; see
Figure 5.1 (left) for c = 0. For case II, Figure 5.2 shows that spectral convergence is
obtained for c = 0 while algebraic convergence is obtained for c = 1. This means that
for c = 0, the convergence of SPM depends only on the regularity of the RHF. We
also show how the penalty parameters ρ± affect the accuracy of SPM. The right plot
of Figure 5.1 shows the L∞-error against the penalty parameters ρ+ with different
values of fractional order α = 1.2, 1.8 for c = 0; similar results are obtained for
c = 1 not shown here. We observe that we obtain the best accuracy when the penalty
parameters are chosen to satisfy the condition (4.4), even for the subcase of c = 1
(not shown here) that is not covered by our theory.

In order to verify the sufficient condition (4.4) for the coercivity, we calculate the
minimum value of the real part of all eigenvalues, denoted by Re(eig)min, for different
values of fractional order with N = 100 and p = 0.8, 0.5, which are shown in Figure
5.3. The left plot shows the results for different values of fractional order while the
right plot shows the results against the penalty parameter ρ+, both for c = 0. Observe
that the values of Re(eig)min for α ∈ (1, 2) are positive, which means that SPM (4.1)
with FDBCs is coercive provided that the condition (4.4) holds; this agrees with our
analysis. For c = 1, similar results are obtained (not shown here) although this case
is not covered by our theory. Overall, we observe positivity of values of Re(eig)min,
for c = 0, 1 provided that

ρ− ≥ N2+q−β̃ , ρ+ ≥ N2+q−α̃

as discussed in Remark 1.
Example 2. We now consider the conservative R-L FDEs with FNBCs, i.e.,

(1.1)-(1.4). We consider the following two cases as in the previous Example:
• Case I: Smooth solution u(x) = (1− x2)2;
• Case II: Smooth RHF f(x) = 1 + cos(πx).

For Case I, the boundary conditions can be computed directly by the exact solution
while for Case II, the boundary conditions are Dα−1

p u(−1) = 2, Dα−1
p u(1) = 1.
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Fig. 5.1. Case I of Example 1: Convergence of L∞-error for SPM and PGS-τ versus polynomial

order N (left) and versus penalty parameter ρ+ (right) for different values of fractional order α =

1.2, 1.8. The black circles (right) correspond to the penalty parameters satisfying the coercivity sufficient

condition (4.4).
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Fig. 5.3. Example 1: The minimum values of the real part of eigenvalues versus fractional order

(left) and penalty parameter ρ+ (right). The black circles (right) correspond to the penalty parameters

satisfying the coercivity sufficient condition (4.4).

In this example, we fix c = 1. For c = 0, we require an additional condition of
mass conservation, but we will not discuss this here. By Remark 2, we set Q−N (x) =
−1

N2µ+2

∑N
k=0

1
γν,µk

J−ν,−µk (x)P ν,µk (−1), Q+
N = 1

N2ν+2

∑N
k=0

1
γν,µk

J−ν,−µk (x)P ν,µk (1) with

µ, ν satisfying condition (2.7). The convergence results of the L∞-error for SPM
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Fig. 5.4. Example 2: Convergence of L∞-error for SPM and PGS-τ with different values of

fractional order α = 1.2, 1.8. Upper left: versus N for smooth solution u(x) = (1 − x2)2, upper right:

versus N for smooth RHF f(x) = 1+cos(πx), lower: versus the penalty parameter ρ+. The black circles

(down) correspond to the penalty parameters satisfying the coercivity sufficient condition (4.8).

and PGS-τ with different values of fractional order α = 1.2, 1.8 with p = 0.8, ρ− =
N2µ+2, ρ+ = N2ν+2 are shown for Case I and II in the upper left and right plots of
Figure 5.4, respectively. Again, in both cases, we obtain higher accuracy with SPM
than with PGS-τ . We also show L∞-error for different fractional orders α = 1.2, 1.8
by tuning the penalty parameters ρ+ in the lower plot of Figure 5.4. We observe
again that the best accuracy is obtained when we choose ρ− = N2µ+2, ρ+ = N2ν+2

for which the sufficient condition (4.8) of coercivity is satisfied. To verify the coercivity
condition (4.8) of SPM (4.1) with R-L FNBCs, we show the values of Re(eig)min for
α ∈ (1, 2) with p = 0.8, 0.5 in the left plot of Figure 5.5. We can see that all values
of Re(eig)min are positive. This verifies the coercivity condition (4.8). Moreover,
we can see from the right plot of Figure 5.5 that coercivity can be maintained if
ρ− ≥ N2µ+2, ρ+ ≥ N2ν+2.

