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Abstract. The paper studies generalized differentiability properties of the marginal function
of parametric optimal control problems of semilinear elliptic partial differential equations.
We establish upper estimates for the regular and the limiting subgradients of the marginal
function. With some additional assumptions, we show that the solution map of the perturbed
optimal control problems has local upper Hölderian selections. This leads to a lower estimate
for the regular subdifferential of the marginal function.
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1 Introduction

It is well recognized that optimal value function (or, marginal function) and solution map of
parametric optimization problems are very important in variational analysis, optimization
theory, control theory, etc. Problems of investigation on generalized differentiability proper-
ties of the marginal function and the solution map of parametric optimization problems are
in the research direction of differential stability of optimization problems. Many researchers
have had contributions to this research direction such as Aubin [5], Auslender [6], Bonnans
and Shapiro [8], Dien and Yen [13], Gauvin and Dubeau [14, 15], Gollan [16], Mordukhovich
et al. [20, 21], Rockafellar [25], Thibault [27]. In general, marginal functions are complicated
and intrinsically nonsmooth in perturbed parameters, therefore generalized differentiability
properties of marginal functions play a crucial role in order to derive important information
on sensitivity and stability of optimization problems.

Recently, Mordukhovich et al. [21] derived formulas for computing and estimating the
regular subdifferential and the limiting (Mordukhovich, singular) subdifferentials of marginal
functions in Banach spaces and specified these results for important classes of problems
in parametric optimization with smooth and nonsmooth data. Motivated by the results
of [21], some new results on differential stability of convex optimization problems under
inclusion constraints as well as under Aubin’s regularity condition have been provided in
[2, 3]. In addition, differential stability of parametric optimal control problems governed by
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ordinary differential equations (ODEs) has been studied by many authors in [1, 11, 28, 29,
30], where many results on the first-order behavior of the marginal function of parametric
continuous/discrete optimal control problems with linear constraints, convex/nonconvex cost
functionals have been established.

To the best of our knowledge, although there were many works on differential stability of
optimal control problems of ODEs, the problem of study on differential stability of optimal
control problems governed by partial differential equations (PDEs) remains open. For this
reason, in the present paper we focus on the study of generalized differentiability properties
of the marginal function of perturbed optimal control problems for PDEs. Namely, we will
establish new formulas for computing/estimating the regular subdifferential as well as the
limiting subdifferentials in the Mordukhovich’s sense of the marginal function of perturbed
optimal control problems of semilinear elliptic PDEs with control constraints.

For the original control problem in question, we are interested in two classes of per-
turbed control problems with respect to two different parametric spaces. In the first class
of perturbed problems, under some standard assumptions posed on the initial data of the
original control problem, we establish new upper estimates for the regular subdifferential,
the Mordukhovich subdifferential, and the singular subdifferential of the marginal function
of the perturbed control problems. In addition, these upper estimates for the regular and the
Mordukhovich subdifferentials of the marginal function will hold as equalities provided that
the solution map of the perturbed control problems has a local upper Lipschitzian selection
at the reference point in the graph of the solution map. For the second class of perturbed
problems, we consider parametric bang-bang control problems, where the cost functional of
such control problems does not involve the usual quadratic term for the control. With some
additional assumptions to the above standard assumptions, we show that the solution map
of the perturbed control problems admits a local upper Hölderian selection at the reference
point in the graph of the solution map. This leads to a new lower estimate for the regular
subdifferential of the marginal function.

The rest of the paper is organized as follows. A class of optimal control problems together
with standard assumptions in optimal control theory of PDEs and auxiliary results are stated
in Section 2. In Section 3, we establish upper estimates for the regular, the Mordukhovich,
and the singular subdifferentials of the marginal function to the first class of perturbed control
problems. Section 4 is devoted to prove the existence of local upper Hölderian selections of
the solution map and new lower estimates for the regular subdifferential of the marginal
function to the second class of perturbed control problems (parametric bang-bang control
problems). Some concluding remarks and open problems are provided in the last section.

2 Preliminaries

2.1 Control problem statement

The original optimal control problem that we are interested in this paper is stated as follows



Minimize J(u) =

∫

Ω

L
(
x, yu(x)

)
dx+

1

2

∫

Ω

ζ(x)u(x)2dx

subject to α(x) ≤ u(x) ≤ β(x) for a.a. x ∈ Ω,
(2.1)

where ζ ∈ L2(Ω) with ζ(x) ≥ 0 for a.a. x ∈ Ω, and yu is the weak solution of the following
Dirichlet problem {

Ay + f(x, y) = u in Ω

y = 0 on Γ,
(2.2)
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where the letter A denotes the second-order elliptic differential operator of the form

Ay(x) = −
N∑

i,j=1

∂xj

(
aij(x)∂xi

y(x)
)
.

The corresponding perturbed control problem of (2.1) is given below

{
Minimize J (u, e) = J(u+ ey) + (eJ , yu+ey)L2(Ω)

subject to u ∈ G(e) = Uad(e) ∩ Q,
(2.3)

where J(·) is the cost functional of problem (2.1), yu+ey is the weak solution of the perturbed
Dirichlet problem {

Ay + f(x, y) = u+ ey in Ω

y = 0 on Γ,
(2.4)

Q is a given subset of Lp0(Ω), and

Uad(e) =
{
u ∈ Lq0(Ω)

∣∣ (α + eα)(x) ≤ u(x) ≤ (β + eβ)(x) for a.a. x ∈ Ω
}
. (2.5)

We introduce E = Lp1(Ω)× Lp2(Ω)× Lp3(Ω)× Lp4(Ω) the parametric space with the norm
of e = (eJ , ey, eα, eβ) ∈ E given by

‖e‖E = ‖eJ‖Lp1 (Ω) + ‖ey‖Lp2 (Ω) + ‖eα‖Lp3(Ω) + ‖eβ‖Lp4(Ω). (2.6)

In what follows, we will write Uad for Uad(0) the set of admissible controls of problem (2.1).

Let us recall definitions of the marginal function and the solution map of the perturbed
control problem (2.3). The marginal function µ : E → R of the perturbed problem (2.3) is
defined by

µ(e) = inf
u∈G(e)

J (u, e), (2.7)

and the solution/argminimum map S : E ⇒ Ls0(Ω) of problem (2.3) is given by

S(e) =
{
u ∈ G(e)

∣∣ µ(e) = J (u, e)
}
. (2.8)

The main goal of this paper is to establish explicit formulas for computing/estimating the
regular subdifferential, the Mordukhovich subdifferential, and the singular subdifferential of
the marginal function µ(·) in (2.7) at a given parameter ē ∈ E.

2.2 Generalized differentiation from variational analysis

Let us recall some material on generalized differentiation taken from [18]. Unless otherwise
stated, every reference norm in a product normed space is the sum norm. Given a point u in
a Banach space X and ρ > 0, we denote Bρ(u) the open ball of center u and radius ρ in X ,
and B̄ρ(u) is the corresponding closed ball. In particular, for any p ∈ [1,∞], the notation
B̄p

ρ(u) stands for the closed ball B̄ρ(u) in the space Lp(Ω), i.e.,

B̄p
ρ(u) =

{
v ∈ Lp(Ω)

∣∣ ‖v − u‖Lp(Ω) ≤ ρ
}
.

Let F : X ⇒ W be a multifunction between Banach spaces. The graph and the domain of
F are the sets gphF := {(u, v) ∈ X ×W | v ∈ F (u)} and domF := {u ∈ X|F (u) 6= ∅},
respectively. We say that F is locally closed around the point ω̄ = (ū, v̄) ∈ gphF if gphF
is locally closed around ω̄, i.e., there exists a closed ball B̄ρ(ω̄) such that B̄ρ(ω̄) ∩ gphF is
closed in X ×W .
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For a multifunction Φ : X ⇒ X∗, the sequential Painlevé-Kuratowski upper limit of Φ as
u→ ū is defined by

Limsup
u→ū

Φ(u) =
{
u∗ ∈ X∗

∣∣∣ there exist un → ū and u∗n
w∗

⇀ u∗ with

u∗n ∈ Φ(un) for every k ∈ N = {1, 2, . . . }
}
.

(2.9)

Given an extended-real-valued function φ : X → R and ū ∈ domφ := {u ∈ X| φ(u) < ∞},
the regular subdifferential (also called the Fréchet subdifferential) of φ at the point ū is the

set ∂̂φ(ū) := ∂̂0φ(ū), where ∂̂εφ(ū) with ε ≥ 0 is the collection of ε-subgradients of φ at ū
defined by

∂̂εφ(ū) =

{
u∗ ∈ X∗

∣∣∣ liminf
u→ū

φ(u)− φ(ū)− 〈u∗, u− ū〉

‖u− ū‖
≥ −ε

}
, (2.10)

and the regular/Fréchet upper subdifferential of φ at ū is given by

∂̂+φ(ū) = −∂̂(−φ)(ū). (2.11)

The limiting basic subdifferential (the Mordukhovich subdifferential) of φ at ū is defined via
the sequential outer limit (2.9) by

∂φ(ū) = Limsup
u

φ
−→ū
ε↓0

∂̂εφ(u), (2.12)

and the limiting singular subdifferential (the singular subdifferential for short) of φ at ū is
given by

∂∞φ(ū) = Limsup
u

φ
−→ū
ε,λ↓0

λ∂̂εφ(u), (2.13)

where the notation u
φ
→ ū means that u→ ū with φ(u) → φ(ū).

Note that we can equivalently put ε = 0 in (2.12) and (2.13) if X is an Asplund space [4]
(see also [18, 22] for more details) and φ is lower semicontinuous around ū. It is obvious that

∂̂φ(ū) ⊂ ∂φ(ū) whenever φ(ū) is finite. If the latter inclusion holds as equality, φ is said to
be lower regular at ū. The class of lower regular functions is sufficiently large and important
in variational analysis and optimization; see [18, 19, 26] for more details and applications.

Given a nonempty set Θ ⊂ X , the regular and Mordukhovich normal cones to Θ at ū ∈ Θ
are respectively defined by

N̂(ū; Θ) = ∂̂δ(ū; Θ) and N(ū; Θ) = ∂δ(ū; Θ), (2.14)

where δ(·; Θ) is the indicator function of Θ defined by δ(u; Θ) = 0 for u ∈ Θ and δ(u; Θ) = ∞
otherwise. If X is an Asplund space and Θ ⊂ X is locally closed around ū ∈ Ω, we have

N(ū; Θ) = Limsup
u

Θ
→ū

N̂(u; Θ). (2.15)

The regular and Mordukhovich coderivatives of the multifunction F : X ⇒ W at the point
(ū, v̄) ∈ gphF are respectively the multifunction D̂∗F (ū, v̄) : W ∗ ⇒ X∗ defined by

D̂∗F (ū, v̄)(v∗) =
{
u∗ ∈ X∗

∣∣ (u∗,−v∗) ∈ N̂
(
(ū, v̄); gphF

)}
, ∀v∗ ∈ W ∗, (2.16)

and the multifunction D∗F (ū, v̄) : W ∗ ⇒ X∗ given by

D∗F (ū, v̄)(v∗) =
{
u∗ ∈ X∗

∣∣ (u∗,−v∗) ∈ N
(
(x̄, v̄); gphF

)}
, ∀v∗ ∈ W ∗. (2.17)
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The multifunction F is said to be normally regular at (ū, v̄) if

D̂∗F (ū, v̄)(v∗) = D∗F (ū, v̄)(v∗), ∀v∗ ∈ W ∗.

If F = f : X →W is a single-valued function, we will write D̂∗f(ū)(v∗) and D∗f(ū)(v∗) for
coderivatives of f in (2.16) and (2.17). If f is respectively Fréchet differentiable and strictly
differentiable at ū, both the regular and Mordukhovich coderivatives are extensions of the
corresponding adjoint derivative operators in the sense that

D̂∗f(ū)(v∗) = f ′(ū)∗v∗ and D∗f(ū)(v∗) = f ′(ū)∗v∗, ∀v∗ ∈ W ∗.

The multifunction F : X ⇒ W is locally Lipschitz-like (or, F has the Aubin property

[12]) around a point (ū, v̄) ∈ gphF if there exist ℓ > 0 and neighborhoods U of ū, V of v̄
such that

F (u1) ∩ V ⊂ F (u2) + ℓ‖u1 − u2‖B̄W , ∀u1, u2 ∈ U,

where B̄W denotes the closed unit ball inW . Characterization of this property via the mixed
Mordukhovich coderivative of F can be found in [18, Theorem 4.10]. Following Robinson
[24], a single-valued function h : D ⊂ X →W is locally upper Lipschitzian at ū if there exist
η > 0 and ℓ > 0 such that

‖h(u)− h(ū)‖ ≤ ℓ‖u− ū‖ whenever u ∈ Bη(ū) ∩D. (2.18)

We say that a multifunction F : D ⇒ W defined on some set D ⊂ X admits a local upper

Lipschitzian selection at (ū, v̄) ∈ gphF if there is a single-valued function h : D → W ,
which is locally upper Lipschitzian at ū satisfying h(ū) = v̄ and h(u) ∈ F (u) for all u ∈ D
in a neighborhood of ū. We also call h a local upper Hölderian selection at (ū, v̄) ∈ gphF if
(2.18) is replaced by the Hölder property with some exponent æ ≥ 0 below

‖h(u)− h(ū)‖ ≤ ℓ‖u− ū‖æ whenever u ∈ Bη(ū) ∩D. (2.19)

2.3 Assumptions and auxiliary results

Let us assume that Ω ⊂ R
N with N ∈ {1, 2, 3}, α, β ∈ L∞(Ω), α ≤ β, and α 6≡ β. Moreover,

L, f : Ω×R → R are Carathéodory functions of class C2 with respect to the second variable
satisfying the following assumptions.

(A1) The function f(·, 0) ∈ Lp̄(Ω) with p̄ > N/2,

∂f

∂y
(x, y) ≥ 0 for a.a. x ∈ Ω,

and for all M > 0 there exists a constant Cf,M > 0 such that
∣∣∣∣
∂f

∂y
(x, y)

∣∣∣∣+
∣∣∣∣
∂2f

∂y2
(x, y)

∣∣∣∣ ≤ Cf,M for a.a. x ∈ Ω and |y| ≤M.

For every M > 0 and ε > 0 there exists δ > 0, depending on M and ε such that
∣∣∣∣
∂2f

∂y2
(x, y2)−

∂2f

∂y2
(x, y1)

∣∣∣∣ < ε if |y1|, |y2| ≤M, |y2 − y1| ≤ δ, and for a.a. x ∈ Ω.

(A2) The function L(·, 0) ∈ L1(Ω) and for all M > 0 there are a constant CL,M > 0 and
a function ψM ∈ Lp̄(Ω) such that for every |y| ≤ M and almost all x ∈ Ω,

∣∣∣∣
∂L

∂y
(x, y)

∣∣∣∣ ≤ ψM(x),

∣∣∣∣
∂2L

∂y2
(x, y)

∣∣∣∣ ≤ CL,M .
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For every M > 0 and ε > 0 there exists δ > 0, depending on M and ε such that

∣∣∣∣
∂2L

∂y2
(x, y2)−

∂2L

∂y2
(x, y1)

∣∣∣∣ < ε if |y1|, |y2| ≤M, |y2 − y1| ≤ δ, and for a.a. x ∈ Ω.

(A3) The set Ω is an open and bounded domain in R
N with Lipschitz boundary Γ. The

set Q is closed, convex, and bounded in Lp0(Ω) satisfying Uad(e)∩ intQ 6= ∅ for some e ∈ E,
where intQ stands for the interior of Q. The coefficients aij ∈ C(Ω̄) of the second-order
elliptic differential operator A satisfy

λA‖ξ‖
2
RN ≤

N∑

i,j=1

aij(x)ξiξj , ∀ξ ∈ R
N , for a.a. x ∈ Ω,

for some constant λA > 0.

For every u ∈ Lp(Ω) with p > N/2, according to [31, Chapter 4], equation (2.2) has a
unique weak solution yu ∈ H1

0 (Ω)∩C(Ω̄). In addition, there exists a constant Mα,β > 0 such
that

‖yu‖H1
0 (Ω) + ‖yu‖C(Ω̄) ≤Mα,β, ∀u ∈ Uad. (2.20)

The control-to-state mapping G : Lp(Ω) → H1
0 (Ω) ∩ C(Ω̄) defined by G(u) = yu is of class

C2. Moreover, for every v ∈ L2(Ω), zu,v = G′(u)v is the unique weak solution of




Az +

∂f

∂y
(x, y)z = v in Ω

z = 0 on Γ,
(2.21)

and for any v1, v2 ∈ L2(Ω), wv1,v2 = G′′(u)(v1, v2) is the unique weak solution of




Aw +

∂f

∂y
(x, y)w +

∂2f

∂y2
(x, y)zu,v1zu,v2 = 0 in Ω

w = 0 on Γ,

(2.22)

where y = G(u) and zu,vi = G′(u)vi for i = 1, 2.

By assumption (A2), using the latter results and applying the chain rule we deduce that
the cost functional J : Lp(Ω) → R with p > N/2 is of class C2, and the first and second
derivatives of J(·) are given by

J ′(u)v =

∫

Ω

(ϕu + ζu)vdx, (2.23)

and

J ′′(u)(v1, v2) =

∫

Ω

(
∂2L

∂y2
(x, yu)zu,v1zu,v2 + ζv1v2 − ϕu

∂2f

∂y2
(x, yu)zu,v1zu,v2

)
dx, (2.24)

where zu,vi = G′(u)vi for i = 1, 2, and ϕu ∈ H1
0 (Ω) ∩ C(Ω̄) is the adjoint state of yu defined

as the unique weak solution of




A∗ϕ+

∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) in Ω

ϕ = 0 on Γ,
(2.25)

where A∗ is the adjoint operator of A.
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A control ū ∈ Uad is said to be a solution/global minimum of problem (2.1) if J(ū) ≤ J(u)
for all u ∈ Uad. We will say that ū is a local solution/local minimum of problem (2.1) in the
sense of Lp(Ω) if there exists a closed ball B̄p

ε (ū) such that J(ū) ≤ J(u) for all u ∈ Uad∩B̄
p
ε (ū).

The local solution ū is called strict if J(ū) < J(u) holds for all u ∈ Uad ∩ B̄
p
ε (ū) with u 6= ū.

Under the assumptions given above, solutions of problem (2.1) exist. We introduce the space
Y = H1

0 (Ω) ∩ C(Ω̄) endowed with the norm

‖y‖Y = ‖y‖H1
0(Ω) + ‖y‖L∞(Ω).

According to [31, Chapter 4], if ū ∈ Uad is a solution of problem (2.1) in the sense of Lp(Ω),
then there exist a unique state yū ∈ Y and a unique adjoint state ϕū ∈ Y satisfying the
first-order optimality system

{
Ayū + f(x, yū) = ū in Ω

yū = 0 on Γ,
(2.26)




A∗ϕū +

∂f

∂y
(x, yū)ϕū =

∂L

∂y
(x, yū) in Ω

ϕū = 0 on Γ,
(2.27)

∫

Ω

(ϕū + ζū)(u− ū)dx ≥ 0, ∀u ∈ Uad. (2.28)

Similarly, if ūe ∈ G(e) is a solution of the perturbed problem (2.3) with respect to e ∈ E,
then ūe satisfies the perturbed first-order optimality system

{
Ayūe+ey + f(x, yūe+ey) = ūe + ey in Ω

yūe+ey = 0 on Γ,
(2.29)




A∗ϕūe,e +

∂f

∂y
(x, yūe+ey)ϕūe,e =

∂L

∂y
(x, yūe+ey) + eJ in Ω

ϕūe,e = 0 on Γ,
(2.30)

∫

Ω

(ϕūe,e + ζūe)
(
u(x)− ūe(x)

)
dx ≥ 0, ∀u ∈ G(e), (2.31)

where ϕūe,e is the adjoint state of yūe+ey for the perturbed problem (2.3). Furthermore, the
partial derivative of J (u, e) in u at ūe can be computed by

J ′
u(ūe, e)v =

∫

Ω

(ϕūe,e + ζūe)vdx. (2.32)

3 Subgradients of marginal functions

In this section, we consider the parametric control problem (2.3), where p0 = 2 while q0 = 2
in (2.5), p1 = p2 = p3 = p4 = 2 in (2.6), and s0 = 2. This means that Q ⊂ L2(Ω) and the
perturbed admissible control set Uad(e) ⊂ L2(Ω) for e ∈ E = L2(Ω)×L2(Ω)×L2(Ω)×L2(Ω).

Theorem 3.1. Assume that the assumptions (A1)-(A3) hold. Then, for each e ∈ E
with G(e) 6= ∅, the perturbed control problem (2.3) has at least one optimal control ūe with

associated optimal perturbed state yūe+ey ∈ H1(Ω) ∩ C(Ω̄).

Proof. Let e ∈ E be such that G(e) 6= ∅. Then, G(e) is nonempty, closed, bounded, and
convex in L2(Ω) due to Uad(e) is closed, bounded, and convex in L2(Ω). By arguing similarly
as in the proof of [23, Theorem 4.1], we obtain assertion of the theorem. �
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3.1 Regular subgradients of marginal functions

Let the marginal function µ(·) from (2.7) be finite at some ē ∈ domS, and let ūē ∈ S(ē) be

such that ∂̂+J (ūē, ē) 6= ∅. Then, applying [21, Theorem 1], we obtain

∂̂µ(ē) ⊂
⋂

(u∗,e∗)∈∂̂+J (ūē,ē)

(
e∗ + D̂∗G(ē, ūē)(u

∗)
)
. (3.1)

Note that by the assumptions (A1)-(A3) the function J is Fréchet differentiable at (ūē, ē).
Thus, we get

∂̂+J (ūē, ē) = {∇J (ūē, ē)} =
{(

J ′
u(ūē, ē),J

′
e(ūē, ē)

)}
.

Consequently, from (3.1) we deduce that

∂̂µ(ē) ⊂ J ′
e(ūē, ē) + D̂∗G(ē, ūē)

(
J ′

u(ūē, ē)
)
. (3.2)

If, in addition, the solution map S : domG ⇒ L2(Ω) admits a local upper Lipschitzian
selection at (ē, ūē), then by [21, Theorem 2] we obtain

∂̂µ(ē) = J ′
e(ūē, ē) + D̂∗G(ē, ūē)

(
J ′

u(ūē, ē)
)
. (3.3)

We will apply (3.2) to derive a new explicit formula for estimating the Fréchet subdifferential

∂̂µ(ē), and this formula will also be an exact formula for computing ∂̂µ(ē) provided that the
solution map S(·) has a local upper Lipschitzian selection at (ē, ūē).

For each pair (e, u) ∈ E × L2(Ω) with u ∈ G(e) we define subsets Ω1(e, u), Ω2(e, u),
Ω3(e, u) of Ω by





Ω1(e, u) =
{
x ∈ Ω| u(x) = α(x) + eα(x)

}
,

Ω2(e, u) =
{
x ∈ Ω| u(x) ∈

(
α(x) + eα(x), β(x) + eβ(x)

)}
,

Ω3(e, u) =
{
x ∈ Ω| u(x) = β(x) + eβ(x)

}
.

(3.4)

We have gphG = gphUad ∩ (E×Q), where gphUad and E ×Q are convex sets. In addition,
we can verify that gphUad ∩ int(E ×Q) 6= ∅. By [17, Proposition 1, p. 205], we get

N̂
(
(e, u); gphG

)
= N̂

(
(e, u); gphUad

)
+ N̂

(
(e, u);E ×Q

)

= N̂
(
(e, u); gphUad

)
+ {0E} ×N(u;Q).

Thus, for each (ē, ūē) ∈ gphS, we obtain

D̂∗G(ē, ūē)(u
∗) =

{
e∗ ∈ E∗

∣∣ (e∗,−u∗) ∈ N̂
(
(ē, ūē); gphG

)}

=
{
e∗ ∈ E∗

∣∣ (e∗,−u∗) ∈ N̂
(
(ē, ūē); gphUad

)
+ {0E} ×N(ūē;Q)

}
.

(3.5)

In order to compute D̂∗G(ē, ūē)(u
∗) explicitly via (3.5), we provide a formula for computing

the regular normal cone N̂
(
(ē, ūē); gphUad

)
in the following lemma.

Lemma 3.2. Assume that the assumptions (A1)-(A3) hold and let ūē ∈ S(ē). The following
formula holds that

N̂
(
(ē, ūē); gphUad

)
=
{
(e∗, u∗) ∈ E∗ × L2(Ω)

∣∣∣ e∗ = (0, 0, e∗α, e
∗
β), u

∗ = −e∗α − e∗β,

e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β |Ω3(ē,ūē) ≤ 0, e∗β |Ω\Ω3(ē,ūē) = 0
}
.

(3.6)
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Proof. Let (e∗, u∗) ∈ N̂
(
(ē, ūē); gphUad

)
with e∗ = (e∗y, e

∗
J , e

∗
α, e

∗
β) ∈ E∗. Since the set Uad(e)

does not depend on ey and eJ for every e = (ey, eJ , eα, eβ) ∈ E, we have e∗y = e∗J = 0. By the

definition of N̂
(
(ē, ūē); gphUad

)
, we have

limsup

(e,u)
gphUad−→ (ē,ūē)

〈e∗α, eα − ēα〉+ 〈e∗β, eβ − ēβ〉+ 〈u∗, u− ūē〉

‖eα − ēα‖L2(Ω) + ‖eβ − ēβ‖L2(Ω) + ‖u− ūē‖L2(Ω)

≤ 0. (3.7)

Let eα − ēα = eβ − ēβ = u− ūē. Then, (e, u) ∈ gphUad and from (3.7) we have

limsup
eα→ēα

〈e∗α + e∗β + u∗, eα − ēα〉

‖eα − ēα‖L2(Ω)

≤ 0.