5.2. Numerical tests for the conservative Caputo FDEs. Example 3.
We now turn to the Caputo fractional FDEs. Consider the conservative Caputo FDEs
with classical Dirichlet BCs, i.e., (1.1)-(1.5), with the following two cases:

• Case I: Smooth solution u(x) = cos(πx);
• Case II: Smooth RHF f(x) = 1 + cos(πx).

For Case I, the boundary conditions can be computed directly by the exact solution
while for Case II, the boundary conditions are u(−1) = 1, u(1) = 2.

By the virtue of the discussion of Remark 4, we take the penalty functions given
by (4.16), i.e., Q±N (x) = 1

N2

∑N
k=0

1
γ0,0
k

Lk(x)Lk(±1). We now test the accuracy by

choosing the parameters to be ρ+ = ρ− = N3. Figure 5.6 shows the convergence
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Fig. 5.5. Example 2: The minimum values of the real part of eigenvalues versus fractional order

(left) and penalty parameter ρ+ (right). The black circles (right) correspond to the penalty parameters

satisfying the coercivity sufficient condition (4.8).

results for the Case I (upper left) and Case II (upper right) with p = 0.8, c = 0 and
different values of fractional order α = 1.2, 1.8. Observe that we can obtain spectral
accuracy for the smooth solution, which is expected since we use the polynomial
approximation, while algebraic convergence is obtained for the case of smooth RHF.
However, for the case of smooth RHF, we again observe that the accuracy with SPM
is much higher than that with PGS-τ . Next, we present the L∞-error with respect
to the values of the penalty parameters ρ±. For the sake of simplicity, we let ρ− =
ρ+ = ρ. By tuning the parameters ρ±, we plot the L∞-error against values of the
penalty parameter ρ = ρ± for different fractional orders (the lower plot of Figure
5.6). We observe that using the estimate ρ± = N3 is enough to obtain high accuracy.
Furthermore, from the left plot of Figure 5.7, which shows the value of Re(eig)min
with p = 0.8, 0.5 for α ∈ (1, 2), and the right plot of Figure 5.7, which shows the values
of Re(eig)min against ρ = ρ±with p = 0.8, we can see that coercivity is satisfied by
choosing ρ± ≥ N3. Similar observations can be obtained for c = 1, which is not
shown here.

Example 4. We now consider the Caputo conservative FDEs with Caputo FN-
BCs, i.e., (1.1)-(1.6) with the following two cases:

• Case I: Smooth solution u(x) = x3 + 1;
• Case II: Smooth RHF f(x) = 1 + cos(πx).

For Case I, the boundary conditions can be computed directly by the exact solution
while for Case II, the boundary conditions are CDα−1

p u(−1) = 1, CDα−1
p u(1) = 2.

Let c = 1, p = 0.8, in view of Theorem 7 and Remark 3, we set ρ± = N2,

Q±N = ± 1
N2

∑N
k=0

1
γ0,0
k

Lk(x)Lk(±1) in this example. The convergence results of the

L∞-error for SPM and PGS-τ with different values of fractional order α = 1.2, 1.8
for Case I (upper left) and Case II (upper right) are shown in Figure 5.8. We observe
that, same as in the previous example, we obtain spectral accuracy for the Case I
and algebraic convergence for the Case II. Also, we obtain higher accuracy with SPM
than with PGS-τ in both cases. We also present the L∞-error for different fractional
orders by tuning the penalty parameters ρ = ρ± in the lower plot of Figure 5.8. From
which we observe that the best accuracy is obtained when we choose ρ± = ρ = N2

satisfying the sufficient condition (4.14) for the coercivity. Figure 5.9 shows the value
of Re(eig)min against α with p = 0.8, 0.5 (left) and against ρ = ρ± with p = 0.8
(right). The results verify the sufficient condition (4.14) for the coercivity of SPM
(4.10) with Caputo FNBCs; coercivity can be maintained if ρ± ≥ N2.
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Fig. 5.6. Example 3: Convergence of L∞-error for SPM and PGS-τ with different values of

fractional order α = 1.2, 1.8. Upper left: versus N for smooth solution u(x) = cos(πx), upper right:

versus N for smooth RHF f(x) = 1 + cos(πx), lower: versus the penalty parameter ρ = ρ±. The black

circles (down) correspond to ρ = ρ± = N3.
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Fig. 5.7. Example 3: The minimum values of the real part of eigenvalues versus fractional order

(left) and penalty parameter ρ = ρ± (right). The black circles (right) correspond to ρ = ρ± = N3.