This yields e∗α + e∗β + u∗ = 0, or u∗ = −e∗α − e∗β . We now consider the following situations.

• Necessary conditions for e∗α:

� Let eβ = ēβ, u = ūē, eα|Ω1(ē,ūē) ր ēα|Ω1(ē,ūē), eα|Ω\Ω1(ē,ūē) = ēα|Ω\Ω1(ē,ūē). Then, we have
(e, u) ∈ gphUad and from (3.7) we deduce that e∗α|Ω1(ē,ūē) ≥ 0.

� Let eβ = ēβ and u = ūē. For ε > 0, define Aε := {x ∈ Ω| ūē ≥ α+ ēα+ε} ⊂ Ω\Ω1(ē, ū).
Let now B ⊂ Aε with positive measure. Let us set eα|Ω1(ē,ūē) = ēα|Ω1(ē,ūē) and

eα|Ω\Ω1(ē,ūē) = ēα|Ω\Ω1(ē,ūē) + tχB,

where |t| < ε. Then, we have (e, u) ∈ gphUad, and from (3.7) we deduce

0 ≥ limsup
eα→ēα

〈e∗α, eα − ēα〉

‖eα − ēα‖L2(Ω)

≥ limsup
t→0

〈e∗α, tχB〉

‖tχB‖L2(Ω)

= ‖χB‖
−1
L2(Ω)|〈e

∗
α, χB〉|.

This implies e∗α = 0 almost everywhere on Aε. Since ∪ε>0Aε = Ω \ Ω1(ē, ūē), we find
e∗α = 0 almost everywhere on Ω \ Ω1(ē, ūē) as claimed.

• Necessary conditions for e∗β :

� Let eα = ēα, u = ūē, eβ |Ω\Ω3(ē,ūē) = ēβ|Ω\Ω3(ē,ūē), eβ|Ω3(ē,ūē) ց ēβ|Ω3(ē,ūē). Then, we have
(e, u) ∈ gphUad and from (3.7) we deduce that e∗β|Ω3(ē,ūē) ≤ 0.

� By arguing similarly as in the proof of the second necessary condition for e∗α above, we
also find that e∗β|Ω\Ω3(ē,ūē) = 0.

Conversely, pick any (e∗, u∗) from the set on the right-hand side of (3.6). Taking any
sequence (en, un) → (ē, ūē) with (en, un) ∈ gphUad, we have to show that (3.7) holds for this
sequence. For convenience, we denote Ωi = Ωi(ē, ūē) for i = 1, 2, 3. We observe that

〈e∗α, (eα)n − ēα〉+ 〈e∗β, (eβ)n − ēβ〉+ 〈u∗, un − ūē〉

=〈e∗α|Ω1
, (eα)n|Ω1

− ēα|Ω1
〉+ 〈e∗β|Ω3

, (eβ)n|Ω3
− ēβ |Ω3

〉

− 〈(e∗α + e∗β)|Ω1∪Ω3
, un|Ω1∪Ω3

− ūē|Ω1∪Ω3
〉

=〈e∗α|Ω1
, (eα)n|Ω1

− ēα|Ω1
〉+ 〈e∗β|Ω3

, (eβ)n|Ω3
− ēβ |Ω3

〉

− 〈e∗α|Ω1
, un|Ω1

− ūē|Ω1
〉 − 〈e∗β|Ω3

, un|Ω3
− ūē|Ω3

〉

=〈e∗α|Ω1
, (eα)n|Ω1

− ēα|Ω1
− un|Ω1

+ ūē|Ω1
〉+ 〈e∗β|Ω3

, (eβ)n|Ω3
− ēβ|Ω3

− un|Ω3
+ ūē|Ω3

〉

(with ūē|Ω1
= α|Ω1

+ ēα|Ω1
and ūē|Ω3

= β|Ω3
+ ēβ |Ω3

by the definition of Ω1 and Ω3)

=〈e∗α|Ω1︸ ︷︷ ︸
≥0

, α|Ω1
+ (eα)n|Ω1

− un|Ω1︸ ︷︷ ︸
≤0

〉+ 〈e∗β|Ω3︸ ︷︷ ︸
≤0

, β|Ω3
+ (eβ)n|Ω3

− un|Ω3︸ ︷︷ ︸
≥0

〉

≤0.

This implies that (3.7) holds for the sequence {(en, un)} chosen above. �
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Proposition 3.3. Assume that the assumptions (A1)-(A3) hold and let ūē ∈ S(ē). Then,

the following formula holds that

D̂∗G(ē, ūē)(u
∗) =

{
e∗ ∈ E∗

∣∣∣ e∗ = (0, 0, e∗α, e
∗
β), u

∗ = u∗1 − u∗2,

u∗1 = e∗α + e∗β, u
∗
2 ∈ N(ūē;Q),

e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β|Ω3(ē,ūē) ≤ 0, e∗β|Ω\Ω3(ē,ūē) = 0
}
.

(3.8)

Proof. Formula (3.8) follows directly from (3.5) and (3.6). �

The forthcoming theorem establishes an upper estimate for the regular subdifferential of
the marginal function µ(·).

Theorem 3.4. Assume that the assumptions (A1)-(A3) hold and let ūē ∈ S(ē). Then it is

necessary for an element ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) from E∗ belonging to ∂̂µ(ē) that





ê∗y = ϕūē,ē + ζūē,

ê∗J = yūē+ēy ,

ê∗α|Ω1(ē,ūē) ≥ 0, ê∗α|Ω\Ω1(ē,ūē) = 0,

ê∗β|Ω3(ē,ūē) ≤ 0, ê∗β |Ω\Ω3(ē,ūē) = 0,

ê∗α + ê∗β ∈ N(ūē;Q) + ϕūē,ē + ζūē.

(3.9)

If, in addition, S : domG ⇒ L2(Ω) has a local upper Lipschitzian selection at (ē, ūē), then

condition (3.9) is also sufficient for the inclusion ê∗ ∈ ∂̂µ(ē).

Proof. Pick any ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ ∂̂µ(ē). Using (3.2) we obtain the following inclusion

ê∗ ∈ J ′
e(ūē, ē) + D̂∗G(ē, ūē)

(
J ′

u(ūē, ē)
)
,

or, equivalently, as follows

ê∗ −J ′
e(ūē, ē) ∈ D̂∗G(ē, ūē)

(
J ′

u(ūē, ē)
)
. (3.10)

From (2.3) we have
J (u, e) = J(u+ ey) +

(
eJ , G(u+ ey)

)
L2(Ω)

.

It follows that
J ′

u(ūē, ē)v = J ′(ūē + ēy)v +
(
ēJ , G

′(ūē + ēy)v
)
L2(Ω)

,

and

J ′
e(ūē, ē)ẽ = J ′(ūē + ēy)ẽy +

(
ēJ , G

′(ūē + ēy)ẽy
)
L2(Ω)

+
(
ẽJ , G(ūē + ēy)

)
L2(Ω)

= J ′
u(ūē, ē)ẽy + (ẽJ , yūē+ēy)L2(Ω),

(3.11)

where yūē+ēy = G(ūē + ēy). Using (2.32) we find that J ′
u(ūē, ē) = ϕūē,ē + ζūē. Combining

this with (3.11) and the fact that J (u, e) does not depend on eα and eβ, we obtain

J ′
e(ūē, ē) =

(
ϕūē,ē + ζūē, yūē+ēy , 0L2(Ω), 0L2(Ω)

)
.

Consequently, we have

ê∗ − J ′
e(ūē, ē) =

(
ê∗y − ϕūē,ē − ζūē, ê

∗
J − yūē+ēy , ê

∗
α, ê

∗
β

)
. (3.12)
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From (3.12), (3.10) and (3.8) we deduce that

ê∗y − ϕūē,ē − ζūē = 0, ê∗J − yūē+ēy = 0, ê∗α = e∗α, ê∗β = e∗β , (3.13)

where e∗α and e∗β satisfy the following condition





e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β |Ω3(ē,ūē) ≤ 0, e∗β |Ω\Ω3(ē,ūē) = 0,

J ′
u(ūē, ē) = u∗1 − u∗2,

u∗1 = e∗α + e∗β , u
∗
2 ∈ N(ūē;Q),

or, equivalently, as follows





e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β|Ω3(ē,ūē) ≤ 0, e∗β|Ω\Ω3(ē,ūē) = 0,

ϕūē,ē + ζūē = e∗α + e∗β − u∗2,

u∗2 ∈ N(ūē;Q).

(3.14)

Combining (3.13) with (3.14) we get





ê∗y = ϕūē,ē + ζūē,

ê∗J = yūē+ēy ,

ê∗α|Ω1(ē,ūē) ≥ 0, ê∗α|Ω\Ω1(ē,ūē) = 0,

ê∗β|Ω3(ē,ūē) ≤ 0, ê∗β|Ω\Ω3(ē,ūē) = 0,

ê∗y = ê∗α + ê∗β − u∗2, u
∗
2 ∈ N(ūē;Q),

which yields (3.9).

If, in addition, S : domG ⇒ L2(Ω) admits a local upper Lipschitzian selection at (ē, ūē),
then in the arguments above we use equality (3.3) instead of estimate (3.2) to deduce that

condition (3.9) is necessary and sufficient for the inclusion ê∗ ∈ ∂̂µ(ē). �

3.2 Limiting subgradients of marginal functions

The next proposition provides us with an explicit formula for computing the Mordukhovich
coderivative of the multifunction G(·) that will be used to establish upper estimates for the
Mordukhovich and the singular subdifferentials of the marginal function µ(·).

Proposition 3.5. Assume that the assumptions (A1)-(A3) hold and let ūē ∈ S(ē). Then,

for every u∗ ∈ L2(Ω), we have

D∗G(ē, ūē)(u
∗) = D̂∗G(ē, ūē)(u

∗)

=
{
e∗ ∈ E∗

∣∣∣ e∗ = (0, 0, e∗α, e
∗
β), u

∗ = u∗1 − u∗2,

u∗1 = e∗α + e∗β, u
∗
2 ∈ N(ūē;Q),

e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β|Ω3(ē,ūē) ≤ 0, e∗β|Ω\Ω3(ē,ūē) = 0
}
.

(3.15)

Proof. We observe that gphG is closed in the product space E×L2(Ω). By the definitions of

coderivatives, we have D̂∗G(ē, ūē)(u
∗) ⊂ D∗G(ē, ūē)(u

∗). Let us verify the opposite inclusion.
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Fix any e∗ = (e∗y, e
∗
J , e

∗
α, e

∗
β) ∈ D∗G(ē, ūē)(u

∗). Then, by (2.16), (2.17), and (2.15), there exist
sequences (en, un) ∈ gphG and (e∗n, u

∗
n) ∈ E∗ × L2(Ω) satisfying

(en, un) → (ē, ūē), (e
∗
n, u

∗
n)

w∗

⇀ (e∗, u∗), e∗n ∈ D̂∗G(en, un)(u
∗
n), ∀n ∈ N

and
(en, un) → (ē, ūē) pointwise a.e. on Ω.

For every n ∈ N, since e∗n ∈ D̂∗G(en, un)(u
∗
n), by (3.8) we infer that e∗n =

(
0, 0, (e∗n)α, (e

∗
n)β
)

satisfies the following conditions





u∗n = (u∗n)1 − (u∗n)2,

(u∗n)1 = (e∗n)α + (e∗n)β, (u
∗
n)2 ∈ N(un;Q),

(e∗n)α|Ω1(en,un) ≥ 0, (e∗n)α|Ω\Ω1(en,un) = 0,

(e∗n)β|Ω3(en,un) ≤ 0, (e∗n)β|Ω\Ω3(en,un) = 0.

(3.16)

By e∗n =
(
0, 0, (e∗n)α, (e

∗
n)β
) w∗

⇀ e∗, we deduce that e∗ = (0, 0, e∗α, e
∗
β

)
with

(e∗n)α
w∗

⇀ e∗α and (e∗n)β
w∗

⇀ e∗β.

From this and (3.16) it follows that e∗α ≥ 0 and e∗β ≤ 0 on Ω. We show that e∗α|Ω\Ω1(ē,ūē) = 0
and e∗β |Ω\Ω3(ē,ūē) = 0. Let ε > 0 be given. Let B ⊂ Aε := {x ∈ Ω| ū ≥ α + ēα + ε} ⊂
Ω \ Ω1(ē, ūē) be a bounded set of positive measure. Since (e∗n)α = 0 on Ω \ Ω1(ē, ūē), we get

〈e∗α, χB〉 = lim
n→∞

〈(e∗n)α, χB〉

= lim
n→∞

〈(e∗n)α, χB|Ω\Ω1(en,un) + χB|Ω1(en,un)〉

= lim
n→∞

〈(e∗n)α, χB|Ω1(en,un)〉.