6. Application to the time dependent problem. We finally solve a time
dependent two-sided fractional diffusion equation considered in [18] with reflecting
(no-flux) BCs, i.e., homogeneous R-L/Caputo FNBCs, by using SPM.

Example 5. Consider equation (1.2) with homogeneous FNBCs, i.e., Dα−1
x u(x, t)

= 0, and a tent function

u0(x) =

{
5− 25|x|, |x| < 0.2,
0, otherwise

as the initial condition with mass M0 = 1, where M0 =
∫ 1

−1
u(x, t)dx.
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Fig. 5.8. Example 4: Convergence of L∞-error for SPM and PGS-τ with different values of

fractional order α = 1.2, 1.8. Upper left: versus N for smooth solution u(x) = x3 + 1, upper right:

versus N for smooth RHF f(x) = 1 + cos(πx), lower: versus the penalty parameter ρ = ρ±. The black

circles (down) correspond to the penalty parameters satisfying the coercivity sufficient condition (4.14).
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parameters satisfying the coercivity sufficient condition (4.14).

In the numerical simulations, we use SPM for space discretization and the first
order implicit Euler scheme for time discretization. Let δt = T/K be the time step,
then for n = 0, 1, . . . ,K − 1, the fully discrete scheme for (1.2) is to find un+1

N ∈ XN ,
such that(

un+1
N − unN

δt
, ϕ(vN )

)
−
(
d

dx
Dα−1
x un+1

N , ϕ(vN )

)
=− ρ−Dα−1

x un+1
N (−1)(Q−N , ϕ(vN ))− ρ+Dα−1

x un+1
N (1)(Q+

N , ϕ(vN )) vN ∈ XN ,
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Fig. 6.1. Example 5: Numerical solutions of fractional diffusion equation with α = 1.5 at different

times t = 0, 0.05, 0.1, 2, and the steady-state solution. Left: R-L problem (p = 0.75); right: Caputo

problem (p = 0.25).

where for the R-L case XN = F−µ,−νN , ϕ(vN ) = I2−α
p vN while for the Caputo case

XN = PN , ϕ(vN ) = vN .
For the R-L problem, the penalty functions are chosen to be the same as for

Example 2 and the penalty parameters are chosen to be ρ− = N2µ+2, ρ+ = N2ν+2.
For the Caputo problem, the penalty functions are chosen to be the same as for
Example 4 and the penalty parameters are chosen to be ρ± = N2. For α = 1.5,
the numerical solutions obtained by using N = 100 and time step δt = 0.0025 at
different times t = 0, 0.05, 0.1, 2 are shown in Figure 6.1. The left panel (p = 0.75)
is for the R-L problem while the right panel (p = 0.25) is for the Caputo problem.
The numerical results are consistent with the observation in [18], where the fractional
diffusion equation is solved by a finite difference method with space size N = 1000.
Here we show that in both cases the numerical solutions tend to the steady states.
Moreover, the steady state for diffusion with R-L flux exhibits boundary singularities.
In contrast, the steady state for diffusion with Caputo flux is a constant u∞ = 1/2.
Moreover, we found that the mass is conserved at all times.

7. Conclusion. We proposed in this paper a Galerkin spectral penalty method
(SPM) for the two-sided FDE with general BCs using poly-fractonomial or polynomial
approximation. Specifically, we used orthogonal poly-fractonomials, whose spectral
relationship with fractional operators has been documented in [43, 23], as basis func-
tions for the conservative R-L FDEs while used orthogonal polynomials as basis func-
tions for the conservative Caputo FDEs. We first established the well-posedness of the
weak problem of the conservative R-L problem with the fractional Dirichlet/Neumann
boundary conditions. Subsequently, we formulated SPM for the conservative R-L and
Caputo FDEs. We also analyzed sufficient conditions for the coercivity of different
types of fractional problems, and moreover provided estimates of the penalty param-
eters and the associated functions for all cases except for Caputo FDEs with local
Dirichlet boundary conditions. We showed by several numerical examples that SPM
can deliver superior accuracy compared with the Petrov-Galerkin spectral tau method,
and verified the theoretical estimates for the sufficient conditions for coercivity as well
as the estimates for the penalty parameters. For the aforementioned case not covered
by the theory, we conducted numerical experiments and proposed penalty parameters
that scale as N2 or N3, where N is the polynomial order. In general, as long as we
choose the value of the penalty parameter greater than the threshold suggested by
the theory, the accuracy of the approximation does not depend on the precise value
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of the penalty parameters for the Dirichlet type boundary conditions. In contrast,
the approximation error for the Neumann type boundary conditions depends strongly
on the specific value of the penalty parameter and increases sharply away from the
theoretical value, especially for Caputo FDEs. Finally, we solved the time dependent
fractional diffusion equation by using SPM and verified the conservation property,
hence confirming the accurate imposition of fractional Neumann boundary conditions
for this case.