Due to pointwise convergence, we have χBχΩ1(en,un) → 0 pointwise almost everywhere. By
dominated convergence theorem, χBχΩ1(en,un) → 0 in L2(Ω). Hence, limn→∞〈(e∗n)α, χB〉 = 0.
It follows that e∗α = 0 on Aε for all ε > 0, which in turn implies e∗α = 0 on Ω \ Ω1(ē, ūē).
Similarly, we can prove e∗β|Ω\Ω3(ē,ūē) = 0. We have shown that

{
e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β |Ω3(ē,ūē) ≤ 0, e∗β|Ω\Ω3(ē,ūē) = 0.
(3.17)

Since un → ūē with un ∈ Q, we have e∗α + e∗β − u∗ ∈ N(ūē;Q). Indeed, for all v ∈ Q, due to

(e∗n)α + (e∗n)β − u∗n = (u∗n)2 ∈ N(un;Q),

we obtain 〈(e∗n)α + (e∗n)β − u∗n, v − un〉 ≤ 0 for every n ∈ N. In addition, since

(e∗n)α + (e∗n)β − u∗n
w∗

⇀ e∗α + e∗β − u∗ and v − un → v − ūē,

we have
〈(e∗n)α + (e∗n)β − u∗n, v − un〉 → 〈e∗α + e∗β − u∗, v − ūē〉.

This implies that 〈e∗α + e∗β − u∗, v − ūē〉 ≤ 0, which yields e∗α + e∗β − u∗ ∈ N(ūē;Q). We now
put

u∗1 = e∗α + e∗β and u∗2 = u∗1 − u∗ ∈ N(ūē;Q).

From this and (3.17) we obtain e∗ ∈ D̂∗G(ē, ūē)(u
∗). Thus, D∗G(ē, ūē)(u

∗) ⊂ D̂∗G(ē, ūē)(u
∗).

We have shown that D∗G(ē, ūē)(u
∗) = D̂∗G(ē, ūē)(u

∗) and (3.15) follows. �
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The next two theorems establish respectively upper estimates for the Mordukhovich and
the singular subdifferentials of the marginal function µ(·).

Theorem 3.6. Assume that the assumptions (A1)-(A3) hold and let ūē ∈ S(ē). Then it is

necessary for an element e∗ = (e∗y, e
∗
J , e

∗
α, e

∗
β) from E∗ belonging to ∂µ(ē) that





e∗y = ϕūē,ē + ζūē,

e∗J = yūē+ēy ,

e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β|Ω3(ē,ūē) ≤ 0, e∗β |Ω\Ω3(ē,ūē) = 0,

e∗α + e∗β ∈ N(ūē;Q) + ϕūē,ē + ζūē.

(3.18)

If, in addition, S : domG ⇒ L2(Ω) admits a local upper Lipschitzian selection at (ē, ūē), then
the marginal function µ(·) is lower regular at ē and (3.18) is also sufficient for the inclusion

e∗ ∈ ∂µ(ē).

Proof. By our assumptions, J (u, e) is continuously differentiable at (ūē, ē), thus J (u, e) is
strictly differentiable at (ūē, ē) and Lipschitz continuous around (ūē, ē). This implies that
∂J (ūē, ē) =

{(
J ′

u(ūē, ē),J
′
e(ūē, ē)

)}
. Applying [21, Theorem 7(i)], we obtain

∂µ(ē) ⊂ J ′
e(ūē, ē) +D∗G(ē, ūē)

(
J ′

u(ūē, ē)
)
. (3.19)

By Proposition 3.5, we infer that D∗G(ē, ūē)
(
J ′

u(ūē, ē)
)
= D̂∗G(ē, ūē)

(
J ′

u(ūē, ē)
)
. From this

and (3.19) we get

∂µ(ē) ⊂ J ′
e(ūē, ē) + D̂∗G(ē, ūē)

(
J ′

u(ūē, ē)
)
. (3.20)

By (3.20) and by Theorem 3.4, we deduce that (3.18) is necessary for e∗ ∈ ∂µ(ē).

If, in addition, S : domG ⇒ L2(Ω) admits a local upper Lipschitzian selection at (ē, ūē),
then by [21, Theorem 7(iii)] the marginal function µ(·) is lower regular at ē and (3.19) holds
as equality

∂µ(ē) = J ′
e(ūē, ē) +D∗G(ē, ūē)

(
J ′

u(ūē, ē)
)

= J ′
e(ūē, ē) + D̂∗G(ē, ūē)

(
J ′

u(ūē, ē)
)
.

(3.21)

By (3.21) and by Theorem 3.4, condition (3.18) is also sufficient for e∗ ∈ ∂µ(ē). �

Remark 3.7. From Theorems 3.4, 3.6 we see that the necessary conditions (3.9) and (3.18)
coincide because G(·) is normally regular at (ē, ūē) by (3.15). These necessary conditions are
also the same sufficient conditions provided that S : domG ⇒ L2(Ω) admits a local upper

Lipschitzian selection at (ē, ūē), which yields ∂̂µ(ē) = ∂µ(ē), i.e., the marginal function µ(·)
is lower regular at ē.

Theorem 3.8. Assume that the assumptions (A1)-(A3) hold and let ūē ∈ S(ē). Then, we

have the following estimate

∂∞µ(ē) ⊂
{
(0, 0, e∗α, e

∗
β) ∈ E∗

∣∣∣ e∗α + e∗β ∈ N(ūē;Q),

e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β|Ω3(ē,ūē) ≤ 0, e∗β|Ω\Ω3(ē,ūē) = 0
}
.

(3.22)

Proof. Our assumptions ensure that J (u, e) is Lipschitz continuous around (ūē, ē). Hence,
we have ∂∞J (ūē, ē) = {(0, 0)}. By [21, Theorem 7(i)], we deduce that

∂∞µ(ē) ⊂ D∗G(ē, ūē)(0). (3.23)

By (3.23), formula (3.22) follows directly from formula (3.15). �
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Corollary 3.9. Assume that the assumptions (A1)-(A3) hold and let ūē ∈ S(ē). Then, the
following hold:

(i) If ūē ∈ intQ, then we have

∂∞µ(ē) ⊂ {0}. (3.24)

(ii) If ūē ∈ intQ, and there exists a sequence en → ē such that ūen → ūē in Lp0(Ω) with

ūen ∈ S(en) and ∂̂µ(en) 6= ∅, then we have

0 ∈ ∂∞µ(ē). (3.25)

Consequently, (3.24) holds as an equality.

Proof. (i) Take any (0, 0, e∗α, e
∗
β) ∈ ∂∞µ(ē). Note that N(ūē;Q) = {0} because ūē ∈ intQ.

Hence, from (3.22) it follows that e∗α = e∗β = 0 a.e. on Ω. This yields (3.24).

(ii) Choose λn = εn = 1/n and take any ê∗n ∈ ∂̂µ(en) ⊂ ∂̂εnµ(en) for every n ∈ N. Since

ê∗n ∈ ∂̂µ(en), ê
∗
n holds (3.9). Because ūen → ūē and ūē ∈ intQ, we have ūen ∈ intQ for all n

large enough. Hence, N(ūen;Q) = {0} for all n sufficiently large. Consequently, according
to (3.9), ê∗n must be bounded. Letting n→ ∞, we have

en → ē, µ(en) → µ(ē), εn ↓ 0, λn ↓ 0, λnê
∗
n

w∗

⇀ 0, (3.26)

which yields 0 ∈ ∂∞µ(ē) by (2.13). Combining this with (i) we obtain ∂∞µ(ē) = {0}. �

Remark 3.10. If ∂̂µ(ē) 6= ∅, then (3.25) holds without the assumption ūē ∈ intQ. Indeed,

take any ê∗ ∈ ∂̂µ(ē) and choose en = ē, λn = εn = 1/n, ê∗n = ê∗ for every n ∈ N. Letting
n→ ∞, we obtain (3.26), which implies 0 ∈ ∂∞µ(ē).

4 Parametric bang-bang control problems

In this section, we consider the parametric control problem (2.3), where the functional J(·)
is given in (2.1) with ζ = 0 a.e. on Ω, Q = Lp0(Ω) with p0 > N/2 while q0 = s0 = 1, and
p1 = p2 = 2, p3 = p4 = ∞ in (2.6). In addition, the solution map S : E ⇒ L1(Ω) is defined
by (2.8) with respect to J (u, e) : L1(Ω)×E → R. For this setting, we rewrite problem (2.3)
as follows {

Minimize J (u, e) = J(u+ ey) + (eJ , yu+ey)L2(Ω)

subject to u ∈ Uad(e),
(4.1)

where yu+ey is the weak solution of (2.4), and the functional J(·) is defined by

J(u) =

∫

Ω

L
(
x, yu(x)

)
dx.

Note that we have Uad(e) ⊂ L∞(Ω) for every e ∈ E = L2(Ω)× L2(Ω)× L∞(Ω)× L∞(Ω).

In contrast to the previous section, the cost functional J : L1(Ω)×E → R of problem (4.1)

is not Fréchet differentiable. In addition, the problem of computing ∂̂+J (ūē, ē) or checking

∂̂+J (ūē, ē) 6= ∅ at a given point (ūē, ē) ∈ gphS remains open. Therefore, we can not apply
[21, Theorems 1 and 2] to compute/estimate subdifferentials of the marginal function µ(·)
of problem (4.1). For this reason, by the definition of regular subgradients we will establish
directly a characterization of regular subgradients of the marginal function µ(·) at a given
point (ē, ūē) ∈ gphS in a subspace E∗

1 (see the definition of E∗
1 below) of E∗ via local upper
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Hölderian selections of the solution map S : domG ⇒ L1(Ω) at the point (ē, ūē). This leads
to some lower estimates for the regular subdifferential of µ(·) at (ē, ūē).

Consider problem (2.1) with Uad being replaced by Uad(ē) and let ūē ∈ Uad(ē) be a solution
of problem (2.1) in the sense of Lp0(Ω). From (2.28), we deduce that

ūē(x) =

{
(α + ēα)(x), if ϕūē

(x) > 0

(β + ēβ)(x), if ϕūē
(x) < 0,

(4.2)

and

ϕūē
(x)





≥ 0, if ūē(x) = (α + ēα)(x)

≤ 0, if ūē(x) = (β + ēβ)(x)

= 0, if ūē(x) ∈
(
(α + ēα)(x), (β + ēβ)(x)

)
.

(4.3)

In general, solutions ūē have the so-called bang-bang property : for a.a. x ∈ Ω, it holds that
ūē(x) ∈ {(α + ēα)(x), (β + ēβ)(x)}. Consider the case where {x ∈ Ω|ϕūē

(x) = 0} has a zero
Lebesgue measure. Then, it follows from (4.2) and (4.3) that ūē(x) ∈ {α+ēα)(x), (β+ēβ)(x)}
for a.a. x ∈ Ω, i.e., ūē is a bang-bang control. In this section, we are interested in the last
property of the reference control ūē.

4.1 Local upper Hölderian selections of solution map

According to [10], sufficient second-order optimality conditions for bang-bang controls ūē of
problem (2.1) with respect to the admissible control set Uad(ē) established under the following
assumption (A4) posed on the adjoint state ϕūē

in the case where {x ∈ Ω|ϕūē
(x) = 0} has

a zero Lebesgue measure.

(A4) Assume that ūē ∈ Uad(ē), and it satisfies the system (2.26)-(2.28) and the following
condition

∃K > 0, ∃æ > 0 such that
∣∣{x ∈ Ω : |ϕūē

(x)| ≤ ε}
∣∣ ≤ Kεæ, ∀ε > 0. (4.4)

In (4.4), the notation | · | stands for the Lebesgue measure.

Proposition 4.1. (See [23, Proposition 3.2]) Assume that (A1)-(A4) hold at ūē ∈ Uad(ē).
Then, there exists κ > 0 such that

J ′(ūē)(u− ūē) ≥ κ‖u− ūē‖
1+ 1

æ

L1(Ω), ∀u ∈ Uad(ē). (4.5)

For each ūē ∈ Uad(ē) and τ ≥ 0, 1 ≤ p ≤ ∞, we define the cone

Cτ
ūē,p =




v ∈ Lp(Ω)

∣∣∣∣∣ v(x)





≥ 0 if ūē(x) = (α + ēα)(x)

≤ 0 if ūē(x) = (β + ēβ)(x)

= 0 if |ϕūē
(x)| > τ




. (4.6)

The forthcoming theorem provides us with a second-order sufficient condition for bang-bang
controls ūē ∈ Uad(ē) to be optimal for problem (4.1) with respect to ē ∈ E.

Theorem 4.2. (See [23, Theorem 3.1]) Let ūē ∈ Uad(ē) be a feasible bang-bang control for

problem (4.1) satisfying (A1)-(A4). Assume that there exist δ > 0 and τ > 0 such that

J ′′(ūē)v
2 ≥ δ‖zv‖

2
L2(Ω), ∀v ∈ Cτ

ūē,2, (4.7)

where zv = G′(ūē)v is the solution of (2.21) for y = yūē
. Then, there exists ε > 0 such that

J(ūē) +
κ

2
‖u− ūē‖

1+ 1
æ

L1(Ω) +
δ

8
‖zu−ūē

‖2L2(Ω) ≤ J(u), ∀u ∈ Uad(ē) ∩ B̄
2
ε (ūē), (4.8)

with zu−ūē
= G′(ūē)(u− ūē) and κ being given in Proposition 4.1.
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In what follows, assumption (A4) and condition (4.7) will play a crucial role to prove
the existence of local upper Hölderian selections of the solution map S(·).

Recall that a vector v is an extremal point of a set Θ in a Banach space X if and only if
v = λv1 + (1 − λ)v2 with v1, v2 ∈ Θ and 0 < λ < 1 entails v1 = v2 = v. We will denote the
closed convex hull of Θ by convΘ.

Theorem 4.3. (See [32, Theorem 1]) Assume that un ⇀ u in L1(Ω) and u(x) is an extremal

point of Θ(x) := conv
(
{un(x)}n∈N ∪ {u(x)}

)
for a.a. x ∈ Ω. Then, un → u in L1(Ω).

We will use this theorem to lift weak convergence to strong convergence.

Lemma 4.4. Let ūē be bang-bang, i.e., ūē(x) ∈ {α(x) + ēα(x), β(x) + ēβ(x)} for almost all

x ∈ Ω. Let en → ē in E and choose un ∈ Uad(en) such that un ⇀ ūē in L
1(Ω). Then un → ūē

in L1(Ω).

Proof. On the active set Ω1(ē, ūē) it holds ūē = α + ēα, cf., (3.4), which implies un − ūē −
((eα)n − ēα) ≥ 0 on this subset. In addition, un − ūē − ((eα)n − ēα)⇀ 0 in L1(Ω). Then by
Theorem 4.3 we conclude un− ūē− ((eα)n− ēα) → 0 in L1(Ω1(ē, ūē)), which implies un → ūē
in L1(Ω1(ē, ūē)). Similarly, we find un → ūē in L

1(Ω3(ē, ūē)). Since ūē is bang-bang, it holds
Ω = Ω1(ē, ūē) ∪ Ω3(ē, ūē), which proves the claim. �

A straightforward application of the above Theorem 4.3 would require to assume that
ūē(x) is an extremal point of the set conv

(
{un(x)}n∈N∪{ūē(x)}

)
for a.a. x ∈ Ω. This cannot

be guaranteed as the control bounds are perturbed, so ūē(x) = α(x) + ēα(x) does not imply
ūē(x) ≤ un(x).

Note that similarly to Theorem 3.1, under the assumptions (A1)-(A3) we can show that
for any ūē ∈ S(ē) and for every e ∈ E near ē enough the problem of minimizing the cost
functional J (u, e) subject to u ∈ Uad(e) ∩ B̄

p0
ε (ūē) has at least one global solution ūe, where

B̄p0
ε (ūē) is the closed ball of center ūē and radius ε > 0 in Lp0(Ω).

Theorem 4.5. Assume that (A1)-(A3) hold and let ūē ∈ Uad(ē) be a bang-bang solution of

problem (4.1) with respect to ē ∈ E such that ūē is strict in some neighborhood B̄p0
ε (ūē) with

ε > 0. For every e ∈ E near ē enough, let ūe be a solution of the following control problem

Minimize J (u, e) subject to u ∈ Uad(e) ∩ B̄
p0
ε (ūē), (4.9)

where J (·, ·) is the cost functional of problem (4.1). Then, we have ūe → ūē in L
p0(Ω) when

e→ ē in E.

Proof. Let {en}n∈N be such that en → ē in E and let ūen ∈ Uad(en) ∩ B̄
p0
ε (ūē) be a global

solution of problem (4.9) with respect to en. Since the sequence {ūen} is bounded in Lp0(Ω),
it has a subsequence {ūenk

} with ūenk
⇀ û in Lp0(Ω) for some û ∈ Uad(ē)∩ B̄

p0
ε (ūē). Because

ūē ∈ Uad(ē), we have
ūē = λ(α + ēα) + (1− λ)(β + ēβ)

for some λ(x) ∈ [0, 1] for almost all x ∈ Ω. Defining uenk
∈ Uad(enk

) ∩ B̄p0
ε (ūē) by

uenk
:= λ

(
α + (enk

)α
)
+ (1− λ)

(
β + (enk

)β
)

for almost all x ∈ Ω, we have

‖uenk
− ūē‖L∞(Ω) ≤ ‖(enk

)α − ēα‖L∞(Ω) + ‖(enk
)β − ēβ‖L∞(Ω) ≤ ‖enk

− ē‖E.

It follows that when k → ∞, we have

‖uenk
− ūē‖Lp0(Ω) ≤ |Ω|1/p0‖enk

− ē‖E → 0.
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Letting k → ∞, we get J (ūenk
, enk

) → J (û, ē) and J (uenk
, enk

) → J (ūē, ē) with

J (ūenk
, enk

) ≤ J (uenk
, enk

), ∀k ∈ N.

This yields J (û, ē) ≤ J (ūē, ē). Therefore, we obtain û = ūē since ūē is a strict local solution
of problem (4.1) with respect to ē. We have shown that ūenk

⇀ ūē in L
p0(Ω). Consequently,

ūenk
⇀ ūē in L1(Ω). Since ūē is bang-bang, we deduce ūenk

→ ūē in L1(Ω) by Lemma 4.4.
Note that ūenk

∈ Uad(enk
) and the set

⋃∞
k=1 Uad(enk

) is bounded in L∞(Ω). Hence, we can
find a constant M > 0 such that ‖ūenk

− ūē‖L∞(Ω) ≤ M for every k ∈ N. Applying Hölder’s
inequality we get

‖ūenk
− ūē‖Lp0 (Ω) ≤ ‖ūenk

− ūē‖
1/p0
L1(Ω)‖ūenk

− ūē‖
(p0−1)/p0
L∞(Ω) ≤ M‖ūenk

− ūē‖
1/p0
L1(Ω) → 0,

which verifies that ūe → ūē in L
p0(Ω) when e→ ē in E. �

Corollary 4.6. Assume that (A1)-(A3) hold and let ūē be a unique bang-bang solution of

problem (4.1) with respect to ē ∈ E. For every e ∈ E, let ūe be a solution of problem (4.1).
Then, we have ūe → ūē in Lp0(Ω) when e→ ē in E.

Proof. The proof is similar to the proof of Theorem 4.5, where the neighborhood B̄p0
ε (ūē)

is replaced by Lp0(Ω). �

We need the following lemmas that will be used in the proofs of Hölderian stability for
solutions to problem (4.1) in the parameter e ∈ E as well as existence of Hölderian selections
of the solution map S(·).

Lemma 4.7. Given ẽ ∈ E, let any ũ ∈ Uad(ẽ) be given. Then, there exists C1 = C1(ũ, ẽ) > 0
such that

‖yu − yũ‖Y + ‖ϕu − ϕũ‖Y ≤ C1‖u− ũ‖Lp0 (Ω), ∀u ∈ Lp0(Ω), (4.10)

where yu and ϕu are respectively the weak solutions of (2.2) and (2.25).

Proof. The proof is similar to the proof of [23, Lemma 4.1]. �

Lemma 4.8. Given ẽ ∈ E, let any ũ ∈ Uad(ẽ) be given. Then, for every ε > 0, there exists

ρ > 0 such that for u ∈ Uad(ẽ) with ‖u− ũ‖Lp0(Ω) ≤ ρ the following holds

∣∣J ′′
u (u, ẽ)v

2 − J ′′
u (ũ, ẽ)v

2
∣∣ ≤ ε‖zv‖

2
L2(Ω) ∀v ∈ Lp0(Ω),

where zv solves the linearized equation




Azu,v +

∂f

∂y
(x, yũ+ẽy)zu,v = v in Ω

zu,v = 0 on Γ.

Proof. The proof is similar to the proof of [9, Lemma 2.7]. �

Lemma 4.9. Let ē ∈ E and η > 0 be given. Then there is a constant KM > 0 such that

|J ′′
u (u, e)(v, w)| ≤ KM‖zeu,v‖L2(Ω)‖z

e
u,w‖L2(Ω) (4.11)

holds for all e ∈ Bη(ē), u ∈ Uad(e), v, w ∈ L2(Ω), where zeu,v = G′(u+ey)v, z
e
u,w = G′(u+ey)w

solve the linearized equation




Az +

∂f

∂y
(x, yu+ey)z = v in Ω

z = 0 on Γ.
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Proof. Let us put the set U =
⋃

e∈B̄η(ē)
Uad(e). Let us define for e ∈ Bη(ē) and u ∈ Uad(e)

the function

F (u, e) =
∂2L

∂y2
(x, yu+ey)− ϕu,e

∂2f

∂y2
(x, yu+ey).

Then F is well-defined due to the assumptions posed on the functions f and L. In addition,
there is a constant M > 0 such that

‖yu+ey‖L∞(Ω) + ‖ϕu,e‖L∞(Ω) ≤M

holds for all e ∈ Bη(ē) and u ∈ Uad(e). In addition, we can find a constant ℓM > 0 satisfying
the condition

‖F (u, e)‖L∞(Ω) ≤ ℓM

for all e ∈ Bη(ē) and u ∈ Uad(e). Consequently, for every v, w ∈ L2(Ω) and u ∈ U , it holds
that

|J ′′(u+ ey)(v, w)| =

∣∣∣∣
∫

Ω

F (u, e)zeu,vz
e
u,wdx

∣∣∣∣ ≤ ℓM‖zeu,v‖L2(Ω)‖z
e
u,w‖L2(Ω). (4.12)

Note that G′′(u+ ey)(v, w) is the weak solution of (2.22) with respect to y = G(u+ ey) and
it satisfies the condition for some constant C ≥ 0 as follows

‖G′′(u+ ey)(v, w)‖L2(Ω) ≤ C

∥∥∥∥−
∂2f

∂y2
(x, yu+ey)z

e
u,vz

e
u,w

∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥
∂2f

∂y2
(x, yu+ey)

∥∥∥∥
L∞(Ω)

‖zeu,v‖L2(Ω)‖z
e
u,w‖L2(Ω)

≤ CCf,M‖zeu,v‖L2(Ω)‖z
e
u,w‖L2(Ω),

(4.13)

where zeu,v = zu+ey,v = G′(u + ey)v and zeu,w = zu+ey,w = G′(u + ey)w. From (4.12), (4.13),
and (4.1) it follows that

|J ′′
u (u, e)(v, w)| =

∣∣∣J ′′(u+ ey)(v, w) +
(
eJ , G

′′(u+ ey)(v, w)
)
L2(Ω)

∣∣∣
≤ |J ′′(u+ ey)(v, w)|+ ‖eJ‖L2(Ω)‖G

′′(u+ ey)(v, w)‖L2(Ω)

≤ ℓM‖zeu,v‖L2(Ω)‖z
e
u,w‖L2(Ω) + ηCCf,M‖zeu,v‖L2(Ω)‖z

e
u,w‖L2(Ω)

= (ℓM + ηCCf,M)‖zeu,v‖L2(Ω)‖z
e
u,w‖L2(Ω),

which yields (4.11) with KM = ℓM + ηCCf,M . �

Lemma 4.10. Let ē ∈ E, ū ∈ Uad(ē), and η > 0 be given. Then there is a constant KM > 0
such that

‖ϕu,ē − ϕū,ē‖L∞(Ω) ≤ KM‖u− ū‖L1(Ω)

holds for all e ∈ Bη(ē), u ∈ Uad(e).

Proof. The proof is similar to the proof of [10, Lemma 2.6].