Overall, we found that in the absence of reaction term in the FDEs, we can
obtain exponential decay of the numerical error for smooth right hand side in the case
of R-L FDEs, irrespectively of the boundary conditions although the solution in this
case is singular. In contrast, we found that we can obtain exponential decay of the
numerical error for smooth solutions of Caputo FDEs, irrespectively of the boundary
conditions. We note that in the latter case, exponential convergence can be obtained
even in the presence of reaction term. Here we considered one-dimensional FDEs,
but the penalty implementation can be also extended to multi-dimensions as well as
other discretizations (collocation, finite elements, etc.). However, large values of the
penalty parameter may adversely affect the condition number of the linear system
and hence the computational complexity for iterative solvers in large scale problems.
Also, the presence of a penalty term may destroy the sparsity of the stiffness matrix
obtained in [23] when using the poly-fractonomial approximation.

Appendix A. Technical results.
We collect a number of elementary technical results that were used to prove the

well-posedness of the weak problem (3.5) and (3.11).
Define the fractional integral space and norm: for σ ≥ 0

J−σ(Λ) :=
{
v : |ω|−σFc(v) ∈ L2(R)

}
, ‖v‖J−σ(Λ) := ‖|ω|−σFc(v)‖L2(R),

where Fc denotes the incomplete Fourier transform given by (cf. [21, Equation (18)])

Fc(v) :=
1

2π

∫
Λ

v(x)eiwxdx.

Denote ṽ(x), x ∈ R the zero extension of v(x), x ∈ [a, b], namely, ṽ(x) = v(x) if
x ∈ [a, b] and 0 otherwise. For σ ≥ 0, we have the following result.

Lemma 6. For σ ≥ 0, we have

(−1I
σ
x v, xI

σ
1 v) = cos(πσ)‖v‖2J−σ(Λ). (A.1)

Proof. Let ṽ(x) be the zero extension of v(x), then we have

(−1I
σ
x v, xI

σ
1 v) = (−∞I

σ
x ṽ, xI

σ
∞ṽ) = cos(πσ)‖|ω|−σF(ṽ)‖2L2(R)

= cos(πσ)‖|ω|−σFc(v)‖2L2(R),

where F(·) is the Fourier transform. The second equality of the above equation can
be found in [21, Lemma 2.3]. Thus, the equality (A.1) holds true. �

The following lemma shows that the space J−σ(Λ) is embedded into the spaces
J−σl (Λ) and J−σr (Λ):
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Lemma 7. For σ ≥ 0, the space J−σ(Λ) is embedded into the spaces J−σl (Λ) and
J−σr (Λ) satisfying

‖v‖J−σl (Λ) ≤ ‖v‖J−σ(Λ) and ‖v‖J−σr (Λ) ≤ ‖v‖J−σ(Λ). (A.2)

Proof. For the first estimate of (A.2), we have

‖v‖J−σl (Λ) = ‖−1I
σ
x v‖L2(Λ) ≤ ‖−∞Iσx ṽ‖L2(R) = ‖|ω|−σFc(v)‖L2(R),

where the last equality follows from [21, equation (25)]. Then we obtain the first
estimate of (A.2). Similarly, we can obtain the second estimate of (A.2). �

We show the following result of the boundedness of the fractional integral opera-
tors −1I

σ
x and xI

σ
1 for σ ≥ 0 (see [32, Theorem 2.6]):

Lemma 8. The fractional integral operators −1I
σ
x and xI

σ
1 with σ ≥ 0 are bounded

in Lq(Λ) (1 ≤ q ≤ ∞):

‖−1I
σ
x v‖Lq(Λ) ≤ K(σ)‖v‖Lq(Λ), and ‖xIσ1 v‖Lq(Λ) ≤ K(σ)‖v‖Lq(Λ), (A.3)

where K(σ) = 2σ

σ|Γ(σ)| .