Lemma 4.11. Let ē ∈ E, ū ∈ Uad(ē), and η > 0 be given. Then there is a constant KM > 0
such that

‖ϕū,e − ϕū,ē‖L∞(Ω) ≤ KM‖e− ē‖E

holds for all e ∈ Bη(ē).
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Proof. Since ϕū,e and ϕū,ē are the weak solutions of (2.30) with respect to e and ē. Thus,
we have




A∗(ϕū,e − ϕū,ē) +
∂f

∂y
(x, yū+ey)(ϕū,e − ϕū,ē) =

∂L

∂y
(x, yū+ey)−

∂L

∂y
(x, yū+ēy)

−

(
∂f

∂y
(x, yū+ey)−

∂f

∂y
(x, yū+ēy)

)
ϕū,ē + eJ − ēJ in Ω

ϕū,e − ϕū,ē = 0 on Γ,

By our assumptions, there exist C > 0, ℓ1 > 0, ℓ2 > 0 such that

‖ϕū,e − ϕū,ē‖L∞(Ω) ≤ C

(∥∥∥∥
∂L

∂y
(·, yū+ey)−

∂L

∂y
(·, yū+ēy)

∥∥∥∥
L2(Ω)

+

∥∥∥∥
∂f

∂y
(·, yū+ey)−

∂f

∂y
(·, yū+ēy)

∥∥∥∥
L2(Ω)

‖ϕū,ē‖L2(Ω) + ‖eJ − ēJ‖L2(Ω)

)

≤ C
(
ℓ1‖yū+ey − yū+ēy‖L2(Ω) + ‖eJ − ēJ‖L2(Ω)

)

≤ C
(
ℓ1ℓ2‖ey − ēy‖L2(Ω) + ‖eJ − ēJ‖L2(Ω)

)

≤ KM‖e− ē‖E,

where KM := Cmax{ℓ1ℓ2, 1}.

Lemma 4.12. Let ū ∈ Uad(ē) and ρ > 0 be given. Then, there exists c > 0 such that for all

û ∈ L∞(Ω) with ‖û− ū‖L2(Ω) < ρ it holds

‖zēû,w‖L2(Ω) ≤ c‖w‖L1(Ω), ∀w ∈ L2(Ω),

and

‖zēū,v − zēû,v‖L2(Ω) ≤ c‖zēū,v‖L2(Ω)‖û− ūē‖L2(Ω),

where we define zēû,w := zû+ēy ,w = G′(û+ ēy)w, and similarly for zēū,v and zēû,v.

Proof. It follows from [23, Lemma 4.2]. �

We also need the following extension of Proposition 4.1 to perturbed feasible sets.

Lemma 4.13. Assume that (A4) holds at ūē. Assume further that there is σ > 0 such that

β + ēβ − (α + ēα) ≥ σ a.e. on Ω.

Take 0 < η < σ/4. Let e ∈ Bη(ē) and let ūe ∈ Uad(e) satisfy the first-order optimality system

(2.29)-(2.31). Then there are c > 0 and κ′ > 0 independent of e and ue ∈ Uad(ē) such that

(
J ′

u(ūe, e)− J ′
u(ūē, ē)

)
(ūē − ūe)

≥ κ′‖ūe − ūē‖
1+ 1

æ

L1(Ω) +
1

2
J ′

u(ūē, ē)(ue − ūē)

− c
(
‖e− ē‖

1
æ

E + ‖ϕūe,e − ϕūē,ē‖L∞(Ω) + ‖ūe − ūē‖L1(Ω)

)
‖e− ē‖E,

and ‖ūe − ue‖L∞(Ω) ≤ ‖e− ē‖E.

Proof. Due to the perturbation in the feasible set, we have ūē 6∈ Uad(e) and ūe 6∈ Uad(ē) in
general. First, we construct controls ue ≈ ūe with ue ∈ Uad(ē) and uē ≈ ūē with uē ∈ Uad(e).
Let us define

Ωσ :=
{
x ∈ Ω

∣∣∣ |ūe − ūē| <
σ

2

}
.
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Then on Ωσ we have the implications

ūē = α + ēα =⇒ ue ≤ β + eβ −
σ

4
,

and
ūē = β + ēβ =⇒ ue ≥ α + eα +

σ

4
.

Let us define

ue := χΩσ∩Ω1(ūē,ē)(ūe − (eα − ēα)) + χΩσ∩Ω3(ūē,ē)(ūe − (eβ − ēβ)) + χΩ\Ωσ
projUad(ē)

(ūe),

and

uē := χΩσ∩Ω1(ūē,ē)(ūē + (eα − ēα)) + χΩσ∩Ω3(ūē,ē)(ūē + (eβ − ēβ)) + χΩ\Ωσ
projUad(e)

(ūē).

Due to the definition of Ωσ it holds ue ∈ Uad(ē) and uē ∈ Uad(e). In addition, we have the
important relation

ue − ūe = −(uē − ūē) on Ωσ.

Since the projection is Lipschitz continuous with respect to changes of upper and lower
bounds, we have

‖ue − ūe‖L∞(Ω), ‖uē − ūē‖L∞(Ω) ≤ ‖e− ē‖E .

Using these feasible approximations, by Proposition 4.1 and (2.31)–(2.32) we get

(
J ′

u(ūe, e)− J ′
u(ūē, ē)

)
(ūē − ūe)

= J ′
u(ūe, e)(ūē − uē + uē − ūe)− J ′

u(ūē, ē)(ūē − ue + ue − ūe)

≥ J ′
u(ūe, e)(ūē − uē)−J ′

u(ūē, ē)(ue − ūe) +
κ

2
‖ue − ūē‖

1+ 1
æ

L1(Ω) +
1

2
J ′

u(ūē, ē)(ue − ūē).

(4.14)

We can rewrite

J ′
u(ūe, e)(ūē − uē)− J ′

u(ūē, ē)(ue − ūe)

=
(
J ′

u(ūe, e)− J ′
u(ūē, ē)

)
d+ J ′

u(ūe, e)(χΩ\Ωσ
(ūē − uē))−J ′

u(ūē, ē)(χΩ\Ωσ
(ue − ūe)),

where
d := χΩσ

(ūē − uē) = χΩσ
(ue − ūe)

satisfying ‖d‖L∞(Ω) ≤ ‖e − ē‖E. Due to Tchebyshev’s inequality, the measure of Ω \ Ωσ is
bounded by 2σ−1‖ūe− ūē‖L1(Ω). Then we can estimate with c > 0 independent of e as follows

∣∣J ′
u(ūe, e)(ūē − uē)−J ′

u(ūē, ē)(ue − ūe)
∣∣

≤ |Ω| · ‖ϕūe,e − ϕūē,ē‖L∞(Ω)‖e− ē‖E

+
(
‖ϕūe,e − ϕūē,ē‖L∞(Ω) + 2‖ϕūē,ē‖L∞(Ω)

)
2σ−1‖ūe − ūē‖L1(Ω)‖e− ē‖E

≤ c
(
‖ϕūe,e − ϕūē,ē‖L∞(Ω) +

(
1 + ‖ϕūe,e − ϕūē,ē‖L∞(Ω)

)
‖ūe − ūē‖L1(Ω)

)
‖e− ē‖E.

Since ‖ūe− ūē‖L1(Ω) is uniformly bounded with respect to e due to the presence of the control
constraints, we can simplify this inequality to

|J ′
u(ūe, e)(ūe − ue)− J ′

u(ūē, ē)(ūe − uē)|

≤ c
(
‖ϕūe,e − ϕūē,ē‖L∞(Ω) + ‖ūe − ūē‖L1(Ω)

)
‖e− ē‖E.

(4.15)

It remains to develop a lower bound of ‖ue − ūē‖
1+ 1

æ

L1(Ω). By construction of ue, we have

‖ūe − ūē‖L1(Ω) ≤ ‖ue − ūē‖L1(Ω) + |Ω| · ‖e− ē‖E.
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This implies

‖ūe − ūē‖
1+ 1

æ

L1(Ω) ≤ 2
1
æ

(
‖ue − ūē‖

1+ 1
æ

L1(Ω) + |Ω|1+
1
æ‖e− ē‖

1+ 1
æ

E

)
. (4.16)

Collecting the inequalities (4.14)–(4.16) yields
(
J ′

u(ūe, e)−J ′
u(ūē, ē)

)
(ūē − ūe)

≥ κ′‖ūe − ūē‖
1+ 1

æ

L1(Ω) +
1

2
J ′

u(ūē, ē)(ue − ūē)

− c
(
‖e− ē‖

1
æ

E + ‖ϕūe,e − ϕūē,ē‖L∞(Ω) + ‖ūe − ūē‖L1(Ω)

)
‖e− ē‖E

with κ′ := κ21−
1
æ and c independent of e, ūe. �

Theorem 4.14. Let ūē be a strict bang-bang solution of problem (4.1) for ē ∈ E and assume

that (A1)-(A4) hold. Assume that the second-order condition (4.7) holds at ūē. Then, there
exist η > 0 and c > 0 such that

‖ūe − ūē‖L1(Ω) ≤ c‖e− ē‖
min{æ,1}
E (4.17)

for all e ∈ Bη(ē) and for any ūe ∈ Uad(e)∩B
p0
η (ūē) satisfying the first-order optimality system

(2.29)-(2.31).

Proof. By Lemma 4.13, we have
(
J ′

u(ūe, e)−J ′
u(ūē, ē)

)
(ūē − ūe)

≥ κ′‖ūe − ūē‖
1+ 1

æ

L1(Ω) +
1

2
J ′

u(ūē, ē)(ue − ūē)

− c
(
‖e− ē‖

1
æ

E + ‖ϕūe,e − ϕūē,ē‖L∞(Ω) + ‖ūe − ūē‖L1(Ω)

)
‖e− ē‖E

with ue ∈ Uad(ē) and ‖ūe − ue‖L∞(Ω) ≤ ‖e− ē‖E as above. We write

(
J ′

u(ūe, e)−J ′
u(ūē, ē)

)
(ūē − ūe)

=
(
J ′

u(ūe, e)−J ′
u(ūe, ē)

)
(ūē − ūe) +

(
J ′

u(ūe, ē)− J ′
u(ūē, ē)

)
(ūē − ūe).

Using the representation (2.32) of J ′
u by adjoint states and the estimate of Lemma 4.11, we

obtain
∣∣(J ′

u(ūe, e)−J ′
u(ūe, ē)

)
(ūē − ūe)

∣∣ ≤ ‖J ′
u(ūe, e)−J ′

u(ūe, ē)‖L∞(Ω)‖ūē − ūe‖L1(Ω)

= ‖ϕūe,e − ϕūe,ē‖L∞(Ω)‖ūē − ūe‖L1(Ω)

≤ c‖e− ē‖E‖ūē − ūe‖L1(Ω).

In addition, by Lemmas 4.10 and 4.11 we get

‖ϕūe,e − ϕūē,ē‖L∞(Ω) ≤ c(‖e− ē‖E + ‖ūe − ūē‖L1(Ω)).

This shows

κ′‖ūe − ūē‖
1+ 1

æ

L1(Ω) + (J ′
u(ūe, ē)− J ′

u(ūē, ē))(ūe − ūē) +
1

2
J ′

u(ūē, ē)(ue − ūē)

≤ c
(
‖e− ē‖

1
æ

E + ‖e− ē‖E + ‖ūe − ūē‖L1(Ω)

)
‖e− ē‖E .

(4.18)

By Taylor expansion, we find

(
J ′

u(ūe, ē)−J ′
u(ūē, ē)

)
(ūe − ūē) = J ′′

u (û, ē)(ūe − ūē)
2,
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where û = ūē + θ(ūe − ūē) and θ ∈ (0, 1). Let us define

Ωτ := {x ∈ Ω : |ϕūē
| ≤ τ}.

We now define

v = χΩτ
(ue − ūē), w = χΩ\Ωτ

(ue − ūē), w̃ := ūe − ue,

such that v+w+ w̃ = ūe− ūē and v ∈ Cτ
ūē,p0, for the definition of Cτ

ūē,p0 see (4.6). Moreover,
we have ‖w̃‖L∞(Ω) ≤ ‖e− ē‖E . Due to the feasibility ue ∈ Uad(ē), we have

J ′
u(ūē, ē)(ue − ūē) =

∫

Ω

|ϕūē
| · |ue − ūē|dx ≥ τ‖w‖L1(Ω).

From the definition of v and w we get

J ′′
u (û, ē)(ūe − ūē)

2 +
1

2
J ′

u(ūē, ē)(ue − ūē)

≥
τ

2
‖w‖L1(Ω) + J ′′

u (ūē, ē)v
2 + (J ′′

u (û, ē)− J ′′
u (ūē, ē))v

2

+ J ′′
u (û, ē)(w + w̃)2 + 2J ′′

u (û, ē)(v, w + w̃).