For 0 ≤ s ≤ t, we have the following result:

Lemma 9. For 0 ≤ s ≤ t, it holds

‖v‖J−tl (Λ) ≤ C‖v‖J−sl (Λ), ‖v‖J−tr (Λ) ≤ C‖v‖J−sr (Λ). (A.4)

where C is a constant. Moreover, if s < 1/2, we have

(−1I
s
xv, xI

s
1v) ≥ C̃‖v‖2

J−tp (Λ)
, (A.5)

where C̃ is a constant.

Proof. We begin by showing the first estimate of (A.4). By virtue of (A.3) and (2.1),
we arrive at

‖v‖J−tl (Λ) = ‖−1I
t
xv‖L2(Λ) = ‖−1I

t−s
x −1I

s
xv‖L2(Λ) ≤ C‖−1I

s
xv‖L2(Λ) = C‖v‖J−sl (Λ).

Similarly, we can obtain the second estimate of (A.4).

We now turn to the estimate (A.5). By (3.1), (3.2), the definition of the two-sided
fractional integral and the estimates (A.2) and (A.4), we arrive at

‖v‖2
J−tp (Λ)

≤ 2
(
p2‖v‖2

J−tl (Λ)
+ (1− p)2‖v‖2

J−tr (Λ)

)
≤ C1‖v‖2J−sl (Λ)

+ C2‖v‖2J−sr (Λ)

≤ C‖v‖2J−s(Λ).

Then, the estimate (A.5) follows from the equality (A.1). �

Appendix B. Petrov-Galerkin spectral tau method (PGS-τ). For the
sake of completeness, we present in this appendix PGS-τ method.
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B.1. PGS-τ for the conservative R-L FDEs. We first establish PGS-τ for
the conservative R-L FDEs, i.e., (1.1)-(1.3) or (1.1)-(1.4). The PGS-τ for (1.1)-(1.3)
or (1.1)-(1.4) is to find uN ∈ F−µ,−νN such that

AR−LT (uN , v) = (f, I2−α
p v)ω ∀v ∈ F−µ,−νN−2 ; B−uN (−1) = g1, B+uN (1) = g2,

(B.1)
where the bilinear form AR−LT (·, ·) is given by

AR−LT (uN , v) := −(Dαp uN , I2−α
p v)ω + c(uN , I2−α

p v)ω

and B±uN (±1) = I2−α
p uN (±1) for FDBC (1.3) while B±uN (±1) = Dα−1

p uN (±1) for
FNBC (1.4).

By taking uN (x) =
∑N
k=0 ũkJ

−µ,−ν
k , and letting the test functions be J−µ,−νi (x),

0 ≤ i ≤ N − 2, we obtain the following linear system

(−S̃ + cM̃ + B̃)U = F,

where U = (ũ0, ũ1, · · · , ũN )T , the stiffness and mass matrix S̃ and M̃ have the same
elements as the matrix S and M in (4.2) except that the last two rows are equal to

zero. The first N − 1 rows of the matrix B̃ are equal to zero, the last two rows of the
matrix B̃ are given by

B̃N−1,k = (B−J−µ,−νk )(−1), B̃N,k = (B+J
−µ,−ν
k )(1),

and F = [F̃ (0 : N − 1); g1; g2] where F̃ is given by (4.2).

B.2. PGS-τ for the conservative Caputo FDEs. The PGS-τ for the con-
servative Caputo FDEs, i.e., (1.1)-(1.5) or (1.1)-(1.6) is to find uN ∈ PN , such that

ACT (uN , v) = (f, v)ω ∀ v ∈ PN−2; B−uN (−1) = g1, B+uN (1) = g2, (B.2)

where the bilinear form ACT (·, ·) is given by

ACT (uN , v) := −(D CDα−1
p u, v)ω + c(uN , v)ω

and B±uN (±1) = uN (±1) for the Dirichlet BCs (1.5) or B±uN (±1) = CDα−1
p uN (±1)

for the Caputo FNBCs (1.6).

Taking uN (x) =
∑N
k=0 ũkLk(x) and letting the test functions be Li(x), 0 ≤ i ≤

N − 2 gives the linear system

(−S̃ + cM̃+ B̃)U = F ,

where U = (ũ0, ũ1, · · · , ũN )T , and similarly, the stiffness and mass matrix S̃ and M̃
have the same elements as the matrix S̃ and M̃ in (4.11) except that the last two

rows are equal to zero. The first N − 1 rows of the matrix B̃ are equal to zero, the
last two rows of the matrix B̃ are given by

B̃N−1,k = B−Lk(−1), B̃N,k = B+Lk(1),

and F = [F̃(0 : N − 1); g1; g2] where F̃ is given by (4.11).
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