Let us set for abbreviation zv := zēūē,v, zû,v := zēû,v, and similarly for zû,w, zû,w̃. Using the
second-order condition (4.7), the continuity estimate of J ′′

u of Lemma 4.8, and the estimate
of J ′′

u of Lemma 4.9, we get

J ′′
u (û, ē)(ūe − ūē)

2 +
1

2
J ′

u(ūē, ē)(ue − ūē)

≥
τ

2
‖w‖L1(Ω) + δ‖zv‖

2
L2(Ω) −

δ

4
‖zv‖

2
L2(Ω) − 2KM

(
‖zû,w‖

2
L2(Ω) + ‖zû,w̃‖

2
L2(Ω)

)

− 2KM

(
‖zv‖L2(Ω) + ‖zv − zû,v‖L2(Ω)

)(
‖zû,w‖L2(Ω) + ‖zû,w̃‖L2(Ω)

)
(4.19)

for all ūe in some ball Bp0
η (ūē) with η > 0. Using Lemma 4.12, we estimate

‖zû,w‖L2(Ω) ≤ c‖w‖L1(Ω)

and
‖zû,w̃‖L2(Ω) ≤ c‖w̃‖L∞(Ω) ≤ c‖e− ē‖E .

Applying Lemma 4.12, we find

‖zv − zû,v‖L2(Ω) ≤ cη‖zv‖L2(Ω).

Using this estimate in (4.19), we obtain

J ′′
u (û, ē)(ūe − ūē)

2 +
1

2
J ′

u(ūē, ē)(ue − ūē)

≥
τ

2
‖w‖L1(Ω) +

3

4
δ‖zv‖

2
L2(Ω)

− c
(
‖w‖2L1(Ω) + ‖e− ē‖2E + ‖zv‖L2(Ω)(‖w‖L1(Ω) + ‖e− ē‖E)

)

with some c > 0 independent of e and ūe. Using Young’s inequality, the following inequality
can be derived:

J ′′
u (û, ē)(ūe − ūē)

2 +
1

2
J ′

u(ūē, ē)(ue − ūē)

≥ ‖w‖L1(Ω)

(τ
2
− c1‖w‖L1(Ω)

)
+

1

2
δ‖zv‖

2
L2(Ω) − c2‖e− ē‖2E .
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By making η smaller if necessary, we can achieve

‖w‖L1(Ω)

(τ
2
− c1‖w‖L1(Ω)

)
≥
τ

4
‖w‖L1(Ω).

This shows

J ′′
u (û, ē)(ūe − ūē)

2 +
1

2
J ′

u(ūē, ē)(ue − ūē) ≥
τ

4
‖w‖L1(Ω) +

δ

2
‖zv‖

2
L2(Ω) − C‖e− ē‖2E.

Together with (4.18), this implies

τ

4
‖w‖L1(Ω) +

δ

2
‖zv‖

2
L2(Ω) + κ′‖ūe − ūē‖

1+ 1
æ

L1(Ω)

≤ c
(
‖e− ē‖

1
æ

E + ‖e− ē‖E + ‖ūe − ūē‖L1(Ω)

)
‖e− ē‖E.

With Young’s inequality we obtain

c‖ūe − ūē‖L1(Ω)‖e− ē‖E ≤
κ′

2
‖ūe − ūē‖

1+ 1
æ

L1(Ω) + c‖e− ē‖æ+1
E .

Thus, we arrive at the inequality

τ

4
‖w‖L1(Ω) +

δ

2
‖zv‖

2
L2(Ω) + κ′‖ūe − ūē‖

1+ 1
æ

L1(Ω) ≤ c
(
‖e− ē‖

1+ 1
æ

E + ‖e− ē‖2E + ‖e− ē‖æ+1
E

)
.

For æ ∈ [0, 1], æ + 1 is the smallest exponent on the right-hand side, if æ > 1, then 1 + 1
æ
is

the smallest exponent. This proves

‖ūe − ūē‖L1(Ω) ≤ C‖e− ē‖
min{æ,1}
E ,

and therefore we obtain (4.17).

The following theorem shows that the (global) solution map S : domUad ⇒ L1(Ω) admits
a local upper Hölderian selection at a given point (ē, ūē) ∈ gphS provided that for every
e ∈ domUad near ē, problem (4.1) has a (global) solution ūe near ūē.

Theorem 4.15. Assume that all the assumptions of Theorem 4.14 are satisfied and let

(ē, ūē) ∈ gphS be such that ūē is strict in a neighborhood B̄p0
ε (ūē) with ε > 0. Assume further

that for every e ∈ domUad near ē, problem (4.1) has a solution ūe satisfying ūe ∈ B̄p0
ε (ūē).

Then, the solution map S : domUad ⇒ L1(Ω) admits a local upper Hölderian selection with

the exponent æ ∈ [0, 1] at the point (ē, ūē).

Proof. According to Theorems 4.5 and 4.14, there exist constants η > 0 and c > 0 satisfying

‖ūe − ūē‖L1(Ω) ≤ c‖e− ē‖
min{æ,1}
E , ∀e ∈ B̄η(ē), (4.20)

where ūe is a solution of problem (4.1) with respect to e ∈ E satisfying ūe ∈ B̄p0
ε (ūē). Define

a single-valued function h : domG → L1(Ω) by h(ē) = ūē and h(e) = ūe for e ∈ domG.
Then, for e ∈ B̄η(ē) ∩ domG, by (4.20) we obtain

‖h(e)− h(ē)‖L1(Ω) ≤ c‖e− ē‖æ
′

E ,

which yields that h is a local upper Hölderian selection of S(·) at the point (ē, ūē), where
the exponent æ′ = min{æ, 1} ∈ [0, 1]. �

Corollary 4.16. Assume that all the assumptions of Theorem 4.14 are satisfied and let

(ē, ūē) ∈ gphS be such that S(ē) = {ūē}. Then, the solution map S : domUad ⇒ L1(Ω) of

problem (4.1) has a local upper Hölderian selection at (ē, ūē) with the exponent æ ∈ [0, 1].

Proof. By applying Theorem 4.14 and Corollary 4.6 and arguing similarly as in the proof
of Theorem 4.15, we obtain the assertion of the corollary. �
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4.2 Lower estimate for regular subdifferential of µ(·)

In this subsection, we will establish a characterization of regular subgradients of the marginal
function µ(·) in a subspace E∗

1 of E∗, where E∗
1 is defined as follows

E∗
1 := L2(Ω)× L2(Ω)× L1(Ω)× L1(Ω)

⊂ L2(Ω)× L2(Ω)× L∞(Ω)∗ × L∞(Ω)∗ = E∗.

We now define the set

Ξ̂
(
(ē, ūē); gphUad

)
=
{
(e∗, u∗) ∈ E∗

1 × L2(Ω)
∣∣∣ e∗ = (0, 0, e∗α, e

∗
β), u

∗ = −e∗α − e∗β,

e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β |Ω3(ē,ūē) ≤ 0, e∗β|Ω\Ω3(ē,ūē) = 0
}
.

By arguing similarly as the proof of Lemma 3.2 we get

Ξ̂
(
(ē, ūē); gphUad

)
⊂ N̂

(
(ē, ūē); gphUad

)
.

Consequently, by setting

Λ̂∗G(ē, ūē)(u
∗) =

{
e∗ ∈ E∗

1

∣∣ (e∗,−u∗) ∈ Ξ̂
(
(ē, ūē); gphG

)}

=
{
e∗ ∈ E∗

1

∣∣∣ e∗ = (0, 0, e∗α, e
∗
β), u

∗ = e∗α + e∗β,

e∗α|Ω1(ē,ūē) ≥ 0, e∗α|Ω\Ω1(ē,ūē) = 0,

e∗β|Ω3(ē,ūē) ≤ 0, e∗β|Ω\Ω3(ē,ūē) = 0
}
,

(4.21)

we deduce that
Λ̂∗G(ē, ūē)(u

∗) ⊂ D̂∗G(ē, ūē)(u
∗). (4.22)

Motivated by the estimate (4.22), we are going to establish a lower estimate for ∂̂µ(ē) via a
characterization of regular subgradients of the marginal function µ(·) in the subspace E∗

1 of
E∗ in the forthcoming theorem.

Theorem 4.17. Assume that (A1)-(A3) hold and let (ē, ūē) ∈ gphS be given. Then, for

any ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ ∂̂µ(ē) ∩ E∗

1 , the following holds





ê∗y = ϕūē,ē,

ê∗J = yūē+ēy ,

ê∗α|Ω1(ē,ūē) ≥ 0, ê∗α|Ω\Ω1(ē,ūē) = 0,

ê∗β|Ω3(ē,ūē) ≤ 0, ê∗β|Ω\Ω3(ē,ūē) = 0,

ê∗α + ê∗β = ϕūē,ē.

(4.23)

In addition, assume that the solution map S(·) admits a local upper Hölderian selection h(·)
with h(ē) = ūē, h(e) = ūe, and

‖h(e)− h(ē)‖L1(Ω) ≤ c‖e− ē‖æE, ∀e ∈ B̄η(ē) ∩ domG, (4.24)

for some η > 0, c > 0, and æ > 1/2. If an element ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ E∗

1 satisfies (4.23),

then ê∗ ∈ ∂̂µ(ē).
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Proof. By definition, we have ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ ∂̂µ(ē) if and only if

liminf
e→ē

µ(e)− µ(ē)− 〈ê∗, e− ē〉

‖e− ē‖E
≥ 0. (4.25)

Suppose that ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ ∂̂µ(ē)∩E∗

1 . We verify that ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) satisfies

(4.23). By the inclusion ê∗ ∈ ∂̂µ(ē), we have (4.25).

Let e = (ēy, ēJ , eα, eβ) → (ēy, ēJ , ēα, ēβ) = ē with (eα, eβ) being chosen the same in the
proof of Lemma 3.2. Then, we have ūē ∈ G(e), and thus J (ūē, e) ≥ µ(e). Since J (·, ·) does
not depend on eα and eβ, we have J (ūē, ē) = J (ūē, e) which yields J (ūē, ē) ≥ µ(e). Note
that µ(ē) = J (ūē, ē) due to (ē, ūē) ∈ gphS. Consequently, from (4.25) we obtain

liminf
e→ē

−〈ê∗α, eα − ēα〉 − 〈ê∗β, eβ − ēβ〉

‖eα − ēα‖L∞(Ω) + ‖eβ − ēβ‖L∞(Ω)

≥ 0. (4.26)

Using (4.26) and arguing similarly as the proof of Lemma 3.2 we deduce that

{
ê∗α|Ω1(ē,ūē) ≥ 0, ê∗α|Ω\Ω1(ē,ūē) = 0,

ê∗β |Ω3(ē,ūē) ≤ 0, ê∗β|Ω\Ω3(ē,ūē) = 0.
(4.27)

Let e = (ey, eJ , ēα, ēβ) → (ēy, ēJ , ēα, ēβ) = ē. Then, J (ūē, e) ≥ µ(e) by ūē ∈ G(ē) = G(e).
Combining this with (4.25) we obtain

liminf
e→ē

J (ūē, e)− J (ūē, ē)− 〈(ê∗y, ê
∗
J), (ey, eJ)− (ēy, ēJ)〉

‖(ey, eJ)− (ēy, ēJ)‖L2(Ω)×L2(Ω)

≥ 0. (4.28)

We have

J (ūē, e)−J (ūē, ē)− 〈(ê∗y, ê
∗
J), (ey, eJ)− (ēy, ēJ)〉

‖(ey, eJ)− (ēy, ēJ)‖L2(Ω)×L2(Ω)

=
J (ūē, e)− J (ūē, ē)−

〈(
J ′

ey(ūē, ē),J
′
eJ
(ūē, ē)

)
, (ey, eJ)− (ēy, ēJ)

〉

‖(ey, eJ)− (ēy, ēJ)‖L2(Ω)×L2(Ω)

+

〈(
J ′

ey(ūē, ē)− ê∗y,J
′
eJ
(ūē, ē)− ê∗J

)
, (ey, eJ)− (ēy, ēJ)

〉

‖(ey, eJ)− (ēy, ēJ)‖L2(Ω)×L2(Ω)

.

(4.29)

Since J (·, ·) is Fréchet differentiable in (ey, eJ) at the point (ēy, ēJ), we have

lim
(ey ,eJ)→(ēy ,ēJ)

J (ūē, e)− J (ūē, ē)−
〈(
J ′

ey(ūē, ē),J
′
eJ
(ūē, ē)

)
, (ey, eJ)− (ēy, ēJ)

〉

‖(ey, eJ)− (ēy, ēJ)‖L2(Ω)×L2(Ω)

= 0.

Hence, from (4.28) and (4.29) it follows that

liminf
(ey ,eJ)→(ēy ,ēJ)

〈(
J ′

ey(ūē, ē)− ê∗y,J
′
eJ
(ūē, ē)− ê∗J

)
, (ey, eJ)− (ēy, ēJ)

〉

‖(ey, eJ)− (ēy, ēJ)‖L2(Ω)×L2(Ω)

≥ 0,

which yields
(
J ′

ey(ūē, ē)− ê∗y,J
′
eJ
(ūē, ē)− ê∗J

)
= (0L2(Ω), 0L2(Ω)). Hence, we have

{
ê∗y = J ′

ey(ūē, ē) = J ′
u(ūē, ē) = ϕūē,ē,

ê∗J = J ′
eJ
(ūē, ē) = G(ūē + ēy) = yūē+ēy .

(4.30)
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Let e = (ēy, ēJ , eα, eβ) → (ēy, ēJ , ēα, ēβ) = ē with eα − ēα = eβ − ēβ and let u ∈ G(e) with
u− ūē = eα − ēα. Note that u→ ūē as e→ ē, and J (u, ē) = J (u, e) ≥ µ(e). From (4.25) it
follows that

liminf
eα→ēα

J (u, ē)−J (ūē, ē)− 〈ê∗α + ê∗β, eα − ēα〉

2‖eα − ēα‖L∞(Ω)

≥ 0. (4.31)

By the choice of eα, eβ , and u as above, we have

J (u, ē)− J (ūē, ē)− 〈ê∗α + ê∗β, eα − ēα〉

2‖eα − ēα‖L∞(Ω)

=
J (u, ē)− J (ūē, ē)− 〈J ′

u(ūē, ē), u− ūē〉+ 〈J ′
u(ūē, ē)− ê∗α − ê∗β, eα − ēα〉

2‖eα − ēα‖L∞(Ω)

=
o
(
‖u− ūē‖L2(Ω)

)
+ 〈J ′

u(ūē, ē)− ê∗α − ê∗β, eα − ēα〉

2‖eα − ēα‖L∞(Ω)

.

From this and (4.31) with noting that

lim
eα→ēα

o
(
‖u− ūē‖L2(Ω)

)

2‖eα − ēα‖L∞(Ω)

= 0

we deduce

liminf
e→ē

〈J ′
u(ūē, ē)− ê∗α − ê∗β, eα − ēα〉

2‖eα − ēα‖L∞(Ω)

≥ 0,

which yields J ′
u(ūē, ē)− ê∗α − ê∗β = 0L∞(Ω)∗ . Hence, we obtain

ê∗α + ê∗β = J ′
u(ūē, ē) = ϕūē,ē. (4.32)

Combining (4.27), (4.30) and (4.32) we obtain (4.23).

Conversely, we show that if ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) from E∗

1 holds (4.23), then ê∗ also holds

(4.25) and thus ê∗ ∈ ∂̂µ(ē) ∩ E∗
1 . Note that

J ′
u(ūē, ē) = ϕūē,ē = ê∗α + ê∗β and J ′

e(ūē, ē) =
(
ϕūē,ē, yūē+ēy , 0L∞(Ω)∗ , 0L∞(Ω)∗

)
.

Thus, by (4.23) we have

ê∗ = J ′
e(ūē, ē) +

(
0L2(Ω), 0L2(Ω), ê

∗
α, ê

∗
β

)
. (4.33)

Using the local upper Hölderian selection h(·) of the solution map S(·) with h(ē) = ūē and
h(e) = ūe for all e ∈ B̄η(ē) ∩ domG, from (4.33) we deduce that

µ(e)− µ(ē)− 〈ê∗, e− ē〉

‖e− ē‖E
=

J (ūe, e)−J (ūē, ē)− 〈ê∗, e− ē〉

‖e− ē‖E

=
J (ūe, e)−J (ūē, e)− 〈ê∗α, eα − ēα〉 − 〈ê∗β, eβ − ēβ〉

‖e− ē‖E

+
J (ūē, e)− J (ūē, ē)− 〈J ′

e(ūē, ē), e− ē〉

‖e− ē‖E

=
J (ūe, e)−J (ūē, e)− 〈J ′

u(ūē, ē), ūe − ūē〉

‖e− ē‖E

+
〈ê∗α + ê∗β , ūe − ūē〉 − 〈ê∗α, eα − ēα〉 − 〈ê∗β , eβ − ēβ〉

‖e− ē‖E

+
J (ūē, e)− J (ūē, ē)− 〈J ′

e(ūē, ē), e− ē〉

‖e− ē‖E
,

26



and thus we have

µ(e)− µ(ē)− 〈ê∗, e− ē〉

‖e− ē‖E
=

J (ūe, e)−J (ūē, e)− 〈J ′
u(ūē, e), ūe − ūē〉

‖e− ē‖E

+
〈J ′

u(ūē, e)− J ′
u(ūē, ē), ūe − ūē〉

‖e− ē‖E

+
〈ê∗α + ê∗β , ūe − ūē〉 − 〈ê∗α, eα − ēα〉 − 〈ê∗β , eβ − ēβ〉

‖e− ē‖E

+
J (ūē, e)− J (ūē, ē)− 〈J ′

e(ūē, ē), e− ē〉

‖e− ē‖E
=: ρ1(e) + ρ2(e) + ρ3(e) + ρ4(e).

By Lemma 4.9, we can find η > 0 and KM > 0 such that the following inequality
∣∣J ′′

u (u, e)(v1, v2)
∣∣ ≤ KM‖zeu,v1‖L2(Ω)‖z

e
u,v2

‖L2(Ω) (4.34)

holds for all e ∈ Bη(ē), u ∈ Uad(e), and v1, v2 ∈ L2(Ω). By [23, Lemma 4.2], we get

‖zeu,v‖L2(Ω) = ‖zu+ey,v‖L2(Ω) ≤ C3‖v‖L1(Ω), ∀v ∈ L1(Ω),

for some constant C3 > 0 independent of u and e. From this and (4.34) we infer that
∣∣J ′′

u (u, e)(v1, v2)
∣∣ ≤ C‖v1‖L1(Ω)‖v2‖L1(Ω), ∀v1, v2 ∈ L2(Ω), (4.35)

where C := KMC3. Using (4.35) and (4.24), we get

lim
e→ē

|ρ1(e)| = lim
e→ē

∣∣J (ūe, e)− J (ūē, e)− 〈J ′
u(ūē, e), ūe − ūē〉

∣∣
‖e− ē‖E

= lim
e→ē

1

2

∣∣J ′′
u (ûe, e)(ūe − ūē)

2
∣∣

‖e− ē‖E
≤ lim

e→ē

C‖ūe − ūē‖
2
L1(Ω)

2‖e− ē‖E

= lim
e→ē

C‖h(e)− h(ē)‖2L1(Ω)

2‖e− ē‖E
≤ lim

e→ē

Cc2‖e− ē‖2æE
2‖e− ē‖E

= 0,

where ûe = ūē+θ(ūe− ūē) for some function θ(·) with 0 ≤ θ(x) ≤ 1. In addition, by applying
Lemma 4.11 we get for some constant KM > 0 that

lim
e→ē

|ρ2(e)| = lim
e→ē

∣∣〈J ′
u(ūē, e)− J ′

u(ūē, ē), ūe − ūē〉
∣∣

‖e− ē‖E

≤ lim
e→ē

‖J ′
u(ūē, e)−J ′

u(ūē, ē)‖L∞(Ω)‖ūe − ūē‖L1(Ω)

‖e− ē‖E

= lim
e→ē

‖ϕūē,e − ϕūē,ē‖L∞(Ω)‖ūe − ūē‖L1(Ω)

‖e− ē‖E

≤ lim
e→ē

KM‖e− ē‖E‖ūe − ūē‖L1(Ω)

‖e− ē‖E
= 0.

Moreover, by denoting Ωi = Ωi(ē, ūē) for i = 1, 2, 3, it holds that ūē|Ω1
= α|Ω1

+ ēα|Ω1
and

ūē|Ω3
= β|Ω3

+ ēβ |Ω3
due to the definition of Ω1 and Ω3. Hence, we obtain

ρ3(e) =
〈ê∗α + ê∗β, ūe − ūē〉 − 〈ê∗α, eα − ēα〉 − 〈ê∗β, eβ − ēβ〉

‖e− ē‖E

=
〈ê∗α|Ω1

, ūe|Ω1
− ūē|Ω1

− eα|Ω1
+ ēα|Ω1

〉+ 〈ê∗β|Ω3
, ūe|Ω3

− ūē|Ω3
− eβ |Ω3

+ ēβ|Ω3
〉

‖e− ē‖E

=
〈ê∗α|Ω1

, ūe|Ω1
− α|Ω1

− eα|Ω1
〉+ 〈ê∗β|Ω3

, ūe|Ω3
− β|Ω3

− eβ |Ω3
〉

‖e− ē‖E

≥ 0.
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Finally, since the map e 7→ J (u, e) is Fréchet differentiable at ē for each u, we get

lim
e→ē

ρ4(e) = lim
e→ē

J (ūē, e)− J (ūē, ē)− 〈J ′
e(ūē, ē), e− ē〉

‖e− ē‖E
= 0.

Summarizing the above we deduce that

liminf
e→ē

µ(e)− µ(ē)− 〈ê∗, e− ē〉

‖e− ē‖E
= liminf

e→ē
ρ3(e) ≥ 0.

This implies that ê∗ ∈ ∂̂µ(ē) ∩ E∗
1 . �

From Theorem 4.15 and Theorem 4.17 we obtain the following characterization of regular
subgradients of the marginal function µ(·) in E∗

1 .

Theorem 4.18. Let (ē, ūē) ∈ gphS and assume that all the assumptions of Theorem 4.15

hold, where (A4) holds with æ > 1/2. Then, we have ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ ∂̂µ(ē) ∩ E∗

1 if

and only if ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ E∗

1 satisfies





ê∗y = ϕūē,ē,

ê∗J = yūē+ēy ,

ê∗α|Ω1(ē,ūē) ≥ 0, ê∗α|Ω\Ω1(ē,ūē) = 0,

ê∗β|Ω3(ē,ūē) ≤ 0, ê∗β|Ω\Ω3(ē,ūē) = 0,

ê∗α + ê∗β = ϕūē,ē.

(4.36)

Proof. Applying Theorems 4.15 and 4.17, we obtain the assertion of the theorem. �

Corollary 4.19. Let (ē, ūē) ∈ gphS and assume that all the assumptions of Corollary 4.16

hold, where (A4) holds with æ > 1/2. Then, we have ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ ∂̂µ(ē) ∩ E∗

1 if

and only if ê∗ = (ê∗y, ê
∗
J , ê

∗
α, ê

∗
β) ∈ E∗

1 satisfies (4.36).

Proof. It follows directly from Corollary 4.16 and Theorem 4.17. �

Remark 4.20. If all the assumptions of Theorem 4.17 hold around ē ∈ E, then by using
(2.12) and (2.13) we obtain the following lower estimates for the Mordukhovich and singular
subdifferentials of µ(·) via (4.23) as follows

∂µ(ē) ⊃ ∂µ(ē) ∩ E∗
1 ⊃ Limsup

e
µ

−→ē

(
∂̂µ(e) ∩ E∗

1

)
, (4.37)

and
∂∞µ(ē) ⊃ ∂∞µ(ē) ∩ E∗

1 ⊃ Limsup
e

µ
−→ē
λ↓0

λ
(
∂̂µ(e) ∩ E∗

1

)
. (4.38)

If, in addition, there exists a sequence en → ē with ∂̂µ(en)∩E
∗
1 6= ∅, then 0 ∈ ∂∞µ(ē). Indeed,

since ∂̂µ(en) ∩ E
∗
1 is bounded by (4.23). Combining this with (4.38) yields 0 ∈ ∂∞µ(ē).

5 Concluding remarks

In this paper, we have obtained new results on differential stability of a class of optimal
control problems of semilinear elliptic PDEs. We have established upper estimates for the
regular, the Mordukhovich, and the singular subdifferentials of the marginal function µ(·) in
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the setting that E = L2(Ω)4 and Q× Uad(e) ⊂ L2(Ω) × L2(Ω). Furthermore, we have also
obtained a new result on the existence of local upper Hölderian selections of the solution
map S(·) as well as a lower estimate for the regular subdifferential of µ(·) with respect to
E = L2(Ω)2 × L∞(Ω)2 and Q = Lp0(Ω), where p0 > N/2. In the last setting, the problem
of computing/estimating the limiting subdifferentials of µ(·) is very complicated since the
parametric space E = L2(Ω)2 × L∞(Ω)2 is not Asplund. For this reason, such problem
remains open.

Further investigation, we are also interested in the problem of computing subdifferentials
of the marginal function µ(·) with respect to the parametric space

E = L2(Ω)× L2(Ω)× C(Ω̄)× C(Ω̄). (5.1)

Note that for the parametric space E given by (5.1), subgradients of the marginal function
µ(·) will be in the form

e∗ = (e∗y, e
∗
J , e

∗
α, e

∗
β) ∈ E∗ = L2(Ω)× L2(Ω)× C(Ω̄)∗ × C(Ω̄)∗,

where e∗α and e∗β are measures. We think that the problem of characterization of subgradients
e∗ = (e∗y, e

∗
J , e

∗
α, e

∗
β) ∈ E∗ of µ(·) with functions e∗y, e

∗
J and measures e∗α, e

∗
β is an interesting

and meaningful topic.
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